
DsCats: Animating Data Structures for CS 2 and CS 3 Courses

Justin Cappos

Computer Science
University of Arizona South

Sierra Vista, AZ 85635
justincappos@hotmail.com

Patrick Homer

Computer Science
University of Arizona

Tucson, AZ 85721-0077
patrick@cs.arizona.edu

Abstract

A new data structure animation tool called DsCats is
available for classroom use. This tool supports educator
presentations, student experimentation, and programming
assignments. It implements a user-centered approach
supporting a wide range of detail levels, the ability to jump
to any point in the animation, and on the fly variations in
the data structure during animations. The tool is written in
Java with modularity and expandability in mind.

1 Introduction

The Data Structure Computer Animation Tools (DsCats)
Project is developing animation techniques for improving
the presentation and understanding of data structures in
Computer Science classes. The overall goal is to help
students understand the details of the algorithms used to
implement different storage techniques. Animation can
benefit both the presentation of data structure algorithms in
lecture and lab settings, and the individual exploration of
the structures by the students. The initial data structures
chosen for implementation are tree data structures (binary
search trees, AVL trees, and B-Trees) that are commonly
taught in CS 2 and junior-level advanced data structure
courses.

The current DsCats tool combines a number of features not
commonly present in other tools. These include the ability
to

• vary the level of detail during the animation,

• move backward and forward at will through an
animation, and

• display large data sets.

A set of commands can be used in input data sets to support
the creation of animations that contain descriptive
annotations and break points. The user (instructor or
student) can pause animations and then insert or delete data
at that point to view its effect on the data structure. A new
input file can then be saved to allow later re-creation of the
animation. The command set is independent of the data
structure being animated, allowing students to do side-by-
side comparisons without the need to create multiple input
files.

DsCats is implemented in Java for portability reasons. New
data structures are added by extending the DataStructure
class, providing methods that describe the basics of
drawing the data structure so DsCats can create animations.

2 Background

Data structure animation is a specialized field within the
broader field of algorithm animation. Algorithm animation
began with the video Sorting out Sorting presented by
Baecker [1] in 1981. The video depicts different sorting
algorithms running in an animated graphical fashion
intended for CS 2 students. Obviously, since this is a
videotape the student interaction is limited to watching the
tape multiple times. Brown and Sedgewick took this idea
from video to software in 1984 with the development of
BALSA [2]. Brown evolved the basic idea into a number
of new systems, including BALSA II, ZEUS, ZEUS 3-D,
CAT and JCAT [3]. JCAT (Java-Based Collaborative
Active Textbooks) supports 3-D graphics and simultaneous
displays on multiple machines. Other innovative features
include allowing everyone in a classroom to watch the
same algorithm but allow each student to view the
algorithm from a different perspective. A large number of
other general-purpose algorithm animation systems have
been developed with similar results [10,11]. Differences
between these projects and DsCats include that DsCats has
the ability to move backward and forward through the
algorithm while varying the detail level at will, and the use
of commands in the input file to control the animation.

Data structure specific animation tools include BST [12]
and Interactive Data Structure Visualizations [4]. BST is a
data structure animation tool developed at Clark
University. BST uses animation to show newly inserted
nodes dropping into the tree from the top and routed to
their correct position in the tree. The physics of the
animation seem to be the main focus of this project. DsCats
focuses on learning the algorithms.

Interactive Data Structure Visualizations [4] has an
interesting and useful feature called “I’ll Try Mode” where
a student may try to demonstrate their knowledge of how a
data structure algorithm works by showing how the
algorithm would operate on a given data set. However this
program has not been shown to produce positive results

with the students that have used it. Appropriate use of
animation, not just for entertainment, and students needing
to gain understanding of the algorithms, not just guessing
when they do not understand, seem to be missing factors.

According to research [5] and theory [6], a data structure
animation tool should have a number of features in order to
be useful for educational purposes. Students should be
involved with the tool as much as possible. An example of
this is creating the data sets that the program runs on.
Students should also be able to change the data set of the
algorithm during visualization to allow them to hypothesize
about the algorithm. Studies have shown it to be important
to allow the user to repeat steps and move backward
through the algorithm [6]. It has also been shown that the
steps of the algorithm should be redundantly labeled to
maximize user learning. The user interface should have
simple, well labeled controls so that beginning users are not
intimidated by them, but should also permit advanced users
to control a large portion of the algorithm such as changing
the detail level displayed, or altering the view of the
algorithm. The system should be forgiving to invalid input
and perform simple error checking in order to present the
user with understandable error messages. Color should be

used effectively to highlight important portions of a data
structure or illustrate other data such as the portrayal of
time [7]. The tool should be distributed on the web in order
to maximize the availability and should be available on a
large number of platforms. If the tool will be used for
demonstration purposes as well as individually by students,
it should be downloaded and run as Java code, not as a Java
applet running from a web page because of potential web
delay problems during classroom presentations.

3 DsCats Overview

3.1 Features
DsCats is a new data structure animation tool designed for
educational use. This tool currently implements binary
search tree, AVL tree, and B-Tree data structures, and can
be extended to animate additional structures. DsCats
implements a number of new features to facilitate its use as
a learning tool [8].
Data structure animations can be replayed either forward or
backward. The user can move backward to replay a portion
of the animation through the rewind button or by clicking
on the time-line bar. Animations can be “run”, using a user-

Figure 1 – A binary search tree about to perform a delete. On screen, color is used to highlight the node to be deleted (25)
and the node that will replace it (22).

specified delay between frames, or the user can single step
through the animation. At any point in an animation, the
user can diverge from the data set and enter different values
to be inserted or deleted from the structure. This effectively
creates a new animation from that point. These new
animations can then be saved for later re-use through the
File menu. For example, a student can pause a B-Tree
animation and enter several new values to see where
internal nodes are created. Such explorations can be saved
to create new input data files for later re-use.
Users can specify the level of detail used in animating the
data structure through commands in the input file or via a
pop-up window. For example, when performing a series of
insertions, the detail level can be set at a high level where
each frame of the animation contains one more insertion.
At a low detail level, the same series of insertions will
show a series of frames that include the comparisons being
made and the specific branches of the tree being followed.
The level of detail can be specific to a particular data
structure. For example, the AVL tree shows the steps
involved in deciding when to rotate, and the details of each
rotation.
Large data sets are supported through the ability to change
the viewpoint. The user can click on one of the visible
nodes and DsCats will reset the viewpoint so that node
appears as the root and displays the data structure from that
starting point. This process can be repeated to explore
downward through a data set. Such explorations can be
done at any point during an animation. The user can always
return to the top-level view by clicking the appropriate
button at the top of the screen.
Each data structure can implement features specific to that
structure. For example, the current binary search tree
implementation supports deletion using both the in-order
predecessor and in-order successor. A student can run
experiments to see the result of deletions done with only
one of the two techniques and compare with deletions that
alternate between the two or randomly choose between the
two. Such data structure specific settings, when
implemented, appear as menu choices.

3.2 Input Files
Instructors and students may easily create their own data
files for this program that represent the algorithmic actions
happening with the data structure. For example:
T h i s i s a c o m m e n t
U s e t h e A V L t r e e d a t a s t r u c t u r e
O P T I O N D S A V L T R E E
I n i t i a l i z e t h e t r e e (i n o n e s t e p)
I N S E R T 2 0 1 5 3 0 2 1 8 2 4 7 0 3 4 5
I n s e r t t h e s e i t e m s i n d i v i d u a l l y
I N S E R T 1 0
I N S E R T 5 3
D e l e t e s o m e e l e m e n t s
D E L E T E 2 4
D E L E T E 2 0

Lines that begin with a pound sign indicate comments. A
line that begins with two pound signs signifies that the text
on that line will be displayed at that point of the animation.

The creator of the data file may also specify options such as
the data structure, play speed, and detail level. The play
speed and detail level settings are changed to the values
specified in the input file but the user is free to change the
values while viewing the animation. When the data file
creator specifies which data structure to use, the user must
use that data structure for the data set.

To use one data file with multiple data structures, do not
use the OPTION command to specify the data structure.
The user specifies in the GUI any data structure that
supports the commands used in the file. For example the
above input file can be used for the binary search tree, B-
Tree, and AVL tree if the OPTION DS AVLTREE line is
removed.

It is also possible to click the appropriate buttons and menu
options in the GUI to create a data file from the current
animation with the desired options, insertions, and
deletions. In this case, if comments are desired they must
be added later by hand.

3.3 Implementation Details
The abilities to jump to any point and to vary the detail
level are accomplished by creating a “movie” for the
animation. Each frame of the movie represents one step in
the animation at the lowest, most detailed, level. When the
movie is played, only those frames that match or exceed the
current detail level are displayed. Each frame includes a
line of text that explains what is happening.

To implement a new data structure, a new class that
extends DataStructure is written that draws frames based
on specific commands. For example, the binary search tree
has to handle an insert command, creating some number of
frames. The exact number of frames depends on the lowest-
level detail that the new class supports. Each frame of the
movie is then handed to the DataStructureMovie class
provided by DsCats. This class handles playing, rewinding,
and stepping through the movie, determining which frames
to display based on the current detail level.

To display a frame of the movie, the drawing method of the
data structure is called to create a vector of objects, which
DsCats then uses to draw the current frame. The line of text
that explains the current frame is added to the frame.

The implementor of a data structure can provide additional
features. For example, the B-Tree code in the current tool
provides statistics for each frame that include the number
of internal nodes in the tree at this stage, the number of
levels traversed, and the number of comparisons
performed.

This tool is written in Java and has been tested on a number
of operating systems including Mac OS X, Windows 98,
Windows NT, and Solaris 8. Binary search tree, AVL tree,

and B-Tree data structures are implemented. Since the
purpose of the tool is to provide an animation that the user
can control, performance is based on human perceptions of
“quick” response. As a result, we have not tried to precisely
quantify performance. We have tried running tests that
insert 100 or 250 elements. These work successfully with
no noticeable delays on a 270 MHz Sun Ultra 5 running
Solaris 8, a Gateway 400 MHz Celeron running NT 4.0,
and an Apple 500 MHz Titanium running Mac OS X.

4 Use in Computer Science Courses

The motivation for this project is based on problems with
explaining data structure algorithms in CS 2 and CS 3
courses. The process is too often an inherently static
presentation. The real difficulty is that students may think
they are understanding the presentation, but when they go
to review their notes, they have a confusing set of static
images that they recorded and insufficient information
about how each image was derived from the previous one.

DsCats addresses this problem by allowing demonstrations
based on prepared input files. The progress of the
construction can be paused at any point to highlight what is
happening at that stage. The demonstration input files can
be made available to the students for study outside class.
The instructor may choose to add notes as viewed
comments within the data file so that students will see the
notes as they walk through the data set.

More to the point, the detail level can be changed in
response to questions from the students about what is
happening, the rewind feature allows repetition of
important points and supports answering questions from
students about earlier steps. The ability to change an
animation on the fly by specifying new inserts or deletes
allows the instructor to respond to questions. These
changes can be saved into new input files, which students
use to later replay the animation when reviewing their
notes, or when asking the instructor about the lecture
outside of class. They can replay the demonstration,
changing the speed or detail level. Students can enter
values of their own to insert or delete at a certain point to
explore how the data structure changes.

Exercises can be devised that play an animation to a certain
point, then ask students to try different combinations of
inserts and deletes. Statistics about the data structures can
be easily collected by the students, such as comparing the
balance of trees based on changing the ordering of the
insert and delete commands, for example.

The instructor may choose to add notes as viewed
comments within the data file so that students may view the
notes as they walk through the data set again. Students also
have the freedom to individually experiment with instructor
given data sets to see what happens when the given
insertions happen in a different order.

There are a number of theoretical observations that students
can discover. They can be provided with an example AVL

tree and asked to delete all of the nodes in a way that
causes no rotations or alternately, a maximum number of
rotations. This effectively tests and enhances the student’s
knowledge of the balance property of AVL trees.

Some additional assignment examples include

• Determining an ordering of inserts to create a balanced
tree.

• Comparing the effect on the data structure of different
deletion algorithms.

• Collecting statistics (number of null child pointers,
number of internal nodes vs. leafs in a B-Tree)

Programming assignments can be made that involve
changes in, or additions to, existing DsCats
implementations. The assignments do not have to start from
scratch. Students can take advantage of the code already
present in DsCats, and concentrate on the specific
algorithm assigned. Some examples include providing a
different deletion algorithm, for instance using lazy
deletion. The “deleted” nodes would be highlighted in a
different color, and would be re-used when new insertions
can be placed in those nodes. Statistics on re-use could be
generated by the new code and displayed during
animations. The animation is helpful in programming
projects since it serves as a very good visual debugging
tool. For cases of more serious bugs, a printing traversal is
built into DsCats to help students debug problems when the
display does not come up.

A more involved project is to implement a complete data
structure in DsCats. Examples can include splay trees, red-
black trees, and binary heaps.

5 Future Directions

The current DsCats tool implements three data structures
and is being tested in sophomore and junior CS courses.
Future work will include evaluations of the effectiveness of
the tool in the courses. Additional tree-based data structures
can be added fairly easily. We are exploring how to extend
this work to support non-tree structures, including hash
tables, linked lists, and heaps. DsCats is available for
download at http://www.cs.arizona.edu/dscats/.

References

[1] Baecker, R., “Sorting Out Sorting”, SIGGRAPH ’81,
Los Altos, CA, 1981

[2] Brown, M.H., Sedgewick R., "A System for Algorithm
Animation", Computer Graphics, July 1984, 177-186.

[3] Najork, M.A., Brown, M.H., “Three-Dimensional
Web-Based Algorithm Animations”, SRC Research
Report 170, July 31, 2001

[4] Jarc, D.J., Feldman, M.B., Heller, R.S., “Assessing the
Benefits of Interactive Prediction Using Web-based
Algorithm Animation Courseware”, SIGCSE 2000,
377-381

[5] Hundhausen, C.H., “Toward Effective Algorithm
Visualization Artifacts: Designing for Participation
and Communication in an Undergraduate Algorithms
Course”, Unpublished Doctoral Dissertation, Technical
Report CIS-TR-99-07, June, 1999, 18-32

[6] Khuri, S., “Designing Effective Algorithm
Visualizations”, Program Visualization Workshop,
July 7-8, 2000

[7] Brown, M. H., “Color and Sound in Algorithm
Animation”, SRC Research Report 76a, August 30,
1991

[8] Cappos, J. A., “DsCats User Manual”, Unpublished
Technical Manual, August 12, 2001

[9] Cappos, J. A., “DsCats Programmer Manual”,
Unpublished Technical Manual, August 31, 2001

[10] Pierson, W. C., Rodger, S. H., “Web-based Animation
of Data Structures Using JAWAA”, Twenty-ninth
SIGCSE Technical Symposium on Computer Science
Education, p. 267-271, 1998.

[11] Stasko, J., “POLKA Animation System”,
http://www.cc.gatech.edu/gvu/softviz/parviz/polka.htm,
August 30, 2001

[12] Ierardi, D., Li, T. W., “Binary Search Tree Applets”,
http://aleph0.clarku.edu/%7Eachou/cs102/examples/bs
t_animation/, September 1, 2001

