
Activating Storage Systems with Agents1

John H. Hartman Scott Baker Ian Murdock

TR 02-01

Abstract

Swarm is a scalable, modular storage system that allows high-level services to influence low-level storage
functions such as data layout, metadata management, and crash recovery viaagents. An agent is a program
that is attached to data in the storage system and invoked when particular events occur during the data’s
lifetime. For example, when Swarm needs to write data to disk, agents attached to the data are invoked to
determine a layout policy. Agents can be persistent, so that they remain attached to the data they manage
until the data are deleted; this allows agents to continue to affect how the data are handled long after the
application or storage service that created the data has terminated. Swarm and its agent mechanism are
implemented as a Linux kernel module. In this paper, we present Swarm’s agent architecture, describe
the types of agents that Swarm supports and the infrastructure used to support them, and discuss their
performance overhead and security implications. We describe how several storage services and applications
use agents, and the benefits they derive from doing so.

June 18, 2002

Department of Computer Science
The University of Arizona

Tucson, AZ 85721

1This research was supported in part by DARPA Contract F30602-00-2-0560 and NSF grant EIA-0080123.

1 Introduction

Traditional storage systems are inflexible, providing
fixed storage abstractions, access protocols, and data
management policies. In contrast, the Swarm storage
system [5] may be configured to support multiple stor-
age services simultaneously, each implementing its own
abstractions, access protocols, and data management
policies. Swarm accomplishes this by decoupling high-
level abstractions and functionality from low-level data
storage. Rather than providing high-level abstractions
directly, Swarm provides an extensible, layered infras-
tructure that allows high-level storage functionality to be
composed in a modular fashion, with each layer aug-
menting, extending, or hiding the functionality of the
layers below it.

Swarm employsagentsto allow applications, file sys-
tems, and other storage services to influence and con-
trol key storage functions such as data layout, metadata
management, and crash recovery. An agent is a program
that is attached to data in the storage system and invoked
when particular events occur during the data’s lifetime.
For example, when Swarm needs to write data to disk,
agents attached to the data are invoked to determine a
layout policy. Agents are stored alongside the data they
manage and are persistent, allowing the agents to con-
tinue managing the data even after the applications or
file systems that created them exit or are unmounted.

Agents add a new dimension of flexibility, extensibility,
and power to storage systems. Agents allow applications
and storage services to extend Swarm in application-
specific ways, without requiring Swarm to have any im-
plicit knowledge about how the application or storage
service works. For example, agents allow Swarm to up-
date metadata without knowledge of the metadata struc-
tures, and to implement application-specific data layout
policies without knowledge of or assumptions about fu-
ture access patterns. Furthermore, because agents are
programs, they are inherently more powerful than static
policies: agents can take advantage of current system
state to determine a policy that is optimized for a partic-
ular situation.

Swarm is implemented as a loadable module for the
Linux 2.2 kernel. We have developed and experimented
with several Swarm-based services that use agents, in-
cluding a local file system called Sting that stores files
and directories in Swarm, a cleaner service that reclaims
unused portions of Swarm’s log, a simple logical disk
that presents a virtual disk abstraction on top of Swarm’s
log abstraction, a web layout agent that clusters web

pages and their embedded images in the log, and a read-
ordered layout agent that organizes file blocks according
to previous read access patterns. The different agents
employed by these services and the resulting perfor-
mance improvements demonstrate the usefulness of the
agent infrastructure. The overhead of invoking an agent
is less than 1us, and a simple agent requires about 4us
per block of computation, making the agent mechanism
a viable way of implementing high-level policy deci-
sions in low-level storage functions.

This paper describes Swarm’s agent mechanism and how
it is used to improve the performance and flexibility of
applications and storage services that run on Swarm.
We first provide an overview of Swarm, then describe
Swarm’s agent mechanism and the infrastructure that
supports it. The agent section also includes a discus-
sion of the performance overhead incurred, and security
considerations. Finally, we describe the Swarm-based
services we developed that use agents, and the benefits
they derive from doing so.

2 Swarm Overview

Swarm [5] is a storage system that provides scalable,
reliable, and cost-effective data storage. At its low-
est level, Swarm provides a log-structured interface to
a cluster of storage devices that act as repositories for
fixed-sized pieces of the log calledfragments. The stor-
age devices have relatively simple functionality, so they
are easily implemented using inexpensive commodity
hardware or network-attached disks [4]. Individual stor-
age devices are optimized for cost-performance and ag-
gregated to provide the desired absolute performance.

Swarm clients use astriped logabstraction [6] to store
data on the storage devices. This abstraction simplifies
storage allocation, improves file access performance,
balances server loads, provides fault-tolerance through
computed redundancy, and simplifies crash recovery.
Each Swarm client creates its own log, appending new
data to the log and forming the log into fragments that
are striped across the storage devices; RAID-style parity
allows missing portions of the log to be reconstructed
when a storage device fails. Clients cache blocks in
memory and write them to the log in batches, allowing
blocks within the batch to be ordered to improve read
performance, and also improving write performance by
writing multiple blocks to the log in a single operation.
Each client maintains its own log and parity, and there-
fore does not need to coordinate with other clients to

Applicat ion

ARU

Cleaner

Agent

Raw Log

Parity

Striper

D isk Net

Figure 1: Swarm Architecture. A particular instance
of Swarm is constructed by layering Swarm modules to
obtain the desired functionality for the storage system.
Each layer augments, extends, and/or hides the function-
ality of the layers below it. The agent layer is responsi-
ble for implementing the agent infrastructure described
in this paper.

perform these functions; this results in improved scala-
bility, reliability, and performance over centralized file
servers.

Swarm is a storage system, not a file system, because
it can be configured to support a variety of storage ab-
stractions and access protocols. For example, a Swarm
cluster could simultaneously support Sun’s Network File
System (NFS) [14], HTTP, a parallel file system, and
a specialized database interface. Swarm accomplishes
this by decoupling high-level abstractions and function-
ality from low-level storage. Rather than providing these
abstractions directly, Swarm provides an infrastructure
that allows high-level functionality to be implemented
above the underlying log abstraction easily and effi-
ciently. This infrastructure is based on layered modules
that can be combined together to implement the desired
functionality (Figure 1). Each layer can augment, ex-
tend, or hide the functionality of the layers below it.
For example, an atomicity service can layer above the
log, providing atomicity across multiple block writes. In
turn, a logical disk service can layer above this extended
log abstraction, providing a disk-like interface to the log
and hiding its append-only nature.

D
E

LE
T

E

C
R

E
A

T
E

C
R

E
A

T
E

C
R

E
A

T
E

�
�
�

�
�
�

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

Figure 2:Log Format. The light objects are blocks, and
the dark objects are records. EachCREATE record indi-
cates the creation of a block, and eachDELETE record
indicates a deletion; the arrows show which block is af-
fected by each record and represent references visible to
the log layer. Note that the contents of the blocks them-
selves are uninterpreted by the log layer.

2.1 Log Layer

The striped log is the central abstraction in Swarm. The
striped log abstraction and corresponding interface are
implemented in thelog layer. The log layer is respon-
sible for forming data written by higher levels into an
append-only log and striping the log across the underly-
ing storage devices. The layers above the log are called
storageservices(servicesfor short) and are responsi-
ble for implementing high-level storage abstractions and
functionality. The log layer’s main function is to multi-
plex the underlying storage devices among multiple ser-
vices, allowing storage system resources to be shared
easily and efficiently.

2.1.1 Log Format

The log itself is an ordered stream ofblocksandrecords
(Figure 2). It is append-only: blocks and records are
written to the end of the log and are immutable.

Block contents are service-defined and are not inter-
preted by the log layer. Once written, blocks persist
until explicitly deleted, though their physical locations
in the log may change as a result of cleaning or other
reorganization. New blocks are always appended to the
end of the log, allowing the log layer to batch together
small writes into fragments that may be efficiently writ-
ten to the storage devices. Once written, a block may
be accessed using itslog address, which consists of a
unique fragment identifier and an offset within the frag-
ment. Given a block’s log address and length, the log
layer retrieves the block from the appropriate storage de-
vice and returns it to the calling service. When a service
stores a block in the log, the log layer responds with its
log address so that the service may update its metadata
appropriately.

Data

M etadata Sections

Agents

Layout Agent #1

Layout Agent #2

Com m it Agent

Store Agent

Section #1 Section #2 Section #3

Physi cal D isk Block
Swarm Record

Figure 3: Record Format. Each record contains a
pointer to an associated data block (if any), a variable
number of sections in which each service stores service-
specific recovery information, and references to each
agent that has been attached to the record.

Records are used to recover from client crashes. A
crash causes the log to end abruptly, potentially leav-
ing a service’s data structures in the log inconsistent. A
record contains information necessary to recover from
the crash, enabling services to repair inconsistencies by
re-applying the state changes indicated by the records
(Figure 3). For example, a file system might append
records to the log as it performs high-level operations
that involve changing several data structures (e.g., as
happens during file creation and deletion). During re-
play, these records allow the file system to easily redo
(or undo) the high-level operations. Records are implic-
itly deleted bycheckpoints, special records that denote
consistent states. The log layer guarantees atomicity of
record writes and preserves the order of records in the
log, so that services are guaranteed to replay them in the
correct order.

2.1.2 Log Layout

As applications and storage services write data to
Swarm, the log layer caches the blocks in memory and
writes them to the log in batches. As the log layer cre-
ates the log from the blocks in the cache, it must make
decisions about how the blocks are organized in the log.
Proper data layout is important, since it affects the per-
formance of subsequent log accesses. Blocks that are
accessed together but distributed throughout the log are
much slower to access than if they were clustered to-
gether, due to the high cost of disk seeks and lost oppor-
tunities to perform large data transfers.

The log layer has no implicit knowledge about the con-

tents of the blocks that it stores, so without help from
the services that created the blocks, it does not know
how to organize them in the log. To address this prob-
lem, the log layer provides anordered setsabstraction
that allows services to express block layout preferences.
Each set contains a list of blocks that should be clustered
together in-order in the log. The services that are using
the log create the sets and assign blocks to them. A ser-
vice can create as many sets as it likes, and assign an
arbitrary number of blocks to each set.

To store blocks in the log, the service submits the sets
containing the blocks to the log layer. The log layer
packs the sets into log fragments so that no set spans a
fragment boundary. If a set is too large to fit into a frag-
ment it must obviously span a boundary; the log layer
simply splits an oversized set arbitrarily into sets that fit
into fragments. A service that wishes to avoid this can
do so by ensuring that every set fits into a fragment.

In some cases, a service may want to express layout poli-
cies that require blocks to appear in multiple sets. For
example, a file system might use a set to specify that the
blocks of a file should be laid out consecutively and con-
tiguously, and use another set to specify that all files in
the same directory should be clustered together. In this
situation, blocks will be members of a file set and a di-
rectory set. Swarm attempts to pack all sets with blocks
in common into the same log fragment, thus ensuring
that blocks are clustered properly. If the sets do not all fit
into a fragment, then Swarm is forced to split the blocks
of some sets across fragment boundaries. In this case,
the set priorities are used to decide which set a block is
clustered with, and which sets are split. For example,
giving a file set higher priority than a directory set indi-
cates that it is more important to cluster the blocks of a
file than it is to cluster files in the same directory. If all
the files in a directory cannot fit in the same fragment,
then the directory set is split so that some of the files are
stored in different fragments.

The log layer uses the following algorithm for placing
blocks in the log based on set membership and priori-
ties, and splitting sets when necessary. First, the sets are
ordered from lowest priority (1) to highest (N). The sets
with priorityN are packed into log fragments so that two
sets are placed in the same fragment if there is a priority
N � 1 set that contains blocks from both of the priority
N sets. Once the blocks in the priorityN sets have been
packed, the blocks in the priorityN � 1 sets are packed
by considering common membership in priorityN � 2

sets, and so on. For example, if each priorityN set con-
tains blocks from the same file, and each priorityN � 1

set contains blocks from files in the same directory, then

the algorithm packs file sets into the same fragment if
they have blocks belonging to the same directory set.

Packing sets into fragments according to priorty ensures
that the log layer favors splitting lower-priority sets over
higher-priority. If the same block appears in multiple
sets with the same priority, then one of the sets is ar-
bitrarily chosen and the others ignored. Intuitively, this
indicates that it is equally important that the block be
clustered with the other blocks in the different sets, so
the log layer is free to choose any set that it wants. If
the service has a preference, it should use the set priority
mechanism to express it.

3 Agent Infrastructure

Swarm provides an infrastructure for building storage
services on top of the striped log, allowing applications
to tailor the storage system to their exact needs. Swarm
is implemented as a collection of modules that are lay-
ered to build storage systems in much the same way
that protocols may be layered to build network commu-
nications subsystems [7]. Each module in Swarm im-
plements a storage service that communicates with the
lower levels of the storage system through a well-defined
interface, and exports its own well-defined interface to
higher levels. Storage systems are constructed by layer-
ing the appropriate modules such that all interfaces be-
tween modules are compatible.

To provide a clean separation between layers, Swarm al-
lows storage services to attachagentsto the records that
move up and down the service stack. Agents are pro-
grams that are invoked at various points in the record’s
lifetime to influence or control how the record and its as-
sociated data block are managed in the storage system.
Agents allow services to inject service-specific function-
ality into the lower levels of the storage system, and to
do so in a way that does not require the lower levels
to have any knowledge about how the storage service
works. For example, agents allow Swarm to implement
application-specific data layout policies without knowl-
edge of application access patterns, and to update appli-
cation metadata without knowledge of application meta-
data structures.

Agents allow mechanism to be effectively and efficiently
decoupled from policy in the implementation of storage
services. The mechanism for organizing blocks in the
log is the ordered sets abstraction. A set tells the log
that the blocks it contains should be stored consecutively

typedef Status (AgentFunc) (Interface *iPtr,
RecordRef *recordList, void *agentData);

/* register an agent */
Status
RegisterAgent(Agent_Interface *agentPtr,

char *name, AgentFunc *func,
int agentType, int flags,
void *agentData, AgentId *id);

/* attach an agent to a record */
Status
AttachAgent(Agent_Interface *agentPtr,

Record *record, int level, AgentId id,
int flags, void *recordData);

/* invoke all agents of a given type */
Status
InvokeAgents(Agent_Interface *agentPtr,

Record *record, int agentType);

Figure 4: Agent Routines. The agentData is an
opaque data field that is specified toRegisterAgent
when the agent is created, and passed to the agent when
it is subsequently invoked. TherecordData is speci-
fied when the agent is attached to a record, and is avail-
able to the agent when it processes the record. The
level parameter specifies the service’s level in the
Swarm stack.

and contiguously. It does not tell the log layer why they
should be stored that way, so the log layer has no idea
under what conditions the set memberships remain valid.
Instead of augmenting the set abstraction with attributes
that communicate these sort of policies to the log layer,
Swarm uses agents that codify the policies for placing
blocks into sets.

Agents implement policies, and express them by creat-
ing sets. Sets are only used to place the block in the log
once, after which they are discarded. If a block needs
to be rewritten to the log (e.g. because it was modi-
fied), its agents are again invoked to assign the block
to sets. Agents not only provide a convenient decou-
pling of mechanism and policy, but also provide a much
more powerful mechanism for specifying policy than the
ordered sets themselves, since an agent can take into ac-
count the current state of the system each time a block is
written.

The agent infrastructure is implemented in theagent
layer. The agent layer is responsible for flushing the
cache and invoking service-provided agents to assign the

blocks and records in the cache to ordered sets. The
agent layer provides an interface for services to create
agents and attach them to records (Figure 4). Although
each record could have its own unique agents, typically
a single agent will be attached to multiple records that
should be handled similarly.

Agents introduce a potential security hole, since they run
inside the Swarm environment and affect Swarm’s func-
tionality. Without proper precautions, a buggy or ma-
licious agent could corrupt data structures belonging to
other services or Swarm itself. Swarm must be able to
protect itself from agents, and agents must be able to
protect themselves from each other. Swarm must also
ensure that agents do not consume an undue amount of
resources. These concerns are addressed in Section 3.5.

3.1 Agent Types

The agent layer implements four native types of agents:
layout, commit, store, andreplay. Layout agents are in-
voked when the agent layer flushes the cache, allowing
services to specify a layout policy for the records and
blocks being flushed. Commit agents are invoked after
the log layer has assigned a log address to a record and
its associated block, allowing the service to update its
metadata to reflect the new address. Store agents are in-
voked after the record and its associated block have been
written to the log, allowing the service to clean up any
record state. Replay agents are invoked when replaying
records after a crash, allowing services to take actions
appropriate for crash recovery.

The agent layer also provides facilities for services to
define new types of agents and cause them to be in-
voked when appropriate. This functionality is used by
the cleaner, for example, to create a new type of agent
that handles cleaning a block.

3.1.1 Layout Agents

Layout agents are responsible for deciding how blocks
and records should be laid out in the log. A layout agent
is invoked when blocks are flushed from the cache and
written to the log. When it is invoked, the layout agent
is provided a list of all records to be written that have the
agent attached to them. The agent processes the list and
puts the records into ordered sets. The log layer uses the
ordered sets to determine where blocks are placed in the
log; it attempts to store the blocks in each set contigu-

ously and in-order. The layout agent can use whatever
method it chooses to allocate blocks to sets. For exam-
ple, a layout agent for a file system may assign blocks
from each file to a different set, in the order in which
they appear in the file. This ensures that file blocks are
laid out contiguously and in-order.

To simplify the implementation of higher-level services
that do not care about layout, the agent layer provides
a default layout agent. This agent simply assigns all
records to the same set, creating a new set when the cur-
rent one reaches the size of a fragment.

3.1.2 Commit Agents

The commit agent for a record is invoked once the raw
log layer has placed a record’s set in the log, and has
therefore committed to writing the record’s block at a
particular log address. When it is invoked, the agent
is provided with the block’s record and the log address
where it will be written. The commit agent typically uses
this information to update any metadata that refers to the
block. For example, a commit agent for a file system
would update the file’s inode and indirect block meta-
data to contain the new log address for the data block.

The agent layer also provides a default commit agent
to simplify service implementation. This agent requires
that the recordData be a list of log addresses, and it up-
dates them to contain the block’s address. This is ade-
quate for services with simple metadata.

3.1.3 Store Agents

The store agent is invoked after a record and its associ-
ated data block have been successfully stored in the log.
Typically, a store agent is responsible for cleaning up the
block’s state, for example, by removing the block from
the cache. This cannot be done until the block has been
stored. As another example, a synchronous block write
can be implemented by registering a store agent on the
block before submitting it to the log layer. When the
agent is invoked, it wakes the thread that is writing the
block.

3.1.4 Replay Agents

The replay agent is invoked when replaying the log dur-
ing server recovery. The agent is given records from the

log in the order in which they appear in the log. The re-
play agent is often similar to the commit agent in that it
updates the block’s metadata to reflect its position in the
log. Processing isn’t exactly the same because the server
may have crashed, causing the log to be truncated, which
in turn may affect how the records are handled.

3.2 Agent Interface

When the agent is invoked, it is passed a list of records
to which it was attached. Furthermore, when an agent
is attached to a record, a fixed-size opaque data field
(calledrecordData) can be provided that is stored in
the record and available to the agent when it processes
the record. The agent is also passed anagentData
parameter that was provided when the agent was cre-
ated. TheagentData contains agent-specific informa-
tion that also helps the agent perform its function.

Agents are invoked beginning with the lowest-level ser-
vice and working toward the highest (i.e., in the reverse
order in which they were attached to the record). Con-
ceptually, agents are attached to records as they pass
down through the layers, and the agents are invoked as
the response passes back up through the layers. Swarm
does not have provisions for allowing different agent or-
derings, perhaps specified when the agents are created or
when they are attached to records. A general facility for
this would require inter-layer knowledge to allow their
agents to be ordered properly. Instead, Swarm invokes
the agents in layer order.

3.3 Agent Persistence

Typically, an agent ispersistent, in that it remains at-
tached to a record until the record is deleted. A persis-
tent agent is stored in the log by the agent layer so that it
is not affected by machine crashes, and can be invoked
after the machine recovers. For example, replay agents
are always persistent because they are only invoked af-
ter a crash and therefore must survive the crash. Layout
agents are also usually persistent since they are invoked
throughout the block’s lifetime each time it is cleaned.

The agent layer also supportstransientagents, agents
that are invoked only once and not retained across ma-
chine reboots. These agents are used for processing that
should not be done after a reboot, such as cleaning up
in-memory data structures. The best example of a tran-
sient agent is the one that is used for synchronous log

writes. This agent is attached to a record when it is sub-
mitted, after which the submitting thread blocks. The
agent is invoked once the block is stored in the log, and
it resumes the waiting thread. Since it is transient, it is
only invoked once, as desired, and it does not survive
machine reboots, which is also desirable since the wait-
ing thread will not either.

3.4 Overhead

The agent layer does add overhead to the storage func-
tions provided by Swarm. Agents are invoked when
records are laid-out, committed, stored, replayed, and
cleaned. Of course, different agents perform different
amounts of computation, so it is impossible to character-
ize the overall performance effect of agents. The intent is
that the overall system performance improvements that
agents enable offsets the overhead of running the agents.
Section 4 describes the different agents developed and
how much they improved system performance.

An agent is invoked when a particular event occurs to
a record. The agent is expected to respond to the event
by manipulating the state of the system, e.g. by adding
the record to a set, or updating metadata. For this rea-
son, agents are invoked synchronously by Swarm. The
overhead of invoking an agent consists of the cost of a
procedure call, plus the cost of packaging up the records
on which the agent should act. We measured the cost of
invoking a null agent (one that does no work) at less than
1 microsecond.1

We also measured the overhead of the default layout
and commit agents described in Section 3.1.1 and Sec-
tion 3.1.2, respectively. These default agents are proba-
bly the minimal useful agents for those agent types. The
default layout agent requires 21 microseconds per block,
of which memory allocation consumes 16 microseconds,
and manipulating the set data structures 4 microseconds.
The memory allocation overhead is clearly too high, and
is something we plan to rectify. Once that is fixed, the
cost per block for the default layout agent should be
around 5 microseconds. The default commit agent does
much less work than the layout agent, and therefore re-
quires only 4 microseconds per block.

1All performance numbers presented in this paper were measured
on a 166Mhz Intel Pentium Pro PC with 64MB of RAM, running
Linux version 2.2.16. The Swarm log is stored on a Quantum Fireball
SE4.3 SCSI disk connected to an Adaptec 2940W SCSI host adapter.

3.5 Protection and Security

Swarm must ensure that agents do not interfere with
each other, or the proper functioning of Swarm itself. It
must also ensure that they do not consume an inordinate
amount of resources. There are many possible solutions
to these problems, since these same issues arise in many
contexts. One is to write the agents in a type-safe lan-
guage, such as Java. The use of such a language would
limit the agents to accessing only those data structures
to which they are granted access; this would prevent an
agent from accessing anything but its own blocks. The
use of Java will likely reduce agent performance, but this
is probably acceptable since the agents are invoked as
part of a relatively slow I/O operation. Another down-
side of this approach is that it requires a Java Virtual
Machine inside of the Swarm infrastructure, which in-
creases Swarm’s resource requirements and complexity.

Other possible protection mechanisms include running
the agents in a separate process, using proof-carrying
code [10] to verify the agents’ correctness, or using soft-
ware fault isolation [16, 15] to isolate the agents. All of
these should be acceptable, although running agents in a
separate process will likely have high overheads.

Our current prototype does not protect against malicious
or buggy agents; for expediency, the agents are written
in C and no mechanisms are employed to isolate them.
When an agent is invoked it is passed a list of blocks
to which it has been attached. The agent has no direct
access to blocks belonging to other services and agents,
preventing it from doing so trivially. Nonetheless, a de-
ployed version of Swarm’s agent infrastructure would
require protection mechanisms. Software fault isolation
is probably the best match for our current prototype as it
allows the agents to be written in C, but still isolate them.
Software fault isolation has the added advantage that the
Vino project has already used it to isolate untrusted code
inside an operating system kernel, allowing us to lever-
age that body of work when applying it to Swarm.

4 Examples

We have implemented several types of agents in the
Swarm prototype. These agents are linked into the Linux
kernel module, and are attached to records by services
as part of each service’s processing of the record. This
section describes the services to which we added agents,
how they use agents, and what benefits they derive from

their use.

4.1 Cleaner

As in other log-structured storage systems, Swarm uses a
cleanerthat periodically garbage-collects unused blocks
in the log to make room for new segments [13]. In
Swarm, the cleaner is implemented as a layer above the
log, hiding the log’s finite capacity from higher-level
services. The cleaner monitors the blocks and records
written to the log, allowing it to track which portions
of the log are unused. The cleaner is also responsible
for free space management, enforcing quotas on higher-
level services, initiating cleaning to move live data out
of underutilized stripes so that the space they occupy
can be used for new log data, and reserving the appro-
priate number of stripes so that cleaning always makes
progress.

In Swarm, the cleaner operates by attaching agents to
records as they are submitted to the log. The cleaner
uses store agents to track which blocks in the log contain
live data and which have been deleted. The store agent
attached to creation records updates the cleaner’s data
structures to indicate that the associated blocks contain
live data; conversely, the store agent attached to deletion
records marks the associated blocks as deleted, and also
deletes stripes that become empty as a result.

The cleaner also creates a new type of agent called a
cleaningagent that is used by the upper layers to clean
blocks. The cleaner invokes a record’s cleaning agent
when it decides the block must be cleaned. The cleaning
agent takes whatever actions are necessary to clean the
block. For example, the cleaning agent for the Sting file
system cleans a block by reading it into the file cache
and marking it as dirty, causing it to be written back out
to the log the next time the cache is flushed.

4.2 Sting

Sting is a local file system that we have implemented as
part of Swarm (Figure 5). When loaded into the Linux
kernel, it allows application programs to access standard
UNIX files and directories that are stored in Swarm.
Sting is log-structured, and uses a variety of agents to
ensure that data are stored in the log efficiently, and that
metadata are kept up-to-date.

Sting uses layout agents to implement a data layout pol-
icy similar to that of FFS [9]. Sting uses two layout

Applicat ion Layer

Ext2
File System

VFS

Sting
File System

Buffer Cache

Disk Driver Network Driver

Figure 5:Sting. Sting is implemented as a Swarm mod-
ule. The entire Sting/Swarm system is loaded into the
Linux kernel below the VFS layer and above the buffer
cache and network drivers. Sting uses the buffer cache
to access local disks, and the network driver to access
remote Swarm storage servers.

agents: FileLayout and DirectoryLayout. The FileLay-
out agent creates a set for each file, putting the blocks of
the file into the set in the order in which they appear in
the file; this tells the log layer that a file’s blocks should
be laid out in the log contiguously and in-order. The
DirectoryLayout agent creates a set for each directory,
putting all blocks belonging to files in the directory into
the set; this tells the log layer that files from the same di-
rectory should be clustered together in the log. The sets
created by the DirectoryLayout agent have lower prior-
ity than the FileLayout agent; this tells the log layer that
it is more important to keep the blocks of a file together
than it is to cluster files from the same directory.

Sting uses two commit agents for metadata manage-
ment: a DataCommit agent for data blocks and indirect
blocks, and an InodeCommit agent for blocks that con-
tain inodes. The DataCommit agent stores the address of
the block in the proper inode or indirect block, reading
it into the cache if necessary. The InodeCommit agent
stores the inode’s log address in the inode map.

The Sting store agent is responsible for cleaning up after
a dirty block has been written, by releasing all relevant
locks and marking the block as clean. The Linux page
cache is then free to replace the block as necessary.

The Sting replay agent performs much the same func-
tion as the traditional Unixfsck program that fixes file
system metadata after a crash. During normal operation,
file namespace operations such as creating a file or di-
rectory, creating a hard link, or unlinking a file or direc-
tory generate records that are stored in the log. During
replay, the replay agent processes Sting’s records from
the log in order, using them to reconstruct the correct
namespace.

Sting’s cleaning agent cleans blocks by reading them
into the cache and marking them as dirty. The file
cache will then write them back out to the log at a later
time. As a sanity check, the cleaning agent first cross-
references the block with the file metadata to verify that
it is still in-use. If it isn’t, it is simply deleted.

4.3 Simple Logical Disk

The simple logical disk (SLD) service presents the ab-
straction of a logical disk, one in which blocks are ac-
cessed via fixed addresses. The SLD insulates higher-
level services from the log by maintaining a mapping
from SLD addresses to log addresses. When a block is
moved within the log, this mapping changes, but not the

SLD address. This allows traditional file systems, such
as ext2, to run on Swarm without modification.

The SLD agents are responsible for maintaining the
mapping table. SLD uses two commit agents to accom-
plish this. The BlockCommit agent is attached to data
blocks, and is used to update the block’s log address in
the mapping table. The TableCommit agent is attached
to blocks that contain the mapping table itself, and is
used to store the table block’s address in the SLD su-
perblock. This is a good example of a service that has
two types of metadata (the mapping table and the su-
perblock), and that uses different agents to keep the two
up-to-date.

SLD also attaches a replay agent to all records that reads
the SLD superblock and mapping table from the disk and
updates them with the log addresses of the blocks being
replayed.

4.4 Application Layout Agents

Swarm’s agent mechanism is also available to applica-
tion programs. This is useful, for example, to application
programs that store files in Sting but want to influence
how Sting organizes blocks in the log. By attaching its
own layout agent to records, an application can imple-
ment block layouts that differ from Sting’s. In this sec-
tion, we present two sample application layout agents: a
web page agent and a read-ordered agent. The web page
agent clusters web pages with their embedded images,
and the read-ordered agent lays out blocks according to
previously-observed read access patterns.

4.4.1 Web Page Layout

HTML pages often contain embedded images. These
images are referred to by URL in the HTML document,
and are stored in a separate file in the web server’s file
system. If a browser reads a page, it is almost certain
to read the embedded images too. The web page layout
agent attempts to cluster pages together with the embed-
ded images they contain.

The simplest way to determine the images embedded in
a page is to parse the page’s HTML. The web page lay-
out agent relies on a user-level program to parse the web
pages and present the image information to the agent in
an easily processed form. The layout agent is attached to
all the records for the web pages and images, and when

it is invoked, it creates a set that contains all the blocks
for the web page and its images. The blocks of the web
page are put into the set first, followed by the blocks of
the images, in the order in which the links to the images
appear in the page. This causes the log layer to clus-
ter the blocks on the disk in the order in which they are
likely to be accessed.

We performed a simple experiment to demonstrate such
an agent is easily implemented, and can result is sig-
nificant performance gains. The agent consists of only
about 300 lines of C code. For the experiment, a process
reads two HTML files, each containing four embedded
images. This simulates a web browser viewing the two
pages. The pages and their images are stored in the same
directory. The default Sting agents will cluster all of the
blocks together because the files are in a single directory,
but in an unspecified order. Ext2 will store the blocks
similarly.

With 4KB images, the pages and images are read a factor
of 1.7 times faster using the web-layout agent than Sting
alone, and 7.7 times faster than ext2. Larger images re-
duce the benefit of the smaller seek times the agent pro-
vides, but with 64KB images the read time was still 1.3
times faster than Sting alone, and 1.9 times faster than
ext2. These experiments are not intended to be definitive
on how to organize web pages on disk, but do demon-
strate that agents allow applications to deviate from the
default layout policies, and that doing so can result in
substantial performance gains.

4.4.2 Read-Ordered Layout

The read-ordered layout agent puts blocks into sets in
the order in which they were previously read. Most files
are read sequentially and in their entirety, so this agent
might seem uninteresting, but it does improve start-up
performance for executables, whose pages are typically
not read in-order.

The read-ordered agent has two components: a facility
that records the read pattern, and the layout agent itself.
In our current prototype, the recording is turned on and
off by the user. The recorded access pattern is then used
by the layout agent to order the blocks in the file the
next time they are cleaned. The layout agent itself is rel-
atively simple, consisting of about 250 lines of C code.
It reads the recorded access pattern for a file and puts
the file’s blocks into sets in the order in which they were
read. This causes the log layer to store the blocks in
the same order. We measured the improvement in start-

up times of three applications, emacs, gdb, and jikes (a
Java compiler). Using the read-ordered agent improved
the emacs start-up time by a factor of 1.7 (from 1.2 to
0.7 seconds). Similarly, gdb improved from by a fac-
tor of 1.67 (0.5 to 0.3 seconds), and jikes by a factor of
1.5 (0.3 to 0.2 seconds). We consider these respectable
performance improvements from such a simple agent.
Swarm’s agent infrastructure makes this possible, by al-
lowing the agent to organize the blocks according to past
access patterns.

5 Status

The agent infrastructure and services described in this
paper have been implemented in the Swarm prototype,
with the exception of persistent agents. The reference to
a persistent agent is stored in the records, but the agent it-
self is not stored in the log. Instead, the system relies on
the service or application to re-register the agent with the
agent layer on system startup. This solution assumes that
agents’ identifiers and functionality doesn’t change be-
tween reboots, which may not be reasonable. Requiring
agents to be re-registered is not a problem for services
that are initialized on startup, such as Sting, but doesn’t
work well for agents that were created by applications.
We are currently working on adding the functionality to
store persistent agents in the log.

On a related note, there is a tradeoff between how much
functionality should be encapsulated in the agent, and
how much the agent can get from its environment. En-
capsulating all functionality in an agent makes the agent
self-sufficient, but increases the size of the agent and
may complicate the design and implementation of the
service. On the other hand, a minimal agent is smaller
and probably doesn’t affect the service’s organization
as much, but it requires a richer environment in which
to run. As an example, the Sting agents interpret and
modify Sting’s metadata, such as inodes, indirect blocks,
and directories. In the current implementation, the Sting
agents rely on routines in the Sting service to perform
much of this work. This reduces the agent complexity,
but requires that the Sting service exist in order for them
to run. This violates the premise of persistent agents,
that they will continue to do their work after the service
that created them ceases to exist. Ideally, one should be
able to configure a system without Sting, yet continue
to have the cleaning agents attached to Sting’s records
function. This does not work in the current system.
We might be able to simply reorganize functions so that
the agents are self-contained, but it may take refactoring

how Sting is architected to reach this goal.

6 Related Work

Swarm is log-based, and as such is heavily influenced
by the Log-Structured File System (LFS) [13]. Swarm’s
use of a log as the only storage abstraction mirrors LFS,
and Sting’s use of inodes and an inode map are also bor-
rowed from LFS. Swarm differs from LFS in the use of
agents to affect log layout, metadata management, and
cleaning. This allows the file system, Sting, to be de-
coupled from the storage system, Swarm. In LFS, these
two functions are tightly coupled. This decoupling is
also one of the features that distinguishes Swarm from
Zebra [6].

Organizing data on disk to improve access performance
has a long history and many examples. Probably the
closest to our work are the layout policies of the Fast
File System (FFS) [9]. Sting’s layout agents’ policies
are inspired by FFS, in that both attempt to lay out files
contiguously and cluster files from the same directory
together. Sting differs from FFS slightly in that FFS
has an upper limit on the number of file blocks it will
store contiguously before moving to a different area of
the disk. For simplicity, we did not implement such a
limit in Sting.

Other file systems have allowed applications to specify
data layout, typically through small, notational program-
ming languages. MPI-IO [3], for example, allows each
file to have layout attributes (info) such as the stripe
width, size of each striping unit, and the size of each ar-
ray element for files that store arrays. This information
allows the underlying storage system to store the file ef-
ficiently, but has limited semantics. The Scalable I/O
File System [1] has similar functionality and limitations.

Extensible operating systems allow entire subsystems to
be added and replaced, including file systems. Typically,
the entire file system is installed as a whole, which does
allow file system functions such as layout to be tailored
to an application’s needs, but is a very heavy-weight
mechanism for doing so. Linux provides loadable kernel
modules that allow entire file systems to be loaded in this
fashion. Mach provides for external pagers [11], which
are user-level daemons that move virtual memory pages
between memory and disk. This mechanism could also
be exploited by an application to affect layout policies,
but is also a heavy-weight solution. The Xok exoker-
nel [8] supports user-level library file systems (libFSes).

The underlying disk storage is multiplexed among libF-
Ses via XN, the exokernel’s in-kernel storage system.
Each libFS is responsible for managing its portion of
the underlying storage, allowing it to implement its own
metadata and layout policies. XN provides protection
between libFSes using untrusted deterministic functions,
which interpret libFS-specific metadata for XN. These
functions allow XN to determine which blocks belong
to which libFSes. Swarm uses ACLs for protection, al-
though a discussion of this topic is outside the scope of
this paper. Xok is similar to Swarm in that it multiplexes
the underlying storage among multiple storage services,
but has very different mechanisms for doing so.

The Logical Disk (LD) [2] aggregates multiple physical
disks into a single virtual disk, thus hiding the storage
system’s organization from the file system that is using
it. LD provides a list abstraction that helps accomplish
this. LD attempts to cluster blocks on the same list to-
gether, allowing the file system to express relationships
between blocks and how they should be stored. Simi-
larly, the block lists themselves can be placed in a larger
list, expressing locality between lists. LD attempts to
store lists that are near one another in the meta-list close
together on the disks. Swarm’s set abstraction is similar
to LD’s lists, but Swarm’s agent abstraction has no par-
allel in LD. LD has no inherent mechanism for creating
and changing lists.

Active disk technology [12] makes use of processing
power on the disk drive to run application code. This can
dramatically improve application performance by mov-
ing processing closer to the disk, avoiding I/O bus bot-
tlenecks, and by taking advantage of the inherent par-
allelism in running application code on multiple disks.
The active disk work thus far has been confined to run-
ning application algorithms on the disk drives; Swarm’s
agent technology focuses on using agents to influence
the functioning of the storage system itself.

7 Conclusion

Agents provide a flexible mechanism for services and
applications to implement policies that affect low-level
storage system functions, such as data layout, metadata
management, and crash recovery. Swarm must multi-
plex a single log between multiple services efficiently,
and do so without understanding the internals of those
services. Agents provide the means of doing this. A ser-
vice can attach a service-specific agent to a record when
it is passed to the log for storage. The agent will be in-

voked when its associated event occurs (e.g., the block
is assigned a log address), allowing the service to take
service-specific actions in response. In this way, Swarm
can be organized in layers, such that the higher lay-
ers augment the functionality of the lower layers, with-
out the lower layers having to know anything about the
higher layers. For example, the cleaning layer can clean
the blocks belonging to higher layers without knowing
implicitly how the blocks should be organized on disk,
or the format of the block’s metadata.

We have implemented several services that use agents.
The cleaner not only uses agents to implement clean-
ing, but also creates a new type of agent, a cleaning
agent, that higher-level services can use to influence the
cleaner. The Sting file system uses agents to imple-
ment basic file system functionality, including laying out
a file’s blocks contiguously, and updating metadata to
record block locations. The SLD service uses agents
to implement a simple logical disk. Finally, we have
implemented several application-level layout agents to
demonstrate that applications that use a file system can
use agents to influence how the file system organizes
blocks on disk. The web agent clusters a web page
and its included images on the disk, improving web
server performance, and the read-ordered agent orga-
nizes blocks in the order in which they are accessed, im-
proving read performance. Both of these agents demon-
strate the value of agents in file system design.

Acknowledgments

We would like to thank Tammo Spalink and Rajesh
Sundaram for their help in designing and implementing
Swarm.

References

[1] Peter F. Corbett, Jean-Pierre Prost, Chris
Demetriou, Garth Gibson, Erik Reidel, Jim
Zelenka, Yuqun Chen, Ed Felten, Kai Li, John
Hartman, Larry Peterson, Brian Bershad, Alec
Wolman, and Ruth Aydt. Proposal for a com-
mon parallel file system programming interface.
http://www.cs.arizona.edu/sio/api1.0.ps, Septem-
ber 1996. Version 1.0.

[2] Wiebren de Jonge, M. Frans Kaashoek, and Wil-
son C. Hsieh. The logical disk: a new approach

to improving file systems. InProceedings of the
14th ACM Symposium on Operating Systems Prin-
ciples (SOSP ’93), pages 15–28, Asheville, North
Carolina, December 1993.

[3] Message Passing Interface Forum. Mpi-2:
Extensions to the message-passing interface.
http://www.mpi-forum.org/docs/mpi-20.ps.Z.

[4] Garth A. Gibson, David F. Nagle, Khalil Amiri,
Fay W. Chang, Eugene M. Feinberg, Howard Gob-
ioff, Chen Lee, Berend Ozceri, Erik Riedel, David
Rochberg, and Jim Zelenka. File server scal-
ing with network-attached secure disks. InPro-
ceedings of the 1997 ACM SIGMETRICS Interna-
tional Conference on Measurement and Modeling
of Computer Systems, June 1997.

[5] John H. Hartman, Ian Murdock, and Tammo
Spalink. The Swarm scalable storage system. In
Proceedings of the 19th IEEE International Con-
ference on Distributed Computing Systems (ICDCS
’99), June 1999.

[6] John H. Hartman and John K. Ousterhout. The
Zebra striped network file system.ACM Trans-
actions on Computer Systems, 13(3):274–310, Au-
gust 1995.

[7] Norman C. Hutchinson and Larry L. Peterson. The
x-kernel: An architecture for implementing net-
work protocols. IEEE Transactions on Software
Engineering, 17(1):64–76, January 1991.

[8] M. Frans Kaashoek, Dawson R. Engler, Gregory R.
Ganger, H´ector M. Briceño, Russell Hunt, David
Mazières, Thomas Pinckney, Robert Grimm, John
Jannotti, and Kenneth Mackenzie. Application per-
formance and flexibility on exokernel systems. In
Proceedings of the 16th ACM Symposium on Oper-
ating Systems Principles (SOSP ’97), pages 52–65,
Saint-Malô, France, October 1997.

[9] Marshall K. McKusick, William N. Joy, Samuel J.
Leffler, and Robert S. Fabry. A fast file system for
UNIX. ACM Transactions on Computer Systems,
2(3):181–197, August 1984.

[10] George Necula and Peter Lee. Safe kernel exten-
sions without run-time checking. InProceedings
of the Second Symposium on Operating Systems
Design and Implementation (OSDI ’96), October
1996.

[11] R. Rashid, A. Tevanian, M Young, D. Golub,
R. Baron, D. Balck, W. J. Bolosky, and J. Chew.
Machine-independent virtual memory manage-
ment for paged uniprocessor and multiprocessor

architectures. IEEE Transactions on Computers,
37(8):896–908, August 1988.

[12] Erik Riedel. Active Disks - Remote Execution for
Network-Attached Storage. PhD thesis, Carnegie
Mellon University, November 1999. Available as
Technical Report CMU-CS-99-177.

[13] Mendel Rosenblum and John K. Ousterhout. The
design and implementation of a log-structured file
system.ACM Transactions on Computer Systems,
10(1):26–52, February 1992.

[14] Russel Sandberg, David Goldberg, Steve Kleiman,
Dan Walsh, and Bob Lyon. Design and implemen-
tation of the Sun Network File System. InPro-
ceedings of the Summer 1985 USENIX Conference,
June 1985.

[15] Margo I. Seltzer, Yasuhiro Endo, Christopher
Small, and Keith A. Smith. Dealing with disaster:
Surviving misbehaved kernel extensions. InPro-
ceedings of the Second Symposium on Operating
Systems Design and Implementation (OSDI ’96),
October 1996.

[16] Robert Wahbe, Steven Lucco, Thomas E. Ander-
son, and Susan L. Graham. Efficient software-
based fault isolation. InProceedings of the 14th
ACM Symposium on Operating Systems Principles
(SOSP ’93), December 1993.

