
Reducing the Energy Cost of Application/OS Interactions

Mohan Rajagopalan Saumya Debray
Dept. of Computer Science
The University of Arizona
Tucson, AZ 85721, USA

fmohan, debray g@cs.arizona.edu

Matti A. Hiltunen Richard D. Schlichting
AT&T Research Labs

180 Park Avenue
Florham Park, NJ 07932, USA

fhiltunen, rick g@research.att.com

Abstract

Software approaches to power optimization have tra-
ditionally had two distinct foci, in relative isolation,
targeting either individual applications (compilation-
based techniques) or global (operating system) poli-
cies. Dynamic interactions between the application
and operating system through system calls, which
can potentially have a large impact on overall perfor-
mance and power consumption, remain largely un-
optimized due to the partitioning of concerns. This
paper discusses the energy implications of a newsys-
tem call clusteringoptimization technique for reduc-
ing application/OS interaction costs that is based on
a novelmulti-call mechanism. Preliminary results
on common utility programs such as thempegplay
video decoder have been promising.

1 Introduction

The amount of energy consumed during program ex-
ecution is becoming an increasingly important con-
cern for a wide spectrum of computing systems, in-
fluencing issues ranging from battery lifetime to the
amount of heat generated. Research on software ap-
proaches to power optimization have generally had
two distinct foci: compiler optimizations to reduce
the energy usage of an application [4, 7, 8, 14]; and
operating system design to improve energy efficiency
[3, 5, 9, 10, 16]. By and large, each of these efforts
has been carried out in relative isolation, i.e., with
little interaction between application-level compiler
optimizations and operating system level optimiza-
tions. This partitioning of concerns causes missed
opportunities for energy optimization. In this paper,
we focus on reducing the overheads associated with
the interaction between an application and the under-
lying operating system.

User space Kernel space

interrupt
handler

system call
handler

particularSystem
call
API

arguments

results

Application

program

cache flush

cache flush

trap
software

Figure 1: Schematic of a system call

A system call is significantly more expensive than
an ordinary procedure call—more than 20 times the
cost of regular procedure calls by one measure [11].
They are also heavily used in many types of pro-
grams, e.g., Web and FTP servers, media players,
and utilities likecopy, gzip, andcompressuse sys-
tem calls to access files and sockets. This combina-
tion of cost and ubiquity means that optimization of
system calls—both individually and for a program
as a whole—can potentially have a large impact on
overall program performance. Such optimizations
are especially important for mobile devices such as
cell phones, which have traditionally hosted task spe-
cific embedded applications but are now begining to
support well defined general-purpose operating sys-
tems and applications.1

The operation of a system call is shown in fig-
ure 1. Much of the cost of making a system call
comes from having to switch between distinct ad-
dress spaces, from the user address space across the
kernel boundary to the kernel space, and back. This

1For example, Motorola recently announced plans to have its
A760 phone use Linux [2]; Texas Instruments and NEC have
also backed the use of Linux in cell phones [1].



incurs a number of costs. First, there are the direct
costs associated with the system call itself: those of
passing the arguments to the call; checking these ar-
guments for validity within the kernel; an indirect
function call through an array of function pointers
to access the handler for the call within the kernel;
and communicating the return value back to the user
application. Just as important are the indirect costs
associated with switching the processor into kernel
mode (when entering the kernel) and back (when
leaving it), each of which flushes the cache. These
operations have a high energy cost: both directly, be-
cause of the cost of the memory and indirect branch
operations needed to enter the kernel and access the
handler for the system call; and indirectly, because
the cache flush and resulting cache misses on sub-
sequent memory accesses consume a great deal of
energy [15]. This suggests that the energy require-
ments of system-call-intensive programs can be re-
duced significantly if we can reduce the number of
kernel boundary crossings.

This paper describes the application of a novel
mechanism, calledmulti-calls, to reducing the en-
ergy requirements of system-call-intensive applica-
tions by reducing the number of kernel boundary
crossings associated with a sequence of system calls.
Our goal is to optimize both the operating system
and applications executing on it to take advantage
of knowledge of the nature of the dynamic inter-
actions between the two, and thereby reduce the
energy cost associated with crossing the applica-
tion/OS boundary. We use execution profiles to iden-
tify frequently executed sequences of system calls,
and use correctness-preserving transformations to
replace such sequences, where possible, by a sin-
gle call implementing their combined functionality,
thereby reducing the number of kernel boundary
crossings. The single combined system call is then
constructed using a multi-call that is implemented
using kernel extension facilities such as loadable ker-
nel modules in Linux.

The remainder of this paper is organized as fol-
lows. Section 2 describes how the multi-call mech-
anism is used and briefly sketches how this mecha-
nism is implemented in a conventional operating sys-
tem. Section 3 gives some experimental results, and
section 4 concludes.

2 Multi-Calls and System Call Clustering

A multi-call is a mechanism that allows multiple sys-
tem calls to be performed on a single kernel crossing,

thereby reducing the overall energy requirements of
the program without compromising any of the ad-
vantages provided by the existing system call mecha-
nism, namely, protection, transparency, and portabil-
ity. Multi-calls can be implemented as a kernel level
stub that executes a sequence of system calls. At the
application level, the multi-call interface resembles a
standard system call and uses the same mechanism
to perform the kernel boundary crossing, thereby re-
taining the desirable features of the system call ab-
straction. A list of system calls to be executed in
specified order is passed as a parameter to the multi-
call. Each system call in the list is described by its
system call number and parameters. An issue that
has to be addressed in order to preserve correctness
is that of error behavior—replacing a group of sys-
tem calls by a multi-call must not alter the original
error behavior of the program. Upon detecting an er-
ror in any constituent system call, the multi-call re-
turns control to the application level and reports the
system call in which the error occurred as well as the
error itself.

Given this mechanism, the issues we have to ad-
dress are as follows.

(i) Given a particular application to be optimized,
how can we identify which system call se-
quences in that application should be candidates
for optimization via a multi-call?

(ii) What should we then do to the application pro-
gram to allow the use of multi-calls for these
candidate sequences where possible?

The first of these issues is handled via profiling, and
is discussed in section 2.1. The second is done using
semantics-preserving code transformations in a com-
piler (or similar program manipulation tool), and is
discussed in section 2.2. Together, we refer to these
techniques assystem call clustering.

2.1 Profiling

System call profiling is used to characterize the dy-
namic system call behavior of a program on a given
set of inputs and thereby identify frequently occur-
ring sequences of system calls that are candidates for
multi-call optimization. Operating system kernels
often have utilities for generating such traces (e.g.,
strace in Linux), or they can be obtained by in-
strumenting kernel entry points to write to a log file.
The resulting system call trace is then analyzed to

2



#include <stdio.h>
#include <fcntl.h>

#define N 4096

void main(int argc, char* argv[])
f

int inp, out, n;
char buff[N];

inp = open(argv[1],O RDONLY);
out = create(argv[2],0666);

while ((n=read(inp,&buff,N)) > 0) f
write(out,&buff,n);

g
g

(a) Source code

B3
write(out, &buff, 4096)

B4
return

n = read(inp, &buf, 4096)

B0

B1

B2

inp = open(argv[1], ... )

out = creat(argv[2], ... )

if (n <= 0) goto B4

(b) Control flow graph

close(4,..)

Loader system calls

1

1

1

close(3,...)

open(out,...)

open(inp,...)

557557

read(3,...)

write(4,...)

1

(c) Syscall graph

Figure 3: Copy program

SysCallGraph = ;;
prev syscall = syscallTrace!firstsyscall;
while not (end of syscallTrace) f

syscall = syscallTrace!nextsyscall;
if (prev syscall,syscall) 62 SysCallGraph f

SysCallGraph += (prev syscall,syscall);
SysCallGraph(prev syscall,syscall)!weight = 1;

g else
SysCallGraph(prev syscall,syscall)!weight++;

prev syscall = syscall;
g

Figure 2: GraphBuilderalgorithm.

identify frequently occurring system call sequences.
We perform this analysis by constructing asyscall
graphthat indicates how frequently some system call
si is immediately followed by some other system call
sj in the system call trace. Each system call along
with select arguments is represented as a unique node
in the graph, and a weighted directed edgea

w
�! b

from nodea to nodeb with weightw indicates that
the profile trace hasw occurrences where the system
call a is followed immediately by the system callb.
The algorithm for graph creation is described in fig-
ure 2. The algorithm simply traverses the trace and
adds new edges (and the corresponding nodes, if nec-
essary) or increases the weight of an existing edge, as
appropriate.

The idea is illustrated in figure 3. Figure 3(a)
shows the source code for a simple file copy pro-
gram, figure 3(b) its control flow graph, and figure
3(c) the syscall graph. This graph forms the basis

for compile-time transformations for grouping sys-
tem calls, as described below.

Once we have obtained the syscall graph, we use
a greedy algorithm, similar to one commonly used
by compilers for profile-directed code layout [12], to
identify hot paths in the syscall graph. The system
calls on these hot paths are then candidates for opti-
mization using multi-calls.

2.2 Code transformations

The fact that two system calls are contiguous in the
syscall graph does not,ipso facto, imply that they
can be implemented using a multi-call. This is be-
cause even if two system calls follow each other in
the trace, the system calls in the program code may
be separated by arbitrary other user code. Replac-
ing these calls by a multi-call would require moving
the intervening user code into the multi-call as well.
This would result in arbitrary user code executing
within the kernel, potentially compromising safety.
To increase the applicability of this technique, we
use simple, well-understood, correctness preserving
transformations like function inlining, code motion,
and loop unrolling that enhance the applicability of
our optimization. Although code rearrangement is a
common compiler transformation, to our knowledge
it has not been used to optimize system calls as done
here.

Given a hot path� in the syscall graph, our goal is
to try and transform the program so that the sequence
of system calls that are adjacent in� are also adja-

3



cent, in the same order, in the program code. Once
this has been accomplished, it is straightforward to
replace this system call sequence by an appropriate
multi-call. To this end, we proceed as follows.

1. We use repeated applications of function inlin-
ing, if necessary, to bring all the system calls in
� into the same function.

2. If there is any user code separating a pair of
the system calls of interest, we use correctness-
preserving program transformations to restruc-
ture the code and bring the system calls to-
gether.

If the hot path� contains an edge(a; b) and we
are unable to restructure the program so as to
remove all user code separating the system calls
a andb and bring them together, then the edge
(a; b) is deleted, thereby breaking� into two
smaller paths that are then processed as before.

The program transformations in step (2) above are
driven by the goal of moving user code away from
between a pair of system calls that are candidates for
optimization. The following is a (non-exhaustive) set
of examples illustrating how this is done.

Interchanging independent statements.Two state-
ments are said to be independent if neither one reads
from or writes to any variable that may be written to
by the other. Given code of the form

systemcall 1
UserCode
systemcall 2

If UserCodeandsystemcall 2 are independent and
UserCodehas no externally visible side-effects, we
can restructure the code to obtain

systemcall 1
systemcall 2
UserCode

and similarly forsystemcall 1 andUserCode.

Loop unrolling. Loop unrolling is used when the
system calls of interest are in a loop, and there is
user code between the two system calls, but where
the loop body is (or can be rearranged to be) such
that there is no user code before the first system call

and after the last system call in the loop. The file
copy program shown in figure 3, as well as applica-
tions such as FTP, encryption programs, compression
(gzipandpzip) exhibit similar characteristics. In the
case of the copy program of figure 3, for example,
unrolling the loop once and combining the footer of
one iteration with the header of the next iteration re-
sults in the code shown below, with adjacent system
calls within the loop that are now candidates for the
multi-call optimization:

n = read(inp, &buff, N);
while (n > 0) f

write(out, &buff, n);
n = read(inp, &buff, N);

g

2.3 Applying system call clustering

Once a sequence of candidate system calls have been
brought together in the program, they are replaced by
a single multi-call with two arguments: the number
of system calls being passed to it, and an array of
structures where each element of the array describes
one system call; each such entry consists of the sys-
tem call number, arguments, a field for the return
value, and a bit indicating whether that system call
should be checked for an error.

2.4 Looped multi-calls

The looped multi-callis a variant of the basic multi-
call motivated by this philosophy. It is applicable in
the situation where, after other transformations have
been applied, the entire body of a loop consists of
a single multi-call. In the case, the entire loop is,
in effect, moved into the kernel by replacing it by
a looped multi-call. This results in a single kernel
boundary crossing rather than one per iteration. For
example, in the copy program, notice that after re-
placing the write-read sequence, the body of the loop
contains just one multi-call. The loop can now be
moved into the kernel by using the looped multi-call.
Notice again that the semantics of the program are
not affected by this transformation.

In theory, one can extend the basic code-motion
transformations to identify aclusterable region,
which can then be added to the body of a multi-call.
Optimization techniques like dead-code elimination,
loop invariant elimination, redundancy elimination,
and constant propagation can also potentially be used
to maximize optimization opportunities.

4



Program No. of % BATTERY CHARGE DRAINED Improvement (%)
iterations Unoptimized(U ) Optimized(O) (U �O)=U

dg1 40 45 32 28.9
mpegplay dg2 40 44 33 25.0

dg5 25 30 23 23.3
file copy 40,000 67 60 10.4

Figure 4: Experimental results

2.5 Implementing multi-calls

Linux provides support for Loadable Kernel Mod-
ules that allow code to be added to the kernel without
recompilation [6]. We use this functionality to add
the new customized system calls needed by our ap-
proach. Such “new” calls are given system call num-
bers greater than 240. The use of loadable modules
is comparable to compiling new system calls into the
kernel as far as performance is concerned.

The value returned by the multi-call indicates
whether any of the system calls produced an error. If
an error is found to have occurred, the value returned
by the multi-call identifies the source of the error.
This can then be used to pinpoint the type of error
encountered, after which the original error-handling
code is invoked.

3 Experimental Results

This section describes the experiments and setup
used to evaluate the potential and actual benefits of
the approach. The testbed comprised of Pentium
II-266 Mhz laptops with Li-ION batteries running
Linux 2.4.4-2 with 96 Mb of RAM and APM BIOS
1.2 Kernel Driver 1.14. For each experiment, the
battery was charged fully, and the program under
consideration was run repeatedly; after each itera-
tion the apm utility was used to check the battery
status. Energy consumption due to other sources
were minimized by using the default system power
management—for example, the monitor would sleep
after about a minute of inactivity.

Figure 4 presents the experimental evaluation for
two programs :mpegplay, a popular mpeg video
player,file copy, and a simple file copy program as
described earlier (we will have additional benchmark
results by the time the final version of the paper is
due). Figure 5 illustrates the battery drain rates mea-
sured in our experiments: the y-axis represents the
battery charge remaining (as a % of original charge)

while the x-axis denotes the number of iterations.
Figure 5(a) is for a mpeg video player, while Figure
5(b) is a plot for the copy program.

mpeg play. The popular mpegplay application
[13], represents multi-media applications running on
mobile devices. Three different files - dg1(2752
frames), dg2(2959 frames) and dg3 (3616 frames)
were used as input. During the experiment, each file
was run in a loop for several iterations. As described
in the table the use of multi-calls improved battery
consumption by an order of 25%.

File copy. The copy program is representative of a
class of utility programs such as compress, encrypt
etc which exhibit a similar ”read-followed-by-write”
structure. Successive read and write calls were re-
placed by a singleread write multicall. The input
file to the copy program was a 187K binary file. The
program was repeated 40,000 times.

4 Conclusions

Traditionally, software approaches to reducing the
energy usage of systems have focused either on ap-
plications or on the underlying operating system,
with little attention paid to the interaction between
applications and operating systems. It turns out,
however, that this interaction point can be quite ex-
pensive in terms of energy consumption, because of
the cost of switching from the user address space to
the kernel address space and back. This paper ad-
dresses this issue by describing how the number of
kernel crossings of an application can be reduced us-
ing system call clustering and a mechanism called
the multi-call. The energy savings resulting from this
optimization can be quite substantial in system-call-
intensive programs: our experimental results indi-
cates improvements in the amount of battery charge
consumed ranging from over 10% for a file copy pro-
gram, to almost 29% for an MPEG player.

5



0 5 10 15 20 25 30 35 40
iterations

50

60

70

80

90

100

B
at

te
ry

 c
ha

rg
e 

re
m

ai
ni

ng
 (

%
) unoptimized

optimized

(a) mpegplay (input:dg2 )

0 5000 10000 15000 20000 25000 30000 35000 40000
iterations

20

40

60

80

100

B
at

te
ry

 c
ha

rg
e 

re
m

ai
ni

ng
 (

%
)

unoptimized
optimized

(b) file copy

Figure 5: Battery drain rate

References

[1] Linux coming to cell phones.
cjnet News.com, Jan. 10, 2003.
http://news.com.com/2100-1033-980214.html .

[2] Motorola moving cell phones to linux.eWeek,
Feb. 13 2003.http://www.eweek.com/
article2/0,3959,887377,00.asp .

[3] A. Acquaviva, L. Benini, and B. Ricco. Energy
characterization of embedded real-time operat-
ing systems. InProc. Workshop on Compil-
ers and Operating Systems for Low Power 2001
(COLP’01), 2001.

[4] G. Araujo. Code Generation Algorithms for
Digital Signal Processors. PhD thesis, Prince-
ton University, 1997.

[5] R. P. Dick, G. Lakshminarayana, A. Raghu-
nathan, and N. K. Jha. Power analysis of em-
bedded operating systems. InDesign Automa-
tion Conference, pages 312–315, 2000.

[6] B Henderson. Linux loadable kernel mod-
ule, HOWTO. http://www.tldp.org/HOWTO-
/Module-HOWTO/, Aug 2001.

[7] M. Kandemir, N. Vijaykrishnan, M. J. Irwin,
and W. Ye. Influence of compiler optimizations
on system power. InProc. 37th Conference on
Design Automation (DAC-00), pages 304–307,
June 5–9 2000.

[8] C. Lee, J. K. Lee, T. Hwang, and S.-C. Tsai.
Compiler optimization on instruction schedul-
ing for low power. InProc. International Sym-
posium on System Synthesis, pages 55–61, Oct
2000.

[9] S.-F. Li, R. Sutton, and J. Rabaey. Low power
operating system for heterogeneous wireless
communication systems. InProc. Workshop
on Compilers and Operating Systems for Low
Power 2001 (COLP’01), 2001.

[10] Y.-H. Lu, L. Benini, and G. De Michelli.
Power-aware operating systems for interactive
systems. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 10(2), April
2002.

[11] J. Mauro and R. McDougall.Solaris Internals-
Core Kernel Architecture. Sun Microsystems
Press, Prentice Hall, 2001.

[12] K. Pettis and R. C. Hansen. Profile-guided code
positioning. InProc. ACM SIGPLAN Confer-
ence on Programming Language Design and
Implementation, pages 16–27, June 1990.

[13] L. Rowe, K. Patel, B. Smith, S. Smoot, and
E. Hung. Mpeg video software decoder, 1996.
http://bmrc.berkeley.edu/mpeg/mpegplay.html.

[14] V. Tiwari, S. Malik, and A. Wolfe. Compila-
tion techniques for low energy: An overview.
In Proc. IEEE 1994 Symposium on Low-Power
Electronics, 1994.

6



[15] V. Tiwari, S. Malik, and A. Wolfe. Power anal-
ysis of embedded software: a first step towards
software power minimization.IEEE Transac-
tions on Very Large Scale Integration (VLSI)
Systems, 2(4):437–445, December 1994.

[16] A. Vahdat, A. Lebeck, and C. Ellis. Every joule
is precious: The case for revisiting operating
system design for energy efficiency. InProc.
SIGOPS European Workshop, Sep 2000.

7


