
Adaptive and Incremental Processing for
Distance Join Queries�

Hyoseop Shiny Bongki Moonz Sukho Leey

ySchool of Computer Engineering zDepartment of Computer Science
Seoul National University University of Arizona

Seoul, Korea Tucson, AZ 85721
fhsshin@db ,shlee@cse g.snu.ac.kr bkmoon@cs.arizona.edu

Technical Report 02-03

Abstract

A spatial distance join is a relatively new type of operation introduced for spatial and multimedia database appli-

cations. Additional requirements for ranking and stopping cardinality are often combined with the spatial distance

join in on-line query processing or internet search environments. These requirements pose new challenges as well as

opportunities for more efficient processing of spatial distance join queries. In this paper, we first present an efficient

k-distance join algorithm that uses spatial indexes such as R-trees. Bi-directional node expansion and plane-sweeping

techniques are used for fast pruning of distant pairs, and the plane-sweeping is further optimized by novel strategies

for selecting a sweeping axis and direction. Furthermore, we propose adaptive multi-stage algorithms fork-distance

join and incremental distance join operations. Our performance study shows that the proposed adaptive multi-stage

algorithms outperform previous work by up to an order of magnitude for bothk-distance join and incremental distance

join queries, under various operational conditions.

September 2002

Department of Computer Science

The University of Arizona
Tucson, AZ 85721

�This work was sponsored in part by National Science Foundation CAREER Award (IIS-9876037), NSF Grant No. IIS-0100436, and Research
Infrastructure program EIA-0080123. It was also supported by Korean Science and Engineering Foundation under Exchange Student Program. The
authors assume all responsibility for the contents of the paper.

1 Introduction

A spatial distance join operation was recently introduced to spatial databases to associate one or more sets of spatial
data by distances between them [16]. A distance is usually defined in terms of spatial attributes, but it can be defined
in many different ways according to various application specific requirements. In multimedia and image database
applications, for example, other metrics such as asimilarity distance functioncan be used to measure a distance
between two objects in a feature space.

In on-line decision support and internet search environments, it is quite common to pose a query that finds the best
k matches or reports the results incrementally in the decreasing order of well-matchedness. This type of operations
allow users to interact with database systems more effectively and focus on the “best” answers. Since users can say
“It is enough already” at any time after obtaining the best answers [9], the waste of system resources can be reduced
and thereby delivering the results to users more quickly.

This ranking requirement is often combined with a spatial distance join query, and the ranking requirement pro-
vides a new opportunity of optimization for spatial distance join processing [10, 12]. For example, consider a query
that retrieves the topk pairs (i.e., the nearest pairs) of hotels and restaurants:

SELECT h.name, r.name
FROM Hotel h, Restaurant r
ORDER BY distance(h.location, r.location)
STOP AFTER k;

For a relatively small stopping cardinalityk, the processing time can be reduced significantly by sorting only a fraction
of intermediate results enough to produce thek nearest pairs, instead of sorting an entire set of intermediate results
(i.e., a Cartesian product of hotels and restaurants).

A spatial distance join query with a stopping cardinality can be formulated as follows:

�dist(r;s)<Dmax(R 1 S)

wheredist(r; s) is a distance between two spatial objectsr 2 R ands 2 S, andDmax is a cutoff distance that is
determined by a stopping cardinalityk and the spatial attribute values of two data setsR andS. It may then be argued
that a spatial distance join query can be processed by a spatial join operation [1, 7, 8, 18, 19, 23] followed by a sort
operation. Specifically, if aDmax value can be predicted precisely for a given stopping cardinalityk, we can use a
spatial join algorithm with awithin predicate instead of anintersect predicate to find thek nearest pairs of
objects. Then, a sort operation will be performed only on thek pairs of objects.

In practice, however, it is almost impossible to estimate an accurateDmax value for a given stopping cardinalityk,
and, to the best of our knowledge, no method for estimating such a cutoff value has been reported in the literature. If
theDmax value is overestimated, then the results from a spatial join operation may contain too many candidate pairs,
which may cause a long delay in a subsequent stage to sort all the candidate pairs. On the other hand, if theDmax

value is underestimated, a spatial join operation may not return a sufficient number of object pairs. Then, the spatial
join operation should be repeated with a new estimate ofDmax, until k or more pairs are returned. This may cause a
significant amount of waste in processing time and resources.

There is another reason that makes it impractical to apply a spatial join algorithm to spatial distance join queries.
A spatial join query is typically processed in two steps,filter and refinement, as proposed in [21]. In a filter step,
MBR approximations are used to find pairs of potentially intersected spatial objects. Then, in a refinement step, it is
guaranteed that all the qualified (i.e., actually intersected) pairs can be produced from the results returned from the
filter step.

In contrast, it is completely unreasonable to process a spatial distance join query in two separate filter and re-
finement steps, because of the fact that a filtering process is based on MBR approximations. A set of object pairs
sorted by distances measured by MBR approximations does not reflect a true order based on actual representations.
This is because, for any two pairs of spatial objectshr1; s1i andhr2; s2i, the fact thatdist(MBR(r1);MBR(s1)) <

dist(MBR(r2);MBR(s2)) does not necessarily imply thatdist(r1; s1) < dist(r2; s2). Consequently, any process-
ing done in the filter step will be of no use for finding thek nearest object pairs.

In this paper, we propose new strategies for efficiently processing spatial distance join queries combined with
ranking requirements. The main contributions of the proposed solutions are:

1

� New efficient methods are proposed to process distance join queries using spatial index structures such as R-
trees.Bi-directional node expansionandoptimized plane-sweeptechniques are used for fast pruning of distant
pairs, and the plane-sweep is further optimized by novel strategies for selecting a sweeping axis and direction,
and by using maximum distance for breaking tied pairs.

� Adaptive multi-stage algorithms are proposed to process distance join queries in a way that thek nearest pairs
are returnedincrementally. When a stopping cardinality is not known a priori (e.g., in on-line query processing
environments or a complex query containing a distance join as a sub-query whose results need to be pipelined
to the next stage of the complex query), the adaptive multi-stage algorithms can produce pairs of objects in a
stepwise manner.

� We provide a systematic approach forestimating the maximum distancefor a distance join query with a stopping
cardinality. This estimated distance allows the adaptive multi-stage algorithms to avoid aslow startproblem,
which may cause a substantial delay in the query processing. This approach for estimating the maximum
distance also allows the size of memory to be parameterized into a queue management scheme, so that data
movement between memory and disk can be minimized.

The proposed algorithms achieve up to an order of magnitude performance improvement over previous work for both
k-distance join and incremental distance join queries, under various operational conditions.

The rest of this paper is organized as follows. Section 2 surveys the background and related work on process-
ing spatial distance join queries. Major limitations of previous work are also discussed in the section. In Section 3,
we present a new improved algorithm based on bi-directional expansion and optimized plane-sweep techniques for
k-distance join queries. In Section 4, adaptive multi-stage algorithms are presented fork-distance join and incre-
mental distance join queries. A queue management scheme parameterized by memory capacity is also presented.
Section 5 presents the results of experimental evaluation of the proposed solutions. Finally, Section 6 summarizes the
contributions of this paper.

2 Background and Previous Work

A spatial index structure R-tree and its variants [3, 6, 14] have been widely used to efficiently access multidimensional
data – either spatial or point. Like other tree-structured index methods, an R-tree index partitions a multidimensional
space by grouping objects in a hierarchical manner. A subspace occupied by a tree node is always contained in the
subspace of its parent node. This hierarchy of spatial containment between R-tree nodes is readily used by spatial
distance join algorithms as well as spatial join algorithms.

(a) Tree−Structured Spatial Index (b) Spatial Containment

r

r1 r1 r3

s

s1 s2 s3

dist(r,s)r s
r1

r2

s1

s2
r3

dist(r3,s2)

s1

s2
s3

Figure 1: Hierarchy of Spatial Containment of R-Tree Nodes

Supposer ands are non-leaf nodes of two R-tree indexesR andS, respectively, as in Figure 1. Then, the minimum
distance betweenr ands is always less than or equal to the minimum distance between one of the entries ofr and one
of the entries ofs. Likewise, the maximum distance betweenr ands is always greater than or equal to the maximum
distance between one of the entries ofr and one of the entries ofs. This observation leads to the following lemma.

2

Lemma 1 For two R-tree indexesR andS, if neitherr 2 R nor s 2 S is a root node, then

dist(r; s) � dist(parent(r); parent(s));

dist(r; s) � dist(r; parent(s)); (1)

dist(r; s) � dist(parent(r); s):

wheredist(r; s) is the minimum distance between the MBR representations ofr ands.

Proof. From the observation above.

Lemma 1 allows us to limit the search space, while R-tree indexes are traversed in a top-down manner to process
a spatial distance join query. For example, if a pair of non-leaf nodeshr; si turn out to be too far from each other (or
their distance is over a certain threshold), then it is not necessary to traverse further down the tree indexes below the
nodesr ands. Thus, this lemma provides the key leverage to processing distance join queries efficiently using R-tree
indexes.

2.1 Incremental Distance Join andk-Distance Joins

During top-down traversals of R-tree indexes, it is desirable to store examined node pairs in a priority queue, where
the node pairs are kept in an increasing order of distances. We call it amain queueas opposed to adistance queue
we will describe later. The main queue initially contains a pair of the root nodes of two R-tree indexes. Each time
a pair of non-object nodes are retrieved from the main queue, the entries of one node are paired up with the entries
of the other to generate a new set of node pairs, which are then inserted into the main queue. This process that we
call node expansionis repeated until the main queue becomes empty or until stopped by an interactive user. If an
element retrieved from the main queue is a pair of two objects, the pair is returned immediately to the user as a query
result. This is how a spatial distance join query is processedincrementally. Figure 2 depicts a typical framework of
processing an incremental distance join (IDJ) query using R-tree indexes.

Main Queue

Node Expansion
Module

If object pair Return as
an answer

If non-object pair
<root of R, root of S>
At beginning

Newly generated pairs

A pair with
Minimum distance

Figure 2: Framework of Incremental Distance Join (IDJ) Processing

A distance join query is often given with a stopping cardinalityk as in the “stop after” clause of the sample query
in Section 1. Since it is known a priori how many object pairs need to be produced for a distance join query, this
knowledge can be exploited to improve the performance of the query processing. Suppose a maximum ofk nearest
pairs of objects are to be retrieved by a query. One plausible approach is to maintaink candidate pairs of objects
during the entire course of query processing. As they are thek nearest object pairs known at each stage of query
processing, any pair of nodes (and any pair of their entries) whose distance is greater thanall of thek candidate pairs
cannot be qualified as a query result. Thus, we can use another priority queue to store thek minimum distances, and

3

use the queue to avoid having to insert unqualified pairs into the main queue during the node expansions. We call the
priority queue adistance queue. Figure 3 depicts a typical framework of processing ak-distance join (KDJ) query
using R-tree indexes and both main and distance queues.

Both main and distance queues can be implemented by heap structures. A main queue is normally implemented as
a min-heap, because the query results are produced in an increasing order of distances. In contrast, a distance queue
should be implemented as amax-heapthat can store at mostk distance values. The cutoff distance is determined by
the maximum value among thek distances stored in the distance queue. (When the distance queue contains less than
k distances, the cutoff distance is set to an infinity.) Pruning node pairs by the distance queue was shown to be very
efficient from our experiments, especially whenk was rather small. In the rest of the paper, we useqDmax to denote
the cutoff distance from the distance queue.

Main Queue

Node Expansion
Module

If object pair Return as
an answer

If non-object pair
<root of R, root of S>
At beginning

Newly generated pairs

A pair with
Minimum distance

Distance Queue

qDmax

If pair.distance >qDmax

If pair.distance <=qDmax

pruned

Figure 3: Framework ofk-Distance Join (KDJ) Processing

2.2 Previous Work

In [16], the authors present both uni-directional and bi-direction node expansion, but conclude based on their experi-
ments that the former provides better performance due to fewer node pairs being produced by their algorithm. When a
pair of nodeshr; si are retrieved from a main queue, either noder is paired up with the entries ofs, or nodes is paired
up with the entries ofr. None of the pairs are generated from an entry ofr and an entry ofs. The advantage of the
uni-directional expansion is that the number of pairs generated at each expansion step is limited to the fanout of an
R-tree index being traversed, and an explosion of the main queue can be avoided. As is acknowledged by the authors
of the algorithms, however, the main disadvantage of this approach is that the uni-directional expansion may lead to
each node being accessed from disk more than necessary. And also, the uni-directional expansion requires pairing up
noder exhaustively with all the entries of nodes or vice versa.

For a spatial distance join query with a relatively small stopping cardinalityk, the use of a distance queue is an
effective means to prevent distant pairs from entering a main queue. For a largek value, however, the distance queue
may not work well as an effective pruning tool, because the cutoff value stored in the distance queue may remain too
high for a long duration. This may in turn lead to a long delay particularly in the early stage of query processing. For
these reasons, the previous algorithms suffer from poor performance for ak-distance join query with a largek and an
incremental distance join query, for whichk is unknown in advance.

Moreover, there is an important issue that was not fully addressed in [16]. A hybrid memory/disk technique was
proposed as a queue management scheme, which partitions a queue based on the distance range. This technique keeps
a partition in the shortest distance range in memory, while the rest of partitions are stored on disk. However, no
mechanism was provided to determine a boundary distance value between the partition in memory and the rest, which
may have a crucial impact on the performance of queue management.

4

Recently, a few recursive and iterative algorithms have been proposed [11]. These algorithms make use of various
distance metrics such asMinMax,MinMin,MaxMin andMaxMax to findk closest pairs. Without using a main
queue, the recursive algorithms access R-tree nodes recursively following priorities given to the entry pairs within a
pair of the parent nodes. The iterative algorithm (calledheap algorithm) is fairly similar to Hjaltason and Samet’s
distance join algorithm [16] in that both the algorithms use a distance queue to maintaink candidate pairs during node
expansion. One notable difference is thatheap algorithm does not store object pairs in the main queue to minimize
the size of a main queue. Instead, the heap algorithm uses a distance (or candidate) queue to store thek closest pairs
of objects. Although this does not guarantee that the main queue always fits in memory, the performance gain by not
storing object pairs in the main queue could be non-trivial, given the potentially large number of object pairs produced
by node expansion. Since the heap algorithm maintains only thek candidates, the stopping cardinalityk must be
known a priori. In other words, the heap algorithm cannot be used for incremental distance join queries.

Several closely related studies for nearest neighbor queries have been reported in the literature. Among those are
nearest neighbor search algorithms based on Voronoi cells [2, 5] and branch and bound techniques [26, 27], a nearest
neighbor search algorithm for ranking requirement [15], and multi-stepk-nearest neighbor search algorithms [17, 28].

Another closely related issue is estimating spatial join selectivity. Some estimation techniques proposed to use
supplementary structures such as histograms [24] and wavelets [29]; other estimation techniques were based on uni-
formity assumption [22] and fractal dimensions for self joins [4]. Recently, Faloutsoset al. [13] proposed a power
law to predict the selectivity of spatial join and to estimate the distance of thek-th closest pair. This power law will be
used to estimate cutoff distances for the adaptive distance join algorithm proposed in this paper.

3 Optimized Plane-Sweep for Fast Pruning

In this section, we propose a new distance join algorithmB-KDJ (Bidirectional expandingk-Distance Join) using
a bi-directional node expansion, in an attempt to avoid redundant accesses to R-tree nodes. As is pointed out in
Section 2, distance join algorithms based on an uni-directional expansion require accessing an R-tree node more than
those based on bi-directional expansions. Under the bidirectional node expansion, for a pairhr; si, each of the entries
of r is paired up with each of the entries ofs. This is essentially a Cartesian product, which may generate more
redundant pairs than the uni-directional expansion does. Nonetheless, we will showB-KDJ algorithm can effectively
avoid generating redundant pairs by a plane sweeping technique [25] and novel strategies for choosing an axis and a
direction for sweeping. TheB-KDJ algorithm is described in Algorithm 1.

3.1 Bidirectional Node Expansion

Like the distance join algorithms proposed in [16],B-KDJ algorithm usesqDmax from the distance queueQD as a
cutoff value to examine node pairs. If a pair of nodeshr; si removed from the main queue are a pair of objects, then
the object pair is returned as a query result. Otherwise, the pair is expanded by thePlaneSweepprocedure for further
processing.

Assume that a sweeping axis (i.e., x or y dimensional axis) and a sweeping direction (i.e., forward or backward)
are determined, as we will describe in Sections 3.2 and 3.3. Then, the entries ofr ands are sorted byx ory coordinates
of one of the corners of their MBRs in an increasing or decreasing order, depending on the choice of sweeping axis
and sweeping direction. Each node encountered during a plane sweep is selected as ananchor, and it is paired up with
entries in the other group. For example, in Figure 4, an entryr1 of r is selected as an anchor, and the entriess1; s2; s3
ands4 of s are examined for pairing, as they are withinqDmax distance fromr1 along the sweeping axis (lines 11-14
and line 16).

Since an axis distance between any pairhr; si is always smaller than or equal to their real distance (i.e., axis -
distance(r; s) � real distance(r; s)), real distances are computed only for nodes whose axis distances from the
anchor are within the currentqDmax value (line 17). Given that a real distance is more expensive to compute than
an axis distance, it may yield non-trivial performance gain. Then, each pair whose real distance is withinqDmax is
inserted into the main queueQM (line 18). If it is a pair of objects, then update the currentqDmax value by inserting
the real distance of the object pair into the distance queueQD (line 19).

5

Algorithm 1: B-KDJ: K-Distance Join Algorithm with Bi-directional Expansion and Plane Sweep

1: setAnswerSet an empty set;
2: setQM ,QD empty main and distance queues;
3: insert a pairhR:root; S:rooti into the main queueQM ;
4: while jAnswerSetj < k andQM 6= ; do
5: setc dequeue(QM);
6: if c is anhobject; objecti then AnswerSet fcg [AnswerSet;
7: elseP laneSweep(c);

end

procedurePlaneSweep(hl; ri)
8: set L sort axis(fentries oflg); // Sort the entries ofl by axis values.
9: set R sort axis(fentries ofrg); // Sort the entries ofr by axis values.

10: while L 6= ; andR 6= ; do
11: n a node with the min axis value2 L [R; // n becomes an anchor.
12: if n 2 L then
13: L L� fng; SweepPruning(n;R);

else
14: R R � fng; SweepPruning(n;L);

end
end

procedureSweepPruning(n;List)
15: for each nodem 2 List in an increasing order of axis valuedo
16: if axis distance(n;m) > qDmax then return; // No more candidates.
17: if real distance(n;m) � qDmax then
18: inserthn;mi intoQM ;
19: if hn;mi is anhobject; objecti then insertreal distance(n;m) intoQD; // qDmax modified.

end
end

There are alternatives as to what pairs are to be inserted into a distance queue: (1) any pairs encountered during
node expansions, or (2) pairs of objects only. If a pair of non-object R-tree nodes is inserted into a distance queue,
then its distance value should be themaximumdistance (instead of minimum distance), and the minimum number of
object pairs that can possibly be generated from the node pair should be maintained in the distance queue, as pointed
out in [16]. The minimum number of object pairs can be estimated based on the minimum node occupancy. Since the
maximum distance tends to be larger than those of pairs of objects, most of non-object pairs are inserted into a distance
queue only to be removed from the distance queue without reducingqDmax value. Consequently, the potential benefit
from inserting non-object pairs is expected to be insignificant. More often than not in our experiments, the query
processing slowed down slightly due to the overhead of inserting non-object pairs. Thus, we decide to follow the
second option in this paper.

For a relatively smallqDmax value and two sets of evenly distributed spatial objects, the number of pairs for which
B-KDJ algorithm computes real distances and performs queue management operations is expected to be roughly
O(jrj+jsj). This justifies the additional cost of sorting entries for plane-sweeping, because the overall cost ofB-KDJ
algorithm would otherwise beO(jrj � jsj) by Cartesian products.

3.2 Sweeping Axis

We can improveB-KDJ algorithm one step further by deciding the sweeping axis and direction on an individual pair
basis. Intuitively, if entries (or data objects) are spread more widely along one dimension (say,x) than the other
dimensions, then the bi-directional node expansion is likely to generate a smaller number of node pairs to compute the
real distances for by plane-sweeping along the dimensionx. This is because, when the nodes are more widely spread
along a sweeping axis, the chance that a pair of nodes are within aqDmax distance along the sweeping axis is lower.
For a pair of parent nodes shown in Figure 5, as an example, it would be better to choosey-axis as a sweeping axis, as
the entries are more widely spread along they-dimension. On the other hand, ifx-axis is chosen as a sweeping axis,

6

r1

r2s1

s2

s3

s4

s5

s6

sweeping dimension

s7

r4

r3

qDmax

Figure 4: Bidirectional Node Expansion with Plane Sweeping

no pair of the entries will be pruned byx-axis distance comparison withqDmax, because thex-axis distance between
any pair of the entries is shorter than theqDmax value.

y−axis

x−axis

qDmax

qDmax

r

s

Figure 5: Effect of Right Selection of the Sweeping Axis

Formally, we define a new metricsweeping indexas follows, and we use the metric to determine which axis a
plane-sweep will be performed on. For a given pairhr; si of R-tree nodes and a givenqDmax value, we can compute a
sweeping index for each dimension. Conceptually, a sweeping index is a normalized estimation of the number of node

7

|s|x

|r|x

t

|r|x qDmax+ −

t

|s|x

|r|x
0

qDmax
window

qDmax−
2

qDmax−()
2

Overlap

Overlap
β

β

ββ

Figure 6: Sweeping Index

pairs we need to compute the real distances for, based on the assumption that data objects are uniformly distributed.1

Sweeping Indexx =

Z jrj
x

0

Overlap(qDmax; r; t)dt

+

Z jsj
x

0

Overlap(qDmax; s; t)dt (2)

In the first integral term of the equation above,jrjx is the side length of noder along the dimensionx. The function
Overlap(qDmax; r; t) is a portion of the side length ofs along the dimensionx, overlapped with a window of length
qDmax whose left end point is located at a pointt within jrjx (i.e., 0 � t � jrjx). (See the left diagram in Figure 6.)
Thus,Overlap(qDmax; r; t)=jsjx represents a fraction ofs’s entries intersected with a window [t; t + qDmax]. The
value of the function varies as the window moves along the dimensionx from [0,qDmax] to [jrjx; jrjx + qDmax].
Therefore, the first integral term represents a relative estimation of the number ofs’s entries encountered during the
plane-sweeps performed for all the entries ofr. The second integral term is symmetric with the first integral, and an
identical description can be offered by exchangingr ands.

A smaller sweeping index indicates that the bi-directional expansion needs to compute real distances for a smaller
number of nodes pairs. For the reason,B-KDJ algorithm chooses a dimension with the minimum sweeping index as
a sweeping axis.

One thing we may be concerned about is the cost of computing a sweeping index for each dimension. The sweeping
index may appear expensive to compute, as it includes two integral terms. For givenjrjx andjsjx values and the current
qDmax value available from the distance queue, however, the sweeping index is reduced to a formula that involves only
a few simple arithmetic operations. Suppose nodesr ands are not intersected along a dimensionx, the minimumx-
axis distance between them is�, and noder appears before nodes in the plane-sweep direction alongx-axis. (Again,
see the left diagram in Figure 6.) Then, the second integral term of Equation (2) becomes zero, because all the entries
of r have already been swept when the first entry ofs is encountered. The first integral term varies depending on the
conditions amongqDmax, jrjx andjsjx values and the proximity (i.e., �) of nodesr ands along a chosen dimension.
The right diagram in Figure 6 illustrates how we can compute the first integral term and obtain a simple expression
when a condition� � qDmax � � +minfjrjx; jsjxg is satisfied.

If nodesr ands are not separated, both the integral terms of Equation (2) become non-zero. By a similar reasoning,
each integral term is also transformed into a formula with only a few simple arithmetic operations. Table 1 summaries
the formulae of the sweeping index for nodesr ands that are in three different spatial relationships:s is separated
from, intersected with, or contained inr. The values of�, � andÆ in Table 1 are determined by the side lengths ofr

ands and their spatial relationship as illustrated in Figure 7.
Considering that each R-tree node may contain hundreds of entries, it will be a trivial cost to compute a sweeping

index for each dimension, while the performance gain by the sweeping axis selection is expected to be significant.
This is empirically corroborated by our experiments in Section 5.

1 An actual number of node pairs for which we need to compute the real distances would be computed by counting
the number ofs’s entries withinqDmax axis distance from each entry ofr, counting the number ofr’s entries within
qDmax axis distance from each entry ofs, and then adding all the counts and dividing the count sum by two. However,
this process will be very expensive.

8

r

s

α β δ

r

s

α β δ

r

s

α β δ

(a) Separated (b) Intersected (c) Contained
Figure 7: Spatial relationships between nodesr ands and their projected intervals

r ands The first integral term of Equation (2)

Separated

8>>>>>>>>>><
>>>>>>>>>>:

0 if qDmax < �;
(qDmax��)

2

2jsjx
if � � qDmax < � +minfjrjx; jsjxg;

2jrjx(qDmax��)�jrjx
2

2jsjx
if jrjx + � � qDmax < jsjx + �;

qDmax � � �
jsjx
2

if jsjx + � � qDmax < jrjx + �;

jrjx �
(maxfjrjx+jsjx+��qDmax;0g)

2

2jsjx
if maxfjrjx; jsjxg+ � � qDmax:

Intersected

8>>>>>>>><
>>>>>>>>:

qDmax +
qDmax(qDmax�2Æ)

2jsjx
if qDmax < minf�; Æg;

2jrjxqDmax��
2

2jsjx
if � � qDmax < Æ;

qDmax �
Æ2+(maxfqDmax��;0g)

2

2jsjx
if Æ � qDmax < jsjx + �;

�+
jsjx

2

�Æ2

2jsjx
if jsjx + � � qDmax:

Contained

8>>><
>>>:

qDmax if qDmax < �;

qDmax �
(qDmax��)

2

2jsjx
if � � qDmax < jsjx + �;

�+
jsjx
2

if jsjx + � � qDmax:

r ands The second integral term of Equation (2)

Separated 0

Intersected

8><
>:
qDmax �

qDmax(2��qDmax)

2jrjx
if qDmax < jrjx � �;

(jrjx��)
2

2jrjx
if jrjx � � � qDmax:

Contained

8>>>>><
>>>>>:

qDmaxjsjx
jrjx

if qDmax < Æ;

2qDmaxjsjx�(qDmax�Æ)
2

2jrjx
if Æ � qDmax < jsjx + Æ;

jsjx(jsjx+2Æ)
2jrjx

if jsjx + Æ � qDmax:

Table 1: The first and second integral terms of the sweeping index forr ands (the values of�; � andÆ are determined
by the relative positions ofr ands as illustrated in Figure 7.)

3.3 Sweeping Direction

Once a sweeping axis is determined, a sweeping direction can be chosen to be either aforward sweep or abackward
sweep. For a pair of nodesr ands, we can define the forward and backward sweeps as follows.

9

� A forward plane-sweep scans the entries ofr and s in an increasing order of coordinates along the chosen
sweeping axis.

� A backward plane-sweep scans the entries ofr ands in a decreasing order of coordinates along the chosen
sweeping axis.

Consider nodesr ands projected on a sweeping axis. The projected images generate three consecutive closed intervals
on the sweeping axis, unless the projected images are completely overlapped. For example, if nodesr ands are
intersected as in Figure 7(b), an interval in the left is projected fromr, one in the middle from bothr ands, and one
in the right froms. The interval in the middle may be projected from none ofr ands, if r ands are separate as in
Figure 7(a). Both the intervals in the left and right may be projected from the same node, if one node is contained in
the other as in Figure 7(c).

However, it does not matter which node an interval is projected from, because a sweeping direction is determined
solely on the relative length of the intervals in the left and right (i.e., � andÆ). A sweeping direction is determined by
comparing the length of the left and right intervals:if the left projected interval is shorter than the right one (� < Æ),
then a forward direction is chosen. Otherwise, a backward direction is chosen.By this strategy of choosing a sweeping
direction, a pair of nodes closer to each other are likely to be examined earlier than those farther from each other. This
in turn allows a pair of closer nodes to be inserted into the main queue (and the distance queue as well if they are an
object pair), and helps reduce theqDmax value more rapidly.

In summary, the sweeping axis selection improves the bi-directional node expansion step by pruning more pairs
of entries whose axis distances are larger than theqDmax value, while the sweeping direction selection does so by
reducing theqDmax value more rapidly.

3.4 Maximum Distance As a Secondary Priority

The main queue maintains node pairs generated by node expansion in an increasing order of their distances. An issue
we have not addressed is how we order node pairs of an equal distance in the main queue. This is a non-trivial issue
particularly because a pair of intersected nodes are considered to have zero distance between them. Since there may be
many pairs of intersected nodes in the main queue, the performance impact by the way of breaking ties is potentially
high.

Hjaltason and Samet used the depths of R-tree nodes to break tie [16]. For given two pairs of nodes of an equal
distance, they proposed to give preference to a pair that contains a node with the maximum tree depth among the four
tree nodes. This approach may assist their distance join algorithms in getting to leaf nodes and data objects as quickly
as possible. However, it is not always beneficial to process node pairs in depth-first order, because it does not always
accelerate the reduction ofqDmax value.

pair ’A’
pair ’B’

level=1

level=1

level=1

level=2

maximum distance

Figure 8: Breaking ties for node pairs of an equal distance

Consider two node pairs A and B in Figure 8 as an example. If we follow the depth-first approach, node pair
B will be placed before node pair A in the main queue, because the former contains a node whose depth is deeper
than those of the nodes in the latter. However, it is very likely that node pair A contains more pairs of entries with
shorter distances than node pair B does, because the maximum distance of node pair A is shorter than that of node

10

pair B. Based on this observation, we propose to use the maximum distance of a node pair to break ties. By choosing
the maximum distance of a node pair as a secondary priority of heap (i.e., the main queue), node pairs with shorter
distances can be processed in the earlier stage of distance join. Consequently,qDmax value can be reduced more
rapidly and the number of distance computations and queue insertions can be reduced.

4 Adaptive Multi-Stage k-Distance Join

In B-KDJ algorithm,qDmax value is initially set to an infinity and becomes smaller as the algorithm proceeds. The
adaptation of theqDmax value has a crucial impact on the performance ofB-KDJ algorithm, asqDmax is used as a
cutoff to prevent pairs of distant nodes from entering the main queue. If theqDmax value approaches to the realDmax

value slowly, the early stage ofB-KDJ algorithm will be delayed considerably for handling too many pairs of distant
nodes. Consequently, at the end of the algorithm processing, the main queue may end up with a large number of distant
pairs whose insertions to the main queue were not necessary. The performance effect ofslow startis more pronounced
for a largerk, as the main queue and distance queue tend to grow large for a largek, and thereby increasing theqDmax

value. ¿From our experiments withk as high as 100,000, we observed that more than 90 percent of execution time of
k-distance join algorithms was spent to produce the first one percent (i.e., 1,000 pairs) of final query results.

In this section, we propose new adaptive multi-stage distance join algorithmsAM-KDJ andAM-IDJ that miti-
gate the slow start problem byaggressive pruningandcompensation.

4.1 Adaptive Multi-Stagek-Distance Join

The slow start problem is essentially caused by a pruning strategy usingqDmax, whose value is dynamically updated
as tree indexes are traversed and therefore not under direct control of the distance join algorithms. To circumvent this
problem, we introduce a new pruning measureeDmax, which is an estimatedDmax value for a givenk. TheeDmax

value is set to an initial estimation at the beginning and adaptively corrected during the algorithm processing. We will
discuss techniques for initial estimation and adaptive correction in Section 4.3.
AM-KDJ algorithm is similar toB-KDJ algorithm in that both the algorithms use a bi-directional node expansion.

However, unlike the single-stageB-KDJ algorithm, where onlyqDmax is used for pruning, bothqDmax andeDmax

are used as cutoff values for pruning distant pairs inAM-KDJ algorithm. Specifically, in theaggressive pruningstage
(described in Algorithm 2),

� eDmax is used for pruning based onaxis distancesfor aggressive pruning and thereby limiting the size of main
and distance queues (line 23),

� qDmax is used for further pruning onreal distancesfor nodes whose axis distances are withineDmax, in the
same way asB-KDJ .

With a properly estimatedeDmax value,AM-KDJ algorithm can prune a large number of distant pairs in the first
stage and avoid a significant portion of delay due to the slow start. However, ifAM-KDJ algorithm becomes too
aggressive by choosing an underestimatedeDmax value, even close enough pairs may be discarded incorrectly. To
avoid any false dismissals, we introduce another queue calledcompensation queue(QC). The compensation queue
stores every non-object node pair retrieved from the main queue (line 11), except those for whom all entries have been
examined. Note thatqDmax but noteDmax is used for nodes whose axis distances are withineDmax (line 24). If
eDmax values are used instead, this algorithm does not guarantee the correctness due to potential false dismissals.
UsingqDmax values also makes the performance ofAM-KDJ fairly insensitive to estimatedeDmax values.

For example, in Figure 9 (drawn from Figure 4), an anchor noder1 is paired up with nodess1 ands2 but not with
s3 ands4 in the aggressive pruning stage, because onlys1 ands2 are withineDmax from the anchor noder1. Thus,
AM-KDJ algorithm inserts only two pairs (hr1; s1i, hr1; s2i) into a main queue, instead of all four pairs (hr1; s1i,
hr1; s2i, hr1; s3i, hr1; s4i) that would be enqueued byB-KDJ algorithm. Then, the pairhr; si currently being expanded
is inserted into a compensation queue.

The aggressive pruning stage ends when one of the following conditions is satisfied: (1) the main queue becomes
empty (line 5), (2)k or more query results have been returned (line 5), or (3) the distance of a node pair retrieved from

11

Algorithm 2: AM-KDJ : Adaptive Multi-Stage K-Distance Join Algorithm (Aggressive Pruning)

1: setAnswerSet an empty set;
2: setQM ,QD,QC empty main, distance and compensation queues ;
3: seteDmax an initial estimatedDmax;
4: insert a pairhR:root; S:rooti to the main queueQM ;
5: while jAnswerSetj < k andQM 6= ; do
6: setc dequeue(QM);
7: if c is anhobject; objecti then AnswerSet fcg [AnswerSet;

else
8: if qDmax � eDmax then eDmax qDmax; // overestimatedeDmax

9: if c:distance > eDmax then
reinsertc back intoQM ;
break; // Terminate the Aggressive Pruning stage.

end
10: AggressivePlaneSweep(c);
11: enqueue(QC, c);

end
end

12: if jAnswerSetj < k then execute Algorithm 3;

procedureAggressivePlaneSweep(hl; ri)
13: set L sort axis(fentries oflg); // Sort the entries ofl by axis values.
14: set R sort axis(fentries ofrg); // Sort the entries ofr by axis values.
15: while L 6= ; andR 6= ; do
16: n a node with the min axis value2 L [R; // n becomes an anchor.
17: if n 2 L then
18: L L� fng; AggressiveSweepPruning(n;R);
19: n:compensate a node inR with the min axis value and not yet paired withn;

else
20: R R � fng; AggressiveSweepPruning(n;L);
21: n:compensate a node inL with the min axis value and not yet paired withn;

end
end

procedureAggressiveSweepPruning(n;List)
22: for each nodem 2 List in an increasing order of axis valuedo
23: if axis distance(n;m) > eDmax then return; // No more candidates.
24: if real distance(n;m) � qDmax then
25: inserthn;mi intoQM ;
26: if hn;mi is anhobject; objecti then insertreal distance(n;m) intoQD; // qDmax modified.

end
end

the main queue becomes greater thaneDmax (line 9). When the condition (2) is satisfied, obviously it is not necessary
to execute the compensation stage of theAM-KDJ algorithm. (An overestimatedeDmax can also be detected by
comparing withqDmax value (line 8). In this case, instead of terminating the first stage,AM-KDJ behaves exactly
the same asB-KDJ algorithm by usingqDmax alone as a cutoff value.) When the condition (3) is satisfied,eDmax

must have been underestimated, because all the object pairs returned after this point will have a greater distance than
eDmax. Since an object pair with thek-th largest distance has not been obtained by the time when the aggressive
pruning stage comes to an end, the compensation stage (described in Algorithm 3) begins its processing by inserting
all the pairs stored in the compensation queue to the main queue.

In the compensation stage, the pairs in the main queue are processed in a similar way asB-KDJ algorithm, but
there are two notable differences fromB-KDJ algorithm. First, the entries are not sorted again, if they have already
been sorted in the first stage. Second, for the pairs already expanded once in the first stage, only child pairs not
examined in the first stage are processed by plane sweeping. This is feasible by bookkeeping done in the first stage
(lines 19 and 21), which stores the information in an additional field (n:compensate) attached to a pair being inserted

12

r1

r2s1

s2

s3

s4

s5

s6

sweeping dimension

s7

r4

r3

eDmax

remembered as r1.compensate

qDmax

Figure 9: Aggressive pruning withqDmax andeDmax

Algorithm 3: AM-KDJ : Adaptive Multi-Stage K-Distance Join Algorithm (Compensation Stage)

1: insert all elements inQC intoQM ;
2: while jAnswerSetj < k andQM 6= ; do
3: setc dequeue(QM);
4: if c is anhobject; objecti then AnswerSet fcg [AnswerSet;
5: elseCompensatePlaneSweep(c);

end

procedureCompensatePlaneSweep(hl; ri)
6: L f entries ofl sorted in Stage Oneg; // fL[1]; L[2]; : : : ; L[jLj]g
7: R f entries ofr sorted in Stage Oneg; // fR[1]; R[2]; : : : ; R[jRj]g
8: while L 6= ; andR 6= ; do
9: n a node with the min axis value2 L [R; // n becomes an anchor.

10: if n 2 L then
11: L L� fng; R0 fnode list inR not paired withn in the Stage Oneg;

// f R[n:compensate]; R[n:compensate+ 1]; : : : ; R[jRj]g
12: SweepPruning(n;R0);

else
13: R R � fng; L0 fnode list inL not paired withn in the Stage Oneg;

// f L[n:compensate]; L[n:compensate+ 1]; : : : ; L[jLj]g
14: SweepPruning(n;L0);

end
end

13

into the compensation queue. For these reasons, the cost of the compensation stage is not considerable compared with
the cost of restarting the algorithm. In summary,AM-KDJ algorithm useseDmax to avoid the slow start problem in
the aggressive pruning stage and speeds up the query processing.

4.2 Adaptive Multi-stage Incremental Distance Join

Consider on-line query processing and internet database search environments, where users interact with database
systems in a way the number of required matches can be determined interactively or changed at any point of query
processing. Consider also a complex query that pipelines the results from a spatial distance join to a filter stage.
Under these circumstances, the number of pairs (k) that should be returned from a distance join is not known a priori,
and hence ak-distance join algorithm proposed in [16] andB-KDJ algorithm presented in Section 3 cannot be used
directly.

An important advantage ofAM-KDJ algorithm proposed in the previous section is thatAM-KDJ algorithm can
be extended to an incremental algorithm (we callAM-IDJ) to support the interactive applications described above.
The main difference betweenAM-KDJ andAM-IDJ algorithms is thatAM-IDJ does not maintain a distance
queue. Thus,AM-IDJ algorithm useseDmax alone as a cutoff value for pruning distant pairs, becauseqDmax would
be drawn only from a distance queue.

Without qDmax, AM-IDJ works as a stepwise incremental algorithm. First,AM-IDJ starts by determining an
initial valuek1 and estimating an initialeDmax1 for k1. Then, it performs the same way as the first stage ofAM-KDJ
algorithm withoutqDmax. However, the first stage may terminate before producing enough object pairs (i.e., less than
k1), if eDmax is underestimated. If that happens,AM-IDJ algorithm estimateseDmax2 value fork2 (k2 > k1) and
initiates a compensation stage.

Even when a sufficient number of object pairs have been returned from the first stage, users may request more an-
swers. Then,AM-IDJ initiates a compensation stage by determiningk2 and estimating a neweDmax2 accordingly.
As shown in Figure 10 (drawn from Figure 4), the compensation stage can initiate another compensation stage at the
end of its processing, by choosingk3 andeDmax3. This process continues until users stop requesting more answers.
In this way,AM-IDJ algorithm can be used to produce query results incrementally without limiting the maximum
number of pairs in advance. Except the first stage ofAM-IDJ algorithm where theAggresiveP laneSweep proce-
dure (in Algorithm 2) is used, theCompensateP laneSweep procedure (in Algorithm 3) is used to prune distant pairs
in the rest of the compensation stages.

4.3 Estimating the Maximum Distance (eDmax)

BothAM-KDJ andAM-IDJ algorithms process a distance join query based on an estimated cutoff valueeDmax.
Thus, there should be a way to obtain an initial estimate and correct the estimate adaptively as the algorithms proceed.
Assuming data sets are uniformly distributed, we provide mechanisms to choose an initial estimate ofeDmax, and to
adaptively correct it.

If the distribution of a data set is skewed, then a larger number of close pairs can be found in a smaller dense
region of the data space. We expect that the formulae given in this section tend to overestimateeDmax value for
non-uniformly distributed data sets, especially when a stopping cardinalityk is far smaller than the number of all pairs
of objects (i.e., k � jRj � jSj). This was corroborated by our experiments as described in Section 5.4.

4.3.1 Initial estimation

Let jRj andjSj be the number of data objects in MBRsR andS, respectively. Suppose that most regions ofR andS
overlap. Then, for a data objectr in R contained in the region shared byR andS, the expected number of objects in
S within distanced from r is approximated byjSj � ��d2

area(R\S) , assuming the circle centered atr of radiusd is fully
contained in the shared region (i.e.,R\S). Thus, by considering all data objects inR, the total number of object pairs
within distanced can be approximated byjRj � jSj � ��d2

area(R\S) :

When the target number of object pairs,k, is given with a query, we can obtain the initial estimation ofDmax by

14

r1

r2s1

s2

s3

s4

s5

s6

sweeping dimension

s7

eDmax1

eDmax2

eDmax3

r4

r3

(1) (2) (3)

(1) : covered in FirstStage(k1, eDmax1)
(2) : covered in CompensatingStage(k2, eDmax2)
(3) : covered in CompensatingStage(k3, eDmax3)

Figure 10: Step-Wise Incremental Distance Join

settingk to the above formula, as follows

k = jRj � jSj �
� � d2

area(R \ S)
;

and then by replacingd with eDmax. Therefore, for a given stopping cardinalityk, the initial estimation ofDmax can
be obtained by the following equation.

eDmax =
p
k � � (where� =

area(R \ S)

� � jRj � jSj
): (3)

Evidently this equation can be applied only whenR andS overlap. Nonetheless, it is unlikely this will be a serious
limitation, because overlapping node pairs always come before non-overlapping pairs in the main queueQM . For two
sets of data objects to be joined by distance, the root nodes of two corresponding R-trees are commonly expected to
overlap each other under most practical circumstances. We can then make an initial estimation ofDmaxfrom the pair
of root nodes.

4.3.2 Adaptive Correction of Estimated DistanceeDmax

The performance ofAM-KDJ andAM-IDJ algorithms can be further improved by adaptively adjusting the value of
eDmax at runtime. Adaptive correction ofeDmax can be done at any point of query processing by estimating a new
eDmax from the number of object pairsk0 (k0 < k) obtained up to the point and the real distance of thek0-th object
pair,Dmax(k0). Specifically, the new estimateeDmax

0 can be computed from Equation (3) as

eDmax
0 =

q
Dmax

2
(k0)

+ (k � k0)� (4)

15

by arithmetic correction, or as

eDmax
0 = Dmax(k0) �

p
k=k0 (5)

by geometric correction ifDmax(k0) 6= 0. In practice, we propose computingeDmax
0 in both ways, and then choose

the minimum if the query processing should be on the aggressive side. Otherwise, the maximum is chosen aseDmax
0.

Note that the new estimateeDmax
0 can sometimes grow beyond the previous estimate. If this happens, some pairs

whose distances are larger than the previous estimate but smaller than the new estimate could have already been pruned
and will never be examined in the current processing stage under the new estimate. Thus, to guarantee the correctness
of the distance join, the algorithm should initiate a compensation stage, as soon as a pair whose distance is smaller
than the smallesteDmax is dequeued from the main queue.

4.4 Queue Management

Efficient queue management is one of the key components of the distance join algorithms proposed in this paper.
Each of theB-KDJ , AM-KDJ , andAM-IDJ algorithms relies on the use of one or more priority queues for query
processing. In particular, the main queue (QM) is heavily used by all of the proposed algorithms, and its performance
impact is significant. In the worst case, the main queue can grow as large as the product ofall objects of two R-tree
indexes. That is, the size ofQM is inO(jRobj j � jSobj j), wherejRobj j andjSobj j are the number of all objects inR
andS, respectively. Thus, it is not always feasible to store the main queue in memory.

It was reported in [16] that a simple memory-based implementation might slow down query processing severely,
due to excessive virtual memory thrashing. A hybrid memory/disk scheme [16] and a technique based on range
partitioning [10] have been proposed to improve queue management and to avoid wasted sorting I/O operations. We
adopt a similar scheme for queue management, which partitions a queue by range based on distances of pairs. A
partition in the shortest distance range is kept in memory as a heap structure, while the rest of partitions are stored on
disk as merely unsorted piles.

When the in-memory heap becomes full, it issplit into two parts, and then one in the longer distance range is
moved to disk as a new segment. When the in-memory heap becomes empty, a disk-resident segment in the shortest
distance range or a part of the segment isswapped into memory to fill up the in-memory heap. Each of thesplit and
swap-inoperations requiresO(n log n) computational cost for a heap ofn elements as well as I/O cost for reading and
writing a segment. Thus, it is important to minimize the required number of those operations, which largely depends
on the partition boundary values between the in-memory heap and the first disk-resident segment, and between those
consecutive segments. However, as it is impossible to predict an exactDmax value for a givenk, so is it difficult to
determine optimal distance values as segment boundaries.

To address this issue, we use Equation (3) to determine the boundary distance values. Supposen is the number
of elements that can be stored in an in-memory heap. Then, the boundary value between the in-memory heap and the
first disk-resident segment is given by

p
n� �, and the boundary value between the first and second segments is given

by
p

(2� n)� �, and so on.
In addition to a main queue, multi-stage algorithmsAM-KDJ andAM-IDJ use a compensation queue (QC)

in the compensation stage. Unlike the main queue, a compensation queue does not store any pair of objects. In
other words, a compensation queue can store pairs of non-object R-tree nodes only. Thus, the size ofQC is in
O(jRnodej � jSnodej), wherejRnodej andjSnodej are the number of nodes (both internal and leaf nodes) inR andS,
respectively. This is a significantly lower upper-bound than a main queue has. We also observed from our experiments
that compensation queues were several orders of magnitude smaller than main queues. As for a distance queue used
by B-KDJ andAM-KDJ algorithms, its size is always bounded by a givenk value. For these reasons, under most
circumstances, we assume either a compensation queue and a distance queue fits in memory. If any of these queues
outgrows memory, the same partitioning technique used for a main queue will be applied.

5 Performance Evaluation

In this section, we evaluate the proposed algorithms empirically and compare with previous work. In particular, the
proposedB-KDJ , AM-KDJ andAM-IDJ algorithms were compared with Hjaltason and Samet’sk-distance and

16

incremental distance join algorithms (hereinafter denoted asHS -KDJ andHS -IDJ , respectively) fork-distance join
(KDJ) and incremental distance join (IDJ) queries. We also include the performance of an R-tree based spatial join
algorithm [8] combined with a sort operation (denoted asSJ -SORT) in most of the experiments. For each distance join
query, a spatial join operation was performed with a realDmaxvalue to generate thek nearest pairs. Then, an external
sort operation was performed to return the query results in an increasing order of distances. Note thatSJ -SORT
cannot be applied without knowing a realDmax value, and we made a favorable assumption forSJ -SORT that the
realDmax value was known toSJ -SORT a priori. Thus, we conjecture thatSJ -SORT followed by an external sort
yields the best known lower bound performance for distance join processing.

5.1 Experimental Settings

Experiments were performed on a Sun Ultrasparc-II workstation running on Solaris 2.7. This workstation has 256
MBytes of memory and 9 GBytes of disk storage (Seagate ST39140A) with Ultra 10 EIDE interface. The disk is
locally attached to the workstation and used to store databases, queues and any temporary results. We used the direct
I/O feature of Solaris for all the experiments to avoid operating system’s cache effects, and the average disk access
bandwidth was about 0.5 MBytes/sec for random accesses and about 5 MBytes/sec for sequential accesses.

Data sets To evaluate distance join algorithms, we used real-world data sets in TIGER/Line97 from the U.S.
Bureau of Census [20]. The particular data sets we used were 633,461 streets and 189,642 hydrographic objects from
the Arizona state. Throughout the entire set of experiments, the same page size of 4 KBytes was used for disk I/O and
R*-tree [3] nodes.

Metrics We measured the performance of various algorithms based on the following metrics to compare the
algorithms in different aspects such as computational cost and I/O cost.

1. number of distance computations: The cost of computing distances between pairs of nodes (or objects) con-
stitutes a significant portion of the computational cost of a distance join operation. Thus, the total number of
distance computations required by a distance join algorithm provides a direct indication of its computational
performance.

2. number of queue insertions: The task of managing a main queue is largely I/O intensive as well as CPU intensive.
Inserting a node pair into the in-memory portion of the queue is CPU intensive, while inserting into the disk
resident portion is I/O intensive. We measured the CPU and I/O cost separately for the two different queue
insertions.

3. number of R-tree node accesses: The number of R-tree nodes accessed during distance join processing is another
I/O intensive metric. We measured actual number of nodes fetched from disk with varying R-tree buffer sizes.

4. response time: Actual query response times were measured for overall performance of distance join algorithms.
CPU and I/O costs were considered separately in measuring the response times.

5.2 Evaluation ofk-Distance Joins

In this set of experiments, we varied a stopping cardinalityk from 10 to 100,000 to compare the performance of
HS -KDJ , B-KDJ andAM-KDJ algorithms. The sizes of in-memory portion of a main queue and R-tree buffer were
fixed to 512 KBytes each. ForAM-KDJ algorithm, we used Equation (3) to estimateeDmax values, and we observed
a tendency foreDmax values to be overestimated with respect to realDmax values. For example, fork = 100; 000,
eDmax was about 2.3 times larger than a realDmax.

Figure 11(a) shows that bothB-KDJ andAM-KDJ reduced the number of distance computations significantly.
The numbers of distance computations required by the two algorithms were smaller than those required byHS -KDJ
algorithm by up to two orders of magnitude.AM-KDJ was almost identical toSJ -SORT by this metric. This
demonstrates that the optimized plane-sweep method was very effective in pruning pairs generated by bi-directional
expansions. On the other hand,HS -KDJ algorithm examines all possible pairs exhaustively in uni-directional expan-
sions.

In Figure 11(b), BothB-KDJ andAM-KDJ achieved significant reductions in queue insertions for allk values.
AM-KDJ was always better thanB-KDJ particularly for largek values. This result confirms our conjecture that the

17

10

20

30

40

50

10 100 1000 10000 100000

N
um

be
r

in
 M

ill
io

n

K : Number of Pairs

No. of Distance Computations

HS-KDJ
B-KDJ

AM-KDJ
SJ-SORT

2

4

6

8

10

10 100 1000 10000 100000

N
um

be
r

in
 1

00
K

K : Number of Pairs

No. of Queue Insertions
HS-KDJ

B-KDJ
AM-KDJ

SJ-SORT

0

3000

6000

9000

12000

15000

10 100 1000 10000 100000

N
um

be
r

of
 R

-t
re

e
N

od
es

K : Number of Pairs

Actual Number of R-Tree Node Accesses

HS-KDJ
B-KDJ

AM-KDJ
SJ-SORT

(a) Distance Computations (b) Queue Insertions (c) R-Tree Node Accesses

0

20

40

60

80

100

120

10 100 1000 10000 100000

T
im

e
in

 S
ec

on
ds

K : Number of Pairs

CPU Time

HS-KDJ
B-KDJ

AM-KDJ
SJ-SORT

0

30

60

90

120

150

180

10 100 1000 10000 100000

T
im

e
in

 S
ec

on
ds

K : Number of Pairs

I/O Time
HS-KDJ

B-KDJ
AM-KDJ

SJ-SORT

0

100

200

300

10 100 1000 10000 100000

T
im

e
in

 S
ec

on
ds

K : Number of Pairs

Response Time

HS-KDJ
B-KDJ

AM-KDJ
SJ-SORT

(d) CPU Time (e) I/O Time (f) Response Time

Figure 11: Performance ofk-Distance Joins

optimized plane-sweep method can prevent an explosion of a main queue that would be caused by bi-directional node
expansions without the optimized plane-sweep.

Figure 11(c) shows the number of R-tree nodes fetched from disk for distance join processing by each algorithm.
For largek values, the proposedB-KDJ andAM-KDJ algorithms required a far smaller number of R-tree node
accesses thanHS -KDJ algorithm. For smallk values, on the other hand,HS -KDJ algorithm was slightly better than
the other algorithms, due to its more localized node access patterns for smallk. Table 2 compares the number of
R-tree nodes that would be fetched from disk with R-tree buffer size set to zero. Apparently, the bi-directional node
expansion used byB-KDJ andAM-KDJ algorithms requires much less number of R-tree node accesses than uni-
directional node expansion used byHS -KDJ algorithm. It should be noted that the number of R-tree node accesses
for B-KDJ , AM-KDJ andSJ -SORT algorithms are all identical in Table 2. This is because these algorithms use
the same bi-directional node expansion and access the same collection of R-tree nodes, though they may traverse an
R-tree index in different orders.

The total CPU time spent on executing each algorithm is shown in Figure 11(d). TheB-KDJ andAM-KDJ
algorithms consistently outperformedHS -KDJ up to an order of magnitude. This significant improvement in compu-
tational cost is due mainly to the reduced number of distance computations. Recall that the uni-directional expansion
requires distance computations for an exhaustive set of node pairs, while bi-directional node expansion with plane
sweeping requires distance computations only for node pairs whose axis distances are smaller thanqDmax value at
the top of the distance queue. Additionally, the proposed algorithms are further optimized by techniques for selecting
sweeping axis and direction and by using maximum distance as a secondary priority for the main queue.

The total I/O time shown in Figure 11(e) reflects mostly the combined effects of queue insertions and R-tree
node accesses in Figure 11(b) and Figure 11(c), respectively. Figure 11(f) shows the response time of each algorithm
with the CPU and I/O times combined together. BothB-KDJ andAM-KDJ algorithms outperformedHS -KDJ
algorithm by a factor of two or three in response times.AM-KDJ performed better thanB-KDJ for largek values,
demonstrating thatAM-KDJ deals with the slow start problem better thanB-KDJ does. For smallk values, both
B-KDJ andAM-KDJ were comparable withSJ -SORT. Even for largek values, the response time ofAM-KDJ was
within about 80 percent above that ofSJ -SORT, which we conjecture yields the best known lower bound performance.

18

KDJ Stopping cardinalityk
Algorithms 10 100 1,000 10,000 100,000

HS -KDJ 186,184 186,403 186,801 188,354 197,113
B-KDJ 12,652 12,660 12,672 12,688 12,916
AM-KDJ 12,652 12,660 12,672 12,688 12,916
SJ -SORT 12,652 12,660 12,672 12,688 12,916

Table 2: No. of R-tree Node Accesses fork-Distance Joins

0

5

10

15

20

25

10 100 1000 10000 100000

No. of Pairs

N
o.

in
M

ill
io

ns BKDJ(basic)

BKDJ(sweeping index)

BKDJ(max. distance)

BKDJ

0

2

4

6

8

10

10 100 1000 10000 100000

No. of Pairs
N

o.
in

10
0K

s BKDJ(basic)

BKDJ(sweeping index)

BKDJ(max. distance)

BKDJ

(a) Distance Computations (b) Queue Insertions

Figure 12: Improvements by Optimized Plane Sweep forB-KDJ

5.3 Impact of Optimized Plane-Sweep and Secondary Priority

We have proposed optimization techniques forB-KDJ in Section 3. One is for selecting sweeping axis and direction,
which is mainly aimed at reducing the number of distance computations. The other is using the maximum distance
between node pairs as a secondary priority of the main queues, which is mainly aimed at reducing the number of queue
insertions. To further analyze the performance impacts of the optimization techniques, we measured the performance
of B-KDJ (1) with both optimizations turned on, (2) with the sweeping index only, (3) with the secondary priority
only, (4) with both optimizations turned off. For the cases with sweeping index turned off, the sweeping index and
direction were fixed tox-axis and forward direction.

The sweeping index method alone reduced the number of distance computations by up to 20 percent as shown in
Figure 12(a). The use of the maximum distance as a secondary priority alone reduced the number of queue insertions
by up to 15 percent as shown in Figure 12(b). The use of the maximum distance also helped decrease theqDmax

value more quickly and reduce the number of distance computations slightly as shown in Figure 12(a). However,
the synergistic effect of the two optimization techniques was rather insignificant. As they improve the performance
of distance join processing largely independently in two different aspects, we recommend that both the optimization
techniques be used together.

5.4 Evaluation of Incremental Distance Joins

As in the previous section, we varied a stopping cardinalityk from 10 to 100,000 to compare the performance of
incremental distance join algorithmsHS -IDJ andAM-IDJ . Like the previous experiments fork-distance joins, the
sizes of in-memory portion of a main queue and R-tree buffer were fixed to 512 KBytes.

In Figures 13(a) and 13(b),AM-IDJ algorithm required 75 to 98 percent less distance computations and queue
insertions thanHS -IDJ algorithm did. For largek values, as shown in Figure 13(c),AM-IDJ algorithm required a
much smaller number of disk accesses thanHS -IDJ algorithm. This is becauseAM-IDJ accesses R-tree nodes using
bi-directional node expansion, in the same way asAM-KDJ does. The significant improvement in these three metrics
in turn led to improvement in response time by an order of magnitude in Figure 13(f). Specifically, the improvement
in CPU time (Figure 13(d)) is attributed to the reduction in distance computations and queue insertions, and the

19

10

20

30

40

50

10 100 1000 10000 100000

N
um

be
r

in
 M

ill
io

n

K : Number of Pairs

No. of Distance Computations

HS-IDJ
AM-IDJ

SJ-SORT

10

20

30

40

50

10 100 1000 10000 100000

N
um

be
r

in
 M

ill
io

ns

K : Number of Pairs

No. of Queue Insertions

HS-IDJ
AM-IDJ

SJ-SORT

0

3000

6000

9000

12000

10 100 1000 10000 100000

N
um

be
r

of
 R

-t
re

e
N

od
es

K : Number of Pairs

Actual Number of R-Tree Node Accesses

HS-IDJ
AM-IDJ

SJ-SORT

(a) Distance Computations (b) Queue Insertions (c) R-Tree Node Accesses

0

50

100

150

200

250

10 100 1000 10000 100000

T
im

e
in

 S
ec

on
ds

K : Number of Pairs

CPU Time

HS-IDJ
AM-IDJ

SJ-SORT

0

200

400

600

800

10 100 1000 10000 100000

T
im

e
in

 S
ec

on
ds

K : Number of Pairs

IO Time

HS-IDJ
AM-IDJ

SJ-SORT

0

300

600

900

10 100 1000 10000 100000

T
im

e
in

 S
ec

on
ds

K : Number of Pairs

Response Time

HS-IDJ
AM-IDJ

SJ-SORT

(d) CPU Time (e) I/O Time (f) Response Time

Figure 13: Performance of Incremental Distance Joins

improvement in I/O time (Figure 13(e)) is attributed to the reduction in queue insertions and R-tree node accesses.
Like AM-KDJ algorithm, Equation (3) in Section 4.3.1 was used to estimateeDmax values forAM-IDJ algorithm.

Now it is well worthwhile investigating the performance impact of the stopping cardinalityk. Generally,KDJ
algorithms make use of the apriori knowledge of thek value to minimize the distance computations and the number of
queue insertions. Thus,KDJ algorithms are expected to be much faster thanIDJ algorithms. From our experiments,
however,HS -KDJ required almost as many distance computations asHS -IDJ did. This indicates thatHS -KDJ does
not take advantage of the stopping cardinality enough to achieve performance gain in the distance computations.

In contrast,AM-KDJ required only about 70 percent of distance computations thatAM-IDJ did (Figure 13(a)
and Figure 11(a)), and required only 8 percent of queue insertions thatAM-IDJ did (Figure 13(b) and Figure 11(b)).
This is becauseKDJ algorithms need not insert a node pair into main queue if its distance is greater thanqDmax

value. The number of queue insertions has direct impact on both CPU and I/O times. The response time ofAM-KDJ
algorithm was about 60 percent less than that ofAM-IDJ algorithm (see Figure 13(f) and Figure 11(f)).

5.5 Impact of Memory Size

In this set of experiments, we examined the performance impact of memory constraint on queue management and
R-tree access. The sizes of in-memory portion of a main queue and R-tree buffer were varied from 64 KBytes to
1024 KBytes. We measured the response time ofHS -KDJ , B-KDJ andAM-KDJ algorithms for a fixed stopping
cardinalityk = 100; 000.

5.5.1 Buffer Size for Main Queue

No measurement forSJ -SORT algorithm appears in Figures 14(a) through 14(c), becauseSJ -SORT algorithm need
not use the main queue for distance join processing. As we expected, in Figures 14(a) and 14(b), the cost of queue
management decreased in terms of both the number of required write operations and time spent on the write operations.
More noticeable improvement was observed in handling the overflow and underflow of the in-memory portion of
queue, bysplit andswap-inoperations respectively. (Thesplit andswap-inoperations are descibed in Section 4.4.)
The time spent on thesplit andswap-inoperations was improved substantially for all three algorithms in Figure 14(c).

It should be noted that the cost of queue management can be further reduced by not storing object pairs in the
main queue, as proposed in the recent work by Corralet al. [11]. It is straightforward to modify the distance queue

20

0

2000

4000

6000

64K 128K 256K 512K 1024K

N
um

be
r

of
 B

lo
ck

 W
rit

es

Queue Memory Size

No. of Disk Queue Block Writes

HS-KDJ
B-KDJ

AM-KDJ
0

20

40

60

64K 128K 256K 512K 1024K

T
im

e
in

 S
ec

on
ds

Queue Memory Size

Queue Block Write Time

HS-KDJ
B-KDJ

AM-KDJ
0

10

20

30

64K 128K 256K 512K 1024K

T
im

e
in

 S
ec

on
ds

Queue Memory Size

Split/Swapin Time
HS-KDJ

B-KDJ
AM-KDJ

(a) Queue Block Writes (b) Queue Block Write Time (c) Split/Swapin Time

0

20

40

60

80

100

120

64K 128K 256K 512K 1024K

T
im

e
in

 S
ec

on
ds

Queue Memory Size

CPU Time
HS-KDJ

B-KDJ
AM-KDJ

SJ-SORT

0

50

100

150

200

64K 128K 256K 512K 1024K

T
im

e
in

 S
ec

on
ds

Queue Memory Size

IO Time
HS-KDJ

B-KDJ
AM-KDJ

SJ-SORT

0

100

200

300

64K 128K 256K 512K 1024K

T
im

e
in

 S
ec

on
ds

Queue Memory Size

Response Time
HS-KDJ

B-KDJ
AM-KDJ

SJ-SORT

(d) CPU Time (e) I/O Time (f) Response Time

Figure 14: Impact of Queue Buffer Size

to storek object pairs forB-KDJ andAM-KDJ algorithms. The reason we did not use the optimization was that the
optimization cannot be applied to incremental distance join queries and it was desired to evaluate the performance of
KDJ andIDJ algorithms on the same basis.

While the CPU time remained almost unchanged in Figure 14(d), the I/O time was improved with more memory
for all the algorithms shown in Figure 14(e). The improved response time was mainly attributed to the improved I/O
time. The proposedB-KDJ andAM-KDJ algorithms showed consistently better performance in queue management
thanHS -KDJ all over the examined range of memory size. This is becauseB-KDJ andAM-KDJ algorithms reduced
the number of required queue insertions and queue write operations.

5.5.2 Buffer Size for R-Tree

As shown in Figures 15(a) and 15(b), a considerable amount of improvement in R-tree accesses was observed by
increasing the size of buffer for R-tree. For example, by increasing the buffer size from 64 KBytes to 1024 KBytes,
the R-tree access time was reduced by 46 percent forB-KDJ andAM-KDJ algorithms. Recall thatB-KDJ and
AM-KDJ algorithms, which are based on bi-directional node expansion, show the same behavior in R-tree access.

Like the queue management in the previous section, the CPU time spent on R-tree accesses remained almost
unchanged, as shown in Figures 15(c). It was again the I/O time that affected the response time most in Figures 15(d)
and 15(e).

5.6 Impact of Duplicates and Zero-Distance Pairs

In real-world applications, spatial data sets often contain duplicates (i.e., different objects with identical spatial extents
or positions). These duplicates may cause query processing procedures to behave differently than normally expected.
To evaluate the performance impact of duplicates for distance join processing, we carried out another set of experi-
ments with slightly different data sets. Specifically, several thousands of data objects were added to the hydragraphic
data set and the street data set, so that about 10,000 pairs of hydragraphic objects and streets are intersected (i.e., within
zero distance).

Figure 16 shows the performances ofk-distance joins for the datasets with duplicates. For all thek values, the
proposed algorithms,B-KDJ andAM-KDJ , outperformedHS -KDJ , andAM-KDJ was better thanB-KDJ for
largek values due to the slow-start problem ofB-KDJ . However, for smallk values, the performance gap between

21

0

3000

6000

9000

12000

15000

64K 128K 256K 512K 1024K

N
um

be
r

of
 R

-t
re

e
N

od
e

A
cc

es
se

s

R-Tree Buffer Size

Actual R-tree Node Accesses
HS-KDJ

B-KDJ
AM-KDJ

SJ-SORT

0

50

100

150

64K 128K 256K 512K 1024K

T
im

e
in

 S
ec

on
ds

R-Tree Buffer Size

IO Time
HS-KDJ

B-KDJ
AM-KDJ

SJ-SORT

(a) R-Tree Node Accesses (b) R-Tree Node Access Time

0

50

100

64K 128K 256K 512K 1024K

T
im

e
in

 S
ec

on
ds

R-Tree Buffer Size

CPU Time
HS-KDJ

B-KDJ
AM-KDJ

SJ-SORT

0

50

100

150

200

64K 128K 256K 512K 1024K

T
im

e
in

 S
ec

on
ds

R-Tree Buffer Size

IO Time
HS-KDJ

B-KDJ
AM-KDJ

SJ-SORT

0

100

200

300

64K 128K 256K 512K 1024K

T
im

e
in

 S
ec

on
ds

R-Tree Buffer Size

Response Time
HS-KDJ

B-KDJ
AM-KDJ

SJ-SORT

(c) CPU Time (d) I/O Time (e) Response Time

Figure 15: Impact of R-Tree Buffer Size

10

20

30

40

50

10 100 1000 10000 100000

N
um

be
r

in
 M

ill
io

n

K : Number of Pairs

No. of Distance Computations

HS-KDJ
B-KDJ

AM-KDJ
SJ-SORT

2

4

6

8

10

10 100 1000 10000 100000

N
um

be
r

in
 1

00
K

K : Number of Pairs

No. of Queue Insertions

HS-KDJ
B-KDJ

AM-KDJ
SJ-SORT

0

6000

9000

12000

15000

10 100 1000 10000 100000

N
um

be
r

of
 R

-t
re

e
N

od
es

K : Number of Pairs

Actual Number of R-Tree Node Accesses

HS-KDJ
B-KDJ

AM-KDJ
SJ-SORT

(a) Distance Computations (b) Queue Insertions (c) R-Tree Node Accesses

0

20

40

60

80

100

120

10 100 1000 10000 100000

T
im

e
in

 S
ec

on
ds

K : Number of Pairs

CPU Time

HS-KDJ
B-KDJ

AM-KDJ
SJ-SORT

0

30

60

90

120

150

180

10 100 1000 10000 100000

T
im

e
in

 S
ec

on
ds

K : Number of Pairs

I/O Time

HS-KDJ
B-KDJ

AM-KDJ
SJ-SORT

0

100

200

300

10 100 1000 10000 100000

T
im

e
in

 S
ec

on
ds

K : Number of Pairs

Response Time

HS-KDJ
B-KDJ

AM-KDJ
SJ-SORT

(d) CPU Time (e) I/O Time (f) Response Time

Figure 16: Performance ofk-Distance Joins for Datasets with Duplicates

these algorithms was rather small compared with the case for data sets without duplicates. (See Figure 11.) This is
because a large number of zero-distance pairs diminishes the distinctions among differentKDJ algorithms.

Contrary to our conjecture,SJ -SORT was worse than all threek-distance join algorithms in response times for
smallk values (k � 10; 000). This is again due to the fact that there were about 10,000 pairs of zero distance. No
matter what distance cutoff was provided for theSJ -SORT algorithm, an exhaustive set of zero-distance pairs were
returned as a distance join query results, which turned out a significant overhead for smallk values.

For the incremental distance join algorithmsHS -IDJ , AM-IDJ andSJ -SORT, we observed the same trend in

22

10

20

30

40

50

10 100 1000 10000 100000

N
um

be
r

in
 M

ill
io

n

K : Number of Pairs

No. of Distance Computations

HS-IDJ
AM-IDJ

SJ-SORT

10

20

30

40

50

10 100 1000 10000 100000

N
um

be
r

in
 M

ill
io

ns

K : Number of Pairs

No. of Queue Insertions

HS-IDJ
AM-IDJ

SJ-SORT

0

3000

6000

9000

12000

10 100 1000 10000 100000

N
um

be
r

of
 R

-t
re

e
N

od
es

K : Number of Pairs

Actual Number of R-Tree Node Accesses

HS-IDJ
AM-IDJ

SJ-SORT

(a) Distance Computations (b) Queue Insertions (c) R-Tree Node Accesses

0

50

100

150

200

250

10 100 1000 10000 100000

T
im

e
in

 S
ec

on
ds

K : Number of Pairs

CPU Time

HS-IDJ
AM-IDJ

SJ-SORT

0

200

400

600

800

10 100 1000 10000 100000

T
im

e
in

 S
ec

on
ds

K : Number of Pairs

IO Time

HS-IDJ
AM-IDJ

SJ-SORT

0

300

600

900

10 100 1000 10000 100000

T
im

e
in

 S
ec

on
ds

K : Number of Pairs

Response Time

HS-IDJ
AM-IDJ

SJ-SORT

(d) CPU Time (e) I/O Time (f) Response Time

Figure 17: Performance of Incremental Distance Joins for Datasets with Duplicates

the performance from the data sets with duplicates. (See Figure 17.)AM-IDJ was always better thanHS -IDJ for all
k values, andAM-IDJ yielded better response time thanSJ -SORT in smallk values(k � 1000).

5.7 Impact of eDmax Estimation onAM-KDJ Performance

We designed two sets of experiments to characterize the performance ofAM-KDJ algorithm with respect to the
accuracy of estimatedeDmax values. In Section 5.7.1, instead of using Equation (3) to estimateeDmax, we varied the
eDmax value from0:1 � Dmax to 10 � Dmax. Recall thatDmax is a real distance between thek-th nearest pair of
objects. In Section 5.7.2, we used Equation (3) andpower lawproposed in [13] to computeeDmaxvalues. Again, the
sizes of in-memory portion of a main queue and R-tree buffer were fixed to 512 KBytes.

5.7.1 Robustness ofAM-KDJ

While fixing a stopping cardinalityk to 100,000, we varied theeDmax value from0:1�Dmax to 10�Dmax. When
eDmax is overestimated (eDmax > Dmax), the compensation stage ofAM-KDJ algorithm is not necessary, because
all thek nearest pairs will be produced in the first (aggressive pruning) stage. Even wheneDmax is overestimated,
AM-KDJ guarantees thateDmax is always smaller than or equal toqDmax (obtained from a distance queue) through-
out the first stage. Thus,AM-KDJ always requires no more distance computation and queue insertion operations than
B-KDJ algorithm does.

On the other hand, ifeDmax is underestimated (eDmax < Dmax), the node pairs in the compensation queue will
be revisited in the compensation stage. Thus, the cost of tree traversals will increase, but it will be bounded by twice
the cost ofB-KDJ algorithm. Although there is no such a bound on the cost of queue management, we observed in
most of our experiments that the cost of queue management was lower than that ofB-KDJ algorithm. This is because
a large number of insertions to a compensation queue were prevented by aggresive pruning, and the compensation
queue was several orders of magnitude smaller than the main queue. As discussed in Section 4.1, for a pair already
expanded once in the first stage, only child pairs not examined in the first stage are paired up in the compensation stage
and thereby wasting no time for redundant work. The value ofqDmax is likely to have become quite close to a real
Dmax value in the compensation stage. So,AM-KDJ algorithm usuallyprunes distant pairs much more efficiently
in the compensation stagethanB-KDJ algorithm would do in a single stage. Therefore,AM-KDJ outperforms the
k-distance join algorithmsHS -KDJ andB-KDJ, despite the additional cost of compensation stage.

23

0

10

20

30

40

50

0.2 0.4 0.6 0.8 1 3 5 7 9

N
um

be
r

in
 M

ill
io

ns

ratio of eDmax / Dmax

No. of Distance Computations

HS-KDJ

B-KDJ

AM-KDJ SJ-SORT

0

2

4

6

8

10

0.2 0.4 0.6 0.8 1 3 5 7 9

N
um

be
r

in
 1

00
K

ratio of eDmax / Dmax

No. of Queue Insertions

B-KDJ

HS-KDJ

AM-KDJ

SJ-SORT

0

100

200

300

0.2 0.4 0.6 0.8 1 3 5 7 9

T
im

e
in

 S
ec

on
ds

ratio of eDmax / Dmax

Response Time

HS-KDJ

B-KDJ

AM-KDJ

SJ-Sort

(a) Distance Computations (b) Queue Insertions (c) Response Time

Figure 18: Performance Impact ofeDmax

Figure 18 shows that aseDmax approaches to a realDmax value, the performance ofAM-KDJ improves con-
sistently in all three metrics. WheneDmax increases far beyond the realDmax value, the performance ofAM-KDJ
converges to that ofB-KDJ algorithm. More importantly, however,AM-KDJ always outperformedB-KDJ , not to
mentionHS -KDJ , with eDmax in a wide spectrum of estimated value range.

We have not measured the cost of compensation queue management. A compensation queue contains pairs of
non-object R-tree nodes. During the first (aggressive pruning) stage ofAM-KDJ algorithm, The number of pruned
pairs is far larger than the number of non-object pairs inserted into a compensation queue. In most of our experiments,
the size of a compensation queue wasless than 0.5 percentof the size of a main queue. Thus, the additional cost
required for the compensation queue was almost negligible. This is one of the reasons whyAM-KDJ algorithm
always outperformedB-KDJ , which does not need a compensation queue.

5.7.2 Uniformity Assumption and Power Law

Faloutsoset al. [13] proposed a power law to predict the selectivity of spatial join and to estimate the distance of
thek-th closest pair. We used thebox-occupancy-product-summethod as proposed in [13] to determine the values of
coefficient (C) and slope (s) of the power law. Then, we used the following formula to estimateeDmax for differentk
values.

eDmax = L�

�
k

C

�1=s
(6)

HereL is the maximum length of a data domain alongx or y axis. For the data sets without duplicates,C was
3:85894� 1011 ands was 1.812235. For the data sets with duplicates,C was3:96152� 1011 ands was 1.806431.L
was 5766370 in both cases.

Figures 19(a) and 19(b) show realDmax and estimatedeDmax values fork values varying from 10 to 100,000.
eDmax values estimated by Equation 3 are labeledUniform ; those estimated by the power law are labeledPower
Law. For the data sets without duplicates, theeDmax estimation by the power law was very accurate, while Equation 3
consistently overestimated. However, for data sets with duplicates, even the power law was not as accurate and it
overestimated for smallk values.

In the experiments, both Equation 3 (uniformity assumption) and Equation 6 (power law) overestimatedDmax

values. As we discussed in the previous section, the compensation stage ofAM-KDJ is not necessary wheneDmax

is overestimated. To demonstrate the performance impact ofeDmax estimation, we measured response times of
AM-KDJ algorithm using realDmax values and estimatedeDmax values in Figures 19(c) and 19(d). Evidently, the
response times ofAM-KDJ were not so affected byeDmax estimation for both data sets with and without duplicates.
This is another evidence thatAM-KDJ yields very stable performance under various circumstances, and Equation 3
based on uniformity assumption is a viable method to estimateeDmax values for real-world data sets.

5.8 Stepwise Incremental Execution ofAM-IDJ

Incremental distance join algorithms do not require a preset stopping cardinalityk. Thus, in this set of experiments, we
simulated a situation where users repeatedly requested a set of 10,000 nearest pairs at a time until a total of 100,000

24

0

500

1000

1500

2000

2500

10 100 1000 10000 100000

di
st

an
ce

K : Number of Pairs

Dmax vs. eDmax
Uniform

Power Law
real Dmax

0

500

1000

1500

2000

2500

10 100 1000 10000 100000

di
st

an
ce

K : Number of Pairs

Dmax vs. eDmax
Uniform

Power Law
real Dmax

(a)eDmax for data sets without duplicates (b)eDmax data sets with duplicates

0

30

60

90

120

10 100 1000 10000 100000

T
im

e
in

 S
ec

on
ds

K : Number of Pairs

Response Time
Uniform

Power Law
real Dmax

0

30

60

90

120

10 100 1000 10000 100000

T
im

e
in

 S
ec

on
ds

K : Number of Pairs

Response Time
Uniform

Power Law
real Dmax

(c) Response time for data sets without duplicates (d) Response time for data sets with duplicates

Figure 19:eDmax estimation based on uniform distribution and Power Law

nearest pairs were generated. Incremental algorithmsHS -IDJ andAM-IDJ each were executed once in a single
experiment run, until a total of 100,000 nearest pairs were generated. The sizes of in-memory portion of a main queue
and R-tree buffer were fixed to 512 KBytes both forHS -IDJ andAM-IDJ .

For SJ -SORT, which is not an incremental algorithm, we restarted its processing each timei � 10; 000 nearest
pairs were generated fori (1 � i � 9). Thus, the performance measurements ofSJ -SORT presented in Figure 20
are cumulative. For example, the response time ofSJ -SORT for k = 20; 000 includes the times spent on executing
SJ -SORT twice, once fork = 10; 000 and another fork = 20; 000. For each run ofSJ -SORT, we used a realDmax

value for each of different stopping cardinalities.
In Figure 20, we measured the response time ofAM-IDJ algorithm in two different ways: (i) witheDmax values

estimated by Equation (3), and (ii) with realDmax values provided for 10 differentk values. When estimatedeDmax

values were provided,AM-IDJ needed compensation processing only after generating 30,000 pairs and 90,000 pairs,
due to overestimatedeDmax values. In the second case (denoted byAM-IDJ (Dmax) in Figure 20), a realDmax

value was provided for each ofk values from 10,000 through 100,000, to simulate a situation where the next set
of 10,000 pairs of objects were repeatedly requested by a user. Consequently,AM-IDJ was forced to initiate a
compensation stage, each time the next set was requested. This overhead slowed down the processing due mainly
to redundant R-tree node accesses. Overall,AM-IDJ showed a fairly consistent performance over varyingeDmax

estimates, asAM-KDJ did in Section 5.7. For all thek values,AM-IDJ with estimatedeDmax improved the
response time by a factor of two to four, when compared withHS -IDJ .

6 Conclusions

We have developed new distance join algorithms for spatial databases. The proposed algorithms provide significant
performance improvement over previous work. The plane-sweep technique optimized by novel strategies for selecting
a sweeping axis and direction minimizes the computational overhead incurred by bi-directional node expansions. The

25

0

200

400

600

800

1000

20000 40000 60000 80000 100000

T
im

e
in

 S
ec

on
ds

K : Number of Pairs

Response Time

SJ-Sort

HS-IDJ
AM-IDJ

AM-IDJ(Dmax)
SJ-SORT

Figure 20: Step-Wise Incremental Execution

node expansions are further optimized by using maximum distance for breaking tied pairs. We have shown that this
optimized plane-sweep technique alone improves processing of ak-distance join query considerably.

The adaptive multi-stage algorithms employ aggressive pruning and compensation methods to further optimize
the distance join processing. These algorithms address a slow start problem by using estimated maximum distances
as cutoff values for pruning distant pairs. Our experimental study shows that the proposed algorithms outperformed
previous work significantly and consistently for all the stopping cardinalities over a wide spectrum of estimated max-
imum distances. Ample evidence was observed that the adaptive algorithm yielded significant improvement in query
processing time regardless of the techniques used for maximum distance estimations. For a relatively small stopping
cardinality, the proposed algorithms achieved up to an order of magnitude improvement over previous work. Assum-
ing data objects are uniformly distributed, we have developed strategies to choose an initial estimate and to correct the
estimate adaptively during the query processing.

When the stopping cardinality of a distance join query is unknown (as in on-line query processing environments
or a complex query that contains a distance join as a sub-query), the adaptive multi-stage algorithms process the query
in a stepwise manner so that the query results can be returned incrementally.

References

[1] Lars Arge, Octavian Procopiuc, Sridhar Ramaswamy, Torsten Suel, and Jeffrey. S. Vitter. Scalable sweeping-
based spatial join. InProceedings of the 24th VLDB Conference, pages 259–270, New York, USA, June 1998.

[2] Sunil Arya, David M. Mount, and Onuttom Narayan. Accounting for boundary effects in nearest neighbor
searching. InProc. 11th Annual Symp. on Computational Geometry, pages 336–344, Vancouver, Canada, 1995.

[3] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. TheR�-tree: An efficient and
robust access method for points and rectangles. InProceedings of the 1990 ACM-SIGMOD Conference, pages
322–331, Atlantic City, NJ, May 1990.

[4] Alberto Belussi and Christos Faloutsos. Estimating the selectivity of spatial queries using the correlation fractal
dimension. InProceedings of the 21st VLDB Conference, pages 299–310, Zurich, Switzerland, September 1995.

[5] Stefan Berchtold, Bernhard Ertl, Daniel Keim, Hans-Peter Kriegel, and T. Seidl. Fast nearest neighbor search in
high-dimensional spaces. InProceedings of the 14th International Conference on Data Engineering, Orlando,
Florida, September 1998.

[6] Stefan Berchtold, Daniel A. Keim, and Hans-Peter. Kriegel. The X-tree: An index structure for high-dimensional
data. InProceedings of the 22nd VLDB Conference, Bombay, India, September 1996.

[7] Thomas Brinkhoff, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. Multi-step processing of spatial
joins. In Proceedings of the 1994 ACM-SIGMOD Conference, pages 197–208, Minneapolis, Minnesota, May
1994.

[8] Thomas Brinkhoff, Hans-Peter Kriegel, and Bernhard Seeger. Efficient processing of spatial joins using R-Trees.
In Proceedings of the 1993 ACM-SIGMOD Conference, pages 237–246, Washington, DC, May 1993.

26

[9] Michael J. Carey and Donald Kossmann. On saying “enough already!” in SQL. InProceedings of the 1997
ACM-SIGMOD Conference, pages 219–230, Tucson, AZ, May 1997.

[10] Michael J. Carey and Donald Kossmann. Reducing the braking distance of an SQL query engine. InProceedings
of the 24th VLDB Conference, pages 158–169, New York, NY, August 1998.

[11] Antonio Corral, Yannis Manolopoulos, Yannis Theodoridis, and Michael Vassilakopoulos. Closest pair queries
in spatial databases. InProceedings of the 2000 ACM-SIGMOD Conference, pages 189–200, Dallas, TX, May
2000.

[12] Donko Donjerkovic and Raghu Ramakrishnan. Probabilistic optimization of top N queries. InProceedings of
the 25th VLDB Conference, Edinburgh, Scotland, September 1999.

[13] Christos Faloutsos, Bernhard Seeger, Agma Traina, and Caetano Traina Jr. Spatial join selectivity using power
laws. InProceedings of the 2000 ACM-SIGMOD Conference, pages 177–188, Dallas, TX, May 2000.

[14] Antonin Guttman. R-Trees: A dynamic index structure for spatial searching. InProceedings of the 1984 ACM-
SIGMOD Conference, pages 47–57, Boston, MA, June 1984.

[15] Gisli R. Hjaltason and Hanan Samet. Ranking in spatial databases. InProc. of 4th Intl. Symposium on Large
Spatial Databases(SSD’95), pages 83–95, September 1995.

[16] Gisli R. Hjaltason and Hanan Samet. Incremental distance join algorithms for spatial databases. InProceedings
of the 1998 ACM-SIGMOD Conference, pages 237–248, Seattle, WA, June 1998.

[17] Flip Korn, Nikolaos Sidiropoulos, Christos Faloutsos, Eliot Siegel, and Zenon Protopapas. Fast nearest neighbor
search in medical image databases. InProceedings of the 22nd VLDB Conference, pages 215–226, June 1996.

[18] Ming-Ling Lo and Chinya V. Ravishankar. Spatial joins using seeded trees. InProceedings of the 1994 ACM-
SIGMOD Conference, pages 209–220, Minneapolis, Minnesota, May 1994.

[19] Ming-Ling Lo and Chinya V. Ravishankar. Spatial hash-join. InProceedings of the 1996 ACM-SIGMOD Con-
ference, pages 247–258, Montreal, Canada, June 1996.

[20] Bureau of the Census.Tiger/Line Precensus Files: 1997 technical documentation. Washington, DC, 1997.

[21] Jack A. Orenstein. A comparison of spatial query processing techniques for native and parameter spaces. In
Proceedings of the 1990 ACM-SIGMOD Conference, pages 343–352, Atlantic City, New Jersey, May 1990.

[22] Dimitris Papadias, Nikos Mamoulis, and Yannis Theodoridis. Processing and optimization of multiway spatial
joins using r-trees. InProceedings of the 1999 ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database
Systems, pages 44–55, June 1999.

[23] Jignesh M. Patel and David J. DeWitt. Partition based spatial-merge join. InProceedings of the 1996 ACM-
SIGMOD Conference, pages 259–270, Montreal, Canada, June 1996.

[24] Viswanath Poosala.Histogram-based Estimation Techniques in Databases. PhD thesis, University of Wisconsin-
Madison, 1997.

[25] Franco P. Preparata and Michael Ian Shamos.Computational Geometry: An Introdution. Springer-Verlag, New
York, NY, 1985.

[26] V. Ramasubramanian and K. K. Paliwal. Fast k-dimensional tree algorithms for nearest neighbor search with
application to vector quantization encoding.IEEE Trans. on Signal Processing, 40(3):518–531, March 1992.

[27] Nick Roussopoulos, Stephen Kelley, and Frederic Vincent. Nearest neighbor queries. InProceedings of the 1995
ACM-SIGMOD Conference, pages 71–79, San Jose, CA, May 1995.

[28] Thomas Seidl and Hans-Peter Kriegel. Optimal multi-step k-nearest neighbor search. InProceedings of the 1998
ACM-SIGMOD Conference, pages 154–165, Seattle, Washington, June 1998.

[29] Jeffrey S. Vitter and Min Wang. Approximate computation of multidimensional aggregates of sparse data using
wavelets. InProceedings of the 1999 ACM-SIGMOD Conference, pages 193–204, June 1999.

27

