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Abstract

We propose a new way of indexing XML documents and processing twig patterns in an XML database.

Every XML document in the database can be transformed into a sequence of labels by Prüfer’s method

that constructs a one-to-one correspondence between trees and sequences. During query processing, a

twig pattern is also transformed into its Prüfer sequence. By performing subsequence matching on the

set of sequences in the database, and performing a series of refinement phases that we have developed, we

can find all the occurrences of a twig pattern in the database. Our approach allows holistic processing of

a twig pattern without breaking the twig into root-to-leaf paths and processing these paths individually.

Furthermore, we show in the paper that all correct answers are found without any false dismissals or

false alarms. Experimental results demonstrate the performance benefits of our proposed techniques.
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1 Introduction

Since the extensible markup language XML emerged as a new standard for information representation and
exchange on the Internet [4], the problem of storing, indexing and querying XML documents has been
among the major issues of database research. As the relationships between elements in an XML document
are defined by nested structures, XML documents are often modeled as trees whose nodes are labeled with
tags, and queries are formulated to retrieve documents by specifying both their structures and values. In most
of the XML query languages (e.g., XPath [2] and XQuery [3]), structures of XML documents are typically
expressed by linear paths or twig patterns (e.g., path expressions expressed in XPath, path expressions in the
for and let clauses in XQuery), while values of the XML elements are used as part of selection predicates.
For example, an XPath expression

book[author//name="John"]/title

qualifies XML documents by specifying a twig pattern composed of four elements, namely, book, author,
name and title in an XML document, and a value-based selection predicate name="John".

Queries with path expressions have been one of the major foci of research for indexing and querying XML
documents. In the past few years, there have been two main thrusts of research activities for processing path
join queries for retrieving XML data, namely, approaches based on structural index and numbering schemes.
The approaches based on the structural index facilitate traversing through the hierarchy of XML documents
by referencing the structural information of the documents (e.g., dataguide [10], representative objects [22],
1-index [20], approximate path summary [17], F&B index [16]). These structural indexes can help reduce
the search space for processing linear path and twig queries.

The other class of approaches are based on a form of numbering scheme that encodes each element by
its positional information within the hierarchy of an XML document it belongs to. Most of the numbering
schemes reported in the literature are designed by a tree-traversal order (e.g., pre-and-postorder [9], extended
preorder [18]) or textual positions of start and end tags (e.g., containment property [30], absolute region
coordinate [28]). If such a numbering scheme is embedded in the labeled trees of XML documents, the
structural relationship (such as ancestor-descendant) between a pair of elements can be determined quickly
without traversing an entire tree. Several join algorithms have been developed to take advantage of this
extraordinary opportunity to efficiently process path and twig queries [1, 5, 7, 11, 18, 30]. In particular,
it has been shown that PathStack and TwigStack algorithms [5] are optimal for processing path and twig
queries in that the processing cost is linearly proportional to the sum of input data and query results.

Most of the previous approaches based on numbering schemes, however, process a twig query by first
processing each of the root-to-leaf paths in the twig separately and then merging the results from the
individual paths. In an effort to further optimize twig query processing without breaking a twig and merging
the results, we propose a new way of indexing XML documents and finding twig patterns in an XML
database. We have developed a system called PRIX (PRüfer sequences for Indexing XML) for indexing
XML documents and processing twig queries.1 In our PRIX system, every XML document in the database
is transformed into a sequence of labels by Prüfer’s method that constructs a one-to-one correspondence
between trees and sequences. During query processing, a twig pattern is also transformed into its Prüfer
sequence. By performing subsequence matching against the indexed sequences in the database, and by
performing a series of filtering and refinement phases that we have developed, we can find all the occurrences
of a twig pattern in the database. Our work was developed independently of and differs considerably from
the indexing method called ViST [26], which also converts trees into sequences.

Furthermore, most of the previous approaches (e.g., TwigStack [5], TSGeneric+ [15]) do not attempt
the problem of ordered twig pattern matching that is useful in applications where the twig pattern nodes
follow the document order in XML. For example, an XML data model was proposed by Bow et al. [6]
for representing interlinear text for linguistic applications, which is used to demonstrate various linguistic
principles in different languages. The XML model provides a four-level hierarchical representation for the
interlinear text, namely, text level, phrase level, word level and morpheme level. For the purpose of linguistic
analysis, it is essential to preserve linear order between the words in the text [27]. Thus, there is a compelling
need for ordered twig pattern matching. In addition to interlinear text, language treebanks have been widely
used in computational linguistics. Treebanks capture syntactic structure of textual data and provide a

1PRIX is pronounced without the ‘x’ like French word Grand Prix.

1



hierarchical representation of the sentences in the text by breaking them into syntactic units such as noun
clauses, verb phrases, adjectives and so on. A recent paper by Müller et al. [21] used ordered pattern
matching over treebanks for question answering systems. Our PRIX system supports ordered twig pattern
matching inherently.

The main contributions of this paper are summarized as follows.

• We propose a new idea of transforming XML documents into sequences by Prüfer’s method. We show
that twig matches can be found by performing subsequence matching on the set of sequences and by
performing a series of refinement phases. We also show that our approach returns correct answers
without false alarms and false dismissals.

• Our approach allows holistic processing of twig queries without breaking a twig into root-to-leaf paths
and processing them individually. Additionally, our tree-to-sequence transformation guarantees a
worst-case bound on the index size that is linear in the total number of nodes in the XML docu-
ment trees. 2

• Our system supports ordered twig pattern matching that is useful for applications that require the twig
pattern nodes to follow the document order in XML.

• We have developed effective optimizations to speed up the subsequence matching phase during query
processing.

The rest of this paper is organized as follows. In Section 2 we discuss the background and motivations
of our work. In Section 3 we present an overview of the PRIX system. Section 4 and Section 5 provide the
necessary theoretical background and describe the implementation issues of the PRIX system. In Section 6
we describe the architecture of the PRIX system. In Section 7 we present our experimental results. Sec-
tion 8 surveys the related work in XML indexing and query processing. Lastly Section 9 summarizes the
contributions of this paper.

2 Background and Motivations

An XML document can be modeled as an ordered labeled tree as shown in Figure 1(a). Each node in this tree
corresponds to an element or a value. Values are represented by character data (CDATA, PCDATA) and occur
at the leaf nodes. The tree edges represent a relationship between two elements or between an element and
a value. Each element can have a list of (attribute, value) pairs associated with it. In our paper, attributes
are treated in the same way as elements. Hence, no special distinction will be made between elements and
attributes in the subsequent discussions.

Recently, much research effort has been focused on indexing and querying XML documents. Finding all
occurrences of a query pattern in XML documents is one of the core operations in XML databases. Below
we will briefly describe two of the recent contributions made for XML pattern matching: TwigStack [5] and
ViST [26]. We will then discuss some of their drawbacks to motivate our proposed approach.

TwigStack Algorithms Bruno et al. proposed optimal XML pattern matching algorithms [5]. These
stack-based algorithms process input lists of element instances for tags that appear in a query twig. TwigStack
and PathStack algorithms operate on the positional representation of the element instances to find twig
matches. A variant of TwigStack (denoted hereinafter by TwigStackXB) uses XB-Trees to speed up the
processing when the input lists are long. The XB-Trees are useful in skipping sections of the input lists
without missing any matches.

However, there are some limitations of TwigStackXB. The effectiveness of skipping data depends on the
distribution of the matches in the input lists. If the matches are scattered all over the dataset, then the
TwigStackXB algorithm drills down to lower regions of the tree (including leaves) in order to avoid missing
matches. Another drawback of TwigStack and TwigStackXB is that it suffers from sub-optimality for parent-
child relationships in a query twig. The algorithm might produce a partial match of a path of a twig that
cannot be combined with any other partial match of another path of the twig. For example, consider a query

2In contrast, ViST [26] does not guarantee linear space requirement for its tree-to-sequence transformation.
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Figure 1: A sample XML document and an illustration of false alarms by ViST

twig with 3 nodes P, Q and R where nodes Q and R are child nodes of P. The algorithm will match a pattern
in the data where P is a common ancestor of Q and R but is not their parent. This match will be discarded
in the merge post-processing step of the algorithm. However, the cost of post-processing may not always be
trivial.

ViST Wang et al. proposed a new method called ViST that transforms XML data trees and twig queries
into structure-encoded sequences [26]. The structure-encoded sequence is a two-dimensional sequence of
(symbol, prefix) pairs {(a1, p1), (a2, p2), ..., (an, pn)} where ai represents a node in the XML document tree,
and pi represents the path from the root node to node ai. The nodes a1, a2, ..., an are in preorder. ViST
performs subsequence matching on the structure-encoded sequences to find twig patterns in the XML doc-
uments. These sequences are stored in a disk-based virtual trie built using B+-trees.

One of the imminent drawbacks of the tree transformation used by ViST is that the worst-case storage
requirement for a B+-tree index named D-Ancestorship index is higher than linear in the total number of
elements in the XML documents. For example, consider a tree with n nodes and maximum depth d. In
this case, the total size of the structure-encoded sequence of the tree is O(nd). Thus the D-Ancestorship
index requires O(nd) space to store all the (symbol, prefix) keys. Another drawback of ViST is that the
query processing strategy by straightforward subsequence matching may result in false alarms. Figure 1(b)
illustrates such a case. The structure-encoded sequence of the query twig Q is a subsequence of the structure-
encoded sequence of Doc1 and Doc2. However, the twig pattern Q occurs only in Doc1, and the match
detected in Doc2 is a false alarm. Such false matches could be discarded by adding a post-processing step
that examines the input document trees.

Our Motivations The key motivations of our work are (1) to develop a method that allows holistic
processing of twig queries without breaking a twig into root-to-leaf paths and processing them individually,
(2) to transforms trees into sequences, thereby reducing the problem of finding twig matches to that of
finding subsequences and (3) to construct a method for finding twig matches with no false alarms or false
dismissals.

3 Overview of PRIX

In this section, we present Prüfer’s method that constructs a one-to-one correspondence between trees and
sequences, and describe how Prüfer’s sequences are used for indexing XML data and processing twig queries
in the PRIX system. We also present an architectural overview of the PRIX system.

3.1 Prüfer Sequences for Labeled Trees

Prüfer (1918) proposed a method that constructed a one-to-one correspondence between a labeled tree and
a sequence by removing nodes from the tree one at a time [23]. The algorithm to construct a sequence from
tree Tn with n nodes labeled from 1 to n works as follows. From Tn, delete the leaf with the smallest label
to form a smaller tree Tn−1. Let a1 denote the label of the node that was the parent of the deleted node.
Repeat this process on Tn−1 to determine a2 (the parent of the next node to be deleted), and continue until
only two nodes joined by an edge are left. The sequence (a1, a2, a3, ..., an−2) is called the Prüfer sequence of
tree Tn. From the sequence (a1, a2, a3, ..., an−2), the original tree Tn can be reconstructed.
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The length of the Prüfer sequence of tree Tn is n − 2. In our PRIX approach, however, we construct a
Prüfer sequence of length n − 1 for Tn by continuing the deletion of nodes till only one node is left. (The
one-to-one correspondence is still preserved). This modified construction simplifies the proofs of the lemmas
and theorems presented in Section 4.
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Figure 2: An XML document tree, a query twig, and matches representing connected/disconnected graphs

3.2 Indexing by Transforming XML Documents into Prüfer Sequences

In the discussions to follow, each XML document is represented by a labeled tree such that each node is
associated with its element tag and a number. For example, in Figure 2(a), the root element of the XML
document has (A, 15) as its tag-number pair. In our PRIX system, the nodes of an XML document tree are
numbered in postorder from one to the total number of nodes. Thus each node is associated with a distinct
number.

With tree nodes labeled with unique postorder numbers, a Prüfer sequence can be constructed for a given
XML document using the node removal method described in Section 3.1. This sequence consists entirely of
postorder numbers and is called the NPS (Numbered Prüfer sequence) of the document. If each number in
this NPS is replaced by its corresponding tag, a new sequence that consists of XML tags can be constructed.
We call this sequence the LPS (Labeled Prüfer sequence) of the document. 3

Example 1 In Figure 2(a), tree T has LPS(T) = A C B C C B A C A E E E D A, and NPS(T) = 15 3
7 6 6 7 15 9 15 13 13 13 14 15.

For each XML document in the database, its LPS and NPS are constructed. The set of LPS’s are indexed
for efficient query processing. The set of NPS’s are stored in the database (e.g., as records in a heap file)
together with their unique document identifiers.

3.3 Processing Twig Queries

A query twig is transformed into its Prüfer sequence just like an XML document. Non-matches are filtered
out by performing subsequence matching on the indexed sequences, and twig matches are then found by
applying a series of refinement strategies. These filtering and refinement phases are described in Section 4.

Figure 3 shows an architectural overview of the indexing and query processing units in PRIX that
highlights the steps described in Section 3.2 and Section 3.3. For a detailed description of PRIX’s architecture,
refer to Section 6. With this high level overview of our system, we shall now move on to explain the process
of finding twig matches.

4 Finding Twig Matches

To simplify the presentation of concepts in this section, we shall use the notations listed in Table 1. Formally
the problem for finding twig matches can be stated as follows: Given a collection of XML documents ∆ and

3Occasionally we will refer to an NPS as a postorder number sequence of an LPS.
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Figure 4: Twig Patterns

a query twig Q, report all the occurrences of twig Q in ∆. Note that our problem description is based on
twig patterns as opposed to XPath expressions. The twig patterns that we deal with in this paper can be
mapped to equivalent XPath expressions. Essentially, a twig pattern has a defined structure on the nodes in
the pattern, and each node has a label associated with it. For example, a twig pattern Q1 (in Figure 4(a))
can occur anywhere in the XML document, and can be expressed as ‘//A//B[*/D]/E’ in XPath. However,
this XPath expression has no restriction on the order of the sibling nodes ‘E’ and ‘*’. Using the XPath
axis following-sibling, Q1 can be rewritten as ‘//A//B/*[D]/following-sibling::E’ to specify that
‘E’ should follow ‘*’ in the matches. Note that an XPath expression can be mapped to more than one
twig pattern. As an example, the XPath expression ‘//A[B/D][B/E]’ can be interpreted as either of the
two distinct twig patterns Q2 and Q3 shown in Figures 4(b) and 4(c).

We will initially deal with the problem of finding all occurrences of twig Q without the axis ‘//’ and
wildcard ‘*’. Later in Section 4.5, we explain how query twigs with ‘//’ and ‘*’ can be processed. Note
that our work focuses primarily on ordered twig pattern matching. Hence we will first address the problem
of finding ordered twig matches of Q with equality predicates. Later in Sections 5.8 and 5.9 we explain how
PRIX can be extended to handle unordered twig matches and inequality predicates.

Finding twig matches in PRIX involves the following phases, namely (1) filtering by subsequence matching,
(2) refinement by connectedness, (3) refinement by structure and (4) refinement by leaf nodes.

4.1 Filtering by Subsequence Matching

The filtering phase in PRIX involves subsequence matching. The classical definition of a subsequence is
stated as follows.
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Symbol Description

Q Query twig

∆ A collection of XML documents

Γ A set of Labeled Prüfer sequences of ∆

Θ A set of subsequences in Γ that are identical

ΘC A subset of Θ that represent trees (connected)

LPS(T) Labeled Prüfer sequence of tree T

NPS(T) Numbered Prüfer sequence of tree T

Label(v, T) returns the label associated with vertex v in T

Number(v, T) returns the number associated with vertex v in T

S A subsequence of an LPS

N The postorder number sequence of S

Table 1: Notations
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Figure 5: Nodes assigned consecutive postorder numbers

Definition 1 A subsequence is any string that can be obtained by deleting zero or more symbols from a given
string.

Given a query twig Q, we find all the subsequences in Γ (the set of LPS’s) that match LPS(Q). We shall
discuss the significance of subsequence matching using the following lemma and theorem.

Lemma 1 Given a tree T with n nodes, numbered from 1 to n in postorder, the node deleted in the ith step
during the Prüfer sequence construction is the node numbered i.

Proof. We prove the theorem by Induction on the number of nodes in the tree. In each step of the
construction of Prüfer sequences, the leaf node with the smallest label is deleted from the tree to give a
smaller tree. For simplicity, we will refer to the node numbered i as node i. Let Tn−k be the tree obtained
after k node deletions. Let P (k) denote the proposition that the id of the node deleted in the kth step of the
Prüfer sequence construction is k. Note that 1 ≤ k < n.

(i) Basis of Induction: P (1) is true. This is because a node numbered one in postorder is a leaf and is
deleted first.

(ii) Induction Hypothesis: Assume that P (i) is true for 1 ≤ i ≤ k. We will show that P (k + 1) is also
true. Only the two following scenarios are possible for nodes numbered k and k + 1 in postorder: (1)
node k + 1 is a leaf, (2) node k + 1 is not a leaf and node k is the last child of node k + 1. (Refer to
Figure 5.) If node k + 1 is a leaf in Tn, then by induction hypothesis, node k + 1 is the smallest leaf in
Tn−k. Thus P (k + 1) is true. If node k is the last child of node k + 1, then node k + 1 becomes a leaf
after k node deletions. By induction hypothesis, all nodes i such that i ≤ k have been deleted. The
smallest leaf node in Tn−k is k + 1 and is deleted next. Thus P (k + 1) is true.

As a result, if a and b are two nodes of a tree such that a has a smaller postorder number than b, then
node a is deleted before node b during the Prüfer sequence construction. In addition, the ith element in the
NPS denotes the postorder number of the parent of node i.
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In the subsequent discussions, we shall frequently use two notations namely Number(·) and Label(·) that
are described in Table 1. Based on Lemma 1, we can state the following theorem.

Theorem 1 If tree Q is a subgraph of tree T , then LPS(Q) is a subsequence of LPS(T ).

Proof. Assume that the tree nodes in T and Q are numbered in postorder. Let v1, v2, v3, . . . , vn−1 be the
order of deletion of nodes by the Prüfer sequence construction for tree Q (with n nodes). Since Q is a
subgraph of T , the same set of nodes are also deleted during the Prüfer sequence construction for tree T in
some order along with other nodes in T . We would like to prove that for 1 ≤ i < n, vi is deleted before vi+1

in tree T .
By Lemma 1, it is true that Number(vi, Q) < Number(vi+1, Q) for any pair of nodes vi and vi+1 in Q

(1 ≤ i < n). Furthermore, for any pair of nodes vi and vj in Q, if Number(vi, Q) < Number(vj , Q) is true,
then Number(vi, T ) < Number(vj, T ) is also true. (Note that nodes vi and vj are also in T .) Therefore
nodes vi and vi+1 satisfy the condition Number(vi, T ) < Number(vi+1, T ) for 1 ≤ i < n. By Lemma 1, vi

is deleted before vi+1 in tree T . Since for 1 ≤ i ≤ n, Label(vi, Q) = Label(vi, T ), LPS(Q) is a subsequence
of LPS(T ).

From Theorem 1, it is evident that by finding every subsequence in Γ that matches LPS(Q), we are
guaranteed to have no false dismissals.

Example 2 Consider trees T and Q in Figure 2(a) and Figure 2(b). Tree T in Figure 2(a) has LPS(T ) =
A C B C C B A C A E E E D A and NPS(T ) = 15 3 7 6 6 7 15 9 15 13 13 13 14 15. Tree Q in Figure 2(b)
has LPS(Q) = B A E D A and NPS(Q) = 2 6 4 5 6. Q is a (labeled) subgraph of T and LPS(Q) matches
a subsequence S of LPS(T ) at positions (6, 7, 11, 13, 14). The postorder number sequence of S is 7 15 13
14 15. Note that there may be more than one subsequence in LPS(T ) that matches LPS(Q).

4.2 Refinement by Connectedness

The subsequences matched during the filtering phase are further examined for the property of connectedness.
This is because the nodes that correspond to the labels in a subsequence may not be connected (represent a
tree) in the data tree. Let ΘC denote a set of subsequences that satisfy the connectedness property. Formally,
we state a necessary and sufficient condition for a subsequence S ∈ ΘC .

Theorem 2 Given a tree T, let S be a subsequence of LPS(T), and let N [i] denote the ith element in the
postorder number sequence of S. (N [i] is the postorder number taken from NPS(T) for a node corresponding
to the ith element in S.) Then the tree nodes in T corresponding to the elements of S constitute a connected
subgraph (or sub-tree) of T, if and only if, condition (iii) is true for every N [i] that satisfies conditions (i)
and (ii).

(i) N [i] 6= max(N [1], N [2], ..., N [|S|]),

(ii) N [i] is the last occurrence of the same number in the postorder number sequence of S

(iii) N [i + 1] is equal to the N [i]th element of NPS(T).

Proof of (If) part. For each node corresponding to the elements in S, we shall check if its parent node
in T also appears in S. If N [i] is the maximum in the postorder number sequence of S, then neither the
parent nor the ancestor of its corresponding node is in S. Thus the node for N [i] need not be checked for
its parent in S. Moreover, if S represents a sub-tree of T then the node for N [i] would represent the root of
that sub-tree. On the other hand, if N [i] is not the maximum in the postorder number sequence of S, then
the node for N [i] has to be connected to its parent in order for S to represent a sub-tree of T.

From Lemma 1, if the last occurrence of a node’s postorder number n occurs at the ith position in an
NPS, then the number at the (i + 1)th position in the NPS is the postorder number of the parent of n.
This is because, during Prüfer sequence construction, the deletion of the last child of n makes n the smallest
leaf node. Hence if N [i + 1] is equal to the N [i]th element of NPS(T ), then N [i]’s node is connected to its
parent node in S. If this is true for every N [i] in S (N [i] is not the maximum), then the tree nodes in T

corresponding to the elements of S represent a connected subgraph of T .
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Proof of (Only If) part. It is given that the tree nodes in T corresponding to the elements in S constitute
a connected subgraph. Let us call it tree T

′

. First we number these |S + 1| nodes in postorder. Then the
last occurrence of a postorder number in NPS(T

′

) (except the root) is followed by its parent’s postorder
number. Now let us replace the postorder numbers of the nodes in T

′

with their corresponding postorder
numbers from T . As a result, we can transform NPS(T

′

) to the postorder number sequence of S. Since
each node is assigned a unique number, the old and new postorder numbers of nodes in T

′

have a one-to-one
correspondence. Without loss of generality, let nc and np be the old postorder numbers of a child and parent

node in T
′

respectively. Let n
′

c and n
′

p be their new postorder numbers. Since the last occurrence of n
′

c

is followed by n
′

p in NPS(T
′

), the last occurrence of nc (say at N [i]) is followed by np (at N [i + 1]) in

the postorder number sequence of S. The N [i]th element in NPS(T) corresponds to the parent of the node
numbered nc i.e., np. As a result, the conditions (i), (ii) and (iii) are true. Hence we have proven the Only
If case.

The intuition for the above theorem is as follows. Let i be the index of the last occurrence of a postorder
number n in an NPS. This last occurrence is a result of deletion of the last child of n during Prüfer sequence
construction. Hence the next child to be deleted (based on Lemma 1) is the node n itself. Hence the number
at the (i + 1)th index in the NPS, say m, is the postorder number of the parent of node n. Thus n followed
by m indicates that there is an edge between node m and node n.

Example 3 Consider 2 subsequences SA and SB of LPS(T) where T is the tree in Figure 2(a). Let SA be C
B C E D whose postorder number sequence NA is 3 7 9 13 14. Let SB be C B A C A E D A whose postorder
number sequence NB is 3 7 15 9 15 13 14 15. Let NT be the NPS of T. Then NT is 15 3 7 6 6 7 15 9 15 13
13 13 14 15. The nodes represented by labels of SA form a disconnected graph as shown in Figure 2(c). In
this case, max(NA[1], NA[2], ..., NA[5]) = 14. The last occurrence of postorder number 7 in NA is at the 2nd

position since there is no index j > 2 such that NA[j] = 7. However NA[2] is not followed by NT [7], i.e.,
NA[3] 6= 15. Hence Theorem 2 is not satisfied. The nodes represented by elements of SB represent a tree as
shown in Figure 2(d) because Theorem 2 is satisfied.

We shall refer to sequences that satisfy Theorem 2 as tree sequences.

4.3 Refinement by Twig Structure

The tree sequences obtained in the previous refinement phase are further refined based on the query twig
structure. In this phase, we would like to determine if the structure of the tree represented by a tree sequence
matches the query twig structure.

4.3.1 Notion of Gaps Between Tree Nodes

Before we delve into the details of refinement by structure, we shall first introduce the notion of gap between
two tree nodes and gap consistency between two tree sequences.

Definition 2 The gap between two nodes a and b in a tree is defined as the difference between the postorder
numbers of the nodes a and b.

By using the NPS of a tree, the gaps between tree nodes can be computed.

Definition 3 Tree sequence SA is said to be gap consistent with respect to tree sequence SB if

1. SA and SB have the same length n,

2. For every pair of adjacent elements in A and the corresponding adjacent elements in B, their gaps gA

and gB have the same sign, and if |gA| > 0 then |gA| ≤ |gB|, else gA = gB = 0.

Note that gap consistency is not a symmetric relation.
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Figure 6: Pruning Tree Sequences using Gap Consistency

Example 4 Consider the tree T in Figure 2(a). LPS(T) = A C B C C B A C A E E E D A, and NPS(T)
= 15 3 7 6 6 7 15 9 15 13 13 13 14 15. Let S1 = B A E E D A be a subsequence of LPS(T) and let N1 =
7 15 13 13 14 15 be the postorder number sequence of S1. Consider a query tree with LPS S2 = B A E E D
A, and NPS N2 = 2 7 5 5 6 7. Then S2 is gap consistent with S1 because the gap between

• the 1st pair of elements in S2 is -5,

• the 1st pair of elements in S1 is -8,

• the 2nd pair of elements in S2 is 2,

• the 2nd pair of elements in S1 is 2,

• the 3rd pair of elements in S2 is 0,

• the 3rd pair of elements in S1 is 0, and so on.

Intuitively, the gap between two nodes in a data tree gives an idea of how many nodes occur between
these two nodes during the postorder traversal. Similar is the case with the nodes of a query twig. Suppose
M denotes the NPS of a tree. Let M [i] and M [i + 1] denote the postorder number of nodes corresponding
to the ith and the (i + 1)th entry in M . A negative gap between M [i] and M [i + 1] indicates that node M [i]
is a child of node M [i + 1]. However, a positive gap between M [i] and M [i + 1] indicates that node M [i]
is an ancestor of M [i + 1]. A zero gap implies that M [i] and M [i + 1] correspond to the same node in the
XML document. If more nodes are traversed in the query twig as compared to a twig matched in the data,
then this indicates that there is a structural difference between the match in the data and the query twig.
This concept forms the basis for Theorem 3 that states a necessary and sufficient condition for a match by
twig structure.

Example 5 We illustrate how gap consistency can be used to prune away tree sequences that are false
matches. Consider a tree Tg and a query pattern Qg as shown in Figures 6(a) and 6(b). Note that LPS(Tg)
= C C A B A, NPS(Tg) = 3 3 4 5 6, LPS(Qg) = C A B A, and NPS(Qg) = 2 5 4 5. LPS(Qg) matches
a subsequence S = C A B A in LPS(Tg) whose postorder number sequence is 3 4 5 6. Although S is a tree
sequence by Theorem 2, LPS(Qg) is not gap consistent with S (by Definition 3). Therefore Qg does not have
a structural match in Tg.

Another key observation that will be used in Theorem 3 is the following. The number of times a number
n occurs in an NPS indicates the number of child nodes of n in the tree, and the positions that n occurs in
the NPS depend on the subtrees rooted at node n.

We formalize the above observation by defining a property called frequency consistency.
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Definition 4 Tree sequences SA and SB are frequency consistent if

1. SA and SB have the same length n,

2. Let NA and NB be the postorder number sequences of SA and SB respectively. Let NA[i] and NB[i] be
the ith element in NA and NB respectively. For every i from 1 to n, NA[i] occurs k times in NA at
positions {p1, p2, ..., pk}, if and only if, NB[i] occurs k times in NB at positions {p1, p2, ..., pk}.

Note that frequency consistency is an equivalence relation.

Example 6 In Example 4, sequences S1 and S2 are frequency consistent. The 1st element in N1 ‘7’ occurs
once at position 1. The 1st element in N2 ‘2’ also occurs once at position 1. The 2nd element in N1 ‘15’
occurs at positions 2 and 6. The 2nd element in N2 ‘7’ also occurs at positions 2 and 6. Similar is the case
with the remaining elements in N1 and N2.

It should be noted that the LPS of a tree contains only the non-leaf node labels. So in addition to the
LPS and NPS, the label and postorder number of every leaf node should be stored in the database. Since the
LPS of a tree contains only non-leaf node labels, filtering by subsequence matching followed by refinement
by connectedness and structure can only find twig matches in the data tree whose tree structure is the same
as the query tree and whose non-leaf node labels match the non-leaf node labels of the query twig. Let us
call such matches partial twig matches. To find a complete twig match, the leaf node labels of a partially
matched twig in the data should be matched with the leaf node labels of the query. This is explained in
Section 4.4.

We now state a necessary and sufficient condition for a partial twig match.

Theorem 3 Tree Q has a partial twig match in tree T if and only if

1. LPS(Q) matches a subsequence S of LPS(T) such that S is a tree sequence, and

2. LPS(Q) is gap consistent and frequency consistent with S.

Proof of (Only If) part. Suppose Q has a partial match in tree T , then Q matches a subgraph T
′

of T ,
except that the leaf node labels of Q may not match with the leaf node labels of T

′

. By Lemma 1, LPS(T
′

)
is a subsequence of LPS(T ). The set of nodes in T

′

and Q are deleted in the same relative order during
Prüfer sequence construction (using postorder numbering) of trees T and Q respectively. Furthermore, since
Q and T

′

have the same structure, the corresponding non-leaf nodes in Q and T
′

have the same number of
child nodes. Thus LPS(Q) matches a subsequence S of LPS(T ) that represents tree T

′

(i.e., tree sequence),
and S and LPS(Q) are frequency consistent.

Our goal is to show that LPS(Q) is gap consistent with S. Consider two nodes p and q in tree Q. Let
Label(p, Q) and Label(q, Q) be two adjacent elements in LPS(Q) where Label(p, Q) occurs before Label(q, Q).
Let npQ and nqQ be the postorder numbers of nodes p and q in tree Q. Note that nodes p and q are internal

nodes in Q. Let nodes r and s be nodes in T
′

that match p and q respectively. Label(r, T ) and Label(s, T )
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are adjacent in S. Let nrT and nsT be the postorder numbers of nodes r and s in tree T . Let ‖ · ‖ denote
the number of nodes in a tree. Let gT be the gap between r and s in T , and let gQ be the gap between p

and q in Q. The following are the only possible scenarios for nodes p, q, r and s.

Case 1: r is a child of s, and p is a child of q. (Refer to Figure 7(a) and (b).) Let Kt be the subtree
of T rooted at s whose nodes have their postorder number nKt

, nrT < nKt
≤ nsT . Let Kq be the

subtree of Q rooted at q whose nodes have their postorder number nKq
, npQ < nKq

≤ nqQ. We know

that ‖Kq‖ ≤ ‖Kt‖, since Q matches a tree T
′

that is a subgraph of T . Also, by virtue of postorder
numbering,

gT = nsT − nrT = ‖Kt‖ and gQ = nqQ − npQ = ‖Kq‖.

Therefore gQ and gT have the same sign and |gQ| ≤ |gT |.

Case 2: s is a descendant of r, and q is a descendant of p. (Refer to Figure 7(c) and (d).) Let mQ be the
number of nodes in Q whose postorder number nQ, nqQ < nQ < npQ. Let mT be the number of nodes
in T whose postorder number nT , nsT < nT < nrT . By virtue of postorder numbering,

gT = nrT − nsT = mT + 1 and gQ = npQ − nqQ = mQ + 1.

Since Q matches tree T
′

that is a subgraph of T , mQ ≤ mT . Therefore gQ and gT have the same sign
and |gQ| ≤ |gT |.

Case 3: p and q are the same nodes (i.e., Label(p, Q) = Label(q, Q) and Number(p, Q) = Number(q, Q)),
and r and s are the same nodes (i.e., Label(r, T ) = Label(s, T ) and Number(r, T ) = Number(s, T )).
This is a trivial case. gQ and gT are both zero.

Proof of (If) part. Given LPS(Q) matches a subsequence S of LPS(T ) where S is a tree sequence. Also
LPS(Q) is gap consistent and frequency consistent with S. Let tree T

′

be a subgraph of T that S represents
(i.e., LPS(T

′

) = S). From the proof of (Only If) part, LPS(T
′

) is gap consistent with S, and LPS(T
′

) and
S are frequency consistent. We know that LPS(Q) and LPS(T

′

) are identical. Our goal is to show that
NPS(Q) and NPS(T

′

) are identical. We shall use contradiction to prove this.
Q and T

′

are trees with n nodes numbered from 1 to n in postorder. Let NQ be the NPS of Q and let

NT
′ be the NPS of T

′

. Let us assume that ∃i where i is the largest index, such that, NQ[i] 6= NT
′ [i]. The

index i will always be less than n− 1, since NQ[n− 1] = NT
′ [n− 1] = n, where n is the number of nodes in

trees Q and T
′ 4. Let NT

′ [i] = a and let NQ[i] = b such that a 6= b. Let NQ[i + 1] = NT
′ [i + 1] = c. Let us

refer to the node numbered i as node i. Based on Lemma 1, in tree Q, the parent of node numbered i has
postorder number b, and the parent of node i + 1 has postorder number c. Similarly, in tree T

′

, the parent
of node numbered i has postorder number a, and the parent of node i + 1 has postorder number c. Consider
the following relationships between a, b and c.

4Due to postorder numbering, the root of the tree has the highest number and its child is the last node to be deleted during
Prüfer sequence construction.
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Case 1: a < c < b (or b < c < a). This situation cannot occur since LPS(Q) and LPS(T
′

) are each gap
consistent with S.

Case 2: a = c (or b = c). Then the gap is zero. Since LPS(Q) is gap consistent with S and LPS(T
′

) is gap
consistent with S, b = c (or a = c) should be true. Hence our assumption that a 6= b is false. Therefore
a = b = c.

Case 3: c > a, c > b . (Refer to Figure 8(a) and (b).) Without loss of generality, let us assume that a < b.
Since T

′

is numbered in postorder and a < c, i + 1 = a, and i = a − 1 (Figure 8(a)). Now in tree Q

(Figure 8(b)), the node i (i.e., a − 1), has its parent numbered b and the node i + 1 (i.e., a), has its
parent numbered c. Also a < b < c. This contradicts the fact that Q is numbered in postorder i.e.,
node c cannot be a descendant of node b. Hence our assumption that a < b is false. Using a similar
argument and swapping the roles of T

′

and Q, we can show that an assumption a > b is also false.
Thus our assumption that a 6= b is false, and a = b must be true.

Case 4: c < a, c < b. (Refer to Figure 8(c) and (d).) Without loss of generality, let us assume that a < b.
Since c < a, c < b, we have a scenario as shown in Figure 8(c, d) for the nodes i and i + 1. The dotted
line in the figure indicates that there is an ancestor-descendant relationship between the nodes. Node
c is the parent of node i + 1. Node a in T

′

and node b in Q have at least one child with postorder
number greater than i. Also node a− 1 is a child of a in T

′

and node b − 1 is a child of b in Q. As a
result of Lemma 1, NT

′ [a− 1] = a and NQ[b − 1] = b. We know that LPS(T
′

) is frequency consistent
with S. This means that the ith and (a− 1)th element in the postorder number sequence of S should
be equal. Since LPS(Q) is frequency consistent with S, the ith and (a− 1)th element in NQ should be
equal. This implies that NQ[a− 1] = b and NT

′ [a− 1] = a. This contradicts the original assumption
that i is the largest index such that NQ[i] 6= NT

′ [i] since i < c < a. Hence our assumption that a 6= b

(i.e., a < b) is false. Using a similar argument, we can show that an assumption a > b is also false.
Hence a = b must be true.

From the above four cases, we conclude that our original assumption that ∃i where i is the largest
index s.t. NQ[i] 6= NT

′ [i] is false. Thus NPS(T
′

) and NPS(Q) are identical. Since every Prüfer sequence

corresponds to a unique labeled tree (one-to-one correspondence), Q matches T
′

except that the labels of
their leaf nodes (i.e., Label(·)) may not match. Thus Q has a partial match in T .

The different relationships between the data and query sequences are illustrated in Figure 9. Consider
the tree T (XML document) and its subgraph tree Q (query twig) in the figure. The dark regions in LPS(T )
and NPS(T ) correspond to the deletion of nodes in T during Prüfer sequence construction that are also in
Q (except the root of Q). The dark regions in LPS(T ) and NPS(T ) form sequences S and N respectively.
From the lemmas and theorems described in Section 4.1, Section 4.2, and Section 4.3, it is evident that (1)
LPS(Q) and S are identical, (2) NPS(Q) is gap consistent with N , and (3) NPS(Q) and N are frequency
consistent.
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4.4 Refinement by Matching Leaf Nodes

In the final refinement phase, the leaf node labels of the query twig are tested to find complete twig matches.

Example 7 The leaf nodes of tree T in Figure 2, namely, (D,2), (D,4), (E,5), (G,10), (F,11), and (F,12)
are stored in the database. Let tree Q (Figure 2(b)) be a twig query. LPS(Q) matches a subsequence S = B
A E D A in LPS(T) at positions P = (3, 7, 11, 13, 14). The postorder number sequence of S is N = 7 15
13 14 15. LPS(Q) is gap consistent and frequency consistent with S. We can match the leaf (F,3) in Q as
follows. Since the leaf has postorder number 3, its parent node matches the node numbered 13 (i.e., the 3rd

element of N) in the data tree. Also since this node numbered 13 occurs at the 11th position (3rd element
in P) in LPS(T), it may have a leaf (F,11). And indeed, we have (F,11) in the leaf node list of T. In a
similar way, we can match the leaf (C,1) of Q. The parent of (C,1) in Q matches node 7 (1st element in N)
at position 3 in NPS(T). Hence the child of node 7 in T, i.e., node 3, matches leaf (C,1), except that the
labels may not match (partial twig match). Since there are no nodes with number 3 in the leaf list of T, we
search LPS(T) and NPS(T) to find (C,3) in T. Indeed we have ‘C’ and ‘3’ as the 2nd element in LPS(T)
and NPS(T) respectively.

However, this refinement phase can be eliminated by special treatment of leaf nodes in the query twig and
the data trees. The key idea is to make the leaf nodes of the query twig and the data trees appear in their
LPS’s, so that all the nodes are examined during subsequence matching and refinement by connectedness
and structure phases. This processed is explained in Section 5.7.

4.5 Processing ‘//’ and ‘*’ in Twig Queries

We explain how the axis ‘//’ and the wildcard ‘*’ can be handled in twig queries using the following
example.

Example 8 Let us find the pattern Q = //A//C/D in tree T (in Figure 2(a)). Q is transformed to its
Prüfer sequences by ignoring ‘//’ (and ‘*’ if present). As a result, LPS(Q) = C A, and NPS(Q) = 2 3.
The wildcard at the beginning of the query is handled by our current method as it allows finding occurrences
of a query tree anywhere in the data tree. To process ‘//’ in the middle of the query, we do a simple
modification to the refinement-by-connectedness phase. LPS(Q) matches a subsequence S = C A at positions
2 and 7 in LPS(T). The postorder number sequence of S is N = 3 15. Based on Theorem 2, this subsequence
would be discarded as the last occurrence of 3 in N is not followed by 7 (parent of node numbered 3 in T). To
avoid this, we check if the last occurrence of node 3 in N can lead to node 15 (15 follows 3 in N) by following
a series of edges in T. Recall that the ith element in an NPS is the postorder number of the parent of node
i in a tree (Lemma 1). Let n0 = 3 and let NT be NPS(T). We recursively check if n1 (= NT [n0]) equals
15, then if n2 (= NT [n1]) equals 15 and so on until for some i, ni+1 (= NT [ni]) equals 15. In the above
example, we find a match at i = 2. For processing wildcard ‘*’, we simply test whether the match is found
at i = 2. Thus all the subsequences that pass the above test will be examined in the next phase.

If the wildcard ‘*’ appears as a branch node in the query, then a few modifications are required. For
example, consider the query //A/*[B/D]/C/F. In this case, B C A is the sequence representation for the
query. If matching subsequences are found, then the NPS is used to test if A can be reached from B and C
in one step as explained before. In addition, it should be ensured that the parent of B and C are one and the
same. This can be done as follows. Let nB and nC represent the postorder numbers of B and C in the data
respectively. If the condition NT [nB] = NT [nC ] is true, then B and C have the same parent.

Note that in the above example, the leaf nodes of the query patterns do not appear in the sequences. In
Section 5.7, we explain how the leaf nodes can be made to appear in the sequences.

5 Implementation Issues in PRIX

Given the theoretical background in Section 4, we shall move on to explain the implementation issues in
PRIX.
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5.1 Building Prüfer Sequences

In the PRIX system, Prüfer sequences are constructed for XML document trees (with nodes numbered in
postorder) using the method described in Section 3.1. Our proposed tree-to-sequence transformation causes
the nodes at the lower levels of the tree to be deleted first. This results in a bottom-up transformation of the
tree. An algorithm describing the sequence construction using a SAX based interface is provided in Section 6.
Note that the entire XML document need not be available in memory during sequence construction and can
be processed in document order. We shall show in our experiments that the bottom-up transformation is
useful to process twig queries efficiently.

5.2 Indexing Sequences Using B+-trees

The set of Labeled Prüfer sequences for the XML documents are indexed in order to support fast subsequence
matching during query processing. Maintaining an in-memory index for the sequences like a trie is unsuitable,
as the index size grows linearly with the total length of the sequences. In essence, we would like to build an
efficient disk-based index. Note that the set of Numbered Prüfer sequences are stored in the database (e.g.,
as records in a heap file).

In fact, Prüfer sequences can be indexed using any good method for indexing strings. In the current
version of our PRIX system, we index Labeled Prüfer sequences using B+-trees in the similar way that Wang
et al. build a virtual trie using B+-trees [26]. Since the virtual trie is a dynamic index, XML documents can
be added to and deleted from the database.

5.2.1 Virtual Trie

We shall briefly explain the process of indexing sequences using a virtual trie. Essentially, we provide posi-
tional representations for the nodes in the trie by labeling them with ranges. Each node in the trie is labeled
with a range (LeftPos, RightPos) such that the containment property is satisfied [18, 30]. Typically, the
root node can be labeled with a range (1, MAX INT ). The child nodes of the root can be labeled with
subranges such that these subranges are disjoint and are completely contained in (1, MAX INT ). This
containment property is recursively satisfied at every non-leaf node in the trie. We can then obtain all the
descendants of any given node A by performing a range query that finds nodes whose LeftPos falls within
the (LeftPos, RightPos) range of node A.

In the PRIX system, for each element tag e, we build a B+-tree that indexes the positional representation
of every occurrence of element e in the trie using its LeftPos as the key. This index is called Trie-Symbol
index. In addition, we store the identifier of each document tree in a separate B+-tree and index it using
the LeftPos of the node, where its LPS ends in the virtual trie, as the key. This index is called Docid
index. Note that it is sufficient to store only the LPS’s in the virtual trie. The suffixes of the LPS’s need not
be indexed at all, since all the subsequences can be found by performing range queries on the Trie-Symbol
indexes as described in Section 5.3.

ViST proposed a dynamic labeling scheme that can assign number ranges without building a physical
trie on the set of sequences [26], hence the name virtual trie. However, this dynamic labeling scheme suffers
from scope underflows [26] for long sequences and large alphabet sizes, which makes it difficult to implement.
In order to reduce the scope underflows, we pre-allocate the number ranges for a small subset of nodes in
the trie. The remaining nodes are assigned ranges using the dynamic labeling scheme. In order to do so,
we build an in-memory trie for all the prefixes of the sequences of length α (where α is a small number
compared to the actual length of the sequences). A node in this in-memory trie is allocated a number range
based on the frequency and length of the sequences whose prefixes share that node.

5.2.2 Space Complexity

The size of a trie grows linearly with the total length of the sequences stored in it. The length of the Prüfer
sequence of a tree is linear in the number of nodes in the tree. Hence the index size is linear in the total
number of tree nodes, while ViST does not guarantee a linear worst-case bound on the index size. (Refer to
Section 2.)
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Algorithm 1: Filtering Algorithm

Input: {Qs, i, (ql, qr)}: Qs is a query sequence; index i;

(ql, qr) is a range;

Output: (D, S); D is a set of document (tree) identifiers;

S denotes the positions of a subsequence match;

procedure FindSubsequence(Qs, i, (ql, qr))
begin

R← RangeQuery(TQsi
, (ql, qr)); // find the descendants of the current node in the trie1:

for each r in R do2:

Si ← Level(r); // note the match position3:

if (i = |Qs|) then4:

D ← RangeQuery(DocidIndex, [rl, rr]); // find the candidate documents5:

output (D, S);6:

else
FindSubsequence(Qs, i + 1, (rl, rr)); // recursively find the subsequences7:

endif

endfor

end

5.3 Filtering by Subsequence Matching

Let Qs = Qs1Qs2...Qsk, a sequence of length k, denote the LPS of a query twig Q. The process of finding
all occurrences of Qs using the Trie-Symbol indexes is shown in Algorithm 1. The algorithm is invoked by
FindSubsequence(Qs, 1, (0, MAX INT )). A range query in the open interval (ql, qr) is performed on TQsi

(Trie-Symbol index of Qsi) (line 1). For every node id r returned from the range query (line 1), if the sequence
Qs is found then all the documents in the closed interval [rl, rr] are fetched from the Docid index (line 5).
(rl, rr) is the positional representation of node id r. (In this case rl = r.) Otherwise, FindSubsequence(·)
is recursively invoked for the next element Qs(i+1) in the sequence using the range (rl, rr). In line 3, the

position of match of the ith element of Qs (i.e., the level of node r in the trie) is stored in S. The solutions
of the range query in line 1 are the ids of nodes Qs(i+1) that are descendants of nodes Qsi in the virtual trie.
In line 4, the algorithm outputs a set of document (tree) identifiers D and a list S. S contains the positions
in the LPS’s of trees corresponding to tree identifiers in D where Qs has a subsequence match.

It should be noted that the subsequence matching phase is I/O bound. The total number of range queries
issued in this phase depends on the length of the sequence Qs and |R| in Algorithm 1. Our goal is to reduce
the number of paths explored in the virtual trie to find all the subsequences.

5.4 Optimized Subsequence Matching

In order to speed up subsequence matching, it is desired to reduce the number of range queries performed
in Algorithm 1 without causing any false dismissals. In this regard, we propose two optimizations, namely
(1) Bi-directional subsequence matching and (2) Subsequence matching using MaxGap metric.

5.4.1 Bi-directional Subsequence Matching

Nodes in a query twig may have different selectivities for range searches, and this may affect the performance
of subsequence matching. The cost of subsequence matching can be higher if a node with low selectivity is
in the beginning of the LPS of a query and the subsequence match is carried out from the left to the right
of the sequence.

We propose an optimization called Bi-directional subsequence matching to handle such cases. We build
a trie “LTrie” that indexes all the LPS’s of the data trees from the left to the right. We build another
trie “RTrie” that indexes the LPS’s of the data trees in the reverse order (i.e., from the right to the left).
For each LTrie and RTrie, we build a separate Docid index. Let Qsj denote the jth label in Qs. (Qs is
the LPS of Q.) Let us call Qsj the pivot. In order to find all subsequences matching Qs, we first invoke
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Figure 10: Examples for MaxGap

FindSubsequence(·) for the sequence Qsj , Qs(j+1), ..., Qsk using LTrie. Next we invoke FindSubsequence(·)
for the sequence Qsj , Qs(j−1), ..., Q1 using RTrie. The two partial results are combined to determine all the
matching subsequences in the data. After this step, the regular refinement steps are performed.

A query optimizer can use the selectivity information of the labels in Qs to determine the pivot for subse-
quence matching. In the current version of our system, the frequency of occurrence of a label in the collection
of Prüfer sequences (constructed over the XML documents) is used to determine the pivot. Thus among the
node labels in Qs, we choose the one that has the minimum frequency of occurrence. A simple histogram
can be built over the dataset to estimate the frequency of each node label (i.e., elements/attributes/values)
in the Prüfer sequence collection for the XML documents. Thus we can avoid low selectivity node labels
being searched first during subsequence matching, thereby reducing the total I/O cost. We observed from
our experiments that Bi-directional subsequence matching yielded considerable improvement in performance
during query processing.

5.4.2 Subsequence Matching using MaxGap Metric

We can prune some nodes (r in line 2 of Algorithm 1) with an additional requirement on the gap between
node labels in a query sequence. In this regard, we have developed an upper-bounding distance metric called
MaxGap based on the property of Prüfer sequences.

Given a collection ∆ of XML document trees and node label e in ∆, we define the distance metric on the
pair (e, ∆) as follows.

Definition 5 (MaxGap(e, ∆)) Maximum postorder gap of a node label e is defined as the maximum of
the difference between the postorder numbers of the first and the last children of the node labeled e in ∆.

For example, in Figure 10, the difference in the postorder numbers of the first child and the last child of
node label A is 14 − 8 = 6 in tree P and 3 − 1 = 2 in tree Q. Hence MaxGap(A, {P, Q}) is 6. If every
occurrence of label e in ∆ has at most one child, then MaxGap(e, ∆) = 0.

We shall now explain the usefulness of this distance metric for subsequence matching. Recall that in
Lemma 1, we showed that the ith node to be deleted during Prüfer sequence construction is the node
numbered i. Consider tree P in Figure 10. The deletion of node 1 (the first child of node 3) corresponds to
the first C in LPS(P ). The deletion of node 2 (last child of node 3) corresponds to the second C in LPS(P).
As can be observed in this example, the postorder gap between the first and the last child of a node e denotes
how far apart the first and the last occurrence of its label e can be in the sequence. Furthermore, the last
occurrence of a node’s label is always followed by its parent node label.

Suppose that a node with label B is the parent of a node with label C in a query twig and C, B are
adjacent in the query sequence. The CB of this query has eight matches in LPS(P ) (Figure 10) which are
denoted by position pairs (1,3), (1,4), (1,7), (1,9), (2,3), (2,4), (2,7), and (2,9). Each number pair represents
an instance of CB match in the data sequence. Since MaxGap(C, {P, Q}) is 13− 10 = 3, the gap between
the first and last occurrences of C in the sequence cannot be more than 3, and the gap between the first
occurrence of C and its parent B cannot be more than 4. Among the eight matches listed above, only four
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position pairs (1,3), (1,4), (2,3), and (2,4) may be considered for further processing. Thus this example
illustrates how MaxGap helps to discard certain subsequences that will definitely not be part of the final
result.

The following theorem summarizes the use of the MaxGap as an upper-bounding distance metric for
pruning the search space and shortening the subsequence matching process.

Theorem 4 Given a query twig Q and the set Θ of LPS’s for ∆, let A and B denote adjacent labels in
LPS(Q) such that A occurs before B.

1. In case node A is a child of node B in Q, any subsequence AB in Θ cannot result in a twig match, if
its position pair (i, j) is such that j − i > MaxGap(A, ∆) + 1.

2. In case node A is an ancestor of node B in Q, any subsequence AB in Θ cannot result in a twig
match, if its position pair (i, j) is such that j − i ≥MaxGap(A, ∆).

Proof. Part(1): If A is a child of B in Q and in the data, then the first and the last occurrence of A in the
data sequence can occur at a distance of at most MaxGap(A, ∆) apart. The element B will follow the last
occurrence of A. Thus the distance between A and B (A occurs before B) in the data sequence is at most
MaxGap(A, ∆) + 1.

Part(2): If A is an ancestor of B in Q and in the data, then the first and the last occurrence of A in
the data can occur at a distance of at most MaxGap(A, ∆) apart. Since B is a descendant of A, it occurs
between the first and the last occurrence of A (Lemma 1). Then the distance between A and B (A occurs
before B) in the data sequence is at most MaxGap(A, ∆)− 1.

It is straightforward to extend Algorithm 1 to incorporate the upper-bounding distance metric by com-
puting (Si − Si−1) after line 3 and testing the appropriate conditions in Theorem 4 using MaxGap of Qi−1.
The extended algorithm called FindSubsequenceExt is described in Algorithm 2. The algorithm is invoked
by FindSubsequenceExt(Qs, 1, (0, MAX INT )).

Both “Bi-directional subsequence matching” and “Subsequence matching using MaxGap metric” can be
combined together by simple modifications to the filtering algorithm.

5.5 The Refinement Phases in PRIX

The set of ordered pairs (D, S) returned by Algorithm 1 are further examined during the refinement phases.
The steps for the refinement phases are shown in Algorithm 3. The goal of the algorithm in its current form
is to demonstrate the core ideas during the refinement phases in a simple way. However, the time complexity
of the algorithm can be improved by using sorting. The details are deferred until Section 5.12 where we
analyze the CPU and I/O costs incurred by PRIX during query processing.

The NPS’s and the set of leaf nodes for the documents in D are read from the database and passed
as input to this algorithm. Each input subsequence is refined by connectedness (Theorem 2) in lines 1
through 4. Next, the subsequence is refined by structure by testing for gap consistency (Definition 3) in
lines 5 through 11. The subsequence is then tested for frequency consistency (Definition 4) in lines 12
through 14. Finally, the algorithm matches the leaf nodes of the query twig in lines 15 through 17. This
step can be eliminated by special treatment of leaf nodes in the query twigs and the data trees. (Refer to
Section 5.7). We report a twig match in line 18. Note that this algorithm does not handle the axis ‘//’ and
wildcard ‘*’, but it can be easily extended (as mentioned in Section 4.5) by replacing lines 1 through 4 by
the procedure Connectedness(·) described in Algorithm 4. In Algorithm 4, we follow a series of edges till we
reach a node’s ancestor in the data trees. For wildcard ‘*’, we check if the node’s ancestor can be reached
by following two edges (lines 7 through 8). For the axis ‘//’, we check if the node’s ancestor can be reached
by following one or more edges (lines 9 through 11). It is assumed that the procedure NodeType(·) returns
the type of wildcard associated with a query node.

5.6 Extended Prüfer Sequences

The Prüfer sequence of a tree as described in Section 3.1 contains only the labels of non-leaf nodes. We
call this sequence Regular-Prüfer sequence. If we extend the tree by adding a dummy child node to each

17



Algorithm 2: Filtering Algorithm Using MaxGap Metric

Input: {Qs, i, (ql, qr)}: Qs is a query sequence; index i;

(ql, qr) is a range;

Output: (D, S); D is the document (tree) identifier;

S denotes the positions of a subsequence match;

procedure FindSubsequenceExt(Qs, i, (ql, qr)))
begin

R← RangeQuery(TQsi
, (ql, qr)); // find the descendants of the current node in the trie1:

for each r in R do2:

Si ← Level(r); // note the match position3:

if i > 1 and Qi−1 is a child of Qi then4:

if Si − Si−1 > MaxGap(Qi−1, ∆) + 1 then goto 2; // discard current r5:

else
if i > 1 and Qi−1 is an ancestor of Qi then6:

if Si − Si−1 > MaxGap(Qi−1, ∆) then goto 2; // discard current r7:

endif

endif
if (i = |Qs|) then8:

D ← RangeQuery(DocidIndex, [rl, rr]); // find the candidate documents9:

output (D, S);10:

else
FindSubsequenceExt(Qs, i + 1, (rl, rr)); // recursively find the subsequences11:

endif

endfor

end

of its leaf nodes, the Prüfer sequence of this extended tree will contain the labels of all the nodes in the
original tree. We shall refer to this new sequence as Extended-Prüfer sequence. In the case of XML, all
the value nodes (strings/character data) in the XML document appear as leaf nodes in the document tree.
The document tree is transformed into a sequence after adding dummy child nodes. Similarly, query twigs
are also extended before transforming them into sequences. We refer to the index based on Regular-Prüfer
sequences as RPIndex and the index based on Extended-Prüfer sequences as EPIndex.

Indexing Extended-Prüfer sequences is useful for processing twig queries with values. Since queries with
value nodes usually have high selectivities, Extended-Prüfer sequences provide higher pruning power than
Regular-Prüfer sequences during subsequence matching. As a result, during subsequence matching, a fewer
number of root-to-leaf paths are explored in the virtual trie of EPIndex than in the virtual trie of RPIndex. If
twig queries have no values, then indexing Regular-Prüfer sequences is recommended. Note that Extended-
Prüfer sequences are longer than Regular-Prüfer sequences and the increase in length is proportional to the
number of leaf nodes in the original tree.

In the PRIX system, both RPIndex and EPIndex can coexist. A query optimizer can choose either of the
indexes based on the presence or absence of values in twig queries.

5.7 Avoiding Refinement by Matching Leaf Nodes

We now explain how the final refinement phase of matching leaf nodes can be avoided by special treatments
of leaf nodes in a query twig. The key idea is to allow the leaf nodes of a query twig appear in its LPS, so
that all the query nodes are examined during the filtering and refinement phases.

For twig queries with value nodes (i.e., CDATA, PCDATA), PRIX uses Extended Prüfer sequences. These
value nodes, which are leaf nodes in the original query twig (before extending the twig by adding dummy
child nodes), are examined during the subsequence matching phase and the first two refinement phases. The
dummy child nodes of the query twig will match the dummy child nodes in the data trees, because the
value nodes are extended in a consistent way in both the data trees and query twigs. As a result, the final
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Algorithm 3: Refinement Phases

Input: {ND, NQ, LD, LQ, S}: ND is the NPS of tree D;

NQ is the NPS of query twig;

LD is a list of leaves in tree D;

LQ is a list of leaves in Q;

S denotes the positions of a subsequence match in LPS(D);

Output: report twig match;

procedure RefineSubsequence(ND, NQ, LD, LQ, S)
begin

// test for connectedness (refinement by connectedness)

maxN ← max(ND[S1], ND[S2], ..., ND[S|S|]); // maximum postorder number1:

for i = 1 to |S| do2:

if ND[Si] 6= maxN AND ∄(j > i) s.t. ND[Si] = ND[Sj ] then3:

if ND[Si] 6= Si+1 then return; // check the last occurrence for connectedness4:

endif

endfor
// test for gap consistency (refinement by structure)

for i = 1 to |S| − 1 do5:

dataGap← ND[Si]−ND[Si+1];6:

queryGap← NQ[i]−NQ[i + 1];7:

if (dataGap = 0 AND queryGap 6= 0) OR (queryGap = 0 AND dataGap 6= 0) then8:

return;9:

else
if dataGap ∗ queryGap < 0 then return;10:

else if |queryGap| > |dataGap| then return;11:

endif

endfor
// test for frequency consistency (refinement by structure)

for i = 1 to |S| do12:

for j = 1 to |S| AND j 6= i do13:

if NQ[i] = NQ[j] AND ND[Si] 6= ND[Sj ] then return;14:

endfor

endfor
// match leaves (refinement by matching leaves)

// (can be omitted when Extended Prüfer sequences are used)

for each l in LQ do15:

if l not found in LD then16:

if l not found in LPS/NPS of D then return;17:

endif

endfor
report twig match;18:

return;19:

end

refinement by leaf nodes phase need not be performed.
On the other hand, for element nodes (i.e., element and attribute tags), which are leaf nodes in the

original query twig, we do the following. We extend these nodes in the original query twig with dummy child
nodes and perform subsequence matching and the first two refinement phases. However a simple additional
step is required at the end of the refinement phases. Suppose we want to find all occurrences of the query
pattern //A/B/C in tree T shown in Figure 2(a). The LPS of T is A C B C C B A C A E E E D A and
the NPS is 15 3 7 6 6 7 15 9 15 13 13 13 14 15. The LPS and NPS of this query pattern after extending
the leaf node C is C B A and 2 3 4 respectively. Two subsequence matches are found in the data with an
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Algorithm 4: Refinement by Connectedness with support for Wildcards

Input: {ND, NQ, S}: ND is the NPS of tree D;

NQ is the NPS of query Q;

S denotes the positions of a subsequence match in LPS(D);

Output: true if the subsequence passes the test, false otherwise;

procedure Connectedness(ND, NQ, S)
begin

maxN ← max(ND[S1], ND[S2], ..., ND[S|S|]); // find the maximum postorder number1:

for (i = 1 to |S|) do2:

if ND[Si] 6= maxN AND ∄(j > i) such that ND[Si] = ND[Sj ] then3:

q ← ND[Si];4:

if NodeType(NQ[i]) = ‘*’ OR ‘//’ then5:

let NQ[k] be the closest ancestor of NQ[i] in Q such that k > i;6:

if NodeType(NQ[i]) = ‘*’ then7:

// check if ancestor has been reached
if ND[ND[q]] 6= ND[Sk] then return false;8:

else
if NodeType(ND[Si]) = ‘//’ then9:

while q < ND[Sk] do q ← ND[q];10:

// check if ancestor has been reached eventually
if q 6= ND[Sk] then return false;11:

endif

endif

else
if q 6= Si+1 then return false;12:

endif

endif

endfor

end

identical postorder number sequence (i.e., 6 7 15) at the end of the refinement phases. One match occurs
at positions 4, 6, 7 and the other match occurs at positions 5, 6, 7 in the document sequence. However
both these matches correspond to the same set of nodes in T i.e., (C,6), (B,7) and (A, 15). Hence only one
of these matches should be output as a solution. A simple way to achieve this in the above example is to
choose the subsequence where label C corresponds to the last occurrence of node 6 in NPS(T ) i.e., the match
at positions 5, 6, 7 in the document sequence.

If the element nodes that are leaf nodes in the original query twig have parent-child edges, we assign an
upper bounding distance metric of zero to these element nodes. Algorithm FindSubsequenceExt discards
redundant matches without any modifications. If these element nodes have ancestor-descendant edges, then
we discard these redundant matches by using the NPS’s after the refinement phases.

5.8 Unordered Twig Matches

The PRIX system can be extended to find unordered twig matches by a simple modification of the Prüfer
sequence construction. For a given twig query, Prüfer sequences should be constructed for different arrange-
ments of the branches in the query twig, and they should be tested for twig matches. Since the number of
twig branches in a query is usually small, only a small number of configurations (arrangements) need to be
tested. This process could be implemented efficiently by identifying common prefixes among the sequences
for different twig configurations in order to avoid repeated subsequence matching on common prefixes of the
sequences. However, not all configurations may yield valid solutions. In the following example we explain
how some twig configurations can be quickly eliminated.
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Figure 11: Different query twig configurations

Example 9 Consider a query twig Q = //article[@key="TR"][title="XML"]/year=2003. Since at-
tribute tag name key can be considered as a child node of article, Q has 3 root-to-leaf paths (branches).
We shall construct the Extended-Prüfer sequence for this query twig. In one twig arrangement, value tag XML

appears before value tag 2003 in the LPS of Q. In another arrangement, value tag 2003 appears before tag
XML in the LPS. If tag 2003 never appears before tag XML in the data sequences, we can eliminate the latter
arrangement by ensuring that 2003 does not have XML as its descendant in the virtual trie. This check can
be done faster than performing a complete subsequence match. In the case of the root-to-leaf path resulting
from attribute tag key, we need not rearrange it w.r.t. other paths. This is because at the time of indexing
XML documents, we can always treat the attribute tag key as the first child of article. The query twig can
be transformed similarly by treating key as the first child of article. Thus in all, query twig Q has only
one arrangement to be tested in which XML appears before 2003 in the LPS of Q.

Note that in order to be consistent with the XPath semantics, the twig configurations need to be carefully
chosen. For example, let us consider the following XPath expression.

//article[author/homepage][author/name]

Then the different ordered twig pattern configurations that are possible are shown in Figure 11. If the DTD
is available, some of the query configurations can be discarded. For example, if author element always has
both homepage and name as its subelements, then Prüfer sequences need to be constructed for configurations
in Figures 11(a) and (b). As a result, the query processing will output the correct matches.

5.9 Queries with Inequality and Positional Predicates

PRIX can be extended to handle inequality predicates. Consider an XPath query //book[year = “2004”][price
> “100”]. This query should return all the book elements whose price is greater than ‘100’ published in the
year ‘2004’. To process such queries, we can first find all matches for the pattern //book[year=“2004”][price].
Since the tag-number pair of the leaf nodes in the data trees can be stored in the database, we can fetch
them for each matched document and perform the Refinement by Matching Leaf Nodes phase using the leaf
node’s tag-number pair (‘100’, 1) with a slight modification. Thus instead of an equality match, we need to
perform an inequality match.

PRIX can also be extended to handle queries that contain positional predicates. For example, an XPath
query //book/author[n], returns the nth author element under each book element in the XML documents.
Since the Prüfer tree-to-sequence transformation preserves all information about the data trees, PRIX can
process such queries with additional post-processing.

First, all occurrences of the query pattern //book/author can be found in the data using our proposed
techniques. Let (L, N) be the LPS and NPS of a document with a match. Let (ai, bi) denote the ath

i and bth
i

entry in L (and N) that match author and book respectively. Let (a1, b1), (a2, b2),..., (at, bt) denote all such
entry pairs for all the matches of (author, book) in the document. Note that ai < bi for 1 ≤ i ≤ t because
in the LPS of the query pattern, author appears before book (Lemma 1). Note that N [ai] and N [bi] denote
the postorder numbers of the nodes labeled author and book respectively in the input document. First we
group each pair (ai, bi) based on the value N [bi]. For each group, the pair (match) with the nth smallest
N [ai] value is output. If the positional predicate has a descendant axis (e.g., //book//author[n]) then the
(ai, bi) pairs are first grouped using the value N [bi] as before. In addition, each group is further grouped
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into smaller groups using the value N [N [ai]] (postorder number of the parent of author in the document).
From each smaller group, the pair (match) with the nth smallest N [ai] value is output.

5.10 Alternate Strategy for Subsequence Matching

In this section, we shall discuss the use of a different strategy for subsequence matching. The subsequence
matching process in PRIX is I/O bound. As the selectivity of the queries reduces, the number of range
queries increases due to the increase in the number of paths in the virtual trie that need to be traversed.
For such twig queries, the use of Algorithm 1 cannot guarantee a worst-case I/O that is linear in the total
number of instances of the tags (of the query pattern) appearing in the Prüfer sequences of the XML data.
This is due to the nature of subsequence matching that does random I/O to process the range queries. It
is interesting to note that the process of subsequence matching in a virtual trie is similar to that of finding
matches for simple path expressions in an XML document. For example finding all subsequences of the
sequence ABC in a virtual trie, is equivalent to finding the path expression //A//B//C. As a matter of fact,
the PathStack [5] algorithm proposed by Bruno et al. can be used for this purpose. The use of PathStack
can guarantee a worst-case linear I/O for queries as their selectivity reduces. Furthermore, XB-tree indexes
can be built to speed up the subsequence matching process.

5.11 Cost Analysis of Twig Query Processing in PRIX

During query processing in PRIX, the cost of subsequence matching is dominated by I/O. Once the NPS’s are
fetched from the database, all the subsequent refinement phases are performed in memory without additional
I/O. Therefore, for the purpose of analyzing the query performance of PRIX, we will be focused on the I/O
cost of the subsequence matching phase and on the CPU cost of the refinement phases.

It is hard to show that Algorithm 1, which performs range queries, guarantees a worst-case disk I/O
cost that is linear in the size of the input lists (data pages in the Trie-Symbol indexes). This is because
a data page may be read from the disk more than once during range searches. However, by using the
alternate subsequence matching strategy explained in Section 5.10, the filtering phase can be shown to have
a linear worst-case I/O cost like the TwigStack algorithm. As for the I/O pattern, the data pages accessed by
TwigStackXB and TSGeneric+[15] algorithms tend to be scattered, because these algorithms scan input lists
through indexes potentially several times in different orders. The I/O pattern of PRIX is also random since
the Trie-Symbol indexes for the elements and values are accessed in different orders during the subsequence
matching phase.

Our algorithm does not guarantee the optimality of the CPU cost during the refinement phases. This
is because a subsequence found in the filtering phase may not be part of the final answer. Note that these
subsequences can be stored in memory using a compact stack encoding proposed by Bruno et al. [5]. Let l

be the length of LPS(Q) and k be the number of subsequences that match LPS(Q). Suppose N denotes the
postorder number sequence of one such matching subsequence S. For testing connectedness, sorted versions
of both N and NPS(Q) are created in the ascending order using [postorder number, position in sequence] as
the key. Let m be the postorder number and i be the position in the original sequence. Then in the sorted
sequence, any key [n, j] to the left of [m, i] satisfies the following property (n < m) ∨ ((n = m) ∧ (j < i)).
This property holds for every [m, i] except the first key in the sorted sequence. So cost for sorting the k

subsequences is O(k · l · log(l)). Using the sorted version of N , we can test if the last occurrence of each
postorder number in N is followed by its parent (Theorem 2) in linear time (i.e., O(l)). Gap consistency can
be tested in linear time using N and NPS(Q). Finally frequency consistency can be tested in linear time
using the sorted versions of N and NPS(Q). Overall the CPU cost is O(k · l · log(l)).

Now let us consider the case when ‘//’ is present in the query. As explained in Section 4.5, the respective
NPS’s are examined by traversing a series of edges. However the fact that the NPS’s are read in blocks (e.g.,
heap files), the I/O cost is already accounted for in the d pages. Hence the additional cost for processing
‘//’ in the query is a CPU cost of O(k · h) where h is the height of the document tree. In the case of ‘*’, the
query processing incurs an additional CPU cost of O(k · b) where b is the number of child nodes of the ‘*’
node.
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Algorithm 5: Constructing Prüfer Sequences

Input: {Tsax}: SAX parser output for a well-formed XML document T
Output: {(L, N)}: L - LPS of T; N - NPS of T

Global data structures: stack Stk; integer nodeID, count;
procedure RegularPrufer(Tsax)

begin
Stk.clear(); // clean up the stack1:

nodeID ← 1; // postorder numbering starts from 12:

count ← 0;3:

(tagName, type) ← Tsax.next(); // read the first line of the SAX output4:

GenerateSequence(Tsax, (tagName, type));5:

return (L, N);6:

end
procedure GenerateSequence(Tsax, (tagName, type))

begin
numChildren ← 0; // keeps track of the number of children of tagName7:

while true do8:

if Tsax.eof() then return;9:

(tagNameNext, typeNext) ← Tsax.next();10:

if typeNext = END then break; // end tag encountered11:

GenerateSequence(Tsax, (tagNameNext, typeNext)); // recursively traverse the tree12:

Stk.push(nodeID); // store the node’s postorder number13:

nodeID ← nodeID + 1;14:

numChildren ← numChildren + 1;15:

endw
// If the leaf node is reached, store it
if numChildren = 0 then16:

count ← count + 1;17:

store the leaf’s (hash(tagName), count) pair;18:

return;19:

endif
// Once a non-leaf node is numbered, update entries in the
// LPS/NPS corresponding to the deletion of the node’s children
for k = 1 to numChildren do20:

N[Stk.top()] ← count + 1;21:

L[Stk.top()] ← hash(tagName);22:

Stk.pop();23:

endfor
count ← count + 1;24:

return;25:

end

6 Description of PRIX’s Architecture

In this section, we describe the major components in PRIX. (Refer to Figure 3 for an architectural overview
of the system.)

Document Parsing An XML document is first parsed using an event-driven SAX parser. The output of
the SAX parser is a stream of start and end tags for each element, attribute, and value in document order.
The SAX parser output is then input to the indexing engine.
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Indexing Engine The elements, values, and attributes are first mapped to unique integers, because it
is more efficient to store and process integers than raw strings. The indexing engine constructs Prüfer
sequences for XML documents by reading their parsed output. Given a well-formed XML document T, we
assume that its SAX parser output stream Tsax has functions next(·) and eof(·) associated with it. The
function Tsax.next() returns the next line in the stream Tsax i.e., tag name and tag type (start or end).
The function Tsax.eof() checks for the end of the stream. We also assume that a function hash(·) uniquely
maps every element, attribute and value in the input data to a number. Algorithm 5 describes the steps
involved in constructing Regular Prüfer sequences. The algorithm recursively traverses the tree structure
and numbers the tree nodes in postorder starting from 1. The algorithm outputs two sequences (L, N)
representing the LPS and NPS of the document T. In the algorithm, once a non-leaf node is numbered,
the entries corresponding to the deletion of its child nodes in the LPS and NPS are updated (lines 20
through 23). The above algorithm can be extended to construct Extended Prüfer sequences by making small
modifications. Line 18 should be replaced with the following lines: numChildren = 1; Stk.push(nodeID);

nodeId = nodeId + 1;. Depending on the query workload, the indexing engine can choose to build Regular
and/or Extended Prüfer sequences and index them (i.e., RPIndex and EPIndex).

The purpose of the stack in Algorithm 5 is to store the postorder numbers assigned to a node’s children.
Once a node is assigned a postorder number, all its children are popped out of the stack. As a result,
the maximum depth of the stack is upper-bounded by the maximum fanout of the XML document tree.
Moreover, once a node is numbered, the LPS and NPS for the subtree rooted at that node can be generated
completely. However, only when the root node is numbered, the LPS and NPS for the entire tree can be
generated. If memory is a concern, then we could first write the partial sequences for the subtree rooted at
the first child of the root to disk followed by a blank entry that would be filled when the root is assigned
a postorder number. This process can be repeated for the other subtrees that follow. Once the root is
numbered, the blank entries in the sequences are filled by performing random disk I/O. However, this may
not always be necessary. PRIX can be used to index both a collection of XML documents as well as a single
large XML document (e.g., DBLP [25]). In the case of a single large XML document, we need not construct
a single Prüfer sequence. Rather we could split the document tree at the root and construct sequences for
the subtrees rooted at the child nodes of the root. These sequences can then be indexed.

In order to support fast subsequence matching, the LPS’s are indexed by building a virtual trie using
B+-trees. The nodes in the trie are assigned number ranges to support containment queries. Note that
suffixes of the LPS’s need not be stored since all subsequences can be found using Algorithm 1. For each
unique label, a B+-tree is built to store the number ranges of all the instances of that label in the virtual
trie. The NPS’s and the leaf nodes (if used) are stored in the database (e.g., as records in a heap file).

Querying Engine The LPS and NPS for an XPath query are constructed. All subsequences that match
the query’s LPS in the data sequences are found by searching the virtual trie. The document identifiers of
the data trees that have a matching subsequence are also determined. Based on the nature of the query,
the querying engine can either choose the RPIndex or the EPIndex for the subsequence match phase. Post-
processing is performed on the matching subsequences to discard non-matches (i.e., false alarms). The
NPS’s corresponding to the matching document identifiers are fetched from the database and are used for
the refinement-by-connectedness and refinement-by-structure phases. At the end of the refinement phases,
all occurrences of the query twig are output.

7 Experimental Results

In our experiments, we compared the query performance of PRIX, TwigStack/TwigStackXB and TSGeneric+ [15]
for a set of high selectivity queries. We implemented PRIX, and TwigStack/ TwigStackXB in the C++ lan-
guage, and used the B+-tree implementation of GiST [13] for all their indexes. The implementation of
TSGeneric+ algorithm was obtained from Jiang et al. Since their code was developed on the Microsoft Win-
dows platform, we compared PRIX and TSGeneric+ in terms of disk I/O. Note that the disk I/O for all these
algorithms is random in nature (Section 5.11). In our previous work [24], we showed that PRIX outperforms
ViST considerably and therefore we do not compare them again in this paper.

PRIX and TwigStackXB/TSGeneric+ are suited for two different application domains. PRIX supports
ordered twig pattern matching inherently. TwigStackXB and TSGeneric+ support unordered pattern match-
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Dataset Name Size in MB # of Elements # of Attributes Max-depth # of Sequences

SWISSPROT 115 2977031 2189859 5 50000

TREEBANK 86 2437666 1 36 56385

DBLP 134 3332130 404276 6 328858

Table 2: Datasets

Query XPath Expression # of Matches
Q1 //Ref/Author=“Price S.R” 12
Q2 //Ref/Author=“Moss J” 38
Q3 //Ref/Author=“Vaughan M” 27
Q4 //Entry[PFAM[@prim id=“PF00304”]][//DISULFID/Descr] 24
Q5 //Entry[Org][PFAM[@prim id=“PF00304”]][//SIGNAL/Descr] 39
Q6 //Entry[Species=“Vicia faba”][Organelle=“Chloroplast”][Org=“Vicia”] 4
Q7 //Entry[Species=“Glycine max”][Organelle=“Chloroplast”][Org=“Glycine”] 9
Q8 //Entry[Keyword=“Ubiquitin conjugation”][Keyword=“Zinc”] 7
Q9 //Entry[Org=“Piroplasmida”][Ref/Author=“Kemp D.J”] 4

Table 3: XPath Queries for SWISSPROT Dataset

ing. These algorithms can be adapted for ordered pattern matching by performing a post processing step
to verify order among siblings. On the other hand, PRIX can be adapted for unordered pattern matching
by testing the different twig pattern configurations that result from different sibling orders. Thus PRIX and
TwigStackXB/TSGeneric+ are suited for different application domains.

7.1 Experimental Setup

We ran our experiments for PRIX and TwigStack/TwigStackXB on 1.8GHz Pentium IV processor with
512 MB RAM running Solaris 8. A 120GB EIDE disk drive was used to store the data and indexes. The
code was compiled using the GNU g++ compiler version 2.95.3. Direct I/O feature available on Solaris was
enabled to avoid operating system’s cache effects. For TSGeneric+, the code was compiled using Microsoft
Visual C++ compiler version 6.0. The experiments were run on the Microsoft Windows XP platform. For
all the experiments, the buffer pool size was fixed at 2000 pages. The page size of 8 KB was used. For PRIX,
4-byte number ranges were used to label the nodes in the virtual trie. For TwigStack/TwigStackXB and
TSGeneric+, the same 4-byte number ranges were used to label the nodes in the XML document trees.

Datasets We experimented with the datasets shown in Table 2. These datasets were obtained from the
University of Washington XML repository [25]. We chose these three datasets since each had a different
characteristic. The document trees in the SWISSPROT dataset were bushy and shallow. The document
trees in the DBLP dataset had high similarity in structure and were shallow. The document trees in the
TREEBANK dataset were narrow and had deep recursion of element names. Table 2 provides additional
information such as the maximum depth, number of elements for the datasets. PRIX can be used to index
and query a collection of XML documents or a single large XML document. In the case of a single large XML
document tree (e.g., SWISSPROT) we remove the root element and transform the collection of subtrees into
sequences. The sequences are then indexed using a disk-based virtual trie. Table 2 also shows the number
of sequences constructed for each dataset.

Queries The twig queries used for our experiments are shown as XPath expressions in Tables 3, 4, and
5. To avoid the frequent use of the axes like following-sibling in these tables, we assume that the order
between the siblings in a twig query follows the left-to-right order in the corresponding XPath expression. For
example, //phdthesis[year][number] indicates that year is followed by number. The listed queries have
different characteristics in terms of selectivity, presence of values and twig structure. For the TREEBANK
dataset, since the values were encrypted, we chose queries without values (character data). Tables 3, 4, and
5 also show the number of twig matches for each query. In our work, we focus on ordered twig pattern
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Query XPath Expression # of Twig Matches
Q10 //EMPTY//S//SYM 15
Q11 //S/SBARQ-1 2
Q12 //S[PRT][NP] 2
Q13 //S[ADVP-1/NN][NP] 0
Q14 //NP/ADJP/IN OR RB 1
Q15 //NP//NN OR NNS 23
Q16 //NP[NEG][NN] 1
Q17 //S//NP[NEG][NN] 2
Q18 //S[NP-1][NN] 0
Q19 //S//NP[NEG/RB][NN] 4
Q20 //EMPTY/*/LS OR JJ 1
Q21 //S/*/RB OR JJ 2

Table 4: XPath Queries for TREEBANK Dataset

Query XPath Expression # of Twig Matches
Q22 //inproceedings/author=“Antonin Guttman” 2
Q23 //inproceedings/author=“C. J. Date” 12
Q24 //article/author=“C. J. Date” 12
Q25 //article/author=“E. F. Codd” 33
Q26 //phdthesis[year][series][number] 1
Q27 //phdthesis[year][number] 3
Q28 //inproceedings[author=“Jim Gray”][year=“1990”] 6
Q29 //inproceedings[key][author=“Jim Gray”][year=“1990”] 6

Table 5: XPath Queries for DBLP Dataset

matching that is useful for applications that require the query nodes to follow the document order in XML.
Note that the query processing time for PRIX, TwigStackXB and TSGeneric+ increases as the number of
matches increases. For fairness of comparison, the number of ordered and unordered twig matches for each
twig query were the same, i.e., only one query twig configuration was present in the data trees.

7.2 Performance Analysis

In this section, we analyze the query performance of PRIX, TwigStack/TwigStackXB and TSGeneric+

algorithms for high selectivity queries listed above.
The TwigStack algorithm examines every node in the sorted input stream. On the other hand, TwigStackXB

uses XB-Trees to skip nodes in the sorted input stream. The effectiveness of XB-Trees depends on the dis-
tribution of possible twig matches in the input streams. If the possible solutions are localized in certain
regions of the input streams, then XB-Trees are effective in skipping large portions of the input streams.
However, if the possible solutions are scattered in the input streams then TwigStackXB is forced to drill
down frequently to the lower regions of the XB-Trees to identify true matches. As mentioned in Section 2,
TwigStack algorithms are sub-optimal for query patterns with parent/child relationships.

The TSGeneric+ algorithm (partly motivated by TwigStack algorithms) was proposed by Jiang et al. [15]
to further improve the skipping of elements by using available indexes on the elements. The algorithm uses
XR-trees [14] that is based on the concept of interval trees. Using XR-trees, both ancestors and descendants
of a given element can be determined efficiently. The TSGeneric+ algorithm takes advantage of high join
selectivity edges in the query pattern to skip elements in the input lists. The algorithm uses different
strategies for picking edges so that the skipping of elements in other edges of the query pattern can be
maximized. In our experiments, we compared PRIX with the version of TSGeneric+ strategy that incurred
the minimum I/O cost for fairness. Similar to TwigStack algorithms, TSGeneric+ is sub-optimal for query
patterns with parent/child relationships.
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Query TwigStack TwigStackXB

Total time Disk IO Total time Disk IO

Q1 26.53 secs 4543 pages 0.14 secs 18 pages

Q4 35.39 secs 5563 pages 2.86 secs 377 pages

Q8 12.88 secs 1715 pages 0.38 secs 40 pages

Table 6: SWISSPROT - TwigStack vs TwigStackXB
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Figure 12: SWISSPROT (PRIX vs TwigStackXB)

The performance of PRIX is dominated by the I/O cost incurred during subsequence matching. The fewer
paths are traversed in the virtual trie, the fewer disk pages are accessed. We have proposed optimizations (in
Section 5.4) that can speed up the subsequence matching phase by reducing the number of range searches
required to find all the subsequences. It should be noted that the query processing cost also depends on the
number of NPS’s that are read from the database.

7.2.1 SWISSPROT Dataset

PRIX vs TwigStack/XB For the SWISSPROT dataset, we observed that TwigStack performed worse
than TwigStackXB for queries in Table 3. The elapsed time and the disk I/O for some of the queries are
shown in Table 6.

In Figure 12, the elapsed time for processing the queries in Table 3 using PRIX and TwigStackXB
are plotted. PRIX used EPIndex to process the queries. For queries Q1, Q3, Q8 and Q9, PRIX and
TwigStackXB had comparable performance. PRIX performed subsequence matching beginning with nodes
with high selectivity due to bottom-up transformation of the query twigs. TwigStackXB found all matches
by skipping large sections of the sorted input streams using XB-Trees.

TwigStackXB was faster than PRIX for Q2 since a large number of matches were clustered in certain
regions in the sorted streams. As a result, XB-Trees were effective in reducing the I/O cost.

Query PRIX TwigStackXB

Total time Disk IO Total time Disk IO

Q4 0.82 secs 84 pages 2.86 secs 377 pages

Q5 1.22 secs 121 pages 2.63 secs 352 pages

Q6 1.22 secs 127 pages 1.80 secs 183 pages

Q7 3.04 secs 411 pages 6.05 secs 666 pages

Table 7: SWISSPROT - PRIX vs TwigStackXB
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Figure 13: SWISSPROT (PRIX vs TSGeneric+)

PRIX processed queries Q4, Q5, Q6 and Q7 faster than TwigStackXB. Table 7 shows the elapsed
time and disk I/O for these queries. We shall first analyze the performance of queries Q4 and Q5. The
value node “PF00304” was scattered in the input dataset. However about half the documents containing
//Entry/PFAM[@prim id=“PF00304”]did not have the pattern //DISULFID/Descr. However //DISULFID/Descr
occurred very frequently in the dataset and as a result TwigStack frequently drilled down to the lower regions
of the XB-Trees to eliminate false matches for processing Q4. This resulted in an increase in disk I/O. The
situation was similar for query Q5 due to the pattern //SIGNAL/Descr.

PRIX on the other hand was two to three times faster than TwigStackXB for queries Q4 and Q5. Recall
that the subsequence matching phase depends on the number of candidate ranges that are searched in the
virtual trie to find all the matching subsequences. For Q4, the subsequence matching was performed begin-
ning with the node “PF00304” due to bottom-up transformation of the query twig. The partial matching
documents were eliminated during the filtering stage. For Q5, Bi-directional subsequence matching was
performed using “PF00304” as the pivot since the tag Org had low selectivity. PRIX was slower processing
Q5 as compared to Q4 due to the use of both the LTrie and RTrie which increased the disk I/O.

Next we shall analyze the performance of query Q6. The patterns //Entry/Organelle=“Chloroplast”
and //Entry[Species=“Vicia faba”][Org=“Vicia”] were scattered in the dataset. However not all docu-
ments that had the pattern //Entry[Species=“Vicia faba”][Org=“Vicia”] had
//Entry/Organelle=“Chloroplast”. Since these patterns occurred in nearby documents in the data, TwigStack
had to access lower level regions of the XB-Trees frequently to skip such document resulting in an increase
in disk I/O.

PRIX on the other hand eliminated such matches during subsequence matching by starting with high
selectivity nodes due to the bottom-up transformation of the query pattern. As a result fewer paths were
traversed in the virtual trie. Similar behavior was observed for query Q7 and PRIX was nearly two times
faster than TwigStackXB.

PRIX vs TSGeneric+ The performance results from PRIX and TSGeneric+ in terms of disk I/O for the
SWISSPROT dataset are plotted in Figure 13. Recall that TSGeneric+ can efficiently process twig queries
by skipping both ancestors and descendants if the join selectivities of (at least one of) the twig pattern
edges are high. For example, the edge Author=‘‘Price S.R’’ in Q1 had high join selectivity. On a similar
note, PRIX can also process queries efficiently if they have high selectivities since only a few paths in the
virtual trie are accessed. Since queries Q1, Q2, Q3 Q8 and Q9 had the above characteristics, both PRIX and
TSGeneric+ had comparable performances for them.

Of special interest is the performance of queries Q6 and Q7. Let us first analyze the query Q7. The
pattern //Entry/Organelle=‘‘Chloroplast’’ was scattered in the dataset. In addition, the patterns
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Query TwigStack TwigStackXB

Total time Disk IO Total time Disk IO

Q10 9.34 secs 1426 pages 0.51 secs 39 pages

Q11 6.55 secs 1060 pages 0.18 secs 19 pages

Q15 14.01 secs 3008 pages 0.24 secs 26 pages

Table 8: TREEBANK - TwigStack vs TwigStackXB

Q10  Q11  Q12  Q13   Q14  Q15   Q16   Q17  Q18  Q19   Q20   Q21

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5
E

la
ps

ed
 T

im
e 

(in
 s

ec
s)

TwigStackXB

PRIX

Figure 14: TREEBANK (PRIX vs TwigStackXB)

//Entry/Species=‘‘Glycine max’’ and //Entry/Org=‘‘Glycine’’occurred less frequently than //Entry/Organelle=‘‘Ch

The edge join selectivities for Q7 was overall lower than that of queries like Q1, Q2, etc. As a result, the
effectiveness of skipping elements using the XR-tree indexes was diminished and more elements in the input
lists were scanned. Overall the I/O cost was significantly higher than that of PRIX. Similarly, for Q6 PRIX
was more efficient than TSGeneric+. We can draw the conclusion that the distribution of probable solutions
for different branches of the twig pattern can reduce the effectiveness of XR-trees to skip elements in the in-
put lists. As for Q5, due to the presence of high join selectivities in the edges (i.e., @prim id=‘‘PF00304’’)
of Q5, the query was processed efficiently by TSGeneric+. In contrast, due to the use of Bi-directional
subsequence matching, PRIX did not take advantage of the high join selectivities and was outperformed by
TSGeneric+.

7.2.2 TREEBANK Dataset

For the TREEBANK dataset, we observed that TwigStack performed worse than TwigStackXB for the
queries in Table 4. Table 8 shows the elapsed time and disk I/O for some of the queries. Note that the
TREEBANK dataset had deep recursion of element names.

In Figure 14 the elapsed time and disk I/O for the queries in Table 4 using PRIX and TwigStackXB are
plotted. For PRIX, we used RPIndex to process all the queries. TwigStackXB and PRIX had comparable
performance for queries Q10, Q11, Q13, Q14, Q20 and Q21. For query Q13, Bi-directional subsequence
matching was performed with ADVP-1 as the pivot. This resulted in speeding up the filtering process. Note
that for query Q15, PRIX was slower than TwigStackXB. Since the twig matches were localized in certain
regions of the sorted input stream, TwigStackXB could skip large regions of data using XB-Trees.

As stated in Section 2, TwigStack algorithms are sub-optimal for parent-child relationships in the query
twigs. The performance of queries Q12, Q16, Q17, Q18 and Q19 demonstrate this behavior. We observed
that PRIX was two to three times faster than TwigStackXB in many instances. In Table 9 the elapsed
time and disk I/O are shown for these queries. Let us first analyze the performance of query Q12. In query
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Figure 15: TREEBANK (PRIX vs TSGeneric+)

Query PRIX TwigStackXB

Total time Disk IO Total time Disk IO

Q12 1.82 secs 376 pages 6.88 secs 1,098 pages

Q16 1.15 secs 168 pages 2.59 secs 338 pages

Q17 1.16 secs 171 pages 2.64 secs 360 pages

Q18 1.20 secs 174 pages 2.18 secs 356 pages

Q19 2.59 secs 390 pages 3.53 secs 490 pages

Table 9: TREEBANK - PRIX vs TwigStackXB

Q12 the tag PRT appeared several times and was scattered in the input stream. However only in two such
documents, tags S and PRT shared a parent-child relationship. In many other documents, S was an ancestor
of PRT. As a result of sub-optimality, TwigStackXB first found all such matches and often drilled down to
the leaf nodes of the XB-Trees since these matches were not localized in certain regions (but scattered) of
the sorted input streams. This process increased the disk I/O. These false matches are discarded during the
merge post-processing step.

PRIX on the other hand was faster than TwigStackXB and performed (optimized) subsequence matching
using the high selectivity node PRT and used the MaxGap of the node PRT to discard those documents with
S as an ancestor of PRT. The MaxGap of PRT was 0 in this case. PRIX discarded the false matches early in
the subsequence matching phase and fewer disk pages were accessed overall.

Similar was the case for queries Q16, Q17, Q18 and Q19 and PRIX was faster than TwigStackXB. The
tag NEG had high selectivity in these queries. Note that PRIX used Bi-directional subsequence matching for
Q19 with NEG as the pivot since the tag RB had low selectivity. The MaxGap values for RB and NEG were 0
and 2 respectively. As expected PRIX took more time to process query Q19 as compared to Q17 because to
process Q19 both the LTrie and RTrie indexes were used for subsequence matching.

PRIX vs TSGeneric+ The I/O cost for PRIX and TSGeneric+ for the TREEBANK dataset are shown
in Figure 15. The queries Q10, Q11, Q13, Q14, Q15, Q16, Q20 and Q21 had comparable performance for
both PRIX and TSGeneric+. This was because for these queries, some edges had high join selectivities.
For example, in query Q10 the edge S//SYM had high join selectivity. As a result, TSGeneric+ was able
to effectively skip elements using the XR-tree indexes. Similarly, PRIX used high selectivity nodes for
subsequence matching and processed these queries efficiently.

Similar to TwigStackXB, TSGeneric+ suffers from sub-optimality for parent-child edges in the queries.
TSGeneric+ first found all the ancestor-descendant matches and the non-matches that do not satisfy parent-
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Query TwigStack TwigStackXB

Total time Disk IO Total time Disk IO

Q22 26.77 secs 6409 pages 0.25 secs 24 pages

Q26 15.50 secs 3036 pages 0.70 secs 71 pages

Table 10: DBLP - TwigStack vs TwigStackXB
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Figure 16: DBLP (PRIX vs TwigStackXB)

child relationship were eliminated during postprocessing. However, since the dataset contained many such
non-matches, TSGeneric+ incurred considerably more I/O than PRIX to process queries Q12, Q17, Q18.
On the other hand, PRIX performed optimized subsequence matching using the MaxGap values for query
nodes and was able to prune out the non-matches early during query processing. Thus PRIX outperformed
TSGeneric+ for these queries.

7.2.3 DBLP Dataset

As with the other datasets, we observed that TwigStack performed worse than TwigStackXB for the queries
in Table 5. Table 10 summarizes the performance for some of the queries in the DBLP dataset. Since the
queries had high selectivity, TwigStackXB was effective in skipping a lot of the data in the input streams,
thereby resulting in fewer disk accesses.

In Figure 16, the elapsed time for processing the queries using PRIX and TwigStackXB are plotted.
PRIX used EPIndex for answering all the queries in Table 5. For queries Q22, Q23, Q24, and Q28, PRIX and
TwigStackXB had comparable performance. As expected, TwigStackXB processed these queries efficiently,
because the solutions for those queries were distributed in certain regions of the data and the XB-Trees
were effective in skipping nodes in the input streams. On the other hand, PRIX also processed these queries
efficiently by performing subsequence matching beginning with the high selectivity element tags/values. The
bottom-up transformation of the query twig caused higher selectivity nodes to appear in beginning of its
LPS.

For queries Q25 and Q29 TwigStackXB was faster than PRIX. For Q25, most solutions were clustered
in small regions of the input stream allowing TwigStackXB to find all the matches faster as compared to
PRIX.

For query Q29, we performed the Bi-directional subsequence matching using the LTrie and RTrie with
value “Jim Gray” as the pivot since the element key occurred in every document in the DBLP dataset. This
increased the total IO as compared to processing Q28 which also had the same number of twig matches in
the data.

For queries Q26 and Q27 PRIX was two to three times faster than TwigStackXB. The tag phdthesis
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Figure 17: DBLP (PRIX vs TSGeneric+)

Query PRIX TwigStackXB

Total time Disk IO Total time Disk IO

Q26 0.29 secs 20 pages 0.70 secs 71 pages

Q27 0.30 secs 20 pages 1.03 secs 107 pages

Table 11: DBLP - PRIX vs TwigStackXB

was scattered in the sorted input stream. Also the tags year, series and number appeared frequently in
other nearby documents that did not contain tag phdthesis. In order to eliminate such matches TwigStack
frequently drilled down to lower regions of the XB-Trees. This increased the disk I/O. In PRIX, the cost
of subsequence matching phase depends on the number of candidate ranges that are searched. Since PRIX
used Bi-directional subsequence matching for processing these queries using tag phdthesis as the pivot,
all matches were found by performing fewer disk I/O. Note that the tag phdthesis had high selectivity as
compared to other nodes in the queries Q26 and Q27.

PRIX vs TSGeneric+ - The performance of PRIX and TSGeneric+ for queries Q22 through Q29 are
shown in Figure 17. The plot compares the disk I/O incurred by the PRIX and TSGeneric+.

For queries Q22 and Q25, both PRIX and TSGeneric+ had comparable performance. For example, in
Q22, PRIX used the high selectivity node ‘‘Antonin Guttman’’ to search for matching subsequences by
traversing few paths in the virtual trie. On the other hand, the high join selectivity edge author=‘‘Antonin
Guttman’’ proved useful for TSGeneric+ to skip many elements in the input lists.

Next we shall analyze the performance of queries Q23 and Q24. It is interesting to note that PRIX
only incurred about half the I/O as compared to TSGeneric+. The subsequence matching approach used
by PRIX was far more effective than using the XR-trees indexes even though a high join selectivity edge
(i.e., author=‘‘C. J. Date’’) was present in both queries. It is also interesting to note the performance
of queries Q26 and Q27. PRIX processed the queries efficiently using Bi-directional subsequence matching
with phdthesis as the pivot. TSGeneric+ also processed the queries efficiently due to the presence of high
join selectivity edges in these queries. Finally for queries Q28 and Q29, we observed an increase in the disk
I/O using PRIX for Q29 as compared to Q28 due to Bi-directional subsequence matching. Note that the
performance trends for Q28 and Q29 were similar for TwigStackXB and TSGeneric+.
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Query Bi-directional Naive

Q5 118 pages 98,645 pages
Q13 130 pages 1,062 pages
Q19 380 pages 444 pages
Q26 19 pages 2,465 pages
Q27 17 pages 2,540 pages
Q29 325 pages 609,102 pages

Table 12: Improvements in Disk I/O during Subsequence Matching

Dataset Query CPU Time % of Total Time

SWISSPROT Q7 0.27 secs 8.86%
TREEBANK Q19 0.003 secs 0.10%
DBLP Q25 0.04 secs 4.70%

Table 13: CPU Costs for the Refinement Phases

7.3 Evaluation of Bi-directional Subsequence Matching

To provide an insight to the effectiveness of Bi-directional Subsequence Matching, we compared Bi-directional
subsequence matching and naive subsequence matching (from left to right) in terms of the disk I/O required
to process queries Q5, Q13, Q19, Q26, Q27 and Q29 as shown in Tables 3, 4 and 5. The results are provided
in Table 12. Note that the number of buffer pages was fixed at 2000.

Overall, it was observed that the I/O cost during subsequence matching improved drastically when
the Bi-directional subsequence matching was used. This clearly shows that it is essential to start with a
node (pivot) with high selectivity. For example, in Q5, the tag Org had a very high frequency of 456,398
occurrences in the SWISSPORT dataset. Hence the number of paths explored in the virtual trie was very
large. Similarly, the tag key in Q29 had a very high frequency of 328,858 occurrences in the DBLP dataset
and showed similar trend. Overall we observed that Bi-directional subsequence matching improved the query
processing performance of PRIX drastically.

7.4 CPU Costs For the Refinement Phases

We measured the CPU time for the queries listed in Tables 3, 4, and 5. For each dataset, we only show
the query which had the maximum CPU cost in Table 13. The portion of the total time spent during the
refinement phases is also shown in Table 13. We observed that the I/O cost dominated the total query
processing time for the queries that we tested.

7.5 Summary of Performance Analysis

To summarize, we observed that PRIX yields good performance for processing queries with high selectivity.
The query processing cost is dominated by the subsequence matching phase that is I/O bound. We observed
that our proposed optimizations in Section 5 were effective in reducing the I/O cost during filtering. PRIX
by virtue of the bottom-up tree transformation used high selectivity nodes to start searching the virtual
trie for many queries. In some cases, PRIX used “Bi-directional subsequence matching” by choosing a pivot
with high selectivity. As a result, few paths in the virtual trie were traversed thereby reducing the total
processing time.

8 Related Work

Much research has been done on semistructured and XML databases in recent years. Query processing
and optimization have received much attention in this context. Path join algorithms based on building
structural indexes were proposed in this regard. The Lore system [10, 19] addressed several issues in query
processing. DataGuide [10] provides concise and accurate summaries of semistructured databases. Hugh et
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al. [19] addressed different aspects of cost-based query optimizer for XML. The concept of representative
objects was proposed by Nestorov et al. [22] for concise representation of the structure of semistructured,
hierarchical data. Index Fabric [8] stores encodings of paths in a structure based on Patricia tries to support
simple XML path queries in a single lookup. The T-index mechanism supports query processing for path
expressions [20]. In addition, a family of approximate structural summaries called A(k)-indices was proposed
by Kaushik et al. [17] for evaluating path expressions. The F&B index [16] was also proposed for evaluating
branching path queries.

Several join algorithms have been developed based on numbering schemes to process path and twig
queries [30, 18, 1, 5, 11, 7, 14]. Zhang et al. [30] addressed efficient processing of containment queries in
relational database systems. The XISS system [18] decomposes a complex path expression into a collection
of basic path expressions and processes them. The nodes in the XML document trees are numbered in
extended preorder. Khalifa et al. [1] developed structural join algorithms Tree-merge and Stack-tree for
matching parent-child and ancestor-descendant structural relationships. Bruno et al. [5] proposed PathStack
and TwigStack algorithms and showed that they were I/O and CPU optimal for a large class of query
twig patterns. In addition, a modification of B+-trees called XB-Trees were developed to speed up query
processing. In order to quickly find ancestors of a node in XML documents during structural joins, Jiang et
al. [14] proposed the XR-Tree index. Subsequently, they developed the TSGeneric+ algorithm [15] that used
indexes to speed up the twig pattern matching. Grust et al. [12] proposed Staircase join to speed up XPath
processing using relational storage. Similar to PathStack, Staircase join exhibits optimal linear behavior
during path processing. Recently, Zezula et al. [29] proposed the use of tree signatures for unordered XML
pattern matching, and Wang et al. [26] proposed an indexing method called ViST that uses subsequence
matching for processing twig queries by mapping trees to sequences.

Our system (PRIX) uses a novel method for XML twig pattern matching. PRIX transforms XML
documents and twig queries into Prüfer sequences. PRIX’s tree-to-sequence transformation requires space
that is linear in the number tree nodes. By performing subsequence matching and a series of refinements
phases, all occurrences of a twig pattern can be found without any false dismissals or false alarms. Our
system allows holistic processing of twig queries without breaking them into root-to-leaf paths and processing
them individually. PRIX inherently supports ordered twig pattern matching unlike most of the previous
approaches.

9 Conclusions

In this paper, we have presented a new paradigm for XML pattern matching. We transform XML documents
into Prüfer sequences. To find all occurrences of a query twig, subsequence matching is performed on the set
of sequences followed by a series of refinement phases. We also provide theoretical background to show the
correctness of our approach. Unlike most state-of-the-art techniques, our approach processes twig queries
without breaking them into root-to-leaf paths and processing them individually. We also provide empirical
results to demonstrate the efficient processing of twig queries by our PRIX system.
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