
CSc520 homework 3 20 February 2006
DUE: Wednesday 1 March in class

Reading

See class web page

1. Y Combinator

Do the following exercises from the Watt text:

(a) Exercise 5.8, page 145.

(b) Exercise 5.9, page 145.

2. Evaluation Order

There is a method to test whether an interpreter for Scheme uses applicative-order evaluation or normal-order
evaluation. Define the following two procedures:

(define (p) (p))

(define (test x y)
(if (= x 0)

0
y

)
)

Suppose you evaluate the expression (test 0 (p)).

(a) What behavior will you observe with an interpreter that uses applicative-order evaluation? Explain.

(b) What behavior will you observe with an interpreter that uses normal-order evaluation? Explain.

(c) What evaluation order does Scheme use?

Assume that the evaluation rule for the ‘‘special’’ form

(if predicate-expression then-expression else-expression)

is the same whatever evaluation order is used: the predicate-expression is evaluated first, and that result deter-
mines whether to evaluate the then-expression or the else- expression. Only one or the other of these two
expressions is ever evaluated.

3. Normal Form

Define S = λx . λy . λz . xz(yz) and K = λu . λv . u.

(a) Give a diagram showing all β-reduction sequences to normal form of

SKK = ((λx . λy . λz . xz(yz))(λu . λv . u))(λu . λv . u)

(b) Highlight the call-by-name (outermost) and call-by-value (innermost) reduction sequences in the diagram.

(c) You know that the "self-apply" expression (λx . xx) cannot be given a consistent type and so cannot be
defined in the typed lambda calculus. But S and K can defined in a typed λ-calculus. What are their signa-
tures? Be as general as possible. Interpret your findings in part (a) as an identity in the typed λ-calculus,
and describe what it says.

4. Typing and ML

The composition functional B = λ fgx . f (g(x) can be defined as B = S(KS) K.

hw3 - 1 -

(a) Using the definition in terms of S and K, show that B has the desired properties by proving via reductions
that

Bxyz = x(yz)

(b) Build B from S and K in Standard ML, and show thereby that it has a consistent type. Give the type.
Show via testing that your resulting functional has the composition property B fgx = f (g(x)).

(c) In lambda calculus one can define the combinator C via

C = S(BBS)(KK)

Show by reduction that C has the property

Cxyz = xzy .

(d) Is C type consistent? If so, use Standard ML to construct C and its polymorphic type. If not, prove that it
is type-inconsistent, using the rules of typed λ-calculus.

5. A Function Domain

(a) Diagram the partial order of all monotone functions from Truth − Value to Truth − Value. That is, give a
complete description of the functional domain (Truth − Value → Truth − Value). Represent each function
by a little diagram, as in class, showing which of {true , false , ⊥} is mapped to which of {true , false , ⊥}.

(b) Exhibit a non-monotonic function from {true , false , ⊥} to {true , false , ⊥}, and explain why it is impossible
to implement this as a logic gate, where ⊥ means "signal not yet received", false means "signal negative
voltage" and true means "signal positive voltage."

(c) Consider the (more complicated) domain (Truth − Value × Truth − Value → Truth − Value). Among
all the functions in this domain, indicate by a truth table or diagram which function corresponds to each of
the following:

(i) Ordinary and

(ii) Ordinary or

(iii)Short-circuit and (sometimes called "conditional and" or cand). Assume left to right argument evalua-
tion.

(iv)Short-circuit or (sometimes called "conditional or" or cor) Assume left to right argument evaluation.

(d) The function called "parallel and’’ or parand behaves like this: parand(⊥ , false) = false,
parand(false ,⊥) = false, parand(false ,true) = false, parand(true , false) = false, parand(true ,true) = true,
parand(false , false) = false, with all other cases evaluating to ⊥.

Is parand a monotone function? Why or why not?

hw3 - 2 -

