
ii
short longii

Problem 1 2 3 4 5 I II Σii
Max 12 12 12 12 12 26 26 100ii
Score

iic
c
c
c
c
c
c

cc
c
c
c
c

cc
c
c
c
c

cc
c
c
c
c

cc
c
c
c
c

c
c
c
c
c
c
c

c
c
c
c
c
c
c

cc
c
c
c
c

c
c
c
c
c
c
c

c
c
c
c
c
c
c

c
c
c
c
c
c
c

CSc 520 final exam Friday 5 May 2006
TIME = 2 hours

Write all answers ON THIS EXAMINATION, and submit it IN THE ENVELOPE at the end of the exam.

Do four (4) of the ‘‘short’’ problems (1-5)

Do both of the ‘‘long’’ problems (I-II).

You may do an additional problem for extra credit. If you do so, circle the extra credit problem in the table
above or else only 6 problems will be counted.

NAME____________________________________GRADE_________

Short Answer (do 4)

1. A Fixed Point Combinator

Show that the combinator

Y ≡ (λ f . ((λx . f (xx))(λx . f (xx))))

satisfies the fixed point identity:

YF = F(YF)

Label each step that is a beta reduction by →β. Label each step that is an eta reduction by →η . Label each
step that is an alpha conversion by ↔ α . Label each step that represents replacing a name by its defintion (or
vice versa) by ≡.

For example:

(SELF SELF) ≡ ((λx . xx) SELF) →β (SELF SELF) .

final - 1 -

2. Binding

The following text is modified from R.C. Holt and J.R. Cordy, "The Turing Programming Language", CACM 31,
12(Dec 1988), 1415.

‘‘The next example illustrates the use of Turing’s bind declaration.

type r:
record

s: string(15)
n: int

end record
var a: array 1 .. 3 of r
var y: r
var i,j: int
. . .

i := 3
bind var x to a(i)
x.s := "C.E. Shannon"
a(i).n := 7

‘‘The bind specifies that x is to be another name for a(i). The var keyword specifies that x, and hence a(i),
may be changed in the scope of x; for example, the last statement assigns to a field of x. If var is omitted,
the declared item cannot be changed. The binding is by reference, in that changes to i in the scope of x do
not affect the element to which x is bound.’’

(a) Give a binding diagram to show the effect of bind var x to a(i). Show the resulting diagram just after the
bind command. Use a box with two sub-boxes to represent a record object; arrays can be represented by a
row of contiguous boxes.

(b) Add the following line to the above program, and give a binding diagram to show the result. Show the
resulting diagram just after the assignment is made, and fill in all relevant values and fields.

y := a(i)

final - 2 -

3. Parameter Transmission

The following procedure is intended to swap the contents of two integer variable arguments x and y. Assume
that the language is like Pascal, except that the parameter transmission method remains to be specified. The pro-
cedure avoids the allocation of a temporary local variable by using an add/subtract trick:

procedure swap(x,y: integer);
begin

x := x + y;
y := x - y;
x := x - y

end;

Assume that in this problem you can ignore difficulties caused by integer addition overflow.

(a) Does the procedure work correctly for any pair of legal actual arguments if the parameters are passed by
reference? If so, explain why. If not, give a counter-example and explain.

(b) Same question as (a), but assume the parameters are passed by copy (copy-in/copy-out). If so, explain why.
If not, give a counter-example and explain.

(c) Same question as (a), but assume the parameters are passed by name. If so, explain why. If not, give a
counter-example and explain.

final - 3 -

4. Narrowing Scope

Suppose p and q are declared as pointer variables pointing to integers in Algol 68, i.e., each is of mode ref
ref int. In the language Algol 68, an assignment statement of the form

p := q

is correct only if ‘‘the scope of the variable on the right-hand-side is at least as large as the scope of the vari-
able on the left hand side’’.

(a) Explain briefly why the language imposes the restriction quoted above.

(b) Give an example of a program fragment where this restriction is violated, and explain what can go wrong.
Do not worry about Algol 68 syntax, but explain clearly your intent. Show all declarations and carefully
mark scopes.

(c) Can the problem illustrated in (b) occur if p and q are declared as simple (non-pointer) integer variables?
That is, does it occur if they are both of mode ref int? Why or why not?

final - 4 -

5. loop Construct

We want to add to the simplest version of IMP (Example 3.6, p. 66 of Watt, called IMP 0 in class) another itera-
tive construct, which we will explain by example. If X is a non-negative integer variable with, say, integer
value n, and C is a command, then loop X : C end has the same effect as repeatedly executing C a total of
n times in sequence. In other words, it is equivalent to the command C; C; . . . ; C (n ≥ 0 occurrences of
C). If X has a negative integer value, then we define this to have the same effect as if X were zero. For exam-
ple, the program

loop X : Y:= Y+1 end ;

has the same effect as Y:= Y+X; , provided X has non-negative value; otherwise the effect is skip . For
another example,

Y:= 3;
loop X : Y:= 6 end ;

has the same effect as if X>0 then Y:= 6 else Y:= 3 ; .

(a) Provide the required additional syntax rules for IMP.

(b) Give any requred contextual constraints (beyond what the grammar will enforce.)

(c) Assume X is the syntactic metavariable for the syntactic category Identifier , and C is the metavariable
for Command . Provide the following semantic rule. Note that this is direct semantics, not continuation
semantics.

execute [[loop X : C end]] env sto =

final - 5 -

Long Problems (do 2)

I. Conditional Expressions

We want to add a new kind of Expression to the language IMP g—the original IMP, but with command
and expression continuations added. The new expression is called a conditional expression. A conditional
expression has the general form E 1? E 2: E 3 where the E i are expressions. The informal meaning of this
expression is that, if E 1 evaluates to true, then expression E 2 is evaluated (incurring any side-effects or per-
forming any jumps encountered) and otherwise expression E 3 is evaluated (incurring any side-effects or per-
forming any jumps encountered). The semantics is supposed to be ‘‘short-circuit evaluation’’, meaning that only
one of the expressions E 2, E 3 will be evaluated.

Provide ‘‘expression continuation semantics’’ for this new syntax. Assume the following important contextual
constraint:

g no jumps are allowed between or among each of E 1, E 2, and E 3. Thus, if a goto L occurs inside
E i , i = 1, 2, 3, then the label L: must occur either outside the entire expression, or else is confined to the
same subexpression E i as the goto L.

The above simplification means that the auxiliary function bind − labels will not be needed to describe the
semantics of this expression, and so there will be no recursive semantic rules.

In the questions below, env represents an environment (a member of Environ), and econt is an expression
continuation (a member of Econt).

(a) (5 points). Add the appropriate rules to the grammar of IMP g. Give only the changes.

(b) (5 points). Are there any further contextual constraints (static semantics) introduced by conditional expres-
sions (beyond that in g above)? If so, state them in English, or say ‘‘none’’ if there are none.

(c) (5 points). Do any of the semantic domains Value, Storable, Bindable, Cont and Econt need to be
changed as a result of this extension to the language? If so, show the changes, or say ‘‘none’’.

(c) (3 points). Give the (type domain) signature for the semantic function evaluate : .

(d) (8 points). Complete the following semantic equation:

evaluate[[E 1?E 2:E 3]] env econt =

final - 6 -

(problem I solution continued, if needed)

final - 7 -

II. Fluid Binding

Below is the abstract syntax of a purely applicative (functional) language X. The language X has static binding
(lexical scoping) of function declarations. The only functions that can be defined have one argument. The only
data type in X is Integer , so that a given identifier denotes either an Integer or a function (an element of
Integer → Integer).

Expression ::= Numeral | Expression + Expression
| (Expression) | Identifier
| let Declaration in Expression
| Identifier (Expression)

Declaration ::= Identifier = Expression
| fun Identifier (Identifier) = Expression

Static binding means that in a function declaration such as let f(x) = x+y in E, the binding of free
name y is taken from the environment existing at the point of definition of the function, and not from the
environment existing at the point of some call inside the body E.

We wish to extend X to a language X̃ that has ‘‘fluid binding’’. We add to the syntax the rule

Expression ::= bind Identifier = Expression during Expression

The effect of bind I = E during B is to (1) temporarily bind the value of E to I, (2) evaluate the body B
with this altered environment, (3) then rebind the name I to its original value, and (4) return the value of B as
the value of the complete bind . . . expression. Thus the effect is to temporarily force a "dynamic" binding
of expr to all free occurrences of I that may be present in the body, whether inside a function call or not. For
example, the value of the expression

let a = 0 in
let fun f(x) = a in

(bind a= 99 during f(2))

is 99 (and not 0).

(a) (9 points). In the language X (and X̃ as well), the expression

let x = 4 in
let fun p(y) = x+ y in

((let x= 7 in p(1)) + p(2))

has the value 11. Explain why this is so, describing the bindings in force as each subexpression is evaluated.

(b) (9 points). In the language X̃, what is the value of the following expression, in which the inner let has
been replaced by a fluid binding? Explain your evaluation, showing the bindings in force as each subexpres-
sion is evaluated.
let x = 4 in

let fun p(y) = x+ y in
((bind x= 7 during p(1)) + p(2))

(c) (8 points). What is the advantage of augmenting a statically scoped functional language to allow fluid bind-
ing? Would Scheme, for example, benefit from such a facility?

final - 8 -

(problem II continued)

final - 9 -

