DUE: Wednesday 1 March in class

Reading

See class web page

1. Y Combinator

Do the following exercises from the Watt text:
(a) Exercise 5.8, page 145 .
(b) Exercise 5.9, page 145.

2. Evaluation Order

There is a method to test whether an interpreter for Scheme uses applicative-order evaluation or normal-order evaluation. Define the following two procedures:

```
(define (p) (p))
(define (test x y)
    (if (= x 0)
            0
            Y
    )
)
```

Suppose you evaluate the expression (test 0 (p)).
(a) What behavior will you observe with an interpreter that uses applicative-order evaluation? Explain.
(b) What behavior will you observe with an interpreter that uses normal-order evaluation? Explain.
(c) What evaluation order does Scheme use?

Assume that the evaluation rule for the "special" form

(if predicate-expression then-expression else-expression)

is the same whatever evaluation order is used: the predicate-expression is evaluated first, and that result determines whether to evaluate the then-expression or the else- expression. Only one or the other of these two expressions is ever evaluated.

3. Normal Form

Define $\mathbf{S}=\lambda x \cdot \lambda y \cdot \lambda z \cdot x z(y z)$ and $\mathbf{K}=\lambda u \cdot \lambda v \cdot u$.
(a) Give a diagram showing all β-reduction sequences to normal form of

$$
\mathbf{S K K}=((\lambda x \cdot \lambda y \cdot \lambda z \cdot x z(y z))(\lambda u \cdot \lambda v \cdot u))(\lambda u \cdot \lambda v \cdot u)
$$

(b) Highlight the call-by-name (outermost) and call-by-value (innermost) reduction sequences in the diagram.
(c) You know that the "self-apply" expression ($\lambda x . x x$) cannot be given a consistent type and so cannot be defined in the typed lambda calculus. But \mathbf{S} and \mathbf{K} can defined in a typed λ-calculus. What are their signatures? Be as general as possible. Interpret your findings in part (a) as an identity in the typed λ-calculus, and describe what it says.

4. Typing and ML

The composition functional $\mathbf{B}=\lambda f g x . f(g(x)$ can be defined as $\mathbf{B}=\mathbf{S}(\mathbf{K S}) \mathbf{K}$.
(a) Using the definition in terms of \mathbf{S} and \mathbf{K}, show that \mathbf{B} has the desired properties by proving via reductions that

$$
\mathbf{B} x y z=x(y z)
$$

(b) Build B from \mathbf{S} and \mathbf{K} in Standard ML, and show thereby that it has a consistent type. Give the type. Show via testing that your resulting functional has the composition property $\mathbf{B} f g x=f(g(x))$.
(c) In lambda calculus one can define the combinator \mathbf{C} via

$$
C=S(B B S)(K K)
$$

Show by reduction that \mathbf{C} has the property

$$
\mathbf{C} x y z=x z y .
$$

(d) Is \mathbf{C} type consistent? If so, use Standard ML to construct \mathbf{C} and its polymorphic type. If not, prove that it is type-inconsistent, using the rules of typed λ-calculus.

5. A Function Domain

(a) Diagram the partial order of all monotone functions from Truth - Value to Truth - Value. That is, give a complete description of the functional domain (Truth - Value \rightarrow Truth - Value). Represent each function by a little diagram, as in class, showing which of $\{$ true, false, $\perp\}$ is mapped to which of $\{$ true, false,$\perp\}$.
(b) Exhibit a non-monotonic function from $\{$ true, false, $\perp\}$ to $\{$ true, false, $\perp\}$, and explain why it is impossible to implement this as a logic gate, where \perp means "signal not yet received", false means "signal negative voltage" and true means "signal positive voltage."
(c) Consider the (more complicated) domain (Truth-Value \times Truth-Value \rightarrow Truth - Value). Among all the functions in this domain, indicate by a truth table or diagram which function corresponds to each of the following:
(i) Ordinary and
(ii) Ordinary or
(iii)Short-circuit and (sometimes called "conditional and" or cand). Assume left to right argument evaluation.
(iv)Short-circuit or (sometimes called "conditional or" or cor) Assume left to right argument evaluation.
(d) The function called "parallel and" or parand behaves like this: parand $(\perp$, false $)=$ false, parand $($ false,$\perp)=$ false, parand $($ false, true $)=$ false, parand (true,false $)=$ false, parand $($ true, true $)=$ true, parand $($ false, false $)=$ false, with all other cases evaluating to \perp.
Is parand a monotone function? Why or why not?

