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Abstract—This paper presents Geoflood, a bandwidth-

efficient flooding algorithm intended for use in wireless ad-hoc 
networks. Flooding algorithms solve the problem of delivering a 
message to all nodes in a network. With pure flooding, each node 
broadcasts the message once in order to ensure delivery to all 
nodes in the network. Geoflood refrains from broadcasting when 
a message has been received from “many” directions.  The new 
algorithm is simple to implement and does not require any 
additional protocol messages. 

Simulation results show a 69% reduction in bandwidth 
overhead for the highest simulated node density, which is just 24 
nodes per in-range unit (48,087m2). Geoflood reduces bandwidth 
overhead in networks with node densities as small as 3 nodes per 
in-range unit. Geoflood performs even better under high node 
mobility. All this while still maintaining optimal coverage and 
low latencies.  

Keywords—geoflood; flooding; simulation; mobile; ad-hoc; 
networks; routing; geocast 

I. INTRODUCTION  
An ad-hoc network is a collection of wireless mobile 

hosts forming a temporary network without the aid of a 
fixed infrastructure or centralized administration. Due to 
the limited propagation range of each mobile node, it 
may be necessary for one mobile host to enlist the aid of 
others in forwarding a packet to its destination. 

Numerous routing protocols for ad-hoc networks 
have been proposed. Some relevant routing protocols are 
reviewed in [1]. Most ad-hoc routing protocols are 
categorized as either table-driven or on-demand. 

Table-driven routing protocols such as DSDV [6] 
maintain routing information to every destination. Nodes 
respond to changes in network topology by sending 
updates that maintain a network view that is both 
consistent and up-to-date. DSDV is based on the 
classical Bellman-Ford routing algorithm. 

On-demand routing protocols such as AODV [2] and 
DSR [7] use flooding algorithms for route discovery to 
construct on-demand routes. Flooding algorithms solve 
the problem of delivering a message to all the nodes in 
the network. Pure flooding requires each node to 
forward the message once. Several optimizations have 

been proposed to lessen the overhead of flooding during 
route discovery. 

Flooding is particularly expensive for wireless 
networks, where bandwidth, battery and computational 
resources are often scarce. Flooding is also used in 
multicasting, geocasting, location discovery, sensor 
networks, etc. 

An interesting use of flooding protocols is 
geocasting. The purpose of geocasting is to deliver 
messages to specific geographical regions defined by the 
user or application. Geocasting is a special case of 
multicasting, where the group members are confined to a 
geographical region. Geocast messages are delivered 
using flooding by defining what is called a forwarding 
zone. As shown in Figure 1 (taken from [3]), the 
forwarding zone includes the source and the geocast 
region. Flooding is limited to the forwarding zone. 
Nodes located outside the forwarding zone will drop the 
messages without further processing. Messages contain 
header fields that describe the location and geometry of 
the target region and the forwarding zone. 

 

Figure 1: Forwarding region used in geocast 
flooding 

This paper presents a new and efficient flooding 
protocol for mobile ad-hoc and sensor networks which 



minimizes flooding overhead by significantly reducing 
the overall number of messages required to reach all 
nodes.  

The algorithm assumes that each node can discern its 
own location, but it does not require each node to know 
the location of its neighbors. This is an important 
distinction since learning the location of other nodes is 
usually done by means of a “hello” protocol, which adds 
additional protocol messages. One might argue that 
protocols such as AODV already require a hello 
protocol. However, this is not necessarily true for other 
applications such as emerging geocasting [3][5] 
technologies. 

Today, nodes can easily obtain their location through 
already popular GPS devices. It will become evident 
later that only a coarse knowledge of the location is 
required. Therefore, the algorithm can also use known 
ad-hoc location discovery methods which are less 
accurate than GPS  but can be used indoors 
[12][13][14][15][16]. 

Not all nodes are strictly required to know their 
location, as our algorithm can be seen as an optimization 
for pure flooding where savings in bandwidth overhead 
increase with the number of location-aware nodes. 

The rest of this paper is organized as follows: 
Section 2 discusses related work. Section 3 describes our 
optimized flooding algorithm. Section 4 presents the 
performance evaluation and simulation results of our 
algorithm. Section 5 includes some additional 
discussions and future work. Finally, Section 6 provides 
some concluding remarks.  

II. RELATED WORK 
V. Paruchuri, et. al. [8] proposed an efficient 

flooding algorithm based on the covering problem, 
which states that the minimum number of circles 
required to cover a 2-dimensional space is obtained by 
overlaying a hexagonal lattice arrangement on the plane 
and circumscribing a circle around each hexagon. For 
flooding in ad-hoc networks, one would additionally 
require that the center of each circle lie on the 
circumference of all adjacent circles (one node within 
range of another). This requirement can be met with an 
alternate arrangement where one circle is centered on 
each vertex of the hexagonal lattice.  The algorithm 
works by having the message forwarded only by those 
nodes that share a hexagon edge with the local sender.  

The authors claim to use up to 65% to 80% fewer 
messages than pure flooding. Their highest simulated 
node density was 2.22 times greater than the highest 
node density we simulated, on which we achieved a 69% 
improvement. 

Paruchuri’s optimized flooding is the best solution 
we found in the literature, so we think it is worth 
mentioning some differences with our protocol. Their 
more sophisticated approach also makes it more 
complex. Their algorithm requires a more precise 

positioning system. Our algorithm also differs in that it 
does not require a hello protocol. The authors briefly 
describe a variant of their algorithm that does not require 
hello messages, but did not implement this variant, nor 
did they elaborate on it or provide results. 

Z. Hass et. al. introduced GOSSIP – essentially, 
tossing a coin to decide whether or not to forward the 
message – to reduce the overhead of routing protocols. 
Gossiping exhibits bimodal behavior in sufficiently large 
networks: in some executions the gossip dies out quickly 
and hardly any nodes get the message, in the remaining 
executions most of the nodes get the message. This 
simple gossiping protocol uses up to 35% fewer 
messages. Compared to GOSSIP, our approach achieves 
less overhead and better coverage (the fraction of nodes 
that receive the message).  

J. Cartigny, et. al. [10] proposed several stochastic 
algorithms where nodes forward messages with a certain 
probability. These probabilities are calculated differently 
for each algorithm presented in the paper. The choices 
go from using a constant probability (like GOSSIP) to 
calculating the probability as a function of local node 
density, distance between sender and receiver and 
fraction of neighbors that have received the message, or 
a combination of these. These algorithms provide a 
significant reduction of forwarded messages at the cost 
of less coverage/reliability. As in GOSSIP, our approach 
yields less overhead without compromising coverage. 

III. GEOFLOOD ALGORITHM  
In ad-hoc networks, pure flooding works as follows. 

When a node receives a message, the node first 
determines whether it is the first reception of the 
message. If it is the first reception, the node will forward 
the message, otherwise it drops the message. Each 
message is stamped by the originator with a unique 
sequence number. Nodes can detect duplicates by 
keeping a record of (source, sequence) pairs for 
previously received messages. 

We improve pure flooding by having each node wait a 
“small” period of time before forwarding on the first 
reception of the message, and abstaining from 
forwarding when it receives the same message from “all 
directions”. 

 Each message contains a location field. As a message 
is forwarded, each intermediate node updates the 
location field with its own position. Each node defines a 
Cartesian plane with its own location as the origin. A 
node will abstain from forwarding only when it has 
received the message from all four quadrants (NE, NW, 
SE, and SW). 

Thus the algorithm works as follows: If the received 
message has been forwarded earlier by the local node, 
the message is dropped. If this is the first reception of 
the message, the quadrant from which the message 
arrived is recorded, and a packet holding time t is 
chosen. The message is temporarily put on hold until 



either the message is received from all four quadrants or 
t time has passed. If the message arrives from all four 
quadrants before time t, then the message is dropped, 
otherwise it is forwarded and the (source, sequence) pair 
is stored in the forwarding cache to filter future 
duplicates. 

Location knowledge is not strictly required on all 
nodes. Geoflood is just an optimization for pure flooding 
where location-aware nodes can help reduce the 
bandwidth overhead.  A node that does not know its 
location will do no waiting and will immediately 
forward messages with the location field empty. A 
location-aware node that receives a message with an 
empty location field will not assign the message to a 
quadrant. 

An important part of the algorithm is the selection of 
packet holding time. Nodes furthest away from the local 
sender should select the smallest packet holding times. 
These are the nodes located near the perimeter of the 
sender’s transmission range. Holding times increase as 
the distance to the sender decreases, with those nodes 
closest to the sender waiting the longest. A random 
component was also considered to avoid contention that 
could arise between nodes located at the same distance 
from the sender. As will be discussed later, simulation 
results indicate this random component does not have 
the intended effect.  

This time selection serves two purposes. As shown in 
Figure 2, outer nodes cover more new network space 
than inner nodes, thus smaller waiting times for outer 
nodes help messages propagate faster and keep latencies 
down for “far-away” nodes. Moreover, if enough outer 
nodes are able to transmit quicker, inner nodes that don’t 
cover much additional space will desist from forwarding 
if they receive the message from outer nodes on all four 
quadrants.  

 

Figure 2: network space covered by outer nodes 

We propose a simple linear function to implement this 
timing strategy. Let r be the range of the network. Let 
mhold be the maximum holding time. Let d be the 
distance between the local node and the sender. Let h be 
the function that computes the packet hold time. The 
function h is defined as follows: 

r
mdmdh hold

hold
⋅
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Let moff be the maximum random offset. A random 
component may be added to the packet hold time by 
means of the following function. 

))(),0,)((max()( offoff mdhmdhranddt +−=  

IV. PERFORMANCE EVALUATION 
Performance evaluation was carried out by 

simulating geoflood and pure flooding under identical 
network scenarios and comparing the results.  

We implemented optimized and pure flooding in the 
ns network simulator [11].  Ns is a discrete event 
simulator targeted at networking research. Ns provides 
extensive support for wireless networks.  

Three metrics were defined to evaluate and compare 
the performance of both protocols: (1) Overhead: the 
ratio between the number of times a message is 
forwarded and the number of nodes in the network.  (2) 
Coverage: the ratio between the number of distinct 
nodes that receive the flooded message and the number 
of nodes in the network. (3) Latency: the average time it 
takes a node to receive the message from the time the 
message was originated.  

For each simulation of n nodes, n flooding operations 
were conducted, with each node performing one 
flooding operation. The average overhead, average 
coverage and average latency is calculated over the n 
flooding operations. 

The simulations were conducted with the following 
fixed conditions: Nodes are uniformly distributed in a 
network space of dimensions 1000x1000 meters. The 
default ns node configuration was used, which works 
like a 914MHz Lucent WaveLAN DSSS, namely, a 
bandwidth of 2Mbps and a mean transmission range of 
250 meters. We used the size of a typical AODV RREQ 
message as the packet size for the simulations. AODV 
RREQ messages have a payload of 24 bytes.   

For geoflood, the simulations were conducted with a 
maximum holding time (mhold) of 350 milliseconds and a 
maximum random offset (moff) of zero milliseconds. 

Simulations were conducted for multiple node 
densities. Node densities are expressed as the number of 
nodes per in-range unit. An in-range unit is the largest 
circle such that any node inside the circle can directly 
communicate with any other node inside the circle. For a 
transmission range of 250 meters the in-range unit is 
49,087 square meters. Several node distributions were 



simulated for each (node density, algorithm) pair and the 
results were averaged. The results are presented for each 
metric by plotting the metric vs. the density for both 
geoflood and pure flooding. 

Figure 3 shows the results for the overhead metric. 
Geoflood performs much better than pure flooding as the 
node density increases, achieving a 69% reduction for 
the largest density we simulated (24.54). From an 
arbitrary node’s perspective, the higher the density the 
higher the likelihood that the message will be received 
from all four quadrants.  

 

 

Figure 3: Overhead vs. Density 
 
Geoflood starts reducing bandwidth overhead as soon 

as the node density is such that the ad-hoc network is 
fully connected. Under a uniform node distribution, only 
minor densities are enough to produce a fully connected 
network.  A node density of 3 nodes per in-range unit is 
enough to provide a fully connected ad-hoc network. 

Full connectivity in Figure 3 occurs where the 
overhead peaks. Note that the overhead peaks at about 
the same density for both algorithms. This corresponds 
to a node density of 2.94. The reduced overhead for 
densities less than 2.94 are a result of how the overhead 
is measured. Recall that overhead is measured as the 
fraction of the nodes that broadcast the message. When 
the network is not fully connected, not all nodes can 
receive the message, hence not all nodes will forward 
the message. This is true for any flooding algorithm. For 
node densities less than 2.94, the overhead acts as a 
measurement of connectivity. 

As Figure 4 shows, geoflood exhibits excellent 
coverage. The algorithm provides coverage that is just as 
good as the coverage for pure flooding.  Both pure 
flooding and geoflood exhibit perfect coverage once the 
node density is such that the ad-hoc network is fully 
connected.  

 

Figure 4: Coverage vs. Density 
This is also consistent with our expectations: If a 

node does not receive a message from all four quadrants 
it will eventually forward the message, thus covering the 
same network area as any node in pure flooding would. 
On the other hand, when a node receives the message 
from all four quadrants, the area that is covered by its 
range but not covered by the range of any of the four 
senders is either null or very small. Under full 
connectivity it is therefore very likely that any other 
node in the receiver’s range will either receive the 
message from one of the four senders or perhaps another 
node. Figure 5 illustrates a worst-case scenario where 
the area covered by the receiver but not covered by one 
of the four quadrant senders is the largest. Note that even 
in this worst-case scenario the area not covered is still 
relatively small. Moreover, that area would likely be 
covered by other nodes when reasonable densities are 
considered. 

  

Figure 5: Worst case placement of local senders 
from all four quadrants. 

Figure 6 shows how the average delivery latency 
decreases rapidly as the node density increases. For the 
highest simulated node density of 24 nodes/in-range 
unit, the average latency of our algorithm was 27 



milliseconds, just 10 milliseconds more than pure 
flooding.  

Most of the decrease in latency occurs within a 
reasonable/realistic node density interval. For example, 
at a node density of 2.20, close to the density threshold 
for fully connected networks, the average latency is 156 
milliseconds. At a node density of 10.79, the latency is 
already down to 37 milliseconds, just 20 milliseconds 
more than pure flooding, and just 10 seconds more than 
the highest simulated density. This is a 76% decrease in 
latency between node densities 2.20 and 10.79.  

The decrease in latency as the density increases is 
easy explained, and is a result of the packet hold time 
function used. Neighbor nodes that are furthest away 
from the transmitting node generate the smallest random 
holding times. This allows these far reaching nodes to 
transmit quickly and reach greater distances in a short 
time.  

 

Figure 6: Latency vs. Density 

A. Packet Holding Times 
Separate simulations were conducted to determine 

the effect of the packet holding time and random offset 
on the performance of the algorithm. Simulations were 
carried out for packet holding times between 0.0 and 1.0 
seconds with a step of 10 milliseconds, and a random 
offset between 0 and 50 milliseconds with a step of 2.5 
milliseconds. All simulations were conducted on a fixed 
node density of 6.38 nodes per in-range unit. The results 
of the simulations are used to analyze the effect of these 
times on each performance metric.  

Figure 7 shows a 3D plot of the bandwidth overhead 
as a function of packet hold time and random offset. 
Several observations can be made by analyzing the 
figure. First, the surface flattens rapidly as the packet 
hold time increases. The contours drawn at the base of 
the graph indicate most of the overhead reduction occurs 
at small packet hold times. The overhead drops below 
80% at 10ms, below 70% at 90ms, below 65% at 130 
ms, below 60% at 300 ms, and below 57% at 1 second 
of packet holding time. It is then reasonable to say that 

after 300ms of packet hold time there is no significant 
savings in bandwidth overhead. 

It can also be observed that there is no clear benefit 
in introducing a random offset. A careful inspection of 
the figure and its contour for an overhead of 0.58 shows 
that the random offset is actually detrimental to 
overhead reduction. The simulation data indicates that 
the random offset produces a negative effect for packet 
hold times longer the 100 ms, with greater random 
offsets resulting in increased overhead. It should be 
noted that significant overhead reduction can still be 
achieved for packet hold times greater than 100 ms. For 
example, the overhead is reduced an additional 10% 
between 100 ms and 350 ms of packet hold time.  

 

Figure 7: Bandwidth overhead as a function of 
packet hold time and random offset 

The opposite effect occurs for packet hold times 
smaller than 100 ms. Figure 8 shows a zoomed view of 
this region. The surface and contours show how longer 
random offsets result in less overhead. This does not 
mean, however, that the random offset is fulfilling its 
original purpose. Namely, the random offset was 
supposed to avoid contention among nodes located at the 
same distance from the transmitting node. What we are 
seeing instead is the random offset compensating for an 
otherwise small packet hold time. In other words, a 
random holding time is better than no holding time. 

 

 



Figure 8: A Zoomed view of Figure 7 
 
The average latency for delivery of a flooded packet 

increases almost linearly with the packet hold time. This 
is shown in Figure 9. Latency-wise, good judgment is at 
a premium when selecting the packet holding time. 
There is a packet hold time interval where latency 
increases at a much faster rate than the decrease in 
overhead. It is not recommended to use packet hold 
times beyond 300 or 350 ms for the network 
configuration we have simulated. 

The coverage was always 1.0 for all (packet hold 
time, random offset) pairs. For this reason it is pointless 
to include the corresponding figure in the paper. 

The analysis we have conducted with respect to 
holding times is consistent across different network 
configurations. We conducted similar simulations for 
networks with different densities, areas and bandwidth 
and always obtained similar results. 

 

 

Figure 9: Latency as a function of packet hold 
time and random offset 

 

B. Movement 
To provide a complete study of our protocol we also 

conducted simulations in the presence of node mobility. 
Node mobility does not adversely affect the performance 
of our protocol. In fact, the results consistently indicate 
that our protocol actually performs better when nodes 
are moving. 

Simulations were carried out using the following 
mobility model: each node picks a random destination 
using a uniform distribution. The node moves towards 
that destination at a constant speed between 0 and 20 
m/s (72 km/h, 45 mi/h).  Once the destination is reached, 
a new destination is selected and the process is repeated. 
All other conditions are the same as in the static 
simulations. 

The overhead results for mobility are shown in 
Figure 10. The maximum node density simulated for 
mobility was 8.0 because simulation times became 
intolerable for larger densities. We have included the 
previous static results for convenience and easy 
comparison. The four lines represent both algorithms 
with and without mobility. The graph shows how 
geoflood performs consistently better under mobility. 
Note that mobility has no effect on pure flooding. 

 

Figure 10: Comparison of overhead when 
considering node mobility 

V. DISCUSSION AND FURTHER WORK 
On-demand ad-hoc routing protocols such as AODV 

use flooding for route-discovery messages. If pure 
flooding is replaced with geoflood then not all nodes 
will forward the route discovery messages, and they will 
thus not be part of paths to the destination. The quality 
of the resulting paths is not clear. On one hand, paths 
will most likely have fewer hops because of our timing 
strategy where outer nodes retransmit first. On the other 
hand, these routes could be less stable as there is less 
overlap between the radio ranges of nodes along the 
path. The quality of the resulting routes needs to be 
verified. AODV is a natural protocol to target for such 
experiments. 

The number of directions from which messages need 
to arrive before deciding not to forward will have an 
effect on the overhead and coverage metrics. Further 
studies need to be conducted to measure this effect. For 
example, the network space could be divided into three 
triangles instead of four quadrants. 

VI. CONCLUSIONS 
We have presented a scalable and bandwidth-

efficient method for performing flooding in mobile ad-
hoc and sensor networks. 

The algorithm significantly reduces the bandwidth 
overhead under reasonable and realistic node densities. 
Experiments show that the algorithm provides the same 
coverage as pure flooding. 



Because of its timer strategy, the algorithm is able to 
maintain the delivery latency under reasonable bounds 
while providing an efficient reduction in bandwidth 
overhead. 

Our algorithm assumes that nodes know their own 
location. Only a coarse knowledge of the location is 
required. Therefore, the algorithm can use known ad-hoc 
location discovery methods which are less accurate than 
GPS  but can be used indoors. Location knowledge is 
not strictly required on all nodes. Geoflood is just an 
optimization for pure flooding where location-aware 
nodes can help reduce the bandwidth overhead.  
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