
Graphics Facilities
for the Icon Programming Language

Version 9.3

Gregg M. Townsend

Ralph E. Griswold

Department of Computer Science

The University of Arizona

Clinton L. Jeffery

Division of Computer Science

The University of Texas at San Antonio

IPD281a

October 3, 1997

© 1995, 1996, 1997 Gregg M. Townsend, Ralph E. Griswold, and Clinton L. Jeffery

This document may be reproduced freely in its present
form, provided it is reproduced in its entirety. Other
uses, such as incorporation in a compilation or a
derivative work, require written permission.

– 3 –

Introduction

The Icon programming language [1] provides a large set of platform-independent facilities
for graphical input and output. The implementation includes numerous functions and keywords
specifically for graphics. These are augmented by additional library procedures that add higher-
level capabilities.

This document describes the graphics facilities of Version 9.3 of Icon [2]. A knowledge of
Icon is assumed. Previous experience with computer graphics is helpful.

The body of the text presents a survey Icon’s graphics capabilities. Full descriptions of the
functions, attributes, and other items appear in appendices. The Visual Interface Builder, VIB, is
described in a separate document [3].

A book on Icon graphics is expected in 1998 [4].

A Simple Example

This small program illustrates several aspects of
graphics programming in Icon:

link graphics

procedure main()
 WOpen("size=400,300") | stop("can't open window")
 repeat case Event() of {
 "q": exit()
 &lpress: DrawCircle(&x, &y, 5)
 &mpress: DrawCircle(&x, &y, 10)
 &rpress: DrawCircle(&x, &y, 15)
 }
end

The image at the right shows what the window might look like after several clicks of the mouse.

The link graphics directive gives access to the standard set of graphics procedures in the Icon
program library [5] that supplement the built-in repertoire.

The WOpen() call creates a window. The window is 400 pixels wide and 300 pixels high, with
all other characteristics set by default.

The main loop repeatedly calls Event() to receive input. An event code of "q" is returned
when the q key is pressed; when this happens, the program exits.

An event code matching &lpress, &mpress, or &rpress is returned when the left, middle, or
right mouse button is pressed. In response, the program draws a circle at the mouse location,
obtaining this location from the keywords &x and &y. Circles of radius 5, 10, or 15 pixels are drawn
depending on which mouse button was pressed.

Fundamentals

A window in Icon is an object of type window. The value of the keyword &window is the
subject window. By default, almost all of the graphics functions use the subject window, and a typical
program makes no explicit mention of any window value.

–4 –

When a window is given explicitly as the first argument to a graphics procedure, the
procedure and the remaining arguments apply to that window. If the first argument of a graphics
procedure is not a window, the procedure and its arguments apply to the subject window. A null
first argument to a graphics procedure does not specify the subject window; it is illegal.

Graphics actions are accomplished by calling built-in functions and library procedures. The
distinction usually is unimportant and is indicated only in Appendix A.

Many drawing functions accept extra sets of parameters to allow multiple drawing
operations in a single call. These functions are indicated by the notation “......” in Appendix A.

Most output is drawn using the foreground color, which is set by calling Fg(). A few
operations make use of the background color set by Bg().

Attributes

Window attributes describe and control various characteristics of a window. A full list of
these attributes appears in Appendix C.

WAttrib() reads and writes attributes. For example, WAttrib("fg") returns the value of the fg
attribute, which is the current foreground color. WAttrib("fg=brown", "linewidth=3") assigns values
to the fg and linewidth attributes. WAttrib() fails for illegal values.

Some attributes can also be read or written using procedures such as Fg(), Bg(), and Font().

Coordinate System

Window locations and distances are measured in pixels. Angles are measured in radians.

The origin (0,0) is the pixel in the upper-left corner of the window. A left-handed coordinate
system is used: x increases towards the right and y increases toward the bottom. As a consequence,
angles are measured in a clockwise direction.

Rectangular areas are specified by four integers (x,y,w,h) giving the coordinates of a starting
corner and the rectangle’s width and height. w and/or h can be negative to extend the rectangle
leftward or upward from (x,y).

The effective origin can be moved from (0,0) to (dx,dy) by setting the dx and dy attributes.

Output to the screen is limited to a clipping region that is set by calling Clip(x, y, w, h).
Drawing outside the clipping region is not an error, but no pixels outside the region are changed.
Clipping is disabled by calling Clip() with no arguments; this is the initial state of a new window.

Drawing Operations

DrawPoint(x, y) draws a single point.

DrawLine(x1, y1, x2, y2, ..., xn, yn) draws a line from (x1,y1) to (x2,y2). If more coordinates
are given, (x2,y2) is then connected to (x3,y3), and so on.

DrawPolygon(x1, y1, x2, y2, ..., xn, yn) functions like DrawLine() with the addition that
(xn,yn) is connected to (x1,y1) to form a closed path.

DrawSegment(x1, y1, x2, y2) draws a line from (x1,y1) to (x2,y2). Additional pairs of
coordinates can be provided to draw additional, disconnected segments.

–5 –

DrawCurve(x1, y1, x2, y2, ..., xn, yn) draws a smooth curve that passes though the given
points. If the first and last points are identical, a smoothly closed curve is produced.

DrawRectangle(x, y, w, h) draws a rectangle having corners at (x,y) and (x+w,y+h).

DrawCircle(x, y, r, theta, alpha) draws a circle or circular arc of radius r centered at (x,y). theta
specifies the starting angle, in radians, and alpha is the angle (positive or negative) subtended by
the arc. If alpha is omitted, theta is immaterial and a full circle is drawn.

DrawArc(x, y, w, h, theta, alpha) draws an elliptical arc inscribed in the rectangle specified
by (x,y,w,h). theta specifies the starting angle and alpha is the extent.

FillPolygon(), FillRectangle(), FillCircle(), and FillArc() are similar to their Draw counterparts,
but they fill in the interior of a figure as well as its outline.

EraseArea(x, y, w, h) fills a rectangular area using the background color instead of the
foreground color.

An Example

The following code starts by drawing some simple figures. It then moves the origin, draws
the new coordinate axes, and sets a clipping region. Circles are drawn around the new origin to
show the effect of clipping, then partially erased. The WDone() procedure called at the end waits
for the q key to be pressed.

WOpen("size=400,300") | stop("can’t open window")
DrawPolygon(40, 100, 70, 40, 100, 100)
DrawCurve(140, 100, 170, 40, 200, 100)
FillRectangle(240, 40, 40, 60)
WAttrib("dx=120", "dy=200")
DrawSegment(0, –1000, 0, 1000, 1000, 0, –1000, 0)
Clip(–20, –50, 100, 100)
every DrawCircle(0, 0, 20 to 100 by 5)
EraseArea(30, 10, 40, 20)
WDone()

Drawing Attributes

Functions that draw lines are affected by the linewidth and linestyle attributes. The linewidth
attribute specifies the thickness of drawn lines. The linestyle attribute can be solid, dashed, or
striped. A value of dashed causes lines to be drawn with regular gaps. A value of striped causes these
gaps to be filled with the background color.

The fillstyle and pattern attributes, discussed later, affect all drawing and filling functions.

The drawop attribute specifies the way in which drawn pixels interact with existing pixels.
Normally, with drawop=copy, new pixels simply replace existing pixels. When the drawing
operation is reverse, new pixels combine with old in such a way as to turn foreground-colored
pixels into the background color, and vice versa; the effect on old pixels of any other color is
unpredictable.

–6 –

Text

WWrite(), WWrites(), WRead(), and WReads() are analogous to write(), writes(), read(), and
reads(), treating the window as a simple video terminal that scrolls when the bottom is reached.

Output appears at the cursor location, which is defined by row and col attributes or
equivalently by x and y attributes. The cursor is moved by GotoRC(row, col) or GotoXY(x, y). The
visibility of the cursor is controlled by the cursor attribute.

Characters read by WRead() or WReads() are echoed to the screen at the cursor location if
the echo attribute is set. When a character is written or echoed using the cursor, the area behind the
character is filled with the background color.

DrawString(x, y, s) outputs text string s without affecting the text cursor position or drawing
the background. The first character appears at location (x,y). CenterString(), LeftString(), and
RightString() output a string using different positionings.

TextWidth(s) returns the width of a string, measured in pixels.

Fonts

Font(s) sets the text font. An Icon font specification is a comma-separated string giving the
family name, style characteristics, and size (a height measured in pixels). Examples are
"Helvetica,bold,18" and "Times,bold,italic,14".

Font names and characteristics are system-dependent. However, four portable family
names are always available:

mono a monospaced, sans-serif font
typewriter a monospaced, serif font
sans a proportionally spaced, sans-serif font
serif a proportionally spaced, serif font

The actual fonts vary from one system to another; some systems may not be able to supply fonts with
all the correct attributes.

Font specifications are case-insensitive. As an alternative to an Icon font specification, a
system-dependent font name can be supplied.

Information about a font can be obtained from the following attributes:
fheight font height
fwidth font width
ascent extent of the font above the baseline
descent extent of the font below the baseline
leading distance between baselines of successive text lines

Only the leading attribute can be altered.

An Example

The following example illustrates several aspects of text output. Note the use of newlines
and leading spaces in strings in addition to more explicit positioning.

–7 –

WOpen("size=400,300") | stop("can’t open window")
Font("typewriter,bold,18")
WWrite("line 1")
WWrite("line 2")
GotoRC(5, 3)
WWrite("line 5")
WWrite("line 6")
WWrite("\n ", &lcase, &ascii)
Font("Helvetica,18")
WWrite("\n ", &lcase, &ascii)
DrawSegment(110, 50, 130, 50, 120, 40, 120, 60)
DrawString(120, 50, "drawn at (120,50)")
WDone()

Colors

Fg(s) and Bg(s) set the foreground and background color respectively.

Colors are named by English phrases using a system loosely based on [6]. Examples are
"brown", "yellowish green", and "moderate purple–gray". The syntax of a color name is

hue

pale
light

medium
dark
deep

weak
moderate

strong
vivid

hue[ish]

 lightness saturation

where choices enclosed in brackets are optional and hue can be one of black, gray, white, pink, violet,
brown, red, orange, yellow, green, cyan, blue, purple, or magenta. A single hyphen or space
separates each word from its neighbor. Color names are insensitive to case; purple and Purple are
equivalent.

Conventional English spelling is used. When adding ish to a hue ending in e, the e is
dropped. For example, purple becomes purplish. The ish form of red is reddish.

When two hues are supplied and the first hue has no ish suffix, the resulting hue is halfway
between the two named hues. When a hue with an ish suffix precedes a hue, the resulting hue is
three-fourths of the way from the ish hue to the main hue. The default lightness is medium and the
default saturation is vivid.

Colors can also be specified in terms of red, green, and blue brightness components. The
decimal form uses three comma-separated values ranging from 0 to 65535, as in "12000,0,65535".
The hexadecimal forms are "#rgb", "#rrggbb", "#rrrgggbbb", and "#rrrrggggbbbb", with the longer
forms providing greater precision.

Color specifications not recognized by Icon are passed to the graphics system for interpre-
tation, allowing the use of system-dependent names.

ColorValue(s) translates a color specification into decimal form.

–8 –

Color Correction

Icon colors use a linear scale: the 50% values in "32767,32767,32767" specify a medium
gray. Real graphics hardware is nonlinear. When the underlying graphics system does not correct
for this, Icon applies its own gamma correction. The gamma attribute controls the amount of such
correction. A value of 1.0 provides no correction; values between 2 and 3 are appropriate for most
uncorrected monitors.

Mutable Colors

On systems with changeable color maps, Icon supports color map access through mutable
colors.

NewColor(s) reserves a color map entry and returns a negative integer n, a mutable color
representing that entry. If s is supplied, the entry is initialized to that color.

An integer returned by NewColor() can be used as a color specification. For example, Fg(n)
makes a mutable color the foreground color.

Color(n, s) sets the color map entry of n to the color s. This changes the appearance of any
pixels of color n already drawn as well as affecting those drawn subsequently.

FreeColor(n) frees a color map entry when no longer needed, and can be used with normal
color specifications as well as mutable colors.

Color Palettes

Color palettes are fixed sets of colors (or grays) used for drawing or reading images. Icon’s
color palettes are described in Appendix F.

PaletteKey(palette, color) returns a character from the given palette representing an entry
in the palette that is close to the given color.

PaletteColor(palette, s) returns the color represented by the single character s in the given
palette, or fails if the character is not a member of the palette. The color is returned in the same form
as produced by ColorValue().

PaletteChars(palette) returns a string containing the characters that are valid in the given
palette. If fails if the palette name is invalid. PaletteGrays(palette) returns only the characters
corresponding to shades of gray, ordered from black to white.

Drawing Images

DrawImage(x, y, spec) draws an arbitrarily complex figure in a rectangular area by giving
a value to each pixel in the area. x and y specify the upper left corner of the area. spec is a string of
the form "width,palette,data" where width gives the width of the area to be drawn, palette chooses
the set of colors to be used, and data specifies the pixel values.

Each character of data corresponds to one pixel in the output image. Pixels are written a row
at a time, left to right, top to bottom. The amount of data determines the height of the area drawn.
The area is always rectangular; the length of the data must be an integral multiple of the width.

The data characters are interpreted in paint-by-number fashion according to the selected
palette. Spaces and commas can be used as punctuation to aid readability. The characters ~ and \377

–9 –

specify transparent pixels that do not overwrite the pixels on the canvas when the image is drawn.
Punctuation and transparency characters lose their special meanings in palettes in which they
represent colors.

An Example

The following example uses DrawImage() to draw spheres randomly. Transparent pixels
are used for better appearance where the spheres overlap. The inset shows a magnified version of
a single sphere.

WOpen("size=400,300") | stop("can’t open window")
sphere := "16,g16, ~~~~B98788AE~~~~_
 ~~D865554446A~~~ ~D856886544339~~ _
 E8579BA9643323A~ A569DECA7433215E_
 7569CDB86433211A 5579AA9643222108_
 4456776533221007 4444443332210007_
 4333333222100008 533322221100000A _
 822222111000003D D41111100000019~_
 ~A200000000018E~ ~~A4000000028E~~_
   ~~~D9532248B~~~~"
every 1 to 100 do
   DrawImage(?380, ?280, sphere)
WDone()

Bi-Level Images

DrawImage() accepts an alternative specification form "width,#data" for images composed
of only the foreground and background colors. The data field is a series of hexadecimal digits
specifying row values from top to bottom. Each row is specified by width/4 digits, with fractional
values rounded up. An example of a 4-by-4 specification is "4,#9BD9".

The digits of each row are interpreted as a base-16 number. Each bit of this number
corresponds to one pixel; a value of 0 selects the background color and a value of 1 selects the
foreground color. The least significant bit corresponds to the left-most pixel.

If the data field is preceded by the character ~ instead of #, the image is written transparently:
Bit values of 0 preserve existing pixels instead of writing the background color.

Patterns

The fillstyle attribute, normally solid, can be changed to cause the drawing operations to fill
areas or draw lines using a pattern. If the fill style is textured, both the foreground and background
colors are used. If the fill style is masked, pixels not set to the foreground color are left unchanged.

Pattern(spec) sets the pattern attribute, the pattern to be used when the fill style is not solid.
spec is a bi-level image specification of the type used with DrawImage() or one of the following
predefined names:



–10 –

An Example

The following example draws three rectangles using patterns. The first two, using the
horizontal pattern, differ in fill style. The third uses a custom pattern given as a bi-level specification.

WOpen("size=400,300") | stop("can’t open window")
Fg("light gray")
FillRectangle()
WAttrib("fg=black", "fillstyle=masked")
Pattern("horizontal")
FillRectangle(40, 60, 80, 180)
WAttrib("fillstyle=textured")
FillRectangle(160, 60, 80, 180)
Pattern("8,#FF7F3F1F0F070301")
FillRectangle(280, 60, 80, 180)
WDone()

Miscellaneous Operations

Alert() produces a beep or other signal to attract attention.

CopyArea(x1, y1, w, h, x2, y2) copies the rectangular area (x1,y1,w,h) to (x2,y2). Copying
from one window to another is possible by explicitly specifying two window arguments:
CopyArea(W1, W2, x1, y1, w, h, x2, y2).

Pixel(x, y, w, h) generates the colors of the pixels in a rectangle, left to right, top to bottom.

ReadImage(s, x, y, p) displays an image from the file named s at (x,y). If p is supplied, the
image is displayed using only the colors of palette p. WriteImage(s, x, y, w, h) writes a rectangular
area to the file named s. Icon supports GIF format on all platforms; additional formats are also
available on some platforms.

WDefault(program, option) returns a custom value registered for the option named option
of the program named program.

Events

User actions are passed to an Icon program as events. These events do not interrupt
execution; they are placed in a queue for retrieval. Events are generated by pressing a key (except
modifier keys like the shift key), by resizing the window, by pressing or releasing a button on the
mouse, or by moving the mouse while a button is pressed. User resizing of a window is allowed only
if the resize attribute is set to "on".



–11 –

Normal keyboard characters are encoded as one-character strings. Other keys such as the
Home key produce integer codes; see Appendix D.

The other events produce integer codes corresponding to keywords:
&lpress left mouse press
&ldrag left mouse movement
&lrelease left mouse release
&mpress middle mouse press
&mdrag middle mouse movement
&mrelease middle mouse release
&rpress right mouse press
&rdrag right mouse movement
&rrelease right mouse release
&resize window resize

An event is accepted by calling Event(), which returns the code for the next unprocessed
event. If no event is available, Event() waits for one to occur.

When Event() returns an event, it also sets the values of keywords that give further
information about the event:

&x, &y mouse location in pixels
&row, &col mouse location in characters
&control succeeds if the Control key was pressed
&meta succeeds if the Meta key was pressed
&shift succeeds if the Shift key was pressed
&interval time in milliseconds since previous event

Enqueue(a, x, y, s, i) places event code a in the queue with x and y as the associated mouse
coordinates. s is a string containing any of the characters c, m, or s to indicate modifier keys; i gives
the interval.

The event queue is an Icon list; Appendix E describes its format. Pending() returns the event
list for direct access from Icon. The expression ∗Pending() returns the size of the list and can be used
to check whether an event is available.

Dialogs

Several library procedures display items in a window and then wait for input.

Notice(line1, line2, ...) displays one or more lines of text and then waits for the user to click
an Okay button.

OpenDialog(caption, filename) and SaveDialog(caption, filename) each request a text
string, normally a file name; they differ in their sets of accompanying buttons. The resulting file
name is stored in the global variable dialog_value.

TextDialog() constructs a dialog containing arbitrary numbers of caption lines, text-entry
fields, and buttons. SelectDialog() requests a choice from a list of items; ToggleDialog() displays a
set of independently selectable buttons. ColorDialog() displays a color-selection window. See
Appendix A for details.



–12 –

The VIB program [3] supports interactive construction of dialog boxes with even more
generality. It allows arbitrary placement of buttons and text within a dialog box and provides
additional devices such as sliders and scroll bars.

Windows

WOpen() opens a window and returns a value of type window. If &window is null, WOpen()
assigns the newly opened window to it. Attribute values can be given as arguments to WOpen() to
configure the new window.

WFlush() flushes the window’s output buffer, forcing the immediate display of any output
that has been buffered. WSync() flushes the buffer and does not return until all pending output has
been displayed. WDelay(i) flushes the buffer and then delays i milliseconds. WClose() closes a
window.

The size and pos attributes (and other related attributes) can be used to resize or reposition
a window. The resize attribute controls whether the user is allowed to resize the window. Raise()
and Lower() adjust the window stacking order on the screen.

The canvas attribute specifies window visibility. The default value is normal. With
canvas=maximal, the window fills the screen. With canvas=hidden, the window is not visible on
the screen. With canvas=iconic, a minimized icon or label is displayed. The attributes iconlabel,
iconimage, and iconpos can affect the appearance of the window while in this state.

Active() lets a program multiplex input from several windows. It checks all open windows
and returns a window for which an event is available; it waits if there are no unprocessed events.

Graphics Contexts

A window is composed of two parts: a canvas, the visible or invisible area used for drawing,
and a graphics context, a set of parameters that control drawing.

All the attributes of a window are associated with either its canvas or its graphics context.
The tables in Appendix C list the attributes by category.

Clone() creates a new graphics context coupled with an existing canvas. The resulting
window value shares the canvas with an existing window but has an independent set of graphics
attributes. These attributes are initialized to the same values as in the original window, then
modified by any arguments passed to Clone().

Couple(W1, W2) produces a window that couples the canvas of W1 with the graphics
attributes of W2. This allows a set of graphics context attributes to be shared across multiple
canvases.

Uncouple() discards a window value. If there are no other references to the window’s
canvas, it disappears from the screen.

An Example

This example illustrates the use of graphics contexts. First, several windows are created by
cloning, each with different attributes. Note that the two clones of wide inherit its linewidth
attribute. Then, the cloned windows are used to draw circles, showing the effects of the different
attributes.

WOpen("size=400,300") | stop("can’t open window")



–13 –

dashed := Clone("linestyle=dashed")
wide := Clone("linewidth=5")
gray := Clone(wide, "fg=gray")
patt := Clone(wide, "fillstyle=textured", "pattern=grains")

DrawCircle(100, 150, 70)
DrawCircle(dashed, 150, 150, 70)
DrawCircle(wide, 200, 150, 70)
DrawCircle(gray, 250, 150, 70)
DrawCircle(patt, 300, 150, 70)
WDone()

Further Information

Appendix A provides detailed documentation of all built-in graphics functions and all
library procedures mentioned here. Additional library procedures are described in [4].

Some of the programs in the library can be run to help learn about color in Icon. The colrbook
and colrpick programs allow interactive exploration of English and numeric color specifications,
respectively. The palette program displays any of the predefined color palettes.

Many other library procedures make extensive use of the graphics facilities. Much can be
learned by browsing through the source code.

Acknowledgments

Many people have assisted the development of Icon’s graphics capabilities. Darren Merrill,
Ken Walker, Nick Kline, and Jon Lipp contributed to the design. Darren Merrill, Sandy Miller, and
Cheyenne Wills assisted with aspects of the implementation. Steve Wampler and Bob Alexander
provided suggestions, bug reports, and program examples.

References

1.R. E. Griswold and M. T. Griswold, The Icon Programming Language, Peer-to-Peer Communica-
tions, Inc., San Jose, CA, third edition, 1996.

2.R. E. Griswold, C. L. Jeffery, and G. M. Townsend, Version 9.3 of the Icon Programming Language,
The Univ. of Arizona Icon Project Document IPD278, 1996.

3.G. M. Townsend and R. E. Griswold, Visual Interfaces for Icon Programs, The Univ. of Arizona Icon
Project Document IPD285, 1997.

4.R. E. Griswold, C. L. Jeffery, and G. M. Townsend, Graphics Progrmming in Icon, Peer-to-Peer
Communications, Inc., San Jose, CA, to appear.

5.R. E. Griswold, The Icon Program Library; Version 9.3, The Univ. of Arizona Icon Project Document
IPD279, 1996.

6.Berk T., Brownstein L., and Kaufman A., “A New Color-Naming System for Graphics Lan-
guages”, IEEE Computer Graphics & Applications, May 1982, 37-44.



–14 –



–15 –

Appendix A

Graphics Procedures

In addition to the notation used in the Icon language book [1] to denote argument types, the
following characters have meaning as indicated:

W window graphics source or destination

a any type arbitrary value

x, y integer coordinate location

w, h integer width and height of a rectangle

theta real angle (measured in radians)

alpha real angle (measured in radians)

k string or integer color specification

Either or both of w and h can be negative to indicate a rectangle that extends leftward or upward
from its given coordinates. A color specification is either an integer obtained from NewColor() or
a string having one of these forms:

[lightness] [saturation] [hue[ish]] hue
red,green,blue
#hexdigits
system-dependent-color-name

Any window argument named W can be omitted, in which case the subject window,
&window, is used. Note that this is not the same as a default argument: to use the subject window,
the argument is omitted entirely, not replaced by a null argument.

The notation “……” in an argument list indicates that additional argument sets can be
provided, producing the same effect as multiple calls. The optional window argument, W, is not
repeated in these additional argument sets.

The list that follows includes some procedures that are not built into Icon itself but are
instead part of the library. For these, the corresponding link file is noted. Alternatively, link graphics
incorporates all procedures listed.

Only a small portion of the library is documented here; the full library [4] is much more
extensive.



–16 –

Active() : W — produce active window

Active() returns a window that has one or more events pending, waiting if necessary.
Successive calls avoid window starvation by checking the open windows in a different
order each time. Active() fails if no window is open.

See also: Pending()

Alert(W) : W — alert user

Alert() produces a beep or other signal to attract attention.

Bg(W, k1) : k2 —  set or query background color

Bg() returns the background color. If k1 is supplied, the color is first set to that specification;
failure occurs if the request cannot be satisfied. Setting the background color does not
change the appearance of the window, but subsequent drawing operations that use the
background color are affected.

See also: EraseArea(), Fg(), and FreeColor()

CenterString(W, x, y, s) : W — draw centered string

CenterString() draws a text string that is centered vertically and horizontally about (x,y).

Link: gpxop

See also: DrawString(), LeftString(), and RightString()

Clip(W, x, y, w, h) : W — set clipping rectangle

Clip() sets the clipping region to the specified rectangle; subsequent output extending
outside its bounds is discarded. If Clip() is called with no arguments, clipping is disabled and
the entire canvas is writable.

Defaults: w, h to edge of window

Clone(W, s1, s2, …, sn) : W — create new context with existing canvas

Clone() produces a new window value that combines the canvas of W with a new graphics
context. The new graphics attributes are copied from W and modified by the arguments of
Clone(). Invalid arguments produce failure as in WAttrib().

See also: Couple() and WAttrib()

Color(W, i, k1, ……) : k2 — set or query mutable color

Color() returns the setting of mutable color i if k1 is omitted. If k1 is supplied, color i is
changed as specified, with an immediate effect on any visible pixels of that color. Additional
index and color pairs may be supplied to set multiple entries with one call. Color() fails if a
color specification is invalid.

See also: NewColor()



–17 –

ColorDialog(W, L, k, p, a) : s —  display color selection dialog

ColorDialog() displays a color selection dialog box with Okay and Cancel buttons. The box
is headed by zero or more captions specified by the list L, or a single string argument if
passed in place of a list. If  k is supplied, it specifies a reference color to  be displayed below
the color being adjusted.

If a callback procedure p is supplied, then p(a, s) is called whenever the color settings are
adjusted. The argument a is an arbitrary value from the ColorDialog() call; s is the new color
setting in the form returned by ColorValue().

The color initially is set to k , if supplied, or otherwise to the foreground color.

The final color setting, in ColorValue() form, is stored in the global variable dialog_value.
ColorDialog() returns the name of the button that was selected.

Defaults: L "Select color:"

Link: dialog

ColorValue(W, k) : s — translate color to canonical form

ColorValue() interprets the color k and returns a string of three comma-separated integer
values denoting the color’s red, green, and blue components. ColorValue() fails if k is not a
valid color specification.

CopyArea(W1, W2, x1, y1, w, h, x2, y2) : W1 — copy rectangle

CopyArea() copies a rectangular region (x1, y1, w, h) of window W1 to location (x2, y2) on
window W2. If W2 is omitted, W1 is used as both source and destination. If W1 is omitted,
the subject window is used.

Defaults: x1, y1 upper-left pixel
w, h to edge of window
x2, y2 upper-left pixel

Couple(W1, W2) : W3 — couple canvas and context

Couple() produces a new window value that binds the canvas of W1 with the graphics
context of W2. Both arguments are required.

See also: Clone() and WAttrib()

DrawArc(W, x, y, w, h, theta, alpha, ……) : W — draw arc

DrawArc() draws an arc of the ellipse inscribed in the rectangle specified by (x, y, w, h). The
arc begins at angle theta and extends by an angle alpha.

Defaults: x, y upper-left pixel
w, h to edge of window
theta 0
alpha 2π

See also: DrawCircle() and FillArc()



–18 –

DrawCircle(W, x, y, r, theta, alpha, ……) : W — draw circle

DrawCircle() draws an arc or circle of radius r centered at (x,y). theta is the starting angle and
alpha is the extent of the arc.

Defaults: theta 0
alpha 2π

See also: DrawArc() and FillCircle()

DrawCurve(W, x1, y1, x2, y2, …, xn, yn) : W — draw curve

DrawCurve() draws a smooth curve through the points given as arguments. If the first and
last point are the same, the curve is smooth and closed through that point.

See also: DrawLine() and DrawPolygon()

DrawImage(W, x, y, s) : i — draw rectangular figure

DrawImage() draws an arbitrarily complex figure in a rectangular area at (x,y). s has one of
these forms:

"width,palette,data" character-per-pixel image
"width,#hexdigits" bi-level image
"width,~hexdigits" transparent bi-level image

DrawImage() normally returns the null value, but if some colors cannot be allocated, it
returns the number of colors that cannot be allocated.

Defaults: x, y upper-left pixel

See also: Pattern() and ReadImage()

DrawLine(W, x1, y1, x2, y2, …, xn, yn) : W — draw line

DrawLine() draws line segments connecting a list of points in succession.

See also: DrawCurve(), DrawPolygon(), and DrawSegment()

DrawPoint(W, x, y, ……) : W — draw point

DrawPoint() draws a point at each coordinate location given.

DrawPolygon(W, x1, y1, …, xn, yn) : W — draw polygon

DrawPolygon() draws the outline of a polygon formed by connecting the given points in
order, with x1,y1 following xn,yn.

See also: DrawCurve(), DrawLine(), and FillPolygon()



–19 –

DrawRectangle(W, x, y, w, h, ……) : W — draw rectangle

DrawRectangle() draws the outline of the rectangle with corners at (x,y) and (x+w,y+h).

Defaults: x, y upper-left pixel
w, h to edge of window

See also: FillRectangle()

DrawSegment(W, x1, y1, x2, y2, ……) : W — draw line segment

DrawSegment() draws a line between two points. Additional pairs of coordinates may be
supplied to draw additional, disconnected segments.

See also: DrawLine()

DrawString(W, x, y, s, ……) : W — draw text

DrawString() draws a string of characters starting at (x,y) without altering the text cursor.

Enqueue(W, a, x, y, s, i) : W — append event to queue

Enqueue() adds event a to the window event list with an event location of (x,y). The string
s specifies a set of modifier keys using the letters c, m, and s to represent &control, &meta,
and &shift, respectively. i specifies a value for &interval, in milliseconds.

Defaults: a &null
x 0
y 0
s ""
i 0

Link: enqueue

See also: Pending()

EraseArea(W, x, y, w, h, ……) : W — clear rectangular area

EraseArea() fills a rectangular area with the background color.

Defaults: x, y upper-left pixel
w, h to edge of window

See also: FillRectangle()

Event(W) : a — return next window event

Event() returns the next event from a window, waiting if necessary. The keywords &x, &y,
&row, &col, &interval, &control, &shift, and &meta are set as side effects of calling Event().

See also: Active(), Enqueue(), Pending(), WRead(), and WReads()



–20 –

Fg(W, k1) : k2 — set or query foreground color

Fg() returns the foreground color. If k1 is supplied, the color is first set to that specification;
failure occurs if the request cannot be satisfied. Setting the foreground color does not change
the appearance of the window, but subsequent drawing operations are affected.

See also: Bg(), FreeColor(), and Shade()

FillArc(W, x, y, w, h, theta, alpha, ……) : W — draw filled arc

FillArc() draws a filled arc of the ellipse inscribed in the rectangle specified by (x, y, w, h). The
arc begins at angle theta and extends by an angle alpha.

Defaults: x, y upper-left pixel
w, h to edge of window
theta 0
alpha 2π

See also: DrawArc() and FillCircle()

FillCircle(W, x, y, r, theta, alpha, ……) : W — draw filled circle

FillCircle() draws a filled arc or circle of radius r centered at (x,y). theta is the starting angle
and alpha is the extent of the arc.

Defaults: theta 0
alpha 2π

See also: DrawCircle() and FillArc()

FillPolygon(W, x1, y1, x2, y2, …, xn, yn) : W — draw filled polygon

FillPolygon() draws and fills the polygon formed by connecting the given points in order,
with x1,y1 following xn,yn.

See also: DrawPolygon()

FillRectangle(W, x, y, w, h, ……) : W — draw filled rectangle

FillRectangle() draws a filled rectangle.

Defaults: x, y upper-left pixel
w, h to edge of window

See also: DrawRectangle() and EraseArea()

Font(W, s1) : s2 — set or query text font

Font() returns the text font. If s1 is supplied, the font is first set to that specification; failure
occurs if the request cannot be satisfied.



–21 –

FreeColor(W, k, ……) : W — free color

FreeColor() informs the graphics system that the color k no longer appears in the window.
This may allow the system to reclaim some resources. Unpredictable results may occur if the
color is still present in the window.

See also: Bg(), Fg(), and NewColor()

GotoRC(W, i1, i2) : W — move text cursor to row and column

GotoRC() sets the text cursor position to row i1 and column i2, where the character position
in the upper-left corner of the window is 1,1 and calculations are based on the current font
attributes.

Defaults: x, y 1, 1

See also: GotoXY()

GotoXY(W, x, y) : W — move text cursor to coordinate position

GotoXY() sets the text cursor position to the specified coordinate position.

Defaults: x, y 0, 0

See also: GotoRC()

LeftString(W, x, y, s) : W — draw left-justified string

LeftString() draws a text string that is left-justified at position x and centered vertically about
y.

Link: gpxop

See also: CenterString(), DrawString(), and RightString()

Lower(W) : W — lower window to bottom of window stack

Lower() sets a window to be “below” all other windows, causing it to become obscured by
windows that overlap it.

See also: Raise()

NewColor(W, k) : i — allocate mutable color

NewColor() allocates a changeable entry in the color map and returns a small negative
integer that serves as a handle to this entry. If k is supplied, the color map entry is initialized
to that color. NewColor() fails if no mutable entry is available.

See also: Color() and FreeColor()



–22 –

Notice(W, s1, s2, …, sn) : sm — display strings and await response

Notice() posts a dialog box with an Okay button and returns "Okay" after response by the
user. Each string sn is displayed centered on a separate line in the dialog box.

Link: dialog

See also: TextDialog()

OpenDialog(W, s1, s2, i) : s3 — display dialog for opening file

OpenDialog() displays a dialog box allowing entry of a text string of up to i characters,
normally a file name, along with Okay and Cancel buttons. s1 supplies a caption to be
displayed in the dialog box. s2 is used as the initial value of the editable text string. The final
text string value is stored in the global variable dialog_value. OpenDialog() returns the name
of the button that was selected.

Defaults: s1 "Open:"
s2 ""
i 50

Link: dialog

See also: SaveDialog() and TextDialog()

PaletteChars(W, s1) : s2 — return characters of color palette

PaletteChars() returns the string of characters that index the colors of palette s1.

Default: s1 "c1"

See also: PaletteColor(), PaletteGrays(), and PaletteKey()

PaletteColor(W, s1, s2) : s3 — return color from palette

PaletteColor() returns the color indexed by character s2 in palette s1. The result is in the
form produced by ColorValue().

Default: s1 "c1"

See also: ColorValue(), PaletteChars(), PaletteGrays(), and    PaletteKey()

PaletteGrays(W, s1) : s2 — return grayscale entries of palette

PaletteGrays() returns the string of characters that index the achromatic entries within
palette s1, ordered from black to white.

Link: color

See also: PaletteChars(), PaletteColor(), and PaletteKey()



–23 –

PaletteKey(W, s1, k) : s2  — return character of closest color in palette

PaletteKey() returns the character indexing the color of palette s1 that is closest to the color
k.

Default: s1 "c1"

See also: PaletteChars(), PaletteGrays(), and PaletteColor()

Pattern(W, s) : W — set fill pattern

Pattern() sets a pattern to be used for drawing when the fill style is set to "masked" or
"textured". s can be a known pattern name or a specification of the form "width,#data" where
the data is given by hexadecimal digits. Pattern() fails in the case of a bad specification or
unknown name.

See also: DrawImage()

Pending(W) : L — produce event list

Pending() returns the list that holds the pending events of a window. If no events are
pending, this list is empty.

See also: Enqueue() and Event()

Pixel(W, x, y, w, h) : k1, k2, …, kn — generate pixel values

Pixel() generates the colors of the pixels in the given rectangle, left to right, top to bottom.

Defaults: x, y upper-left pixel
w, h to edge of window

Raise(W) : W — raise window to top of window stack

Raise() sets a window to be “above” all other windows so that it is not obscured by any other
window.

See also: Lower()

ReadImage(W, s1, x, y, s2) : i — load image file

ReadImage() loads an image from file s1, placing its upper-left corner at x,y. If a palette s2
is supplied, the colors of the image are mapped to those of the palette. ReadImage() fails if
it cannot read an image from file s1. It normally returns the null value, but if some colors
cannot be allocated, it returns the number of colors that cannot be allocated.

Defaults: x, y upper-left pixel

See also: DrawImage() and WriteImage()



–24 –

RightString(W, x, y, s) : W — draw right-justified string

RightString() draws a text string that is right-justified at position x and centered vertically
about y.

Link: gpxop

See also: CenterString(), DrawString(), and LeftString()

SaveDialog(W, s1, s2, i) : s3 — display dialog for saving file

SaveDialog() displays a dialog box allowing entry of a text string of up to i characters,
normally a file name, along with Yes, No, and Cancel buttons. s1 supplies a caption to be
displayed in the dialog box. s2 is used as the initial value of the editable text string.  The final
text string value is stored in the global variable dialog_value. SaveDialog() returns the name
of the button that was selected.

Defaults: s1 "Save:"
s2 ""
i 50

Link: dialog

See also: OpenDialog() and TextDialog()

SelectDialog(W, L1, L2, s, L3, i) : s — display selection dialog

SelectDialog() constructs and displays a dialog box and waits for the user to select a button.
The box contains zero or more captions specified by the list L1, zero or more radio buttons
specified by L2 and s, and one or more buttons specified by L3. i specifies the index of the
default button, with a value of 0 specifying that there is no default button. Any of the list
arguments Ln can be specified by a single non-null value which is then treated as a one-
element list.

For the radio buttons, L2 specifies the button names and s specifies the name for the default
button. If L2 is omitted, there are no buttons.

SelectDialog() returns the name of the button that was selected to dismiss the dialog. The
global variable dialog_value is assigned the name of the selected radio button.

Defaults: L1 [ ]
L2 [ ]
L3 ["Okay", "Cancel"]
i 1

Link: dialog

See also: TextDialog() and ToggleDialog()



–25 –

Shade(W, k) : W — set foreground for area filling

Shade() sets the foreground color to k on a color or grayscale display. On a bi-level display,
it sets the fill style to textured and installs a dithering pattern that approximates the
brightness of color k.

Link: color

See also: Fg()

TextDialog(W, L1, L2, L3, L4, L5, i) : s — display text dialog

TextDialog() constructs and displays a dialog box and waits for the user to select a button.
The box contains zero or more captions specified by the list L1, zero or more text-entry fields
specified by L2, L3, and L4, and one or more buttons specified by L5. i specifies the index
of the default button, with a value of 0 specifying that there is no default button. Any of the
list arguments Ln can be specified by a single non-null value which is then treated as a one-
element list.

For the text-entry fields, L2 specifies the labels, L3 specifies the default values, and L4
specifies the maximum widths. If L2, L3, and L4 are not the same length, the shorter lists are
extended as necessary by duplicating the last element. If omitted entirely, the defaults are:
no labels, no initial values, and a width of 10 (or more if necessary to hold a longer initial
value).

TextDialog() returns the name of the button that was selected to dismiss the dialog. The
global variable dialog_value is assigned a list containing the name of the text fields.

Defaults: L1 [ ]
L2 [ ]
L3 [ ]
L4 [ ]
L5 ["Okay", "Cancel"]
i 1

Link: dialog

See also: Notice(), OpenDialog(), SaveDialog(), and SelectDialog()

TextWidth(W, s) : i — return width of text string

TextWidth() returns the width of string s, in pixels, as drawn using the current font.

See also: DrawString()



–26 –

ToggleDialog(W, L1, L2, L3, L4, i) : L — display toggle dialog

ToggleDialog() constructs and displays a dialog box and waits for the user to select a button.
The box contains zero or more captions specified by the list L1, zero or more toggle buttons
specified by L2, zero or more toggle states (1 or null) specified by L3, and one or more buttons
specified by L4. i specifies the index of the default button, with a value of 0 specifying that
there is no default button. Any of the list arguments Ln can be specified by a single non-null
value, which is then treated as a one-element list.

For the toggle buttons, L2 specifies the labels and L3 specifies the corresponding states. If
L2 and L3 are not the same length, the shorter list is extended as necessary by duplicating
the last element. If omitted entirely, the defaults are: no labels and null states.

ToggleDialog() returns the name of the button that was selected to dismiss the dialog. The
global variable dialog_value is assigned a list containing the states of the toggle buttons.

Defaults: L1 [ ]
L2 [ ]
L3 [ ]
L4 ["Okay", "Cancel"]
i 1

Link: dialog

See also: SelectDialog() and TextDialog()

Uncouple(W) : W — uncouple window

Uncouple() frees the window W. If no other bindings to the same canvas exist, the window
is closed.

See also: Clone(), Couple(), and WClose()

WAttrib(W, s1, s2, …, sn) : a1, a2, …, an — set or query attributes

WAttrib() sets and generates window attribute values. Each string of the form name=value
sets a value; a string with just a name is an inquiry. First, any requested values are set. Then
WAttrib() generates the values of all referenced attributes. Each value has the data type
appropriate to the attribute it represents.  WAttrib()  ignores unrecognized names and illegal
values, producing no result; if all arguments are invalid, WAttrib() fails.

WClose(W) : W — close window

WClose() closes a window. The window disappears from the screen, and all bindings of its
canvas are rendered invalid. Closing the subject window sets &window to the null value.

Link: wopen

See also: Uncouple(), WFlush(), and WOpen()



–27 –

WDefault(W, s1, s2) : s3 — get default value from environment

WDefault() returns the value of option s2 for the program named s1 as registered with the
graphics system. If no such value is available, or if the system provides no registry,
WDefault() fails.

WDelay(W, i) : W — flush window and delay

WDelay() flushes any pending output for window W and then delays for i milliseconds
before returning.

Default: i 1

Link: wopen

See also: WFlush()

WDone(W) — wait for “quit” event, then exit

WDone() waits until a q or Q is entered, then terminates program execution. It does not
return.

Link: wopen

See also: WQuit()

WFlush(W) : W — flush pending output to window

WFlush() forces the execution of any window commands that have been buffered internally
and not yet executed.

See also: WClose(), WDelay(), and WSync()

WOpen(s1, s2, …, sn) : W — open and return window

WOpen() creates and returns a new window having the attributes specified by the argument
list. Invalid arguments produce failure or error as in WAttrib(). If &window is null, the new
window is assigned as the subject window.

Link: wopen

See also: WAttrib() and WClose()

WQuit(W) : W — check for “quit” event

WQuit() consumes events until a q or Q is entered, at which point it returns. If the event
queue is exhausted first, WQuit() fails.

Link: wopen

See also: WDone()



–28 –

WRead(W) : s — read line from window

WRead() accumulates characters typed in a window until a newline or return is entered,
then returns the resulting string (without the newline or return). Backspace and delete
characters may be used for editing. The typed characters are displayed in the window if the
echo attribute is set.

Link: wopen

See also: Event() and WReads()

WReads(W, i) : s — read characters from window

WReads() returns the next i characters typed in a window. Backspace and delete characters
may be used for editing prior to entry of character i. The typed characters are displayed in
the window if the echo attribute is set.

Default: i 1

Link: wopen

See also: Event() and WRead()

WriteImage(W, s, x, y, w, h) : W — write image to file

WriteImage() writes an image of the rectangular area (x,y,w,h) to the file s. It fails if s cannot
be written or if the specified area, after clipping by the window’s edges, has a width or height
of zero. The file is normally written in GIF format, but some forms of file names may select
different formats on some graphics systems.

Defaults: x, y upper-left pixel
w, h to edge of window

See also: ReadImage()

WSync(W) : W — synchronize with server

WSync() synchronizes the program with the graphics server on a client-server graphics
system, returning after all pending output has been processed. On systems that maintain
synchronization at all times, WSync() has no effect.

See also: WFlush()

WWrite(W, s1, s2, …, sn) : sn — write line to window

WWrite() writes a string to a window at the text cursor position. The area behind the written
text is set to the background color. Newline, return, tab, backspace, and delete characters
reposition the cursor. An implicit newline is output following the last argument.

Link: wopen

See also: DrawString() and WWrites()



–29 –

WWrites(W, s1, s2, …, sn) : sn — write partial line to window

WWrite() writes a string to a window at the text cursor position. The area behind the written
text is set to the background color. Newline, return, tab, backspace, and delete characters
reposition the cursor. Unlike WWrite(), no newline is added.

Link: wopen

See also: DrawString() and WWrite()



–30 –

Appendix B

Graphics Keywords

&col : i — mouse column

The value of &col is normally the column location of the mouse at the time of the last received
window event. If a window is open, &col may also be changed by assignment, which also
affects &x, or as a side effect of assignment to &x.

&control : n — state of control key during window event

The value of &control is the null value if the control key was depressed at the time of the last
received window event; otherwise, a reference to &control fails.

&interval : i — elapsed time between window events

The value of &interval is the time, in milliseconds, between the last received window event
and the previous event in that window. &interval is zero if this information is not available.

&ldrag : i — left-button drag event

The value of &ldrag is the integer that represents the event of dragging the mouse with the
left button depressed.

&lpress : i — left-button press event

The value of &lpress is the integer that represents the event of pressing the left mouse button.

&lrelease : i — left-button release event

The value of &lrelease is the integer that represents the event of releasing the left mouse
button.

&mdrag : i — middle-button drag event

The value of &mdrag is the integer that represents the event of dragging the mouse with the
middle button depressed.

&meta : n — state of meta key during window event

The value of &meta is the null value if the meta key was depressed at the time of the last
received window event; otherwise, a reference to &meta fails.



–31 –

&mpress : i — middle-button press event

The value of &mpress is the integer that represents the event of pressing the middle mouse
button.

&mrelease : i — middle-button release event

The value of &mrelease is the integer that represents the event of releasing the middle
mouse button.

&rdrag : i — right-button drag event

The value of &rdrag is the integer that represents the event of dragging the mouse with the
right button depressed.

&resize : i — window resize event

The value of &resize is the integer that represents a window resizing event.

&row : i — mouse row location

The value of &row is normally the column location of the mouse at the time of the last
received window event. If a window is open, &row may also be changed by assignment,
which also affects &y, or as a side effect of assignment to &y.

&rpress : i — right-button press event

The value of &rpress is the integer that represents the event of pressing the right mouse
button.

&rrelease : i — right-button release event

The value of &rrelease is the integer that represents the event of releasing the right mouse
button.

&shift : n — state of shift key during window event

The value of &shift is the null value if the shift key was depressed at the time of the last
received window event; otherwise, a reference to &shift fails.

&window : W — subject window

The value of &window is the subject window, the default window for most graphics
procedures. It may be changed by assignment. If there is no subject window, &window is
null.



–32 –

&x : i — mouse x-coordinate

The value of &x is normally the x-coordinate of the mouse at the time of the last received
window event. If a window is open, &x may also be changed by assignment, which also
affects &col, or as a side effect of assignment to &col.

&y : i — mouse y-coordinate

The value of &y is normally the y-coordinate of the mouse at the time of the last received
window event. If a window is open, &y may also be changed by assignment, which also
affects &row, or as a side effect of assignment to &row.



–33 –

Appendix C

Window Attributes

Window attributes describe and control various characteristics of a window. Some attributes are
fixed and can only be read; others can be set only when the window is opened. Most can be changed
at any time.

There are two classes of attributes: canvas attributes and graphics context attributes. In general,
canvas attributes relate to aspects of the window itself, while graphics context attributes affect
drawing operations. Alternate graphics contexts, each with its own set of graphics context
attributes, are created by Clone(). Canvas attributes, however, are shared by all clones of a window.

Initial attribute settings can be passed as arguments to WOpen() or Window(). For an existing
window, attributes are read or written by calling WAttrib(). Specific procedures also exist for
reading or writing certain attributes; these are noted in the See also sections of the individual
attribute descriptions.

In the tables that follow, the letter R indicates attributes that can be read by WAttrib() and the
letter W indicates attributes that can be written — either initially or by calling WAttrib(). Writable
graphics context attributes can also be set by Clone().



–34 –

Canvas Attributes

The following attributes are associated with a canvas and shared by all windows that
reference that canvas.

Usage Canvas Attribute Interpretation

R, W label window label (title)
R, W pos, posx, posy window position on screen
R, W resize user resizing flag
R, W size, height, width window size, in pixels
R, W lines, columns window size, in characters

W image initial canvas contents

R, W canvas window visibility state
W iconpos icon position

R, W iconlabel icon label
R, W iconimage icon image

R, W echo character echoing flag
R, W cursor text cursor visibility flag
R, W x, y cursor location, in pixels
R, W row, col cursor location, in characters

R, W pointer pointer (mouse) shape
R, W pointerx, pointery pointer location, in pixels
R, W pointerrow, pointercol pointer location, in characters

R, W display device on which the window appears
R depth display depth, in bits
R displayheight display height, in pixels
R displaywidth display width, in pixels



–35 –

  Graphics Context Attributes

The following attributes are associated with a graphics context.

Usage Graphics Attribute Interpretation

R, W fg foreground color
R, W bg background color
R, W reverse color reversal flag
R, W drawop drawing operation
R, W gamma color correction factor

R, W font text font
R fheight, fwidth maximum character size
R ascent, descent dimensions from baseline
R, W leading vertical advancement

R, W linewidth line width
R, W linestyle line style
R, W fillstyle fill style
R, W pattern fill pattern

R, W clipx, clipy clipping rectangle position
R, W clipw, cliph clipping rectangle extent
R, W dx, dy output translation



–36 –

Attribute Descriptions

ascent —  text font ascent

The read-only graphics context attribute ascent gives the distance, in pixels, that the current
text font extends above the baseline.

See also: descent and fheight

bg —  background color

The graphics context attribute bg specifies current background color.

Initial value: "white"

See also: fg, drawop, gamma, reverse, and Bg()

canvas —  window visibility

The canvas attribute canvas specifies the window visibility.

Values: "hidden", "iconic", "normal", "maximal"

Initial value: "normal"

See also: Lower() and Raise()

cliph  —  height of clipping region

The graphics context attribute cliph specifies the height of the clipping region.

Initial value: &null (clipping disabled)

See also: clipw, clipx, clipy, and Clip()

clipw —  width of clipping region

The graphics context attribute clipw specifies the width of the clipping region.

Initial value: &null (clipping disabled)

See also: cliph, clipx, clipy, and Clip()

clipx —  x-coordinate of clipping region

The graphics context attribute clipx specifies the left edge of the clipping region.

Initial value: &null (clipping disabled)

See also: cliph, clipw, clipy, and Clip()



–37 –

clipy —  y-coordinate of clipping region

The graphics context attribute clipy specifies the top edge of the clipping region.

Initial value: &null (clipping disabled)

See also: cliph, clipw, clipx, and Clip()

col —  text cursor column

The canvas attribute col specifies the horizontal position of the text cursor, measured in
characters.

See also: cursor, row, x, and y

columns —  window width in characters

The graphics context attribute columns specifies the number of text columns available using
the current font.

Initial value: 80

See also: rows and width

cursor —  text cursor visibility flag

The canvas attribute cursor specifies whether the text cursor is actually visible on the screen.
The text cursor appears  only when the program is blocked waiting for input.

Values: "on", "off"

Initial value: "off"

See also: col, echo, row, x, and y

depth —  number of bits per pixel

The read-only canvas attribute depth gives the number of bits allocated to each pixel by the
graphics system.

descent —  text font descent

The read-only graphics context attribute descent gives the distance, in pixels, that the
current text font extends below the baseline.

See also: ascent and fheight

display  —  name of display screen

The canvas attribute display specifies the particular monitor on which the window appears.
It cannot be changed after the window is opened.



–38 –

displayheight —  height of display screen

The read-only canvas attribute displayheight gives the height in pixels of the display screen
on which the window is placed.

See also: displaywidth

displaywidth —  width of display screen

The read-only canvas attribute displaywidth gives the width in pixels of the display screen
on which the window is placed.

See also: displayheight

drawop  —  drawing mode

The graphics context attribute drawop specifies the way in which newly drawn pixels are
combined with the pixels that are already in a window.

Values: "copy", "reverse"

Initial value: "copy"

See also: bg, fg, and reverse

dx —  horizontal translation

The graphics context attribute dx specifies a horizontal offset that is added to the x value of
every coordinate pair before interpretation.

Initial value: 0

See also: dy

dy —  vertical translation

The graphics context attribute dy specifies a vertical offset that is added to the y value of
every coordinate pair before interpretation.

Initial value: 0

See also: dx

echo —  character echoing flag

The canvas attribute echo specifies whether keyboard characters read by WRead() and
WReads() are echoed in the window. When echoing is enabled, the characters are echoed
at the text cursor position.

Values: "on", "off"

Initial value: "on"

See also: cursor, WRead(), and WReads()



–39 –

fg  —  foreground color

The graphics context attribute fg specifies the current foreground color.

Initial value: "black"

See also: bg, drawop, gamma, reverse, and Fg()

fheight  —  text font height

The read-only graphics context attribute fheight gives the overall height of the current text
font.

See also: ascent, descent, fwidth, and leading

fillstyle  —  area filling style

The graphics context attribute fillstyle specifies whether a pattern is to be used when
drawing. The fill style affects lines and text as well as solid figures. The pattern itself is set
by the pattern attribute.

Values: "solid", "textured", "masked"

Initial value: "solid"

See also: linestyle and pattern

font —  text font name

The graphics context attribute font specifies the current text font.

Initial value: "fixed"

See also: Font()

fwidth —  text font width

The read-only graphics context attribute fwidth gives the width of the widest character of the
current text font.

See also: fheight

gamma  —  color correction factor

The graphics context attribute gamma specifies the amount of color correction applied
when converting between Icon color specifications and those of the underlying graphics
system. A value of 1.0 results in no color correction. Larger values produce lighter, less
saturated colors.

Values: real values greater than zero

Initial value: system dependent

See also: fg and bg



–40 –

height  —  window height in pixels

The canvas attribute height specifies the height of the window.

Initial value: enough for 12 lines of text

See also: rows, size, and width

iconimage —  window image when iconified

The canvas attribute iconimage names a file containing an image to be used as the
representation of the window when iconified.

Initial value: ""

See also: iconlabel, iconpos, and image

iconlabel —  window label when iconified

The canvas attribute iconlabel specifies a label to be used as the representation of the
window when iconified.

Initial value: initial value of label attribute

See also: iconimage, iconpos, and label

iconpos —  window position when iconified

The write-only canvas attribute iconpos specifies the location of the iconified window as a
string containing comma-separated x- and y-coordinates.

See also: iconimage and iconlabel

image —  source of window contents

The write-only canvas attribute image names a file containing an image to be used as the
initial contents of a window when it is opened.

See also: iconimage

label —  window label

The canvas attribute label specifies a title used to identify the window.

Initial value: ""

See also: iconlabel



–41 –

leading —  text line advancement

The graphics context attribute leading specifies the vertical spacing of successive lines of text
written in a window.

Initial value: font height

See also: fheight

linestyle —  line style

The graphics context attribute linestyle specifies the form of drawn lines.

Values: "solid", "dashed", "striped"

Initial value: "solid"

See also: fillstyle and linewidth

linewidth —  line width

The graphics context attribute linewidth specifies the width of drawn lines.

Initial value: 1

See also: linestyle

pattern —  filling pattern specification

The graphics context attribute pattern specifies the particular pattern to be used for drawing
when the fillstyle attribute is set to "textured" or "masked".

Values: "black", "verydark", "darkgray", "gray", "lightgray",
"verylight", "white", "vertical", "diagonal", "horizontal",
"grid", "trellis", "checkers", "grains", "scales", "waves",
"width,#hexdigits"

Initial value: "black"

See also: fillstyle and Pattern()

pointer —  shape of mouse indicator

The canvas attribute pointer specifies the shape of the figure that represents the mouse
position.

Values: system dependent

Initial value: system dependent

See also: pointercol, pointerrow, pointerx, and pointery

pointercol —  mouse location column

The canvas attribute pointercol gives the horizontal position of the mouse in terms of text
columns.

See also: pointer, pointerrow, pointerx, and pointery



–42 –

pointerrow —  mouse location row

The canvas attribute pointerrow gives the vertical position of the mouse in terms of text lines.

See also: pointer, pointercol, pointerx, and pointery

pointerx —  mouse location x-coordinate

The canvas attribute pointerx specifies the horizontal position of the mouse in pixels.

See also: pointer, pointercol, pointerrow, and pointery

pointery  —  mouse location y-coordinate

The canvas attribute pointery specifies the vertical position of the mouse in pixels.

See also: pointer, pointercol, pointerrow, and pointerx

pos —  position of window on display screen

The canvas attribute pos specifies the window position as a string containing comma-
separated x- and y-coordinates. Attempts to read or write the position fail if the canvas is
hidden.

See also: posx and posy

posx —  x-coordinate of window position

The canvas attribute posx specifies the horizontal window position. Attempts to read or
write the position fail if the canvas is hidden.

See also: pos and posy

posy —  y-coordinate of window position

The canvas attribute posy specifies the vertical window position. Attempts to read or write
the position fail if the canvas is hidden.

See also: pos and posx

resize  —  user resizing flag

The canvas attribute resize specifies whether the user is allowed to resize the window by
interaction with the graphics system.

Values: "on", "off"

Initial value: "off"



–43 –

reverse  —  color reversal flag

The graphics context attribute reverse interchanges the foreground and background colors
when it is changed from "off" to "on" or from "on" to "off".

Values: "on", "off"

Initial value: "off"

See also: bg, fg, and drawop

row —  text cursor row

The canvas attribute row specifies the vertical position of the text cursor, measured in
characters.

See also: col, cursor, x, and y

rows —  window height in characters

The graphics context attribute rows specifies the number of lines of text  available using the
current font.

Initial value: 12

See also: columns and height

size —  window size in pixels

The canvas attribute size specifies the window size as a string containing comma-separated
width and height values.

Initial value: enough for 12 lines of 80-column text

See also: columns, height, rows, and width

width  —  window width in pixels

The canvas attribute width specifies the width of the window.

Initial value: enough for 80 columns of text

See also: columns, height, and size

x —  text cursor x-coordinate

The canvas attribute x specifies the horizontal position of the text cursor, measured in pixels.

See also: col, cursor, row, and y



–44 –

y —  text cursor y-coordinate

The canvas attribute y specifies the vertical position of the text cursor, measured in pixels.

See also: col, cursor, row, and x



–45 –

Appendix D

Keyboard Symbols

Pressing a key on the keyboard produces an Icon event unless the key is a modifier key such as the
shift key. Releasing a key does not produce an event.

A key that represents a member of the character set, including traditional actions such as
return and backspace, produces a string containing a single character. The control and shift
modifiers can affect the particular character produced: For example, pressing control-H produces
"\b" (the backspace character).



–46 –

defined symbol key

Key_PrSc print screen
Key_ScrollLock scroll lock
Key_Pause pause

Key_Insert insert
Key_Home home
Key_PgUp page up
Key_End end
Key_PgDn page down

Key_Left arrow left
Key_Up arrow up
Key_Right arrow right
Key_Down arrow down

Key_F1 function key F1
Key_F2 function key F2
Key_F3 function key F3
Key_F4 function key F4
Key_F5 function key F5
Key_F6 function key F6
Key_F7 function key F7
Key_F8 function key F8
Key_F9 function key F9
Key_F10 function key F10
Key_F11 function key F11
Key_F12 function key F12

Other keys, such as function and arrow keys, produce integer-valued events. These values
may be referenced symbolically by including the definitions contained in the library file keysyms.icn.
The following table lists the values of some of the most commonly used keys.



–47 –

Appendix E

Event Queues

Each window has an event queue, which is an ordinary Icon list. Pending() produces an
event queue. An event is represented by three consecutive values on the list. The first value is the
event code: a string for a keypress event or an integer for any other event. The next two values are
Icon integers whose lower-order 31 bits are interpreted as fields having this format:

0 0 0 0 0 0 0 0 0 0 0 0 S MC XXXX XXXX XXXX XXXX (second value)
EEE MMMM MMMM MMMM YYYY YYYY YYYY YYYY (third value)

The fields have these meanings:

X…X &x: 16-bit signed x-coordinate value

Y…Y &y: 16-bit signed y-coordinate value

SMC &shift, &meta, and &control flags

E…M &interval, interpreted as M×16E milliseconds

0 unused; should be zero

Coordinate values do not reflect any translation specified by dx and dy attributes; the
translation is applied by Event() when an event is read.

A malformed event queue error is reported if an error is detected when trying to read the
event queue. Possible causes for the error include an event queue containing fewer than three
values, or second or third entries that are not integer values or that are out of range. Only artificially
constructed events can produce such errors.



–48 –

Appendix F

Palettes

Palettes are predefined sets of colors that are used with DrawImage(). Palettes also can be used to
limit the colors used by ReadImage().

This appendix documents the contents of Icon’s palettes and serves as a reference for the
programmer. It is hard, though, to understand a palette just by reading about it. The program
palette, which displays and labels the colors of the palette, provides a clearer introduction.

Grayscale Palettes

The g16 palette, shown below, provides 16 shades of gray specified by the hexadecimal
characters 0123456789ABCDEF, with 0 being black and F being white in accordance with the usual
conventions of image processing.

Actually, g16 is just one member of a family of palettes named g2 through g64, each
providing the corresponding number of equally spaced shades from black to white. Each gn palette
uses the first n characters of this list:

0123456789ABC…XYZabc…xyz{}

In every case 0 is black and the rightmost character is white.

For palettes with more than 64 entries, it becomes more difficult and eventually impossible
to stay within the printable characters. The remaining grayscale palettes, g65 through g256, use the
first n characters of &cset instead of the list above.



–49 –

The c1 Palette

The palette c1 is designed for constructing color images by hand. It is defined using the Icon
color-naming system by the table below.

hue deep dark medium light pale weak

black 0
gray 1 2 3 4 5
white 6
brown ! p ? C 9
red n N A a # @
orange o O B b $ %
red-yellow p P C c & |
yellow q Q D d , .
yellow-green r R E e ; :
green s S F f + –
cyan-green t T G g ∗ /
cyan u U H h ` '
blue-cyan v V I i < >
blue w W J j ( )
purple x X K k [ ]
magenta y Y L l { }
magenta-red z Z M m ^ =
pink 7
violet 8

Note that in the Icon color naming system, “dark brown” and “light brown” are the same
as two shades of red-yellow.

Uniform Color Palettes

Programs that compute images can more easily use a palette having RGB  colors that are in
some sense “equally spaced”. The c3, c4, c5, and c6 palettes are designed with this in mind, and
the c2 palette can also be considered part of this family. The larger palettes allow better color
selection and subtler shadings but use up more of the limited number of simultaneous colors.

For any of these cn palettes, the palette provides n levels of each RGB primary color; letting
m = n – 1, these levels range from 0 (off) to m (full on). The palette also provides all the colors that
can be obtained by mixing different levels of the primaries in any combination. Mixing equal levels
produces black (0,0,0), white (m,m,m), or a shade of gray. Mixing unequal levels produces colors.

Each cn palette also provides (n – 1)2 additional shades of gray to allow better rendering of
monochrome images. n – 1 intermediate shades are added in each interval created by the original
n regular achromatic entries, giving a total of n2 – n + 1 grayscale entries.

The lists below specify the characters used by each palette. The n3 regular entries are ordered
from (0,0,0) to (m,m,m), black to white, with the blue component varying most rapidly and the red
component varying most slowly. These are followed in the right column by the additional shades
of gray from darkest to lightest.



–50 –

c2: kbgcrmyw x
c3: @ABCDEFGHIJKLMNOPQRSTUVWXYZ abcd
c4: 0123456789ABC…XYZabc…wxyz{ } $%&∗–/?@
c5: \000\001 … yz{| }~\d\200\201 … \214
c6: \000\001 … \327 \330\331 … \360

For example, the regular portion of the c3 palette is interpreted this way:

char. r g b char. r g b char. r g b

@ 0 0 0 I  1 0 0 R  2 0 0
A 0 0 1 J  1 0 1 S  2 0 1
B 0 0 2 K  1 0 2 T  2 0 2
C 0 1 0 L  1 1 0 U  2 1 0
D 0 1 1 M  1 1 1 V  2 1 1
E 0 1 2 N  1 1 2 W  2 1 2
F 0 2 0 O  1 2 0 X  2 2 0
G 0 2 1 P  1 2 1 Y  2 2 1
H 0 2 2 Q  1 2 2 Z  2 2 2

The complete set of grayscale entries in c3, merging regular and extra entries, is @abMcdZ
(from black to white).

The sizes of c5 and c6 require that they include some nonprinting characters, so they are
better suited for computed images than direct specification.



–51 –

Appendix G

Microsoft Windows

Icon for Windows runs on PCs with Windows 3.1 (with Win32s), Windows 95 and above, and
Windows NT. Windows machines vary greatly in their hardware capabilities, so this section can’t
say precisely how things will work in all situations.

Color Specifications

Windows does not provide a built-in color naming model, so Icon’s standard color names
comprise the complete set of recognized names.

Depending on the hardware configuration, Windows may use dithered colors in response
to any particular color request. This results in an unattractive appearance in applications where
solid colors are expected. Most colors are dithered on 16-color machines, and color-intensive
applications are ugly or unusable on those systems.

Color correction is controlled by the gamma attribute. The default value of the gamma
attribute is 1.0.

Font Specifications

Windows comes with very few fonts. The set of fonts available on a given machine is a
function of the set of applications and fonts that have been installed. As a result, Windows machines
vary widely in their interpretation of font requests. The same specification in Icon can produce fonts
of different appearance on different machines.

Windows’ native font specifications are complex structures that specify a set of desired
characteristics, from which a “nearest match” is chosen by Windows when a font is requested.
Windows has fonts based on different character sets. The standard Icon font names (fixed, sans,
serif, mono, and typewriter) return a font that uses the so-called ANSI character set.

Images

In ReadImage(), if an image file is not a valid GIF file, an attempt is made to read it as a
Windows bitmap file.

In WriteImage(), if the file name ends in .bmp or .BMP, a Windows bitmap file is written. In
all other cases a GIF file is written.



–52 –

Keyboard Event Codes

Icon uses Windows scan codes as integer event codes for special keys. Symbolic definitions
given in Appendix D and located in file keysyms.icn allow applications to refer to these special keys
in a system independent way.

Pointers

The pointer attribute can take any of the values shown in this figure:

Limitations

• The attribute linestyle is ignored by Windows when the line width is greater than 1; line
widths greater than 1 are always drawn using a solid line style.

•The attribute fillstyle does not support the value "masked". When masked fills are
requested, textured fills are performed instead.

•Mutable colors do not work correctly.

•The drawop attribute does not work correctly.



–53 –

Appendix H

The X Window System

This appendix discusses issues that are specific to implementations of Icon running under the X
Window System.

Under X, an Icon program is a client that performs graphical I/O on a server. The client and
server can be the same machine, as when a program runs and displays locally on a workstation, or
on different machines. A remote server can be specified by using the display attribute when opening
a window.

There are many implementations of X, and different systems provide different features, so
this appendix can’t say precisely how things will work in all situations.

Color Specifications

Color specifications that are not recognized by Icon are passed to X for interpretation. X
servers typically offer large sets of color names, including unusual ones such as orchid and
papayawhip.

Color correction is controlled by the gamma attribute. The default value of gamma is based
on the color returned by X for the device-independent X color specification RGBi:.5/.5/.5. On older
X systems that do not recognize this specification, a configuration default value is used.

The interpretation of RGBi:.5/.5/.5 depends on properties associated with the root window.
These properties are set by the xcmsdb utility. The library program xgamma can be used to set the
properties to approximate a particular gamma value.

Font Specifications

In interpreting a font specification, Icon recognizes the following font characteristics and
tries to match them as well as possible against the available X fonts:

condensed, narrow, normal, wide, extended
light, medium, demi, bold, demibold
roman, italic, oblique
mono, proportional
sans, serif

The same specification can produce fonts of different appearance on different servers.

If a font specification is not understood or matched by Icon’s font naming system, it is passed
verbatim to X as a font name. This allows the use of native X font specifications, including wild



–54 –

cards. As a special case, a font specification of "fixed" (without any size or other characteristics) is
passed to X as a font name without interpretation.

Images

In ReadImage(), if an image file is not a valid GIF file, an attempt is made to read it as an X
Bitmap or X Pixmap file.

In WriteImage(), if the file name ends in .xbm or .XBM, an X Bitmap file written. If the file
name ends in .xpm or .XPM, an X Pixmap file is written. If the file name ends in .xpm.Z, a compressed
X Pixmap file is written. In all other cases a GIF image is written.

X Resources

Default() returns values registered with the X Resource Manager. These values often are set
by an .Xresources or .Xdefaults file.

Keyboard Event Codes

Icon uses X keysym codes as event codes. The actual code returned for a particular key
depends on the configuration of the X server; this can be altered dynamically by the xmodmap utility.
For example, the Sun keypad has one key labeled “3”, “PgDn”, and “R15”. Whether this key
produces an Icon event "3", Key_PgDn, Key_R15, or even something else depends on the X
configuration.

The library file keysyms.icn lists many of the possible codes. For maximum portability, use
only those that appear in Appendix D.

Cursors and Pointers

The text cursor is an underscore character. It is visible only when the cursor attribute is on
and the program is awaiting input in WRead() or WReads(). The cursor does not blink and may be
hard to locate in a window containing a large amount of text.

The mouse location indicator, set by the pointer attribute, is selected from the X cursor font.
The following values are accepted:



–55 –

 The default mouse location indicator is  "left ptr".


