Adaptive and Incremental Processing for
Distance Join Queries

Hyoseop Shinh Bongki Moo Sukho Lek

tSchool of Computer Engineering {Department of Computer Science
Seoul National University University of Arizona
Seoul, Korea Tucson, AZ 85721

{hsshin@db ,shlee@cse }.snu.ac.kr bkmoon@cs.arizona.edu

Technical Report 02-03

Abstract

A spatial distance join is a relatively new type of operation introduced for spatial and multimedia database appli-
cations. Additional requirements for ranking and stopping cardinality are often combined with the spatial distance
join in on-line query processing or internet search environments. These requirements pose new challenges as well as
opportunities for more efficient processing of spatial distance join queries. In this paper, we first present an efficient
k-distance join algorithm that uses spatial indexes such as R-trees. Bi-directional node expansion and plane-sweeping
techniques are used for fast pruning of distant pairs, and the plane-sweeping is further optimized by novel strategies
for selecting a sweeping axis and direction. Furthermore, we propose adaptive multi-stage algorittnalistimce
join and incremental distance join operations. Our performance study shows that the proposed adaptive multi-stage
algorithms outperform previous work by up to an order of magnitude for katistance join and incremental distance
join queries, under various operational conditions.

September 2002

Department of Computer Science

The University of Arizona
Tucson, AZ 85721

*This work was sponsored in part by National Science Foundation CAREER Award (11S-9876037), NSF Grant No. 11S-0100436, and Research
Infrastructure program EIA-0080123. It was also supported by Korean Science and Engineering Foundation under Exchange Student Program. The
authors assume all responsibility for the contents of the paper.

1 Introduction

A spatial distance join operation was recently introduced to spatial databases to associate one or more sets of spatial
data by distances between them [16]. A distance is usually defined in terms of spatial attributes, but it can be defined
in many different ways according to various application specific requirements. In multimedia and image database
applications, for example, other metrics such asnailarity distance functiorcan be used to measure a distance
between two objects in a feature space.

In on-line decision support and internet search environments, it is quite common to pose a query that finds the best
k matches or reports the results incrementally in the decreasing order of well-matchedness. This type of operations
allow users to interact with database systems more effectively and focus on the “best” answers. Since users can say
“It is enough already” at any time after obtaining the best answers [9], the waste of system resources can be reduced
and thereby delivering the results to users more quickly.

This ranking requirement is often combined with a spatial distance join query, and the ranking requirement pro-
vides a new opportunity of optimization for spatial distance join processing [10, 12]. For example, consider a query
that retrieves the top pairs (.e., the nearest pairs) of hotels and restaurants:

SELECT h.name, r.name

FROM Hotel h, Restaurant r

ORDER BY distance(h.location, r.location)
STOP AFTER k;

For a relatively small stopping cardinalitythe processing time can be reduced significantly by sorting only a fraction
of intermediate results enough to produce theearest pairs, instead of sorting an entire set of intermediate results
(i.e., a Cartesian product of hotels and restaurants).

A spatial distance join query with a stopping cardinality can be formulated as follows:

Odist(r,5) < Dmaaz (R X S)

wheredist(r, s) is a distance between two spatial objects R ands € S, andD,,,. is a cutoff distance that is
determined by a stopping cardinalityand the spatial attribute values of two data ge&ndS. It may then be argued

that a spatial distance join query can be processed by a spatial join operation [1, 7, 8, 18, 19, 23] followed by a sort
operation. Specifically, if &,,,, value can be predicted precisely for a given stopping cardinialitye can use a

spatial join algorithm with awvithin predicate instead of aimtersect predicate to find thé& nearest pairs of
objects. Then, a sort operation will be performed only onitlpairs of objects.

In practice, however, it is almost impossible to estimate an accixate value for a given stopping cardinality
and, to the best of our knowledge, no method for estimating such a cutoff value has been reported in the literature. If
theD,,., value is overestimated, then the results from a spatial join operation may contain too many candidate pairs,
which may cause a long delay in a subsequent stage to sort all the candidate pairs. On the other hafg,.if the
value is underestimated, a spatial join operation may not return a sufficient number of object pairs. Then, the spatial
join operation should be repeated with a new estimat®,f ., until £ or more pairs are returned. This may cause a
significant amount of waste in processing time and resources.

There is another reason that makes it impractical to apply a spatial join algorithm to spatial distance join queries.
A spatial join query is typically processed in two stefiker andrefinementas proposed in [21]. In a filter step,

MBR approximations are used to find pairs of potentially intersected spatial objects. Then, in a refinement step, it is
guaranteed that all the qualifiede(, actually intersected) pairs can be produced from the results returned from the
filter step.

In contrast, it is completely unreasonable to process a spatial distance join query in two separate filter and re-
finement steps, because of the fact that a filtering process is based on MBR approximations. A set of object pairs
sorted by distances measured by MBR approximations does not reflect a true order based on actual representations.
This is because, for any two pairs of spatial objdets s1) and(rs, s»), the fact thatlist(M BR(r1), MBR(s1)) <
dist(MBR(r2), M BR(s2)) does not necessarily imply thadist(r, s1) < dist(ra, s2). Consequently, any process-
ing done in the filter step will be of no use for finding th@earest object pairs.

In this paper, we propose new strategies for efficiently processing spatial distance join queries combined with
ranking requirements. The main contributions of the proposed solutions are:

o New efficient methods are proposed to process distance join queries using spatial index structures such as R-
trees.Bi-directional node expansicendoptimized plane-swedpchniques are used for fast pruning of distant
pairs, and the plane-sweep is further optimized by novel strategies for selecting a sweeping axis and direction,
and by using maximum distance for breaking tied pairs.

e Adaptive multi-stage algorithms are proposed to process distance join queries in a way thae#rest pairs
are returnedhcrementally When a stopping cardinality is not known a pricid, in on-line query processing
environments or a complex query containing a distance join as a sub-query whose results need to be pipelined
to the next stage of the complex query), the adaptive multi-stage algorithms can produce pairs of objects in a
stepwise manner.

e We provide a systematic approach é&stimating the maximum distanfoe a distance join query with a stopping
cardinality. This estimated distance allows the adaptive multi-stage algorithms to asloid atartproblem,
which may cause a substantial delay in the query processing. This approach for estimating the maximum
distance also allows the size of memory to be parameterized into a queue management scheme, so that data
movement between memory and disk can be minimized.

The proposed algorithms achieve up to an order of magnitude performance improvement over previous work for both
k-distance join and incremental distance join queries, under various operational conditions.

The rest of this paper is organized as follows. Section 2 surveys the background and related work on process-
ing spatial distance join queries. Major limitations of previous work are also discussed in the section. In Section 3,
we present a new improved algorithm based on bi-directional expansion and optimized plane-sweep techniques for
k-distance join queries. In Section 4, adaptive multi-stage algorithms are presenfediftance join and incre-
mental distance join queries. A queue management scheme parameterized by memory capacity is also presented.
Section 5 presents the results of experimental evaluation of the proposed solutions. Finally, Section 6 summarizes the
contributions of this paper.

2 Background and Previous Work

A spatial index structure R-tree and its variants [3, 6, 14] have been widely used to efficiently access multidimensional
data — either spatial or point. Like other tree-structured index methods, an R-tree index partitions a multidimensional
space by grouping objects in a hierarchical manner. A subspace occupied by a tree node is always contained in the
subspace of its parent node. This hierarchy of spatial containment between R-tree nodes is readily used by spatial
distance join algorithms as well as spatial join algorithms.

r dist(r,s) g
r S . 5
[TT [TT] [
11 3 sl_-s2 s3 5 LC
HNEREEEREEE HEEREEEREEE 2 B[R
TN/ TN /7 TN TN/ TN /7 TN 1 dist(r3,s2)
(a) Tree—Structured Spatial Index (b) Spatial Containment

Figure 1: Hierarchy of Spatial Containment of R-Tree Nodes

Suppose ands are non-leaf nodes of two R-tree indexeandsS, respectively, as in Figure 1. Then, the minimum
distance betweenands is always less than or equal to the minimum distance between one of the eniri@sdbne
of the entries ok. Likewise, the maximum distance betweeands is always greater than or equal to the maximum
distance between one of the entries-@nd one of the entries af This observation leads to the following lemma.

Lemma 1 For two R-tree indexef andS, if neitherr € R nors € S is a root node, then

dist(r,s) > dist(parent(r), parent(s)),
dist(r,s) > dist(r,parent(s)), Q)
dist(r,s) > dist(parent(r),s).

wheredist(r, s) is the minimum distance between the MBR representationaid s.

Proof. From the observation above. O

Lemma 1 allows us to limit the search space, while R-tree indexes are traversed in a top-down manner to process
a spatial distance join query. For example, if a pair of non-leaf n¢ee$ turn out to be too far from each other (or
their distance is over a certain threshold), then it is not necessary to traverse further down the tree indexes below the
nodes- ands. Thus, this lemma provides the key leverage to processing distance join queries efficiently using R-tree
indexes.

2.1 Incremental Distance Join and:-Distance Joins

During top-down traversals of R-tree indexes, it is desirable to store examined node pairs in a priority queue, where
the node pairs are kept in an increasing order of distances. We cattdiraqueueas opposed to distance queue

we will describe later. The main queue initially contains a pair of the root nodes of two R-tree indexes. Each time

a pair of non-object nodes are retrieved from the main queue, the entries of one node are paired up with the entries
of the other to generate a new set of node pairs, which are then inserted into the main queue. This process that we
call node expansiois repeated until the main queue becomes empty or until stopped by an interactive user. If an
element retrieved from the main queue is a pair of two objects, the pair is returned immediately to the user as a query
result. This is how a spatial distance join query is processa@mentally Figure 2 depicts a typical framework of
processing an incremental distance jdiDJ) query using R-tree indexes.

Newly generated pairs

Node Expansion
Module

A pair with
Minimum distance

‘ Main Queue

<root of R, root of S>
At beginning

If non-object pair

Return as
an answer

If object pair

Figure 2: Framework of Incremental Distance JdIDJX) Processing

A distance join query is often given with a stopping cardinalitgs in the “stop after” clause of the sample query
in Section 1. Since it is known a priori how many object pairs need to be produced for a distance join query, this
knowledge can be exploited to improve the performance of the query processing. Suppose a maximearebt
pairs of objects are to be retrieved by a query. One plausible approach is to maimaiidate pairs of objects
during the entire course of query processing. As they argithearest object pairs known at each stage of query
processing, any pair of nodes (and any pair of their entries) whose distance is greatr tfiéime £ candidate pairs
cannot be qualified as a query result. Thus, we can use another priority queue to sforeittimum distances, and

use the queue to avoid having to insert unqualified pairs into the main queue during the node expansions. We call the
priority queue adistance queueFigure 3 depicts a typical framework of processingdistance join KDJ) query
using R-tree indexes and both main and distance queues.

Both main and distance queues can be implemented by heap structures. A main queue is normally implemented as
amin-heap because the query results are produced in an increasing order of distances. In contrast, a distance queue
should be implemented agw@ax-heaghat can store at mogtdistance values. The cutoff distance is determined by
the maximum value among thedistances stored in the distance queue. (When the distance queue contains less than
k distances, the cutoff distance is set to an infinity.) Pruning node pairs by the distance queue was shown to be very
efficient from our experiments, especially whiemas rather small. In the rest of the paper, we ¢8g,,. to denote
the cutoff distance from the distance queue.

Newly generated pairs

pruned If pair.distance sgDmax

<

If pair.distance <ggDma;

Node Expansion
Module

. Distance Queue

A pair with
Minimum distance

<root of R, root of S>
At beginning

If non-object pair

Return as
an answer

If object pair

Figure 3: Framework of-Distance JoinKDJ) Processing

2.2 Previous Work

In [16], the authors present both uni-directional and bi-direction node expansion, but conclude based on their experi-
ments that the former provides better performance due to fewer node pairs being produced by their algorithm. When a
pair of nodegr, s) are retrieved from a main queue, either node paired up with the entries af or nodes is paired

up with the entries of. None of the pairs are generated from an entry ahd an entry ok. The advantage of the
uni-directional expansion is that the number of pairs generated at each expansion step is limited to the fanout of an
R-tree index being traversed, and an explosion of the main queue can be avoided. As is acknowledged by the authors
of the algorithms, however, the main disadvantage of this approach is that the uni-directional expansion may lead to
each node being accessed from disk more than necessary. And also, the uni-directional expansion requires pairing up
noder exhaustively with all the entries of nodeor vice versa.

For a spatial distance join query with a relatively small stopping cardinglithe use of a distance queue is an
effective means to prevent distant pairs from entering a main queue. For & laafiee, however, the distance queue
may not work well as an effective pruning tool, because the cutoff value stored in the distance queue may remain too
high for a long duration. This may in turn lead to a long delay particularly in the early stage of query processing. For
these reasons, the previous algorithms suffer from poor performancé-{distance join query with a largeand an
incremental distance join query, for whighs unknown in advance.

Moreover, there is an important issue that was not fully addressed in [16]. A hybrid memory/disk technique was
proposed as a queue management scheme, which partitions a queue based on the distance range. This technique keeps
a partition in the shortest distance range in memory, while the rest of partitions are stored on disk. However, no
mechanism was provided to determine a boundary distance value between the partition in memory and the rest, which
may have a crucial impact on the performance of queue management.

Recently, a few recursive and iterative algorithms have been proposed [11]. These algorithms make use of various
distance metrics such a¢inMax, MinMin, M axMin andM ax M az to find k closest pairs. Without using a main
gueue, the recursive algorithms access R-tree nodes recursively following priorities given to the entry pairs within a
pair of the parent nodes. The iterative algorithm (cahedp algorithm) is fairly similar to Hjaltason and Samet’s
distance join algorithm [16] in that both the algorithms use a distance queue to maictididate pairs during node
expansion. One notable difference is thatip algorithm does not store object pairs in the main queue to minimize
the size of a main queue. Instead, the heap algorithm uses a distance (or candidate) queue td:stlmsetteairs
of objects. Although this does not guarantee that the main queue always fits in memory, the performance gain by not
storing object pairs in the main queue could be non-trivial, given the potentially large number of object pairs produced
by node expansion. Since the heap algorithm maintains only; tt@endidates, the stopping cardinalitymust be
known a priori. In other words, the heap algorithm cannot be used for incremental distance join queries.

Several closely related studies for nearest neighbor queries have been reported in the literature. Among those are
nearest neighbor search algorithms based on Voronoi cells [2, 5] and branch and bound techniques [26, 27], a nearest
neighbor search algorithm for ranking requirement [15], and multi#stegarest neighbor search algorithms [17, 28].

Another closely related issue is estimating spatial join selectivity. Some estimation techniques proposed to use
supplementary structures such as histograms [24] and wavelets [29]; other estimation techniques were based on uni-
formity assumption [22] and fractal dimensions for self joins [4]. Recently, Falowisak [13] proposed a power
law to predict the selectivity of spatial join and to estimate the distance @fthe&losest pair. This power law will be
used to estimate cutoff distances for the adaptive distance join algorithm proposed in this paper.

3 Optimized Plane-Sweep for Fast Pruning

In this section, we propose a new distance join algorittiid{DJ (Bidirectional expanding-Distance Join) using

a bi-directional node expansion, in an attempt to avoid redundant accesses to R-tree nodes. As is pointed out in
Section 2, distance join algorithms based on an uni-directional expansion require accessing an R-tree node more than
those based on bi-directional expansions. Under the bidirectional node expansion, fafraspa@ach of the entries

of r is paired up with each of the entries &f This is essentially a Cartesian product, which may generate more
redundant pairs than the uni-directional expansion does. Nonetheless, we wilbskB@ algorithm can effectively

avoid generating redundant pairs by a plane sweeping technique [25] and novel strategies for choosing an axis and a
direction for sweeping. ThB-KDJ algorithm is described in Algorithm 1.

3.1 Bidirectional Node Expansion

Like the distance join algorithms proposed in [1B}KDJ algorithm usegD,,, ... from the distance queu@p as a
cutoff value to examine node pairs. If a pair of nodes) removed from the main queue are a pair of objects, then
the object pair is returned as a query result. Otherwise, the pair is expandedRignkeSweeprocedure for further
processing.

Assume that a sweeping axise(, = or y dimensional axis) and a sweeping directiar.{forward or backward)
are determined, as we will describe in Sections 3.2 and 3.3. Then, the entrisdsfare sorted by: ory coordinates
of one of the corners of their MBRs in an increasing or decreasing order, depending on the choice of sweeping axis
and sweeping direction. Each node encountered during a plane sweep is selected-asigrand it is paired up with
entries in the other group. For example, in Figure 4, an entof r is selected as an anchor, and the enttigs.,, s3
ands, of s are examined for pairing, as they are withiR,,,,, distance fronr, along the sweeping axis (lines 11-14
and line 16).

Since an axis distance between any fdaii) is always smaller than or equal to their real distariee, (@xis_-
distance(r,s) < real_distance(r,s)), real distances are computed only for nodes whose axis distances from the
anchor are within the curreqtD,,,.,, value (line 17). Given that a real distance is more expensive to compute than
an axis distance, it may yield non-trivial performance gain. Then, each pair whose real distance igithinis
inserted into the main quewg,, (line 18). If it is a pair of objects, then update the currght,,,.. value by inserting
the real distance of the object pair into the distance qugyéline 19).

Algorithm 1: B-KDJ: K-Distance Join Algorithm with Bi-directional Expansion and Plane Sweep

1: setAnswerSet < an empty set;
2: setQyr, Op < empty main and distance queues;
3. insert a paif R.root, S.root) into the main queu@ ;
4; while |AnswerSet| < kand Qs # () do
5: setc «+ dequeue@y);
6: if cis an(object, object) then AnswerSet < {c} U AnswerSet;
7 elsePlaneSweep(c);
end
procedure PlaneSweef(, ')
8: set L+ sortaxis({entries ofl}); Il Sort the entries dfby axis values.
9. set R« sortaxis({entries ofr}); /I Sort the entries of by axis values.
10: while L # @ andR # § do
1L n < a node with the min axis value L U R; /I n becomes an anchor.
12: if n € Lthen
13: L + L — {n}; SweepPruning(n, R);
else
14: R < R — {n}; SweepPruning(n, L);
end
end

procedure SweepPruning(, List)
15: for each noden € List in an increasing order of axis valwdo

16: if axis_distance(n,m) > ¢Dpq. then return; // No more candidates.
17: if real_distance(n,m) < ¢Dmq. then
18: insert(n, m) into Q;
19: dif (n,m) is an{object, object) then insertreal -distance(n, m) into Qp; Il ¢Dya. modified.
en
end

There are alternatives as to what pairs are to be inserted into a distance queue: (1) any pairs encountered during
node expansions, or (2) pairs of objects only. If a pair of non-object R-tree nodes is inserted into a distance queue,
then its distance value should be timaximumdistance (instead of minimum distance), and the minimum number of
object pairs that can possibly be generated from the node pair should be maintained in the distance queue, as pointed
outin [16]. The minimum number of object pairs can be estimated based on the minimum node occupancy. Since the
maximum distance tends to be larger than those of pairs of objects, most of non-object pairs are inserted into a distance
gueue only to be removed from the distance queue without redyéipg.. value. Consequently, the potential benefit
from inserting non-object pairs is expected to be insignificant. More often than not in our experiments, the query
processing slowed down slightly due to the overhead of inserting non-object pairs. Thus, we decide to follow the
second option in this paper.

For a relatively smalyD,,,.. value and two sets of evenly distributed spatial objects, the number of pairs for which
B-KDJ algorithm computes real distances and performs queue management operations is expected to be roughly
O(|r|+|s|). This justifies the additional cost of sorting entries for plane-sweeping, because the overall&¢dDdf
algorithm would otherwise b@&(|r| x |s|) by Cartesian products.

3.2 Sweeping Axis

We can improve3-KDJ algorithm one step further by deciding the sweeping axis and direction on an individual pair
basis. Intuitively, if entries (or data objects) are spread more widely along one dimension)(¢asn the other
dimensions, then the bi-directional node expansion is likely to generate a smaller number of node pairs to compute the
real distances for by plane-sweeping along the dimensidrhis is because, when the nodes are more widely spread
along a sweeping axis, the chance that a pair of nodes are witfi,g, distance along the sweeping axis is lower.

For a pair of parent nodes shown in Figure 5, as an example, it would be better to gkepdsas a sweeping axis, as

the entries are more widely spread alongghgimension. On the other hand,sifaxis is chosen as a sweeping axis,

s7

sl r2

s6

s3

rl

s5

s2

r4

s4

r3

S
5 sweeping dimension
gDmax

Figure 4: Bidirectional Node Expansion with Plane Sweeping

no pair of the entries will be pruned hyaxis distance comparison witfD,,, ..., because the-axis distance between
any pair of the entries is shorter than §#,,,,. value.

r
y—axis‘

gDmax

1 X—axis
quax/I

Figure 5: Effect of Right Selection of the Sweeping Axis

Formally, we define a new metrgweeping indexas follows, and we use the metric to determine which axis a
plane-sweep will be performed on. For a given gais) of R-tree nodes and a giveD,,,.. value, we can compute a
sweeping index for each dimension. Conceptually, a sweeping index is a normalized estimation of the number of node

window Overlap
— 2
‘ [rk ‘ Iskt gDmaxpg (gDmax-p)
2

| | sk J

\ \ M ‘

| | | |,Overlap | =

\ B \ 0 o t

t O Ik
***** [rl+p —gDmax

Figure 6: Sweeping Index

pairs we need to compute the real distances for, based on the assumption that data objects are uniformly distributed.

],
Sweeping Inde%:/ Overlap(¢Dmaz, T, t)dt
0

ls],
+ / Overlap(¢Dmaz, S, t)dt (2)
0

In the first integral term of the equation abojg, is the side length of nodealong the dimension. The function
Overlap(¢Dmaz, 1, t) is a portion of the side length efalong the dimensiom, overlapped with a window of length
qDya. Whose left end point is located at a poinwithin ||, (i.e, 0 <t < |r|,). (See the left diagram in Figure 6.)
Thus,Overlap(¢Dmqz,7,t)/|5], represents a fraction afs entries intersected with a window, | + ¢D,,..]. The
value of the function varies as the window moves along the dimensiwom [0,4D),..] to [|7],, |7|, + ¢Dmaz]-
Therefore, the first integral term represents a relative estimation of the numigsrenitries encountered during the
plane-sweeps performed for all the entries ofThe second integral term is symmetric with the first integral, and an
identical description can be offered by exchangiramds.

A smaller sweeping index indicates that the bi-directional expansion needs to compute real distances for a smaller
number of nodes pairs. For the reasBRKDJ algorithm chooses a dimension with the minimum sweeping index as
a sweeping axis.

One thing we may be concerned about is the cost of computing a sweeping index for each dimension. The sweeping
index may appear expensive to compute, as it includes two integral terms. Foprgjvand|s|, values and the current
q¢Dmaz Value available from the distance queue, however, the sweeping index is reduced to a formula that involves only
a few simple arithmetic operations. Suppose nadasds are not intersected along a dimensigrthe minimuma-
axis distance between themdsand node appears before noden the plane-sweep direction alorgaxis. (Again,
see the left diagram in Figure 6.) Then, the second integral term of Equation (2) becomes zero, because all the entries
of r have already been swept when the first entry f encountered. The first integral term varies depending on the
conditions amongD,,.., |r|, and|s|, values and the proximityi.., 5) of nodes- ands along a chosen dimension.

The right diagram in Figure 6 illustrates how we can compute the first integral term and obtain a simple expression
when a conditiorf < gDy, < f + min{|r|,, |s|,} is satisfied.

If nodesr ands are not separated, both the integral terms of Equation (2) become non-zero. By a similar reasoning,
each integral term is also transformed into a formula with only a few simple arithmetic operations. Table 1 summaries
the formulae of the sweeping index for nodeands that are in three different spatial relationshipss separated
from, intersected with, or containedn The values ok, 8 andé in Table 1 are determined by the side lengths of
ands and their spatial relationship as illustrated in Figure 7.

Considering that each R-tree node may contain hundreds of entries, it will be a trivial cost to compute a sweeping
index for each dimension, while the performance gain by the sweeping axis selection is expected to be significant.
This is empirically corroborated by our experiments in Section 5.

1 An actual number of node pairs for which we need to compute the real distances would be computed by counting
the number of’s entries withingD,,,., axis distance from each entry of counting the number ofs entries within
qDmaz axis distance from each entry gfand then adding all the counts and dividing the count sum by two. However,
this process will be very expensive.

a B & a B o a B 5
(a) Separated (b) Intersected (c) Contained
Figure 7: Spatial relationships between nodesds and their projected intervals
| rands | The first integral term of Equation (2) |
(0 if qDrmaz < B,
Dmaz* 2 : :
% if 8 < qDmaz < B+ min{|r|,, |s],},
€T
2|7| . (¢Dmas—B8)—|7]..> .
Separated Irl, (@ 25| -, if |, + 8 < ¢Dpax < |5, + B,
S .
oz~ 5~ e]3], + 8 < (Do < Irl, + 5.
max{|7| +|$| +B—¢Dmaz,0})> .
1, — (exlrltlol 2 aDmar 0 it max{ll,, b, } + 5 < Do
Do + qpmwgﬁmw‘”) if (D < min{a, o},
70[2 ‘ .
2|T|wq27|)sr|nam if o S quaac < 5,
Intersected L 2
quaw - d +(max{q2'|zz7|naw—a,0}) if (S S quaw < |S|1: + «,
|S|z2_62 i
a+ 2] if |s|, + & < ¢Dpae-
4 L .
qDmaz if qDmaz < i,
D —a)? .
Contained 4Dmas — % if @ < ¢Dpae < 8], +a,
T
\a+% if |s], + @ < ¢Dmaz-
| rands | The second integral term of Equation (2) |
Separated| 0
Dmaz a— Dmaz .
4Draz — q (22|7“| q) if @Dmae < |r|$ - Q,
Intersected (||, —a)? ¢ .
JT if |r|, —a < ¢Dnae-
q,DmTaw|8|$ if ¢Dmaz <6,
x
_ _8S\2
Contained 2qu”|S|;|r|(qu” %) if 6 < ¢Dmax < 8], +9,
x
S S| .+26 .

Table 1: The first and second integral terms of the sweeping indexaiods (the values of, 8 andd are determined
by the relative positions of ands as illustrated in Figure 7.)

3.3 Sweeping Direction

Once a sweeping axis is determined, a sweeping direction can be chosen to befeitivarcdsweep or dackward
sweep. For a pair of nodesands, we can define the forward and backward sweeps as follows.

e A forward plane-sweep scans the entriesrand s in an increasing order of coordinates along the chosen
sweeping axis.

e A backward plane-sweep scans the entrieg ahds in a decreasing order of coordinates along the chosen
sweeping axis.

Consider nodesands projected on a sweeping axis. The projected images generate three consecutive closed intervals
on the sweeping axis, unless the projected images are completely overlapped. For example, iif aratiesre
intersected as in Figure 7(b), an interval in the left is projected froame in the middle from both ands, and one

in the right froms. The interval in the middle may be projected from none @inds, if » ands are separate as in

Figure 7(a). Both the intervals in the left and right may be projected from the same node, if one node is contained in
the other as in Figure 7(c).

However, it does not matter which node an interval is projected from, because a sweeping direction is determined
solely on the relative length of the intervals in the left and riglet,(« andd). A sweeping direction is determined by
comparing the length of the left and right intervafshe left projected interval is shorter than the right ore £ 6),
then a forward direction is chosen. Otherwise, a backward direction is ch@&sethis strategy of choosing a sweeping
direction, a pair of nodes closer to each other are likely to be examined earlier than those farther from each other. This
in turn allows a pair of closer nodes to be inserted into the main queue (and the distance queue as well if they are an
object pair), and helps reduce thiB,,,,. value more rapidly.

In summary, the sweeping axis selection improves the bi-directional node expansion step by pruning more pairs
of entries whose axis distances are larger thanyihg,. value, while the sweeping direction selection does so by
reducing theyD,,,., value more rapidly.

3.4 Maximum Distance As a Secondary Priority

The main queue maintains node pairs generated by node expansion in an increasing order of their distances. An issue
we have not addressed is how we order node pairs of an equal distance in the main queue. This is a non-trivial issue
particularly because a pair of intersected nodes are considered to have zero distance between them. Since there may be
many pairs of intersected nodes in the main queue, the performance impact by the way of breaking ties is potentially
high.

Hjaltason and Samet used the depths of R-tree nodes to break tie [16]. For given two pairs of nodes of an equal
distance, they proposed to give preference to a pair that contains a node with the maximum tree depth among the four
tree nodes. This approach may assist their distance join algorithms in getting to leaf nodes and data objects as quickly
as possible. However, it is not always beneficial to process node pairs in depth-first order, because it does not always
accelerate the reduction g¢b,,,,, value.

level=1 level=1

7

N\ maximum distance/ N

level=1

level=2

pair’A pair 'B’

Figure 8: Breaking ties for node pairs of an equal distance

Consider two node pairs A and B in Figure 8 as an example. If we follow the depth-first approach, node pair
B will be placed before node pair A in the main queue, because the former contains a node whose depth is deeper
than those of the nodes in the latter. However, it is very likely that node pair A contains more pairs of entries with
shorter distances than node pair B does, because the maximum distance of node pair A is shorter than that of node

10

pair B. Based on this observation, we propose to use the maximum distance of a node pair to break ties. By choosing
the maximum distance of a node pair as a secondary priority of hegpghe main queue), node pairs with shorter
distances can be processed in the earlier stage of distance join. Conse@i&ptly,value can be reduced more
rapidly and the number of distance computations and queue insertions can be reduced.

4 Adaptive Multi-Stage k-Distance Join

In B-KDJ algorithm,¢D,,,.. value is initially set to an infinity and becomes smaller as the algorithm proceeds. The
adaptation of theD,, ., value has a crucial impact on the performanc&efDJ algorithm, asyD,,,. is used as a
cutoff to prevent pairs of distant nodes from entering the main queue. ¢f2hg . value approachesto the réay, ..
value slowly, the early stage ##-KDJ algorithm will be delayed considerably for handling too many pairs of distant
nodes. Consequently, at the end of the algorithm processing, the main queue may end up with a large number of distant
pairs whose insertions to the main queue were not necessary. The performance slif@cttdrtis more pronounced
for a largerk, as the main queue and distance queue tend to grow large for &|ange thereby increasing th®,,, .
value. ¢, From our experiments withas high as 100,000, we observed that more than 90 percent of execution time of
k-distance join algorithms was spent to produce the first one pericenfl(000 pairs) of final query results.

In this section, we propose new adaptive multi-stage distance join algorithvisKDJ and A M-IDJ that miti-
gate the slow start problem laggressive pruningndcompensation

4.1 Adaptive Multi-Stage k-Distance Join

The slow start problem is essentially caused by a pruning strategy ¢BiRg., whose value is dynamically updated
as tree indexes are traversed and therefore not under direct control of the distance join algorithms. To circumvent this
problem, we introduce a new pruning measeff®,, ..., which is an estimate®,,,, value for a giverk. TheeD,, 4.
value is set to an initial estimation at the beginning and adaptively corrected during the algorithm processing. We will
discuss techniques for initial estimation and adaptive correction in Section 4.3.

AM-KDJ algorithm is similar ta3-KDJ algorithm in that both the algorithms use a bi-directional node expansion.
However, unlike the single-stageKDJ algorithm, where onlyD,,,,.. is used for pruning, bothD,,,.. andeD,,, 4.
are used as cutoff values for pruning distant paitd i -KDJ algorithm. Specifically, in thaggressive pruningtage
(described in Algorithm 2),

e ¢D,,.. is used for pruning based @xis distance$or aggressive pruning and thereby limiting the size of main
and distance queues (line 23),

e ¢D,... is used for further pruning oreal distancedor nodes whose axis distances are witbip,,,.., in the
same way a8-KDJ.

With a properly estimatedD,,, .. value, A M-KDJ algorithm can prune a large number of distant pairs in the first
stage and avoid a significant portion of delay due to the slow start. HowevéA4fKDJ algorithm becomes too
aggressive by choosing an underestimat®g},,,, value, even close enough pairs may be discarded incorrectly. To
avoid any false dismissals, we introduce another queue cedietbensation queu&®). The compensation queue
stores every non-object node pair retrieved from the main queue (line 11), except those for whom all entries have been
examined. Note thaiD,,,., but noteD,,,.. is used for nodes whose axis distances are wilily,,.. (line 24). If
eDnmas Values are used instead, this algorithm does not guarantee the correctness due to potential false dismissals.
UsingqD,,,.. values also makes the performance4$1-KDJ fairly insensitive to estimateeD,,, .. values.

For example, in Figure 9 (drawn from Figure 4), an anchor nqds paired up with nodes, ands, but not with
s3 andsy in the aggressive pruning stage, because snnds, are withineD,,,,, from the anchor node,. Thus,
AM-KDJ algorithm inserts only two pairg«;, s1), (r1, s2)) into @ main queue, instead of all four paifs;(, s1),

(r1,s2), (r1, s3), (r1, s4)) thatwould be enqueued 8:KDJ algorithm. Then, the paif-, s) currently being expanded
is inserted into a compensation queue.

The aggressive pruning stage ends when one of the following conditions is satisfied: (1) the main queue becomes
empty (line 5), (2% or more query results have been returned (line 5), or (3) the distance of a node pair retrieved from

11

Algorithm 2: AM-KDJ: Adaptive Multi-Stage K-Distance Join Algorithm (Aggressive Pruning)

. setAnswerSet + an empty set;

- setQur, Qp, Q¢ < empty main, distance and compensation queues ;
seteD,,q.z < an initial estimated,,,,.;

. insert a paif R.root, S.root) to the main queu® ,;

. while |AnswerSet| < kand Qs # () do

setc «+ dequeue@y);

if cis an(object, object) then AnswerSet < {c} U AnswerSet;
else

8: if (Dmaz < €Dmae then €Dz < ¢Dmas; /I overestimatedD,,,
o: if c.distance > eD,,q, then

reinsertc back intoQy;

break; /I Terminate the Aggressive Pruning stage.
end

10: AggressivePlaneSwee)(

11 enqueueQq, c);
end
end

12: if | AnswerSet| < k then execute Algorithm 3;

procedure AggressivePlaneSwe€p(r))

13: set L+ sortaxis({entries ofl }); I Sort the entries of by axis values.
14: set R« sortaxis({entries ofr}); /I Sort the entries of by axis values.
15: while L # ¢ andR # () do
16: n < a node with the min axis value L U R; /I n becomes an anchor.
17: if n € Lthen
18: L + L — {n}; AggressiveSweepPruning(n, R);
19: I n.compensate < a node inR with the min axis value and not yet paired with
else
20: R+ R — {n}; AggressiveSweepPruning(n, L);
21 dn.compensate + anode inL with the min axis value and not yet paired with
en
end

procedure AggressiveSweepPruning(List)
22: for each noden € List in an increasing order of axis valu#o

23; if axis_distance(n,m) > eDpq. then return; /l No more candidates.
24: if real_distance(n,m) < ¢Dmq. then
25 insert(n, m) into Q;
26 dif (n,m) is an(object, object) then insertreal _distance(n, m) into Qp; Il ¢D 0, modified.
en
end

the main queue becomes greater tha), ... (line 9). When the condition (2) is satisfied, obviously it is not necessary
to execute the compensation stage of th&1-KDJ algorithm. (An overestimateeD,,,, can also be detected by
comparing withgD,,,.,. value (line 8). In this case, instead of terminating the first stalge{-KDJ behaves exactly
the same ag8-KDJ algorithm by using;D,,.... alone as a cutoff value.) When the condition (3) is satistéd,, .
must have been underestimated, because all the object pairs returned after this point will have a greater distance than
eDnaz- Since an object pair with the-th largest distance has not been obtained by the time when the aggressive
pruning stage comes to an end, the compensation stage (described in Algorithm 3) begins its processing by inserting
all the pairs stored in the compensation queue to the main queue.

In the compensation stage, the pairs in the main queue are processed in a similarBvipasalgorithm, but
there are two notable differences frdfaKDJ algorithm. First, the entries are not sorted again, if they have already
been sorted in the first stage. Second, for the pairs already expanded once in the first stage, only child pairs not
examined in the first stage are processed by plane sweeping. This is feasible by bookkeeping done in the first stage
(lines 19 and 21), which stores the information in an additional fieldofnpensate) attached to a pair being inserted

12

remembered as rl.compensate 7
sl 5 r2
s6
s3
rl
s5
=2 r4
s4 3
- , >
sweeping dimension
eDmax

gDmax

Figure 9: Aggressive pruning withiD,,,, andeD,,

Algorithm 3: AM-KDJ: Adaptive Multi-Stage K-Distance Join Algorithm (Compensation Stage)

insert all elements i@ into O 7;
while | AnswerSet| < kandQ, # 0 do
setc « dequeue@yy);
if cis an(object, object) then AnswerSet < {c} U AnswerSet;

elseCompensatePlaneSwee](
end

procedure CompensatePlaneSweép())

6: L «+ { entries ofl sorted in Stage Onje {L[],L[2],...,L[|L|]}
7. R + { entries ofr sorted in Stage Orje I {R[1],R[2],...,R[|R|]}
8: while L # ¢ andR # () do
9 n < a node with the min axis value L U R; /I n becomes an anchor.
10: if n € Lthen
1L L+ L —{n}; R' < {node list inR not paired withn in the Stage Oné;

Il { R[n.compensate], R[n.compensate + 1],..., R[|R|]}
12: SweepPruning(n, R');

else

13: R+ R — {n}; L' + {node list inL not paired withn in the Stage Oné;

Il { L[n.compensate], L[n.compensate + 1], ..., L[| L|]}
14: SweepPruning(n, L');

end
end

13

into the compensation queue. For these reasons, the cost of the compensation stage is not considerable compared with
the cost of restarting the algorithm. In summa#dyV1-KDJ algorithm usegD,,,,. to avoid the slow start problem in
the aggressive pruning stage and speeds up the query processing.

4.2 Adaptive Multi-stage Incremental Distance Join

Consider on-line query processing and internet database search environments, where users interact with database
systems in a way the number of required matches can be determined interactively or changed at any point of query
processing. Consider also a complex query that pipelines the results from a spatial distance join to a filter stage.
Under these circumstances, the number of pairghat should be returned from a distance join is not known a priori,
and hence &-distance join algorithm proposed in [16] a3dKDJ algorithm presented in Section 3 cannot be used
directly.

An important advantage o4 M-KDJ algorithm proposed in the previous section is tHat{-KDJ algorithm can
be extended to an incremental algorithm (we ciM-IDJ) to support the interactive applications described above.
The main difference betweed M-KDJ and AM-IDJ algorithms is that4 M-IDJ does not maintain a distance
gueue. ThusAM-IDJ algorithm usesD,, ., alone as a cutoff value for pruning distant pairs, becalixg,, would
be drawn only from a distance queue.

Without ¢D,, 4., AM-IDJ works as a stepwise incremental algorithm. Figgt\1-1DJ starts by determining an
initial valuek; and estimating an initiadD,,, .., for k1. Then, it performs the same way as the first stagd.61-KDJ
algorithm withoutyD,,,.... However, the first stage may terminate before producing enough objectigajiegs than
k1), if €Dpq. is underestimated. If that happep&M-IDJ algorithm estimategD,,,,..» value fork, (k2 > k1) and
initiates a compensation stage.

Even when a sufficient number of object pairs have been returned from the first stage, users may request more an-
swers. ThenAM-IDJ initiates a compensation stage by determinta@nd estimating a newD,,, ... accordingly.
As shown in Figure 10 (drawn from Figure 4), the compensation stage can initiate another compensation stage at the
end of its processing, by choosikg andeD,,,...5. This process continues until users stop requesting more answers.
In this way, AM-IDJ algorithm can be used to produce query results incrementally without limiting the maximum
number of pairs in advance. Except the first stagelafl-1IDJ algorithm where thelggresive PlaneSweep proce-
dure (in Algorithm 2) is used, th€ ompensate PlaneSweep procedure (in Algorithm 3) is used to prune distant pairs
in the rest of the compensation stages.

4.3 Estimating the Maximum Distance €D,,,...)

Both AM-KDJ and AM-IDJ algorithms process a distance join query based on an estimated cutofe¥3lue.

Thus, there should be a way to obtain an initial estimate and correct the estimate adaptively as the algorithms proceed.
Assuming data sets are uniformly distributed, we provide mechanisms to choose an initial estiefigig gfand to
adaptively correct it.

If the distribution of a data set is skewed, then a larger number of close pairs can be found in a smaller dense
region of the data space. We expect that the formulae given in this section tend to overesiipatevalue for
non-uniformly distributed data sets, especially when a stopping cardi&astiar smaller than the number of all pairs
of objects (e, k < |R| x |S]). This was corroborated by our experiments as described in Section 5.4.

4.3.1 Initial estimation

Let |R| and|S| be the number of data objects in MBRsand .S, respectively. Suppose that most regiongcéind.S
overlap. Then, for a data objecin R contained in the region shared Byand S, the expected number of objects in
S within distanced from r is approximated byS| x #ﬁ;s), assuming the circle centeredradf radiusd is fully
contained in the shared regidre(, RN .S). Thus, by considering all data objects/ithe total number of object pairs
within distancel can be approximated byz| x | S| x #ﬁi;sy

When the target number of object paiks,is given with a query, we can obtain the initial estimatiorigf,, by

14

s7
sl r2
s6
s3
rl
sb
s2 r4
s4 3
1)) 3) _
eDmax1 sweeping dimension
eDmax2
eDmax3

(1) : covered in FirstStage(k1, eDmax1)
(2) : covered in CompensatingStage(k2, eDmax2)
(3) : covered in CompensatingStage(k3, eDmax3)

Figure 10: Step-Wise Incremental Distance Join
settingk to the above formula, as follows

T X d?

ko= IR]x]S > area(RN S)’

and then by replacing with ¢D,,,.... Therefore, for a given stopping cardinaliythe initial estimation of,,,,, can
be obtained by the following equation.

area(RNS)

Dmaac: k h = T bl ial
e Vkxp (wherep T [R[x]S|

)- (3)

Evidently this equation can be applied only whgrand .S overlap. Nonetheless, it is unlikely this will be a serious
limitation, because overlapping node pairs always come before non-overlapping pairs in the mai@ guétos two

sets of data objects to be joined by distance, the root nodes of two corresponding R-trees are commonly expected to
overlap each other under most practical circumstances. We can then make an initial estimBtjgRfodm the pair

of root nodes.

4.3.2 Adaptive Correction of Estimated DistanceD,, 4,

The performance ofi M-KDJ and.AM-IDJ algorithms can be further improved by adaptively adjusting the value of
eDnaq at runtime. Adaptive correction efD,,,, can be done at any point of query processing by estimating a new
€Dma: from the number of object pairg (ko < k) obtained up to the point and the real distance ofi§¢h object

pair, Diaz (ko) - Specifically, the new estimat®,,,.,’ can be computed from Equation (3) as

eDmaacl = \/Dmaz%kg) + (k - kO)p (4)

15

by arithmetic correction, or as

eDmaacl = Dz (ko) X V k/kO (5)

by geometric correction D, ... (ko) # 0. In practice, we propose computia®,,,... in both ways, and then choose
the minimum if the query processing should be on the aggressive side. Otherwise, the maximum is al@sgp’as

Note that the new estimat®,,,,,’ can sometimes grow beyond the previous estimate. If this happens, some pairs
whose distances are larger than the previous estimate but smaller than the new estimate could have already been pruned
and will never be examined in the current processing stage under the new estimate. Thus, to guarantee the correctness
of the distance join, the algorithm should initiate a compensation stage, as soon as a pair whose distance is smaller
than the smallestD,,,. is dequeued from the main queue.

4.4 Queue Management

Efficient gueue management is one of the key components of the distance join algorithms proposed in this paper.
Each of theB-KDJ, AM-KDJ, and AM-IDJ algorithms relies on the use of one or more priority queues for query
processing. In particular, the main quedg(f) is heavily used by all of the proposed algorithms, and its performance
impact is significant. In the worst case, the main queue can grow as large as the praducbpgfcts of two R-tree
indexes. That is, the size &/ is in O(|Rop;| X |Sobj]), Where|R,p;| and|S,,;| are the number of all objects iR

andS, respectively. Thus, it is not always feasible to store the main queue in memory.

It was reported in [16] that a simple memory-based implementation might slow down query processing severely,
due to excessive virtual memory thrashing. A hybrid memory/disk scheme [16] and a technique based on range
partitioning [10] have been proposed to improve gueue management and to avoid wasted sorting I/O operations. We
adopt a similar scheme for queue management, which partitions a queue by range based on distances of pairs. A
partition in the shortest distance range is kept in memory as a heap structure, while the rest of partitions are stored on
disk as merely unsorted piles.

When the in-memory heap becomes full, itsiglit into two parts, and then one in the longer distance range is
moved to disk as a new segment. When the in-memory heap becomes empty, a disk-resident segment in the shortest
distance range or a part of the segmersvigpped irto memory to fill up the in-memory heap. Each of gg@it and
swap-in operations require®(n log n) computational cost for a heapoklements as well as I/0 cost for reading and
writing a segment. Thus, it is important to minimize the required number of those operations, which largely depends
on the partition boundary values between the in-memory heap and the first disk-resident segment, and between those
consecutive segments. However, as it is impossible to predict anBxagtvalue for a giverk, so is it difficult to
determine optimal distance values as segment boundaries.

To address this issue, we use Equation (3) to determine the boundary distance values. Buppose@umber
of elements that can be stored in an in-memory heap. Then, the boundary value between the in-memory heap and the
first disk-resident segment is given kgn x p, and the boundary value between the first and second segments is given
by /(2 x n) x p, and so on.

In addition to a main queue, multi-stage algorithpid1-KDJ and AM-IDJ use a compensation queu@)
in the compensation stage. Unlike the main queue, a compensation queue does not store any pair of objects. In
other words, a compensation queue can store pairs of non-object R-tree nodes only. Thus, th&sizie of
O(|Rnode| X |Snodel), where|Ry4c| and|Spoqe| are the number of nodes (both internal and leaf nodeB)amd.S,
respectively. This is a significantly lower upper-bound than a main queue has. We also observed from our experiments
that compensation queues were several orders of magnitude smaller than main queues. As for a distance queue used
by B-KDJ and AM-KDJ algorithms, its size is always bounded by a givewmalue. For these reasons, under most
circumstances, we assume either a compensation queue and a distance queue fits in memory. If any of these queues
outgrows memory, the same partitioning technique used for a main queue will be applied.

5 Performance Evaluation

In this section, we evaluate the proposed algorithms empirically and compare with previous work. In particular, the
proposeds3-KDJ, AM-KDJ and AM-IDJ algorithms were compared with Hjaltason and Sametfistance and

16

incremental distance join algorithms (hereinafter denoteH&4KDJ and HS-1DJ, respectively) fork-distance join
(KDJ) and incremental distance joilDJ) queries. We also include the performance of an R-tree based spatial join
algorithm [8] combined with a sort operation (denotedd@sSORT) in most of the experiments. For each distance join
guery, a spatial join operation was performed with a f2g|,.value to generate thienearest pairs. Then, an external
sort operation was performed to return the query results in an increasing order of distances. N&feSRRT
cannot be applied without knowing a re},, ., value, and we made a favorable assumption&SORT that the
realD,,.. value was known t&J-SORT a priori. Thus, we conjecture that/-SORT followed by an external sort
yields the best known lower bound performance for distance join processing.

5.1 Experimental Settings

Experiments were performed on a Sun Ultrasparc-1l workstation running on Solaris 2.7. This workstation has 256
MBytes of memory and 9 GBytes of disk storage (Seagate ST39140A) with Ultra 10 EIDE interface. The disk is
locally attached to the workstation and used to store databases, queues and any temporary results. We used the direct
I/O feature of Solaris for all the experiments to avoid operating system’s cache effects, and the average disk access
bandwidth was about 0.5 MBytes/sec for random accesses and about 5 MBytes/sec for sequential accesses.

Data sets To evaluate distance join algorithms, we used real-world data sets in TIGER/Line97 from the U.S.
Bureau of Census [20]. The particular data sets we used were 633,461 streets and 189,642 hydrographic objects from
the Arizona state. Throughout the entire set of experiments, the same page size of 4 KBytes was used for disk 1/0 and
R*-tree [3] nodes.

Metrics We measured the performance of various algorithms based on the following metrics to compare the
algorithms in different aspects such as computational cost and 1/O cost.

1. number of distance computationEhe cost of computing distances between pairs of nodes (or objects) con-
stitutes a significant portion of the computational cost of a distance join operation. Thus, the total number of
distance computations required by a distance join algorithm provides a direct indication of its computational
performance.

2. number of queue insertionshe task of managing a main queue is largely I/O intensive as well as CPU intensive.
Inserting a node pair into the in-memory portion of the queue is CPU intensive, while inserting into the disk
resident portion is I/O intensive. We measured the CPU and 1/O cost separately for the two different queue
insertions.

3. number of R-tree node access€&he number of R-tree nodes accessed during distance join processing is another
I/O intensive metric. We measured actual number of nodes fetched from disk with varying R-tree buffer sizes.

4. response timeActual query response times were measured for overall performance of distance join algorithms.
CPU and I/O costs were considered separately in measuring the response times.

5.2 Evaluation of k-Distance Joins

In this set of experiments, we varied a stopping cardindlifyom 10 to 100,000 to compare the performance of
HS-KDJ, B-KDJ and AM-KDJ algorithms. The sizes of in-memaory portion of a main queue and R-tree buffer were
fixed to 512 KBytes each. Fot M-KDJ algorithm, we used Equation (3) to estimafe,, ., values, and we observed

a tendency foeD,, ., values to be overestimated with respect to ®al,.. values. For example, fdr = 100, 000,
€D,.. Was about 2.3 times larger than a rég),, ..

Figure 11(a) shows that botftKDJ and AM-KDJ reduced the number of distance computations significantly.
The numbers of distance computations required by the two algorithms were smaller than those reqtiiseldy
algorithm by up to two orders of magnitude4 M-KDJ was almost identical t&.J-SORT by this metric. This
demonstrates that the optimized plane-sweep method was very effective in pruning pairs generated by bi-directional
expansions. On the other harili$-KDJ algorithm examines all possible pairs exhaustively in uni-directional expan-
sions.

In Figure 11(b), Both3-KDJ and.AM-KDJ achieved significant reductions in queue insertions fok athlues.
AM-KDJ was always better thali-KDJ particularly for larget values. This result confirms our conjecture that the

17

No. of Distance Computations No. of Queue Insertions Actual Number of R-Tree Node Accesses

=
o

15000

N
o
"]

12000

AM-KDJ
SJ-SORT v

AM-KDJ
SJ-SORT

o

9000

AM-KDJ -+
20 1 SJ-SORT -+

IN

6000

Number in Million
Number in 100K

Number of R-tree Nodes

[N
o
N

3000

.
A
v

10 100 1000 10000 100000 10 100 1000 10000 100000 10 100 1000 10000 100000
K : Number of Pairs K : Number of Pairs K : Number of Pairs
(a) Distance Computations (b) Queue Insertions (c) R-Tree Node Accesses
CPU Time 1/0 Time Response Time
- — -
120 180 HS_&Bj ,,,,, o 300 t
AM-KDJ -
100 ,150 [SJ-SORT —+ »
< < <
g0 f HSKD) —a— g0 . g2
c 60t AM-KDJ = £ 90 + A =
2 SJ-SORT o g . g
£ 40 - £ 60 £100
20 r~w1f—4fv$ M 30 [———
0 0 0
10 100 1000 10000 100000 10 100 1000 10000 100000 10 100 1000 10000 100000
K : Number of Pairs K : Number of Pairs K : Number of Pairs
(d) CPU Time (e) I/0 Time (f) Response Time

Figure 11: Performance @fDistance Joins

optimized plane-sweep method can prevent an explosion of a main queue that would be caused by bi-directional node
expansions without the optimized plane-sweep.

Figure 11(c) shows the number of R-tree nodes fetched from disk for distance join processing by each algorithm.
For largek values, the proposel-KDJ and AM-KDJ algorithms required a far smaller number of R-tree node
accesses thaHS-KDJ algorithm. For smalk values, on the other hanff,5-KDJ algorithm was slightly better than
the other algorithms, due to its more localized node access patterns forksnible 2 compares the number of
R-tree nodes that would be fetched from disk with R-tree buffer size set to zero. Apparently, the bi-directional node
expansion used bi-KDJ and AM-KDJ algorithms requires much less nhumber of R-tree node accesses than uni-
directional node expansion used B{¢-KDJ algorithm. It should be noted that the number of R-tree node accesses
for B-KDJ, AM-KDJ and SJ-SORT algorithms are all identical in Table 2. This is because these algorithms use
the same bi-directional node expansion and access the same collection of R-tree nodes, though they may traverse an
R-tree index in different orders.

The total CPU time spent on executing each algorithm is shown in Figure 11(d)B8-Ki2J and AM-KDJ
algorithms consistently outperforméth-KDJ up to an order of magnitude. This significant improvement in compu-
tational cost is due mainly to the reduced number of distance computations. Recall that the uni-directional expansion
requires distance computations for an exhaustive set of node pairs, while bi-directional node expansion with plane
sweeping requires distance computations only for node pairs whose axis distances are smajiey,thavalue at
the top of the distance queue. Additionally, the proposed algorithms are further optimized by techniques for selecting
sweeping axis and direction and by using maximum distance as a secondary priority for the main queue.

The total 1/0 time shown in Figure 11(e) reflects mostly the combined effects of queue insertions and R-tree
node accesses in Figure 11(b) and Figure 11(c), respectively. Figure 11(f) shows the response time of each algorithm
with the CPU and /O times combined together. B&KDJ and AM-KDJ algorithms outperformed/S-KDJ
algorithm by a factor of two or three in response timgs\{-KDJ performed better thai-KDJ for largek values,
demonstrating thati M-KDJ deals with the slow start problem better th&sKDJ does. For smalk values, both
B-KDJ and AM-KDJ were comparable with/-SORT. Even for large: values, the response time diM-KDJ was
within about 80 percent above that®f-SORT, which we conjecture yields the best known lower bound performance.

18

KDJ Stopping cardinality:
Algorithms 10 | 100 | 1,000 | 10,000| 100,000
HS-KDJ | 186,184| 186,403| 186,801| 188,354| 197,113
B-KDJ 12,652 | 12,660 | 12,672 | 12,688 | 12,916
AM-KDJ | 12,652 | 12,660 | 12,672 | 12,688 | 12,916
SJ-SORT | 12,652 | 12,660 | 12,672 | 12,688 | 12,916

Table 2: No. of R-tree Node Accesses keDistance Joins

10

N
a1

20 1 8

8 @BKDJ(basic) %) EBKDJ(basic)
g 15 W BKDJ(sweeping index| é 6 W BKDJ(sweeping index] |
E O BKDJ(max. distance) 9' O BKDJ(max. distance)
= OBKDJ c OBKDJ
S 10 s 4 H
> z

5 W 2 |

oL e IO ‘ — T

10 100 1000 10000 100000 10 100 1000 10000 100000
No. of Pairs No. of Pairs
(a) Distance Computations (b) Queue Insertions

Figure 12: Improvements by Optimized Plane SweesfétDJ

5.3 Impact of Optimized Plane-Sweep and Secondary Priority

We have proposed optimization techniquesieiKDJ in Section 3. One is for selecting sweeping axis and direction,
which is mainly aimed at reducing the number of distance computations. The other is using the maximum distance
between node pairs as a secondary priority of the main queues, which is mainly aimed at reducing the number of queue
insertions. To further analyze the performance impacts of the optimization techniques, we measured the performance
of B-KDJ (1) with both optimizations turned on, (2) with the sweeping index only, (3) with the secondary priority
only, (4) with both optimizations turned off. For the cases with sweeping index turned off, the sweeping index and
direction were fixed ta:-axis and forward direction.

The sweeping index method alone reduced the number of distance computations by up to 20 percent as shown in
Figure 12(a). The use of the maximum distance as a secondary priority alone reduced the number of queue insertions
by up to 15 percent as shown in Figure 12(b). The use of the maximum distance also helped decrgBsg the
value more quickly and reduce the number of distance computations slightly as shown in Figure 12(a). However,
the synergistic effect of the two optimization techniques was rather insignificant. As they improve the performance
of distance join processing largely independently in two different aspects, we recommend that both the optimization
techniques be used together.

5.4 Evaluation of Incremental Distance Joins

As in the previous section, we varied a stopping cardindlifyom 10 to 100,000 to compare the performance of
incremental distance join algorithnisS-1DJ and AM-IDJ. Like the previous experiments férdistance joins, the
sizes of in-memory portion of a main queue and R-tree buffer were fixed to 512 KBytes.

In Figures 13(a) and 13(b)4M-IDJ algorithm required 75 to 98 percent less distance computations and queue
insertions tharF/S-IDJ algorithm did. For largé: values, as shown in Figure 13(ci,\-IDJ algorithm required a
much smaller number of disk accesses th&hIDJ algorithm. This is becauséM-IDJ accesses R-tree nodes using
bi-directional node expansion, in the same waylag(-KDJ does. The significant improvementin these three metrics
in turn led to improvement in response time by an order of magnitude in Figure 13(f). Specifically, the improvement
in CPU time (Figure 13(d)) is attributed to the reduction in distance computations and queue insertions, and the

19

No. of Distance Computations No. of Queue Insertions Actual Number of R-Tree Node Accesses

o
o

P o e " P . " 12000
40 40 1 8
8 g HS-IDJ g
= S - S
e =S
< -IDJ e < J-SORT v A
20 SJ-SORT -+ By ‘5 6000
= £ 2
z z £
10 10 2 3000
J— o R e il 0
10 100 1000 10000 100000 10 100 1000 10000 100000 10 100 1000 10000 100000
K : Number of Pairs K : Number of Pairs K : Number of Pairs
(a) Distance Computations (b) Queue Insertions (c) R-Tree Node Accesses
CPU Time 10 Time Response Time
‘ ‘ ‘ ‘ ; 800 ; : ; ‘ ‘ ‘ ‘ ‘
250 .—.—.———l/.
" " "
2200 | HS-IDJ —=— = g
g AM:IDJ s g g
8150 | SI-SORT - 3 3
c c £
€100 g g
= R F 00 A £300
50 . N
o M T — S v M o B — v s 5 v v
10 100 1000 10000 100000 10 100 1000 10000 100000 10 100 1000 10000 100000
K : Number of Pairs K : Number of Pairs K : Number of Pairs
(d) CPU Time (e) I/0 Time (f) Response Time

Figure 13: Performance of Incremental Distance Joins

improvement in I/O time (Figure 13(e)) is attributed to the reduction in queue insertions and R-tree node accesses.
Like AM-KDJ algorithm, Equation (3) in Section 4.3.1 was used to estiwiBtg,, values forAM-IDJ algorithm.
Now it is well worthwhile investigating the performance impact of the stopping cardinalitgenerally, KDJ
algorithms make use of the apriori knowledge of khealue to minimize the distance computations and the number of
gueue insertions. ThukDJ algorithms are expected to be much faster thah algorithms. From our experiments,
however,HS-KDJ required almost as many distance computationd&8DJ did. This indicates that/S-KDJ does
not take advantage of the stopping cardinality enough to achieve performance gain in the distance computations.
In contrast,AM-KDJ required only about 70 percent of distance computations4het-IDJ did (Figure 13(a)
and Figure 11(a)), and required only 8 percent of queue insertionglihédDJ did (Figure 13(b) and Figure 11(b)).
This is becaus&DJ algorithms need not insert a node pair into main queue if its distance is greateyf?han
value. The number of queue insertions has direct impact on both CPU and 1/O times. The responsgl ihvid<afJ
algorithm was about 60 percent less than thatigf(-IDJ algorithm (see Figure 13(f) and Figure 11(f)).

5.5 Impact of Memory Size

In this set of experiments, we examined the performance impact of memory constraint on queue management and
R-tree access. The sizes of in-memory portion of a main queue and R-tree buffer were varied from 64 KBytes to
1024 KBytes. We measured the response timé&§fKDJ, B-KDJ and . AM-KDJ algorithms for a fixed stopping
cardinalityk = 100, 000.

5.5.1 Buffer Size for Main Queue

No measurement fof.J-SORT algorithm appears in Figures 14(a) through 14(c), bec8uis8ORT algorithm need
not use the main queue for distance join processing. As we expected, in Figures 14(a) and 14(b), the cost of queue
management decreased in terms of both the number of required write operations and time spent on the write operations.
More noticeable improvement was observed in handling the overflow and underflow of the in-memory portion of
gueue, bysplit and swap-inoperations respectively. (Theplit andswap-inoperations are descibed in Section 4.4.)
The time spent on thgplit andswap-inoperations was improved substantially for all three algorithms in Figure 14(c).

It should be noted that the cost of queue management can be further reduced by not storing object pairs in the
main queue, as proposed in the recent work by Catral. [11]. It is straightforward to modify the distance queue

20

No. of Disk Queue Block Writes Queue Block Write Time Split/Swapin Time

6000 -
8 e e %0
3 . . 2 . 2
§4000 . a . S S
s $40 %20
5 = =
k> g g
g2000 Fag Flo
z HS-KDJ —=— HS-KDJ —=—
B-kKDJ ~—e— | | B-KDJ e
0 AM-KDJ s 0 AM KDJ - 0
64K 128K 256K 512K 1024K 64K 128K 256K 512K 1024K 64K 128K 256K 512K 1024K
Queue Memory Size Queue Memory Size Queue Memory Size
€) Queue Block Writes (b) Queue Block Write Time (c) Split/'Swapin Time
CPU Tume 10 Tume Response Time
HS-KDJ —=— HS-KDJ —=— HS-KDJ —=—
B-KDJ ~—e-- B-KDJ e B-KDJ e
AM-KDJ - AM-KDJ -+ AM-KDJ -«
» SJ-SORT v v SJ-SORT v SJ-SORT
2120 L R —— 2200 ¢ 2300
$100 g g
» 0150 0
< 80 £ P TS £200
€ 60 £100 T g DO —
F = - = - = a
40 Lo 100
pe - a a a 50 v v 4 -
20 v . v v . M N M v
0 0 0
64K 128K 256K 512K 1024K 64K 128K 256K 512K 1024K 64K 128K 256K 512K 1024K
Queue Memory Size Queue Memory Size Queue Memory Size
(d) CPU Time (e) I/0 Time (f) Response Time

Figure 14: Impact of Queue Buffer Size

to storek object pairs foil3-KDJ and.AM-KDJ algorithms. The reason we did not use the optimization was that the
optimization cannot be applied to incremental distance join queries and it was desired to evaluate the performance of
KDJ andIDJ algorithms on the same basis.

While the CPU time remained almost unchanged in Figure 14(d), the 1/O time was improved with more memory
for all the algorithms shown in Figure 14(e). The improved response time was mainly attributed to the improved 1/0O
time. The proposef8-KDJ and. AM-KDJ algorithms showed consistently better performance in queue management
thanHS-KDJ all over the examined range of memory size. This is becBus®J and AM-KDJ algorithms reduced
the number of required queue insertions and queue write operations.

5.5.2 Buffer Size for R-Tree

As shown in Figures 15(a) and 15(b), a considerable amount of improvement in R-tree accesses was observed by

increasing the size of buffer for R-tree. For example, by increasing the buffer size from 64 KBytes to 1024 KBytes,

the R-tree access time was reduced by 46 percen8fdDJ and.AM-KDJ algorithms. Recall tha8-KDJ and

AM-KDJ algorithms, which are based on bi-directional node expansion, show the same behavior in R-tree access.
Like the queue management in the previous section, the CPU time spent on R-tree accesses remained almost

unchanged, as shown in Figures 15(c). It was again the 1/O time that affected the response time most in Figures 15(d)

and 15(e).

5.6 Impact of Duplicates and Zero-Distance Pairs

In real-world applications, spatial data sets often contain duplice¢egffferent objects with identical spatial extents
or positions). These duplicates may cause query processing procedures to behave differently than normally expected.
To evaluate the performance impact of duplicates for distance join processing, we carried out another set of experi-
ments with slightly different data sets. Specifically, several thousands of data objects were added to the hydragraphic
data set and the street data set, so that about 10,000 pairs of hydragraphic objects and streets are ineeragittied (
zero distance).

Figure 16 shows the performancesketlistance joins for the datasets with duplicates. For allithalues, the
proposed algorithmd3-KDJ and AM-KDJ, outperformedHS-KDJ, and AM-KDJ was better thaB-KDJ for
largek values due to the slow-start problem@fKDJ. However, for smalk values, the performance gap between

21

Actual R-tree Node chesses 10 Time
2 HS-KDJ —=— HS-KDJ —=—
a B-KDJ e B-KDJ e
4 AM-KDJ s 150 AM-KDJ s
£ SJ-SORT " SJ-SORT
15000 8 '\-__\.
3 3
212000 g100
2 <
Z 9000 ~ o -
k] - = e
° 6000 ¢ e = 50 . e
8 M e] v :‘ I e — o
E 3000 v v
z
0
64K 128K 256K 512K 1024K 64K 128K 256K 512K 1024K
R-Tree Buffer Size R-Tree Buffer Size
(a) R-Tree Node Accesses (b) R-Tree Node Access Time
CPU Time 10 Time Response Time
HS-KDJ —=— HS-KDJ —=— HS-KDJ —=—
B-KDJ —o— B-KDJ —e— B-KDJ —e—
AM-KDJ - AM-KDJ -+ AM-KDJ -«
” SJ-SORT v 0200 SJ-SORT v ” Hﬂﬂ& v
8100 H g300
8 3150 e 3
= < “ T g £200 ..
2 2100 = : 2 g e D .
= 50 - — e - . = . = . . a
s a a a a 50 v v v v 100 ¢ v v v v -
0 0 0
64K 128K 256K 512K 1024K 64K 128K 256K 512K 1024K 64K 128K 256K 512K 1024K
R-Tree Buffer Size R-Tree Buffer Size R-Tree Buffer Size
(c) CPU Time (d) /O Time (e) Response Time
Figure 15: Impact of R-Tree Buffer Size
50 No. of Distance Computations 10 < KD;‘D' of Queue Insertions 15000 Actual Number of R-Tree Node Accesses
HS-KDJ —=— - —
B-KDJ e B-KDJ e "
40 - AM-KDJ -+ 81 AM-KDJ - $12000
5 SJ-SORT v g | SISORT -~ 8
230 S 6 8 9000
5 3 g
520 £E4 o 6000
E z 2
10 2 E 0
- e v
10 100 1000 10000 100000 10 100 1000 10000 100000 10 100 1000 10000 100000
K : Number of Pairs K : Number of Pairs K : Number of Pairs
(a) Distance Computations (b) Queue Insertions (c) R-Tree Node Accesses
CPU Time 1/0 Time Response Time
‘) —a— 180] . " HS-KDJ —=— ‘
20 MERRY L 10| BB e 3001 UERRY
AM-KDJ s M-KDJ -~ AM-KDJ -
100 | SJ-SORT 8150 | SI-SORT v P SJ-SORT —+
S g0 g §200
& & 90| b
S 60 £ £ s
2 ool 2 .
£ 40 s IS £100
20 e v 30 ¢ v l . v
0 e 0 e 0]
10 100 1000 10000 100000 10 100 1000 10000 100000 10 100 1000 10000 100000
K : Number of Pairs K : Number of Pairs K : Number of Pairs
(d) CPU Time (e) I/0 Time (f) Response Time

Figure 16: Performance @&fDistance Joins for Datasets with Duplicates

these algorithms was rather small compared with the case for data sets without duplicates. (See Figure 11.) This is

because a large number of zero-distance pairs diminishes the distinctions among dffixfeaigjorithms.
Contrary to our conjecture§J-SORT was worse than all threle-distance join algorithms in response times for

small k& values ¢ < 10,000). This is again due to the fact that there were about 10,000 pairs of zero distance. No

matter what distance cutoff was provided for ti&-SORT algorithm, an exhaustive set of zero-distance pairs were
returned as a distance join query results, which turned out a significant overhead fot satadis.
For the incremental distance join algorithi$-1DJ, AM-IDJ and SJ-SORT, we observed the same trend in

22

No. of Distance Computations No. of Queue Insertions Actual Number of R-Tree Node Accesses

al
o

12000

N
o

9000

w
o
w
o

6000

N
o

Number in Million
Number in Millions

Number of R-tree Nodes

3000

[N
o

A

¥ — g 0
10 100 1000 10000 100000 10 100 1000 1000 100000 10 100 1000 10000 100000
K : Number of Pairs K : Number of Pairs K : Number of Pairs
(a) Distance Computations (b) Queue Insertions (c) R-Tree Node Accesses
CPU Time 800 10 Time Response Time
HS-IDJ —=— HS-IDJ —=— 900 HS-IDJ —=—
250 AM-IDJ s AM-IDJ s AM-IDJ s
” SJ-SORT ,600 F SJ-SORT -+ 4 ” SJ-SORT -+
2200 S 8
3 8 8600
[} L] L]
9150 L2400 o
100 2 2
E a0 . £300 .
50
0 — ey e 0 . 0 . e ——— M
10 100 1000 10000 100000 10 100 1000 10000 100000 10 100 1000 10000 100000
K : Number of Pairs K : Number of Pairs K : Number of Pairs
(d) CPU Time (e) I/0 Time (f) Response Time

Figure 17: Performance of Incremental Distance Joins for Datasets with Duplicates

the performance from the data sets with duplicates. (See Figurel)IDJ was always better thalS-1DJ for all
k values, andd M-IDJ yielded better response time th&ik-SORT in smallk valuesg < 1000).

5.7 Impact ofeD,,,, Estimation on AM-KDJ Performance

We designed two sets of experiments to characterize the performan¢a©KDJ algorithm with respect to the
accuracy of estimatedD,,, ., values. In Section 5.7.1, instead of using Equation (3) to estiaiajg,.., we varied the
€Dnae Value from0.1 x Dy, t0 10 x D,,4.. Recall thatD,,,, is a real distance between theh nearest pair of
objects. In Section 5.7.2, we used Equation (3) poder lawproposed in [13] to computeD,,, .. values. Again, the
sizes of in-memory portion of a main queue and R-tree buffer were fixed to 512 KBytes.

5.7.1 Robustness oA M-KDJ

While fixing a stopping cardinality to 100,000, we varied theD,,, .. value from0.1 X D,, 4, 10 10 X D, When
€Dz 1S OverestimatedeD, . > Dmaz), the compensation stage dfM-KDJ algorithm is not necessary, because
all the k nearest pairs will be produced in the first (aggressive pruning) stage. Evene®hgn is overestimated,
AM-KDJ guarantees thaD,,, .. is always smaller than or equal¢®,,,... (obtained from a distance queue) through-
out the first stage. Thusi. M-KDJ always requires no more distance computation and queue insertion operations than
B-KDJ algorithm does.

On the other hand, #D,,,,.. is underestimatedD,,,.. < Dm.qz), the node pairs in the compensation queue will
be revisited in the compensation stage. Thus, the cost of tree traversals will increase, but it will be bounded by twice
the cost of3-KDJ algorithm. Although there is no such a bound on the cost of queue management, we observed in
most of our experiments that the cost of queue management was lower thanBh&Ddf algorithm. This is because
a large number of insertions to a compensation queue were prevented by aggresive pruning, and the compensation
gueue was several orders of magnitude smaller than the main queue. As discussed in Section 4.1, for a pair already
expanded once in the first stage, only child pairs not examined in the first stage are paired up in the compensation stage
and thereby wasting no time for redundant work. The valugl®df,... is likely to have become quite close to a real
Dumaz Value in the compensation stage. SoM-KDJ algorithm usuallyprunes distant pairs much more efficiently
in the compensation stadglean5-KDJ algorithm would do in a single stage. TherefareM-KDJ outperforms the
k-distance join algorithm&S-KDJ andB-KDJ, despite the additional cost of compensation stage.

23

No. of Distance Computations No. of Queue Insertions Response Time

al
o

HS-KDJ 10 HS-KDJ 1 300 1 THsKDJ
40
g x 8 BKDJ 2
=30 S ahA <
s = A 8200
= £6¢, o~ AM-KDJ & B-KDJ
20] e £ | SRERETITTI AN
£ Ea glOO “ar AT AM-KDI
=1 = = L
210 B-KDJ X
[S oA AT 2 | SJ-Sort
0 AM-KDJ SJ-SORT SJ-SORT
0 0
02040608 1 3 5 7 9 02040608 1 3 5 7 9 02040608 1 3 5 7 9
ratio of eDmax / Dmax ratio of eDmax / Dmax ratio of eDmax / Dmax
(a) Distance Computations (b) Queue Insertions (c) Response Time

Figure 18: Performance Impacteb,,, .

Figure 18 shows that asD,, ., approaches to a redl,,,, value, the performance of M-KDJ improves con-
sistently in all three metrics. WheiD,,,,,,. increases far beyond the réa),,,. value, the performance of M-KDJ
converges to that df-KDJ algorithm. More importantly, howeved M-KDJ always outperformeff-KDJ, not to
mentionHS-KDJ, with eD,,,.,. in a wide spectrum of estimated value range.

We have not measured the cost of compensation queue management. A compensation queue contains pairs of
non-object R-tree nodes. During the first (aggressive pruning) stage\¢fKDJ algorithm, The number of pruned
pairs is far larger than the number of non-object pairs inserted into a compensation queue. In most of our experiments,
the size of a compensation queue vess than 0.5 percerdf the size of a main queue. Thus, the additional cost
required for the compensation queue was almost negligible. This is one of the reasoodMHYDJI algorithm
always outperforme#f-KDJ, which does not need a compensation queue.

5.7.2 Uniformity Assumption and Power Law

Faloutsoset al. [13] proposed a power law to predict the selectivity of spatial join and to estimate the distance of
the k-th closest pair. We used thmx-occupancy-product-sumethod as proposed in [13] to determine the values of
coefficient) and slope) of the power law. Then, we used the following formula to estinadg, .. for differentk

values.
k 1/s
€Dmaz = L % <E> (6)

Here L is the maximum length of a data domain alangr y axis. For the data sets without duplicatéswas
3.85894 x 10'' ands was 1.812235. For the data sets with duplicateésas3.96152 x 10'' ands was 1.806431L
was 5766370 in both cases.

Figures 19(a) and 19(b) show reR}, ., and estimatedD,,,,, values fork values varying from 10 to 100,000.
eDnas Values estimated by Equation 3 are labdledform ; those estimated by the power law are labdbedver
Law. For the data sets without duplicates, ¢#1&,, .. estimation by the power law was very accurate, while Equation 3
consistently overestimated. However, for data sets with duplicates, even the power law was not as accurate and it
overestimated for smatl values.

In the experiments, both Equation 3 (uniformity assumption) and Equation 6 (power law) overestitpated
values. As we discussed in the previous section, the compensation stdgd-¢€DJ is not necessary whetD,,, ..
is overestimated. To demonstrate the performance impaeDgf,, estimation, we measured response times of
AM-KDJ algorithm using reaD,,,, values and estimated,, ., values in Figures 19(c) and 19(d). Evidently, the
response times ol M-KDJ were not so affected byD,,,... estimation for both data sets with and without duplicates.
This is another evidence thatM-KDJ yields very stable performance under various circumstances, and Equation 3
based on uniformity assumption is a viable method to estiefaig,,. values for real-world data sets.

5.8 Stepwise Incremental Execution oA M-IDJ

Incremental distance join algorithms do not require a preset stopping cardinalitys, in this set of experiments, we
simulated a situation where users repeatedly requested a set of 10,000 nearest pairs at a time until a total of 100,000

24

Dmax vs. eDmax Dmax vs. eDmax

b Unifl?fm —— ‘ P Unifl?fm -
ower Law e ower Law —e—
2500 real Dmax -] 2500 ¢ real Dmax 4
2000 |] 2000 |

tance
tance

1500 ¢ 1500 ¢

IS

isf

d
d

1000 | P 1000 |
500 | : 1 500 | e
0 Mf) 0 — , o)
10 100 1000 10000 100000 10 100 1000 10000 100000
K : Number of Pairs K : Number of Pairs
(a) €Dy, for data sets without duplicates (&P, data sets with duplicates

Response Time Response Time
e : 120 v s ‘
Uniform —=— Uniform —=—
Power Law e / Power Law ~—e-— o
real Dmax -~ real Dmax -~

120 F

©
o
T
©
o

Time in Seconds
o
=)

Time in Seconds
o)
S

w
o
w
o

0 L L L L L 0 L L L
10 100 1000 10000 100000 10 100 1000 10000 100000
K : Number of Pairs K : Number of Pairs

(c) Response time for data sets without duplicates (d) Response time for data sets with duplicates

Figure 19:eD,, .. estimation based on uniform distribution and Power Law

nearest pairs were generated. Incremental algoritHi$\$DJ and .4 M-IDJ each were executed once in a single
experiment run, until a total of 100,000 nearest pairs were generated. The sizes of in-memory portion of a main queue
and R-tree buffer were fixed to 512 KBytes both f6§-IDJ and AM-IDJ.

For SJ-SORT, which is not an incremental algorithm, we restarted its processing each tm®, 000 nearest
pairs were generated for(1 < i < 9). Thus, the performance measurement§ $fSORT presented in Figure 20
are cumulative. For example, the response timgbBEORT for £ = 20, 000 includes the times spent on executing
SJ-SORT twice, once fork = 10, 000 and another fok = 20, 000. For each run oFJ-SORT, we used a redD,,,, .
value for each of different stopping cardinalities.

In Figure 20, we measured the response timd #f(-IDJ algorithm in two different ways: (i) witlkD,,,,. values
estimated by Equation (3), and (ii) with reR},, ... values provided for 10 differert values. When estimated,,, ...
values were providedd M-IDJ needed compensation processing only after generating 30,000 pairs and 90,000 pairs,
due to overestimateeD,, ., values. In the second case (denoted\d§-IDJ (Dmax) in Figure 20), a reaD .,
value was provided for each @f values from 10,000 through 100,000, to simulate a situation where the next set
of 10,000 pairs of objects were repeatedly requested by a user. ConsequevthDJ was forced to initiate a
compensation stage, each time the next set was requested. This overhead slowed down the processing due mainly
to redundant R-tree node accesses. Overal/-IDJ showed a fairly consistent performance over varyfy,, ...
estimates, asAM-KDJ did in Section 5.7. For all thé values, AM-IDJ with estimatedeD,,,, improved the
response time by a factor of two to four, when compared WithIDJ.

6 Conclusions
We have developed new distance join algorithms for spatial databases. The proposed algorithms provide significant

performance improvement over previous work. The plane-sweep technique optimized by novel strategies for selecting
a sweeping axis and direction minimizes the computational overhead incurred by bi-directional node expansions. The

25

Response Time

SJ-Sort L

Time in Seconds
»

20000 40000 60000 80000 100000
K : Number of Pairs

Figure 20: Step-Wise Incremental Execution

node expansions are further optimized by using maximum distance for breaking tied pairs. We have shown that this
optimized plane-sweep technique alone improves processing-distance join query considerably.

The adaptive multi-stage algorithms employ aggressive pruning and compensation methods to further optimize
the distance join processing. These algorithms address a slow start problem by using estimated maximum distances
as cutoff values for pruning distant pairs. Our experimental study shows that the proposed algorithms outperformed
previous work significantly and consistently for all the stopping cardinalities over a wide spectrum of estimated max-
imum distances. Ample evidence was observed that the adaptive algorithm yielded significant improvementin query
processing time regardless of the techniques used for maximum distance estimations. For a relatively small stopping
cardinality, the proposed algorithms achieved up to an order of magnitude improvement over previous work. Assum-
ing data objects are uniformly distributed, we have developed strategies to choose an initial estimate and to correct the
estimate adaptively during the query processing.

When the stopping cardinality of a distance join query is unknown (as in on-line query processing environments
or a complex query that contains a distance join as a sub-query), the adaptive multi-stage algorithms process the query
in a stepwise manner so that the query results can be returned incrementally.

References

[1] Lars Arge, Octavian Procopiuc, Sridhar Ramaswamy, Torsten Suel, and Jeffrey. S. Vitter. Scalable sweeping-
based spatial join. IRroceedings of the 24th VLDB Conferenpages 259-270, New York, USA, June 1998.

[2] Sunil Arya, David M. Mount, and Onuttom Narayan. Accounting for boundary effects in nearest neighbor
searching. IProc. 11th Annual Symp. on Computational Geomegtages 336—344, Vancouver, Canada, 1995.

[3] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard SeegeR*-Tife®: An efficient and
robust access method for points and rectangle®Rrarceedings of the 1990 ACM-SIGMOD Conferemzges
322-331, Atlantic City, NJ, May 1990.

[4] Alberto Belussi and Christos Faloutsos. Estimating the selectivity of spatial queries using the correlation fractal
dimension. IrProceedings of the 21st VLDB Conferengages 299-310, Zurich, Switzerland, September 1995.

[5] Stefan Berchtold, Bernhard Ertl, Daniel Keim, Hans-Peter Kriegel, and T. Seidl. Fast nearest neighbor search in
high-dimensional spaces. Rroceedings of the 14th International Conference on Data Engineg@nigndo,
Florida, September 1998.

[6] Stefan Berchtold, Daniel A. Keim, and Hans-Peter. Kriegel. The X-tree: An index structure for high-dimensional
data. InProceedings of the 22nd VLDB ConferenBembay, India, September 1996.

[7] Thomas Brinkhoff, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. Multi-step processing of spatial
joins. InProceedings of the 1994 ACM-SIGMOD Conferermuages 197-208, Minneapolis, Minnesota, May
1994.

[8] Thomas Brinkhoff, Hans-Peter Kriegel, and Bernhard Seeger. Efficient processing of spatial joins using R-Trees.
In Proceedings of the 1993 ACM-SIGMOD Conferemages 237-246, Washington, DC, May 1993.

26

[9] Michael J. Carey and Donald Kossmann. On saying “enough already!” in SQPrdceedings of the 1997
ACM-SIGMOD Conferenggages 219-230, Tucson, AZ, May 1997.

[10] Michael J. Carey and Donald Kossmann. Reducing the braking distance of an SQL query erigioeedunlings
of the 24th VLDB Conferengpages 158-169, New York, NY, August 1998.

[11] Antonio Corral, Yannis Manolopoulos, Yannis Theodoridis, and Michael Vassilakopoulos. Closest pair queries
in spatial databases. Proceedings of the 2000 ACM-SIGMOD Confererpages 189-200, Dallas, TX, May
2000.

[12] Donko Donjerkovic and Raghu Ramakrishnan. Probabilistic optimization of top N queriéaodeedings of
the 25th VLDB Confereng¢&dinburgh, Scotland, September 1999.

[13] Christos Faloutsos, Bernhard Seeger, Agma Traina, and Caetano Traina Jr. Spatial join selectivity using power
laws. InProceedings of the 2000 ACM-SIGMOD Conferemagges 177-188, Dallas, TX, May 2000.

[14] Antonin Guttman. R-Trees: A dynamic index structure for spatial searchingrdceedings of the 1984 ACM-
SIGMOD Conferencepages 47-57, Boston, MA, June 1984.

[15] Gisli R. Hjaltason and Hanan Samet. Ranking in spatial databasd2ro¢n of 4th Intl. Symposium on Large
Spatial Databases(SSD’'9%)ages 83—-95, September 1995.

[16] Gisli R. Hjaltason and Hanan Samet. Incremental distance join algorithms for spatial datab&seseddings
of the 1998 ACM-SIGMOD Conferengeges 237-248, Seattle, WA, June 1998.

[17] Flip Korn, Nikolaos Sidiropoulos, Christos Faloutsos, Eliot Siegel, and Zenon Protopapas. Fast nearest neighbor
search in medical image databasesPtaceedings of the 22nd VLDB Conferengages 215-226, June 1996.

[18] Ming-Ling Lo and Chinya V. Ravishankar. Spatial joins using seeded treeBroteedings of the 1994 ACM-
SIGMOD Conferenggpages 209-220, Minneapolis, Minnesota, May 1994,

[19] Ming-Ling Lo and Chinya V. Ravishankar. Spatial hash-joinPhaceedings of the 1996 ACM-SIGMOD Con-
ference pages 247-258, Montreal, Canada, June 1996.

[20] Bureau of the Censugdiger/Line Precensus Files: 1997 technical documentatidashington, DC, 1997.

[21] Jack A. Orenstein. A comparison of spatial query processing techniques for native and parameter spaces. In
Proceedings of the 1990 ACM-SIGMOD Conferemages 343-352, Atlantic City, New Jersey, May 1990.

[22] Dimitris Papadias, Nikos Mamoulis, and Yannis Theodoridis. Processing and optimization of multiway spatial
joins using r-trees. IRroceedings of the 1999 ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database
Systemgpages 44-55, June 1999.

[23] Jignesh M. Patel and David J. DeWitt. Partition based spatial-merge joiRroceedings of the 1996 ACM-
SIGMOD Conferenceages 259-270, Montreal, Canada, June 1996.

[24] Viswanath Poosalddistogram-based Estimation Techniques in DatabaBa® thesis, University of Wisconsin-
Madison, 1997.

[25] Franco P. Preparata and Michael lan Shan@@nputational Geometry: An Introdutio®pringer-Verlag, New
York, NY, 1985.

[26] V. Ramasubramanian and K. K. Paliwal. Fast k-dimensional tree algorithms for nearest neighbor search with
application to vector quantization encodinBEE Trans. on Signal Processing0(3):518-531, March 1992.

[27] Nick Roussopoulos, Stephen Kelley, and Frederic Vincent. Nearest neighbor queRescéadings of the 1995
ACM-SIGMOD Conferenggages 71-79, San Jose, CA, May 1995.

[28] Thomas Seidl and Hans-Peter Kriegel. Optimal multi-step k-nearest neighbor sed?abcdedings of the 1998
ACM-SIGMOD Confereng@ages 154—-165, Seattle, Washington, June 1998.

[29] Jeffrey S. Vitter and Min Wang. Approximate computation of multidimensional aggregates of sparse data using
wavelets. InProceedings of the 1999 ACM-SIGMOD Conferempages 193—-204, June 1999.

27

