T-Sequences, Part 5: Motifs Along Paths

Some of the most interesting patterns in tsequences come from placing a (usually) short sequence, called a motif, at successive points along a path. Here is an example:

The motif is

ه

and the path is a straight draw:

Other examples of motifs along paths are given on the last page of this article.

The operation of placing a motif M along a path P is denoted by

M@P

Placing a motif along a path is concatenation with an offset. Adjacent duplicates may arise, and as for other forms of concatenation [1], duplicate values at boundaries are removed by default. The operation

$$
M @_{+} P
$$

does not remove duplicates that arise at boundaries.

It is worth noting that if the path is a constant sequence (all terms the same), a motif along the path simply is a repeat [1]. In other words, the concept of a motif along a path is a generalization that subsumes repeats.

Summary

With duplicate removal:
$M @ P \quad$ motif along a path
Without duplicate removal:
$M @_{+} P \quad$ motif along a path

Reference

1. Ralph E. Griswold, "T-Sequences, Part 2: Extension":
http://www.cs.arizona.edu/patterns/ weaving/ webdocs/gre_ts02.pdf

Ralph E. Griswold
Department of Computer Science
The University of Arizona
Tucson, Arizona
© 2004 Ralph E. Griswold

Motifs Along Paths

