
An Efficient Flooding Algorithm
for Mobile Ad-hoc Networks

Jesus Arango
Computer Science

University of Arizona
Tucson, Arizona, USA
jarango@cs.arizona.edu

Mikael Degermark
Computer Science

University of Arizona
Tucson, Arizona, USA
micke@cs.arizona.edu

Alon Efrat
Computer Science

University of Arizona
Tucson, Arizona, USA
alon@cs.arizona.edu

Stephen Pink
Computer Science

University of Arizona
Tucson, Arizona, USA
steve@cs.arizona.edu

Abstract—This paper presents Geoflood, a bandwidth-

efficient flooding algorithm intended for use in wireless ad-hoc
networks. Flooding algorithms solve the problem of delivering a
message to all nodes in a network. With pure flooding, each node
broadcasts the message once in order to ensure delivery to all
nodes in the network. Geoflood refrains from broadcasting when
a message has been received from “many” directions. The new
algorithm is simple to implement and does not require any
additional protocol messages.

Simulation results show a 69% reduction in bandwidth
overhead for the highest simulated node density, which is just 24
nodes per in-range unit (48,087m2). Geoflood reduces bandwidth
overhead in networks with node densities as small as 3 nodes per
in-range unit. Geoflood performs even better under high node
mobility. All this while still maintaining optimal coverage and
low latencies.

Keywords—geoflood; flooding; simulation; mobile; ad-hoc;
networks; routing; geocast

I. INTRODUCTION
An ad-hoc network is a collection of wireless mobile

hosts forming a temporary network without the aid of a
fixed infrastructure or centralized administration. Due to
the limited propagation range of each mobile node, it
may be necessary for one mobile host to enlist the aid of
others in forwarding a packet to its destination.

Numerous routing protocols for ad-hoc networks
have been proposed. Some relevant routing protocols are
reviewed in [1]. Most ad-hoc routing protocols are
categorized as either table-driven or on-demand.

Table-driven routing protocols such as DSDV [6]
maintain routing information to every destination. Nodes
respond to changes in network topology by sending
updates that maintain a network view that is both
consistent and up-to-date. DSDV is based on the
classical Bellman-Ford routing algorithm.

On-demand routing protocols such as AODV [2] and
DSR [7] use flooding algorithms for route discovery to
construct on-demand routes. Flooding algorithms solve
the problem of delivering a message to all the nodes in
the network. Pure flooding requires each node to
forward the message once. Several optimizations have

been proposed to lessen the overhead of flooding during
route discovery.

Flooding is particularly expensive for wireless
networks, where bandwidth, battery and computational
resources are often scarce. Flooding is also used in
multicasting, geocasting, location discovery, sensor
networks, etc.

An interesting use of flooding protocols is
geocasting. The purpose of geocasting is to deliver
messages to specific geographical regions defined by the
user or application. Geocasting is a special case of
multicasting, where the group members are confined to a
geographical region. Geocast messages are delivered
using flooding by defining what is called a forwarding
zone. As shown in Figure 1 (taken from [3]), the
forwarding zone includes the source and the geocast
region. Flooding is limited to the forwarding zone.
Nodes located outside the forwarding zone will drop the
messages without further processing. Messages contain
header fields that describe the location and geometry of
the target region and the forwarding zone.

Figure 1: Forwarding region used in geocast
flooding

This paper presents a new and efficient flooding
protocol for mobile ad-hoc and sensor networks which

minimizes flooding overhead by significantly reducing
the overall number of messages required to reach all
nodes.

The algorithm assumes that each node can discern its
own location, but it does not require each node to know
the location of its neighbors. This is an important
distinction since learning the location of other nodes is
usually done by means of a “hello” protocol, which adds
additional protocol messages. One might argue that
protocols such as AODV already require a hello
protocol. However, this is not necessarily true for other
applications such as emerging geocasting [3][5]
technologies.

Today, nodes can easily obtain their location through
already popular GPS devices. It will become evident
later that only a coarse knowledge of the location is
required. Therefore, the algorithm can also use known
ad-hoc location discovery methods which are less
accurate than GPS but can be used indoors
[12][13][14][15][16].

Not all nodes are strictly required to know their
location, as our algorithm can be seen as an optimization
for pure flooding where savings in bandwidth overhead
increase with the number of location-aware nodes.

The rest of this paper is organized as follows:
Section 2 discusses related work. Section 3 describes our
optimized flooding algorithm. Section 4 presents the
performance evaluation and simulation results of our
algorithm. Section 5 includes some additional
discussions and future work. Finally, Section 6 provides
some concluding remarks.

II. RELATED WORK
V. Paruchuri, et. al. [8] proposed an efficient

flooding algorithm based on the covering problem,
which states that the minimum number of circles
required to cover a 2-dimensional space is obtained by
overlaying a hexagonal lattice arrangement on the plane
and circumscribing a circle around each hexagon. For
flooding in ad-hoc networks, one would additionally
require that the center of each circle lie on the
circumference of all adjacent circles (one node within
range of another). This requirement can be met with an
alternate arrangement where one circle is centered on
each vertex of the hexagonal lattice. The algorithm
works by having the message forwarded only by those
nodes that share a hexagon edge with the local sender.

The authors claim to use up to 65% to 80% fewer
messages than pure flooding. Their highest simulated
node density was 2.22 times greater than the highest
node density we simulated, on which we achieved a 69%
improvement.

Paruchuri’s optimized flooding is the best solution
we found in the literature, so we think it is worth
mentioning some differences with our protocol. Their
more sophisticated approach also makes it more
complex. Their algorithm requires a more precise

positioning system. Our algorithm also differs in that it
does not require a hello protocol. The authors briefly
describe a variant of their algorithm that does not require
hello messages, but did not implement this variant, nor
did they elaborate on it or provide results.

Z. Hass et. al. introduced GOSSIP – essentially,
tossing a coin to decide whether or not to forward the
message – to reduce the overhead of routing protocols.
Gossiping exhibits bimodal behavior in sufficiently large
networks: in some executions the gossip dies out quickly
and hardly any nodes get the message, in the remaining
executions most of the nodes get the message. This
simple gossiping protocol uses up to 35% fewer
messages. Compared to GOSSIP, our approach achieves
less overhead and better coverage (the fraction of nodes
that receive the message).

J. Cartigny, et. al. [10] proposed several stochastic
algorithms where nodes forward messages with a certain
probability. These probabilities are calculated differently
for each algorithm presented in the paper. The choices
go from using a constant probability (like GOSSIP) to
calculating the probability as a function of local node
density, distance between sender and receiver and
fraction of neighbors that have received the message, or
a combination of these. These algorithms provide a
significant reduction of forwarded messages at the cost
of less coverage/reliability. As in GOSSIP, our approach
yields less overhead without compromising coverage.

III. GEOFLOOD ALGORITHM
In ad-hoc networks, pure flooding works as follows.

When a node receives a message, the node first
determines whether it is the first reception of the
message. If it is the first reception, the node will forward
the message, otherwise it drops the message. Each
message is stamped by the originator with a unique
sequence number. Nodes can detect duplicates by
keeping a record of (source, sequence) pairs for
previously received messages.

We improve pure flooding by having each node wait a
“small” period of time before forwarding on the first
reception of the message, and abstaining from
forwarding when it receives the same message from “all
directions”.

 Each message contains a location field. As a message
is forwarded, each intermediate node updates the
location field with its own position. Each node defines a
Cartesian plane with its own location as the origin. A
node will abstain from forwarding only when it has
received the message from all four quadrants (NE, NW,
SE, and SW).

Thus the algorithm works as follows: If the received
message has been forwarded earlier by the local node,
the message is dropped. If this is the first reception of
the message, the quadrant from which the message
arrived is recorded, and a packet holding time t is
chosen. The message is temporarily put on hold until

either the message is received from all four quadrants or
t time has passed. If the message arrives from all four
quadrants before time t, then the message is dropped,
otherwise it is forwarded and the (source, sequence) pair
is stored in the forwarding cache to filter future
duplicates.

Location knowledge is not strictly required on all
nodes. Geoflood is just an optimization for pure flooding
where location-aware nodes can help reduce the
bandwidth overhead. A node that does not know its
location will do no waiting and will immediately
forward messages with the location field empty. A
location-aware node that receives a message with an
empty location field will not assign the message to a
quadrant.

An important part of the algorithm is the selection of
packet holding time. Nodes furthest away from the local
sender should select the smallest packet holding times.
These are the nodes located near the perimeter of the
sender’s transmission range. Holding times increase as
the distance to the sender decreases, with those nodes
closest to the sender waiting the longest. A random
component was also considered to avoid contention that
could arise between nodes located at the same distance
from the sender. As will be discussed later, simulation
results indicate this random component does not have
the intended effect.

This time selection serves two purposes. As shown in
Figure 2, outer nodes cover more new network space
than inner nodes, thus smaller waiting times for outer
nodes help messages propagate faster and keep latencies
down for “far-away” nodes. Moreover, if enough outer
nodes are able to transmit quicker, inner nodes that don’t
cover much additional space will desist from forwarding
if they receive the message from outer nodes on all four
quadrants.

Figure 2: network space covered by outer nodes

We propose a simple linear function to implement this
timing strategy. Let r be the range of the network. Let
mhold be the maximum holding time. Let d be the
distance between the local node and the sender. Let h be
the function that computes the packet hold time. The
function h is defined as follows:

r
mdmdh hold

hold
⋅

−=)(

Let moff be the maximum random offset. A random
component may be added to the packet hold time by
means of the following function.

))(),0,)((max()(offoff mdhmdhranddt +−=

IV. PERFORMANCE EVALUATION
Performance evaluation was carried out by

simulating geoflood and pure flooding under identical
network scenarios and comparing the results.

We implemented optimized and pure flooding in the
ns network simulator [11]. Ns is a discrete event
simulator targeted at networking research. Ns provides
extensive support for wireless networks.

Three metrics were defined to evaluate and compare
the performance of both protocols: (1) Overhead: the
ratio between the number of times a message is
forwarded and the number of nodes in the network. (2)
Coverage: the ratio between the number of distinct
nodes that receive the flooded message and the number
of nodes in the network. (3) Latency: the average time it
takes a node to receive the message from the time the
message was originated.

For each simulation of n nodes, n flooding operations
were conducted, with each node performing one
flooding operation. The average overhead, average
coverage and average latency is calculated over the n
flooding operations.

The simulations were conducted with the following
fixed conditions: Nodes are uniformly distributed in a
network space of dimensions 1000x1000 meters. The
default ns node configuration was used, which works
like a 914MHz Lucent WaveLAN DSSS, namely, a
bandwidth of 2Mbps and a mean transmission range of
250 meters. We used the size of a typical AODV RREQ
message as the packet size for the simulations. AODV
RREQ messages have a payload of 24 bytes.

For geoflood, the simulations were conducted with a
maximum holding time (mhold) of 350 milliseconds and a
maximum random offset (moff) of zero milliseconds.

Simulations were conducted for multiple node
densities. Node densities are expressed as the number of
nodes per in-range unit. An in-range unit is the largest
circle such that any node inside the circle can directly
communicate with any other node inside the circle. For a
transmission range of 250 meters the in-range unit is
49,087 square meters. Several node distributions were

simulated for each (node density, algorithm) pair and the
results were averaged. The results are presented for each
metric by plotting the metric vs. the density for both
geoflood and pure flooding.

Figure 3 shows the results for the overhead metric.
Geoflood performs much better than pure flooding as the
node density increases, achieving a 69% reduction for
the largest density we simulated (24.54). From an
arbitrary node’s perspective, the higher the density the
higher the likelihood that the message will be received
from all four quadrants.

Figure 3: Overhead vs. Density

Geoflood starts reducing bandwidth overhead as soon

as the node density is such that the ad-hoc network is
fully connected. Under a uniform node distribution, only
minor densities are enough to produce a fully connected
network. A node density of 3 nodes per in-range unit is
enough to provide a fully connected ad-hoc network.

Full connectivity in Figure 3 occurs where the
overhead peaks. Note that the overhead peaks at about
the same density for both algorithms. This corresponds
to a node density of 2.94. The reduced overhead for
densities less than 2.94 are a result of how the overhead
is measured. Recall that overhead is measured as the
fraction of the nodes that broadcast the message. When
the network is not fully connected, not all nodes can
receive the message, hence not all nodes will forward
the message. This is true for any flooding algorithm. For
node densities less than 2.94, the overhead acts as a
measurement of connectivity.

As Figure 4 shows, geoflood exhibits excellent
coverage. The algorithm provides coverage that is just as
good as the coverage for pure flooding. Both pure
flooding and geoflood exhibit perfect coverage once the
node density is such that the ad-hoc network is fully
connected.

Figure 4: Coverage vs. Density
This is also consistent with our expectations: If a

node does not receive a message from all four quadrants
it will eventually forward the message, thus covering the
same network area as any node in pure flooding would.
On the other hand, when a node receives the message
from all four quadrants, the area that is covered by its
range but not covered by the range of any of the four
senders is either null or very small. Under full
connectivity it is therefore very likely that any other
node in the receiver’s range will either receive the
message from one of the four senders or perhaps another
node. Figure 5 illustrates a worst-case scenario where
the area covered by the receiver but not covered by one
of the four quadrant senders is the largest. Note that even
in this worst-case scenario the area not covered is still
relatively small. Moreover, that area would likely be
covered by other nodes when reasonable densities are
considered.

Figure 5: Worst case placement of local senders
from all four quadrants.

Figure 6 shows how the average delivery latency
decreases rapidly as the node density increases. For the
highest simulated node density of 24 nodes/in-range
unit, the average latency of our algorithm was 27

milliseconds, just 10 milliseconds more than pure
flooding.

Most of the decrease in latency occurs within a
reasonable/realistic node density interval. For example,
at a node density of 2.20, close to the density threshold
for fully connected networks, the average latency is 156
milliseconds. At a node density of 10.79, the latency is
already down to 37 milliseconds, just 20 milliseconds
more than pure flooding, and just 10 seconds more than
the highest simulated density. This is a 76% decrease in
latency between node densities 2.20 and 10.79.

The decrease in latency as the density increases is
easy explained, and is a result of the packet hold time
function used. Neighbor nodes that are furthest away
from the transmitting node generate the smallest random
holding times. This allows these far reaching nodes to
transmit quickly and reach greater distances in a short
time.

Figure 6: Latency vs. Density

A. Packet Holding Times
Separate simulations were conducted to determine

the effect of the packet holding time and random offset
on the performance of the algorithm. Simulations were
carried out for packet holding times between 0.0 and 1.0
seconds with a step of 10 milliseconds, and a random
offset between 0 and 50 milliseconds with a step of 2.5
milliseconds. All simulations were conducted on a fixed
node density of 6.38 nodes per in-range unit. The results
of the simulations are used to analyze the effect of these
times on each performance metric.

Figure 7 shows a 3D plot of the bandwidth overhead
as a function of packet hold time and random offset.
Several observations can be made by analyzing the
figure. First, the surface flattens rapidly as the packet
hold time increases. The contours drawn at the base of
the graph indicate most of the overhead reduction occurs
at small packet hold times. The overhead drops below
80% at 10ms, below 70% at 90ms, below 65% at 130
ms, below 60% at 300 ms, and below 57% at 1 second
of packet holding time. It is then reasonable to say that

after 300ms of packet hold time there is no significant
savings in bandwidth overhead.

It can also be observed that there is no clear benefit
in introducing a random offset. A careful inspection of
the figure and its contour for an overhead of 0.58 shows
that the random offset is actually detrimental to
overhead reduction. The simulation data indicates that
the random offset produces a negative effect for packet
hold times longer the 100 ms, with greater random
offsets resulting in increased overhead. It should be
noted that significant overhead reduction can still be
achieved for packet hold times greater than 100 ms. For
example, the overhead is reduced an additional 10%
between 100 ms and 350 ms of packet hold time.

Figure 7: Bandwidth overhead as a function of
packet hold time and random offset

The opposite effect occurs for packet hold times
smaller than 100 ms. Figure 8 shows a zoomed view of
this region. The surface and contours show how longer
random offsets result in less overhead. This does not
mean, however, that the random offset is fulfilling its
original purpose. Namely, the random offset was
supposed to avoid contention among nodes located at the
same distance from the transmitting node. What we are
seeing instead is the random offset compensating for an
otherwise small packet hold time. In other words, a
random holding time is better than no holding time.

Figure 8: A Zoomed view of Figure 7

The average latency for delivery of a flooded packet

increases almost linearly with the packet hold time. This
is shown in Figure 9. Latency-wise, good judgment is at
a premium when selecting the packet holding time.
There is a packet hold time interval where latency
increases at a much faster rate than the decrease in
overhead. It is not recommended to use packet hold
times beyond 300 or 350 ms for the network
configuration we have simulated.

The coverage was always 1.0 for all (packet hold
time, random offset) pairs. For this reason it is pointless
to include the corresponding figure in the paper.

The analysis we have conducted with respect to
holding times is consistent across different network
configurations. We conducted similar simulations for
networks with different densities, areas and bandwidth
and always obtained similar results.

Figure 9: Latency as a function of packet hold
time and random offset

B. Movement
To provide a complete study of our protocol we also

conducted simulations in the presence of node mobility.
Node mobility does not adversely affect the performance
of our protocol. In fact, the results consistently indicate
that our protocol actually performs better when nodes
are moving.

Simulations were carried out using the following
mobility model: each node picks a random destination
using a uniform distribution. The node moves towards
that destination at a constant speed between 0 and 20
m/s (72 km/h, 45 mi/h). Once the destination is reached,
a new destination is selected and the process is repeated.
All other conditions are the same as in the static
simulations.

The overhead results for mobility are shown in
Figure 10. The maximum node density simulated for
mobility was 8.0 because simulation times became
intolerable for larger densities. We have included the
previous static results for convenience and easy
comparison. The four lines represent both algorithms
with and without mobility. The graph shows how
geoflood performs consistently better under mobility.
Note that mobility has no effect on pure flooding.

Figure 10: Comparison of overhead when
considering node mobility

V. DISCUSSION AND FURTHER WORK
On-demand ad-hoc routing protocols such as AODV

use flooding for route-discovery messages. If pure
flooding is replaced with geoflood then not all nodes
will forward the route discovery messages, and they will
thus not be part of paths to the destination. The quality
of the resulting paths is not clear. On one hand, paths
will most likely have fewer hops because of our timing
strategy where outer nodes retransmit first. On the other
hand, these routes could be less stable as there is less
overlap between the radio ranges of nodes along the
path. The quality of the resulting routes needs to be
verified. AODV is a natural protocol to target for such
experiments.

The number of directions from which messages need
to arrive before deciding not to forward will have an
effect on the overhead and coverage metrics. Further
studies need to be conducted to measure this effect. For
example, the network space could be divided into three
triangles instead of four quadrants.

VI. CONCLUSIONS
We have presented a scalable and bandwidth-

efficient method for performing flooding in mobile ad-
hoc and sensor networks.

The algorithm significantly reduces the bandwidth
overhead under reasonable and realistic node densities.
Experiments show that the algorithm provides the same
coverage as pure flooding.

Because of its timer strategy, the algorithm is able to
maintain the delivery latency under reasonable bounds
while providing an efficient reduction in bandwidth
overhead.

Our algorithm assumes that nodes know their own
location. Only a coarse knowledge of the location is
required. Therefore, the algorithm can use known ad-hoc
location discovery methods which are less accurate than
GPS but can be used indoors. Location knowledge is
not strictly required on all nodes. Geoflood is just an
optimization for pure flooding where location-aware
nodes can help reduce the bandwidth overhead.

REFERENCES
[1] E. Royer and C.-K. Toh, "A Review of Current

Routing Protocols for Ad Hoc Mobile Wireless
Networks", IEEE Pers. Commun., vol. 6, no. 4, Apr.
1999, pp 46–55.

[2] C. Perkins, “Ad hoc On Demand Distance Vector
(AODV) Routing”, Internet draft, draft-ietf-manet-
aodv-00.txt.

[3] X. Jiang, T. Camp, “A Review of Geocasting
Protocols for a Mobile Ad Hoc Network”,
Proceedings of the Grace Hopper Celebration
(GHC), 2002.

[4] Y. Ko, N. Vaidya, “Flooding-Based Geocasting
Protocols for Mobile Ad Hoc Networks”, MONET
7(6): 471-480 (2002).

[5] R. Jain, A. Puri, R. Sengupta, “Geographical
Routing using Partial Information for Wireless Ad
Hoc Networks” UCB/ERL Memo no. M99/69,
December 1999. Also IEEE .

[6] C. Perkins, P. Bhagwat, “Highly Dynamic
Destination-Sequenced Distance-Vector (DSDV)
routing for mobile computers”, In ACM SIGCOMM
Symposium on Communication Architectures and
Protocols, 1994.

[7] D. Johnson, D. Maltz, J. Broch, “The dynamic
source routing protocol for mobile ad hoc
networks”, Internet Draft, March 1998.

[8] V. Paruchuri, A. Durresi, D. Dash, R. Jain, "Optimal
Flooding Protocol for Routing in Ad-hoc Networks
", Submitted to IEEE Wireless Communications and
Networking Conference (WCNC 2003), New
Orleans, Louisiana, March 16-23, 2003.

[9] Z. Hass, J. Halpern, L. Li, “Gossip-Based Ad Hoc
Routing”, In IEEE INFOCOM, June 2002.

[10] J. Cartigny, D. Simplot and J. Carle, “Stochastic
flooding broadcast protocols in mobile wireless
networks”, Tech. Report LIFL Univ. Lille 1 2002-
03. may 2002.

[11] The VINT project, "The ns manual", A
collaboration between researchers at UC.

[12] D. Niculescu and B. Nath, “Ad Hoc Positioning
System (APS) using AoA”, In Proceedings of
INFOCOM 2003, San Francisco, CA.

[13] P. Bahl and V.N. Padmanabhan, “Radar: An In-
Building RF-Based User Location and Tracking
System” Proc. IEEE Infocom, IEEE Press,
Piscataway, N.J., 2000, pp. 775–784.

[14] C. Savarese, J. Rabaey, and J. Beutel. “Locationing
in distributed ad-hoc wireless sensor networks”. In
IEEE Int. Conf. on Acoustics, Speech, and Signal
Processing (ICASSP), pages 2037--2040, Salt Lake
City, UT, May 2001.

[15] C. Savarese, J. Rabay, K. Langendoen, “Robust
Positioning Algorithms for Distributed Ad-Hoc
Wireless Sensor Networks”, In USENIX Technical
Annual Conference, Monterey, CA, June 2002.

[16] J. Hightower, G. Boriello and R. Want, “SpotON:
An indoor 3D Location Sensing Technology Based
on RF Signal Strength”, University of Washington
CSE Technical Report #2000-02-02, February 2000.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

