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Abstract

Static linking has many advantages over dynamic
linking. It is simple to understand, implement, and
use. It ensures that an executable is self-contained
and does not require a particular set of libraries dur-
ing execution. As a consequence, the executable im-
age that was tested by the developer is exactly the
same as gets executed by the user, diminishing the
risk that the user’s environment will affect correct
behavior.

The major disadvantages of static linking are in-
creases in the memory required to run an executable,
network bandwidth to transfer it, and disk space to
store it.

In this paper we describe the Slinky system that
uses digest-based sharing to combine the simplic-
ity of static linking with the space savings of dy-
namic linking: Slinky executables are completely
self-contained and minimal performance and disk-
space penalties are incurred if two executables use the
same library. We have developed a Slinky prototype
that consists of tools for adding digests to executa-
bles, and a slight modification of the Linux kernel to
use those digests to share code pages. Results show
that our unoptimized prototype has a performance
decrease of at most 4% and a space increase of 40%
relative to dynamic linking.

∗This work was supported in part by the National Science
Foundation under grant CCR-0073483.

1 Introduction

Most näıve users’ frustrations with computers can be
summarized by the following two statements: “I in-
stalled this new program and it just didn’t work!” or
“I downloaded a cool new game and suddenly this
other program I’ve been using for months stopped
working!” In many cases these problems can be
traced back to missing, out-of-date, or incompati-
ble dynamic libraries on the user’s computer. In the
Windows community this problem is affectionately
known as DLL Hell [11].

In this paper we will argue — against conven-
tional wisdom — that in most cases dynamic link-
ing should be abandoned in favor of static linking.
Since static linking ensures that programs are self-
contained, users and developers can be assured that
a program that was compiled, linked, and tested on
the developer’s machine will run unadulterated on
the user’s machine. From a quality assurance and re-
lease management point of view this has tremendous
advantages: since a single, self-contained, binary im-
age is being shipped, little attention must be made
to potential interference with existing software on the
user’s machine. From a user’s point of view there is
no chance of having to download additional libraries
to make the new program work.

In this paper we will also show that the cost of
static linking, in terms of file-system storage, net-
work bandwidth, and run-time memory usage, can
be largely eliminated using minor modifications to
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the operating system kernel and some system soft-
ware. Our basic technique is digest-based sharing,
in which message digests identify identical chunks of
data that can be shared. Digests ensure that a partic-
ular chunk of data is only stored once in memory or
on disk, and only transported once over the network.

1.1 Background

“Linking” refers to combining a program and its li-
braries into a single executable and resolving the sym-
bolic names of variables and functions into their re-
sulting addresses. Generally speaking, static linking
refers to doing this process at link-time during pro-
gram development, and incorporating into each exe-
cutable the libraries it needs. Dynamic linking refers
to linking a program at load-time or run-time, and
sharing libraries between executables both on disk
and in memory. Dynamic linking is currently the
dominant practice, but this was not always the case.
Early operating systems used static linking. Systems
such as Multics [3] soon introduced dynamic link-
ing as a way of saving storage and memory space,
and increasing flexibility. The resulting complex-
ity was problematic, and so the follow-on to Mul-
tics, Unix [15], originally went back to static linking
because of its simplicity. The pendulum has since
swung the other way and dynamic linking has be-
come the standard practice in Unix and Linux.

Dynamic linking has several perceived benefits that
make it so popular. One is that with proper care
libraries can be updated without relinking the exe-
cutables that use it. This makes it easier to update
libraries. Dynamic linking also makes it possible to
share a single copy of a library among multiple ex-
ecutables, both in memory and on disk. While it is
possible to statically link a shared library, the com-
plexity and inflexibility of doing so make it much less
prevalent than dynamic linking.

In dynamic linking, symbol references are not re-
solved until the executable runs. At link-time the
linker simply records in the executable the names of
the libraries it needs. These names are used at run-
time to find the libraries and resolve the symbols.
Since executables refer to libraries by name, only one
copy of a library is needed on disk. In addition, the

libraries are compiled in such a way that only a sin-
gle copy in memory is shared by all processes using
that library. The net result is a dramatic reduction
in the amount of disk space and memory required
as compared to static linking, as well as the amount
of network bandwidth required to transfer an exe-
cutable.

1.2 DLL Hell

Although dynamic linking is the standard practice,
it introduces a host of complexities that static link-
ing does not have. In short, running a dynamically
linked executable depends on having the proper ver-
sions of the proper libraries installed in the proper
locations on the computer. Tools have been devel-
oped to handle this complexity, but programmers are
all too familiar with the “DLL Hell” that can occur in
ensuring that all library dependencies are met, espe-
cially when different executables depend on different
versions of the same library.

In early versions of the Windows operating system
a common cause of DLL Hell was the installation of a
new program that caused an older version of a library
to replace an already installed newer version. Pro-
grams that relied on the newer version then stopped
working — often without apparent reason. Unix and
newer versions of Windows fix this problem by ap-
plying version numbers to libraries. However, DLL
Hell can still occur if, for example, the user makes a
minor change to a library search PATH variable. This
can cause a different and incompatible version of a
library to be loaded, so that a previously working
program now fails.

While the “instant update” feature of dynamic
linking is useful — it allows us to fix a bug in a
library, ship that library, and instantly all executa-
bles will make use of the new version — it can also
have dangerous consequences. Since a dynamically-
linked executable can be run with the new library ver-
sion without having gone through a regression test,
there is a risk that the bug fix will have unforeseen
consequences. For example, if the library bug was
known to the developer he may have devised a “work-
around”, possibly in a way no longer compatible with
the bug fix. Thus, after a library update some pro-
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grams may work better and some programs may cease
to work.

Software removal is also complicated by dynamic
linking. Care must be taken to ensure that a dy-
namic library is no longer in use before deleting it,
otherwise executables will mysteriously fail. On the
other hand, deleting executables can leave unused dy-
namic libraries scattered around the system. Tools
are needed to resolve these dependences and install
and remove software properly.

1.3 Contributions

For the reasons outlined above we believe that static
linking is superior to dynamic linking. The biggest
problem with static linking is the size of the re-
sulting executables. We are developing a system
called Slinky that supports the efficient execution,
transport, and storage of statically-linked executa-
bles. The key insight is that dynamic linking saves
space by explicitly sharing libraries stored in sepa-
rate files, and this introduces much of the complexity.
Slinky, instead, relies on implicit sharing of identical
chunks of data, which we call digest-based sharing. In
this scheme chunks of data are identified by a message
digest, which is a cryptographically secure hash such
as SHA-1 [17]. Digest-based sharing allows Slinky
to store a single copy of each data chunk in mem-
ory and on disk, regardless of how many executables
share that data. The digests are also used to transfer
only a single copy of data across the network. This
technique allows Slinky to approach the space sav-
ings of dynamic linking without the complexity.

The rest of the paper is organized as follows. In
Section 2 we compare static and dynamic linking.
In Section 3 we describe the implementation of the
Slinky system. In Section 4 we discuss related work.
In Section 5 we show that empirically our system
makes static linking as efficient as dynamic linking.
Section 6, finally, summarizes our results.

2 Linking

High-level languages use symbolic names for variables
and functions such as foo and read(). These sym-

bols must be converted into the low-level addresses
understood by a computer through a process called
linking or link editing [7]. Generally, linking involves
assigning data and instructions locations in the ex-
ecutable’s address space, determining the resulting
addresses for all symbols, and resolving each symbol
reference by replacing it with the symbol’s address.
This process is somewhat complicated by libraries,
which are files containing commonly-used variables
and functions. There are many linking variations,
but they fall into two major categories, static linking
and dynamic linking.

2.1 Static Linking

Static linking is done at link-time, which is during
program development. The developer specifies the li-
braries on which a executable depends, and where to
find them. A tool called the linker uses this informa-
tion to find the proper libraries and resolve the sym-
bols. The linker produces a static executable with
no unresolved symbols, making it self-contained with
respect to libraries.

A statically-linked executable may be self-
contained, but it contains a copy of each library to
which it is linked. For large, popular libraries, such
as the C library, the amount of wasted space can be
significant. This means that the executables require
more disk storage, memory space, and network band-
width than if the duplicate content were eliminated.

Statically linking executables also makes it difficult
to update libraries. A statically-linked executable
can only take advantage of an updated library if it is
relinked. That means that the developer must get a
new copy of the library, relink the executable and ver-
ify that it works correctly with the new library, then
redistribute it to the users. These drawbacks with
statically-linked executables led to the development
of dynamic linking.

2.2 Dynamic Linking

Dynamic linking solves these problems by deferring
symbol resolution until the executable is run (run-
time), and by using a special library format (called
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a dynamic library or shared library) that allows pro-
cesses to share a single copy of a library in memory.
At link-time all the linker does is store the names
of the necessary libraries in the executable. When
the executable runs a program called a dynamic link-
er/loader reads the library names from the executable
and finds the proper files using a list of directories
specified by a library search path. Since the libraries
aren’t linked until run-time, the executable may run
with different library versions than were used during
development. This is useful for updating a library,
because it means the executables that are linked to
that library will use the new version the next time
they are run.

It is also possible for the executable to specify at
run-time which libraries to link using a facility such
as dlopen(). A good example is plugins for a Web
browser. Slinky does not address libraries that are
specified at run-time, although there is no reason why
the two techniques can not coexist.

2.3 Code-Sharing Techniques

Systems that use dynamic linking typically share a
single in-memory copy of a dynamic library among
all processes that are linked to it. It may seem trivial
to share a single copy, but keep in mind that a library
will itself contain symbol references. Since each ex-
ecutable is linked and run independently, a symbol
may have a different address in different processes,
which means that shared library code cannot contain
absolute addresses.

The solution is position-independent code, which is
code that only contains relative addresses. Absolute
addresses are stored in a per-process indirection table.
Position-independent code expresses all addresses as
relative offsets from a register. A dedicated register
holds the base address of the indirection table, and
the code accesses the symbol addresses stored in the
table using a relative offset from the base register.
The offsets are the same across all processes, but the
registers and indirection tables are not. Since the
code does not contain any absolute addresses it can
be shared between processes. This is somewhat com-
plex and inefficient, but it allows multiple processes
to share a single copy of the library code.

2.4 Package Management

The additional flexibility dynamic linking provides
also introduces a tremendous amount of complexity.
First, in order to run a executable the libraries on
which it depends must be installed in the proper lo-
cations in the dynamic linker/loader’s library search
path. This means that to run an executable a user
needs the executable itself, as well as the libraries on
which it depends, and must ensure that the dynamic
linker is configured such that the libraries are on the
search path. Additionally, the versions of those li-
braries must be compatible with the version that was
used to develop the executable. If they are not, then
the executable will either fail to run or produce erro-
neous results.

To manage this complexity, package systems such
as RedHat’s rpm [16] and Debian’s dpkg [4] were de-
veloped. A package contains everything necessary
to install an executable or library, including a list
of the packages on which it depends. For an exe-
cutable these other packages include the dynamic li-
braries it needs. A sophisticated versioning scheme
allows a library package to be updated with a com-
patible version. For example, the major number of a
library differentiates incompatible versions, while the
minor number differentiates compatible versions. In
this way a package can express its dependency on a
compatible version of another package. The version-
ing system must also extend to the library names, so
that multiple versions of the same library can coexist
on the same system.

The basic package mechanism expresses inter-
package dependencies, but it does nothing to resolve
those dependencies. Suppose a developer sends a user
a package that depends on another package that the
user does not have. The user is now forced to ask for
the additional package, or search the Internet look-
ing for the needed package. More recently, the user
could employ sophisticated tools such as RedHat’s
up2date [20] or Debian’s apt [1] to fetch the desired
packages from on-line repositories and install them.
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2.5 Security Issues

Dynamic linking creates potential security holes be-
cause of the dependencies between executables and
the libraries they need. First, an exploit in a dy-
namic library affects every executable that uses that
library. This makes dynamic libraries particularly
good targets for attack. Second, an exploit in the dy-
namic linker/loader affects every dynamically-linked
executable. Third, maliciously changing the library
search path can cause the dynamic linker-loader to
load a subverted library. Fourth, when using a pack-
age tool such as up2date or apt, care must be taken
to ensure the authenticity and integrity of the down-
loaded packages. These potential security holes must
be weighed against the oft-stated benefit that dy-
namic linking allows for swift propagation of security
fixes.

3 Slinky

Slinky is a system that uses message digests to share
data between executables, rather than explicitly shar-
ing libraries. Chunks of data are identified by their
digest, and Slinky stores a single copy of each chunk
in memory or on disk. Slinky uses SHA-1 [17] to
compute digests. SHA-1 is a hash algorithm that
produces a 160-bit value from a chunk of data. SHA-
1 is cryptographically secure, meaning (among other
things) that although it is relatively easy to compute
the hash of a chunk of data, it is computationally in-
feasible to compute a chunk of data that has a given
hash. There are no known instances of two chunks of
data having the same SHA-1 hash. This means that
for all practical purposes if two chunks of data have
the same SHA-1 hash, then they are identical. Al-
though there is a negligible chance that two different
chunks will hash to the same value, it is much more
likely that a hardware or software failure will corrupt
a chunk’s content.

Digests allow Slinky to store a single copy of
each chunk in memory and on disk. In addition,
when transferring an executable over the network
only those chunks that do not already exist on the
receiving end need be sent. The use of digests al-

lows Slinky to share data between executables effi-
ciently, without introducing the complexities of dy-
namic linking. In addition, Slinky avoids the secu-
rity holes endemic to dynamic linking.

The following sections describe how Slinky uses
digests to share data in memory and on disk, as well
as reduce the amount of data required to transfer an
executable over the network. We developed a Slinky
prototype that implements sharing of memory pages
based on digest. Sharing of disk space and reduc-
tion of network traffic is currently work-in-progress;
we describe how Slinky will provide that function-
ality, but it has not yet been implemented. We also
describe the limitations of the Slinky approach.

3.1 Sharing Memory Pages

Slinky shares pages between processes by comput-
ing the digest of each code page, and sharing pages
that have the same digest. If a process modifies a
page, then the page’s digest changes, and the page
can no longer be shared with other processes using
the old version of the page. One way to support this
is to share the pages copy-on-write. When a pro-
cess modifies a page it gets its own copy. Slinky
employs a simpler approach that avoids the complex-
ity of copy-on-write by only sharing read-only code
pages. Slinky assumes that data pages are likely to
be written, and therefore unlikely to be shared any-
way.

The current Slinky prototype is Linux-based, and
consists of three components that allow processes to
share pages based on digests. The first is a linker
called slink that converts a dynamically-linked exe-
cutable into a statically-linked executable. The sec-
ond is a tool called digest that computes the digest
of each code page in an executable. The digests are
stored in special sections in the executable. The third
component is a set of modifications to the Linux ker-
nel to use the digests in the executables to share pages
between processes.

Figure 1 illustrates how Slinky functions. A
source file x.c that makes use of the C library is
compiled into an object file x.o. Our program slink
links x.o with the dynamic library libc.so, copying
its pages. The digest program adds a new ELF sec-
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Figure 1: An overview of Slinky functionality.

tion that maps pages to their digests. The process is
repeated for a second example program y.c. When
x is run its pages will be loaded, along with their di-
gests. When y is run, page p4 will not be loaded since
a page with the same digest already exists (page p2
from libc.so).

3.1.1 Slink

Shared libraries require position-independent code
to allow sharing of code pages between processes.
Slinky also requires position-independent code be-
cause static linking may cause the same library to
appear at different addresses in different executables.
Therefore, Slinky must statically link executables
with shared libraries, since those libraries contain

6



position-independent code and traditional static li-
braries do not. Slink is a program that does just
that — it converts a dynamically-linked executable
into a statically-linked executable by linking in the
shared libraries on which the dynamically-linked ex-
ecutable depends. The resulting executable is stati-
cally linked, but contains position-independent code
from the shared libraries. Slink consists of about
1400 lines of C and 200 lines of shell script.

The input to slink is a dynamically-linked exe-
cutable in ELF format [8]. Slink uses a slightly-
modified version of the prelink [12] tool to find
the libraries on which the executable depends, or-
ganize them in the process’s address space, and re-
solve symbols. Slink then combines the prelinked ex-
ecutable and its libraries into a statically-linked ELF
file, aligning addresses properly, performing some re-
locations that prelink cannot do, and zeroing out
any data structures related to dynamic linking that
are no longer needed. Removing these data struc-
tures is complicated because doing so changes the
addresses of the sections that follow them, requiring
additional relocation. For this reason, slink simply
fills them with zeros. This allows the data structures
to share pages of zeros, reducing the space they con-
sume. A future version of slink will remove them
altogether.

3.1.2 Digest

Digest is a tool that takes the output from slink
and inserts the digests for each code page. For ev-
ery executable read-only ELF segment, digest com-
putes the SHA-1 hash of each page in that segment
and stores them in a new ELF section. This sec-
tion is indexed by page offset within the associated
segment, and is used by the kernel to share pages
between processes. A Linux page is 8KB, and the di-
gest is 20 bytes, so the digests introduce an overhead
of 20/8196 or less than 0.3% per code page. Digest
consists of about 200 lines of C code.

3.1.3 Kernel Modifications

Slinky requires kernel modifications so that the
loader and page fault handler make use of the digests

inserted by digest to share pages between processes.
These modifications consist of about 100 lines of C.
When a program is loaded, the loader reads the di-
gests from the file and inserts them in a per-process
digest table (PDT) that maps page number to digest.
This table is used during a page fault to determine
the digest of the faulting page.

We also modified the Linux 2.4.21 kernel to main-
tain a global digest table (GDT) that contains the
digest of every code page currently in memory. The
GDT is used during a page fault to determine if there
is already a copy of the faulting page in memory. If
not, the page is read into memory from the executable
file and an entry added to the GDT, otherwise the ref-
erence count for the page is simply incremented. The
page table for the process is then updated to refer to
the page, and the process resumes execution. When
a process exits the reference count for each of its in-
memory pages is decremented, and a page is removed
from the GDT when its reference count drops to zero.

Slinky uses the digests stored in the executables
to share pages, so the system correctness and security
depends on the digest correctness. A malicious user
could modify a digest or a page so that the digest no
longer corresponds to the page’s contents. Modifying
a digest will cause the page to have the wrong con-
tents when the executable is run, but it is no worse
than modifying the executable’s page directly. Mod-
ifying a page but not its digest is a more serious con-
cern, since if the executable is run and it is the first
to use the page, the modified page will incorrectly be
entered into the GDT under the wrong digest. This
can be used to introduce an exploit into other pro-
cesses that share the page. One solution is for the
kernel to verify the digests of pages that are added
to the GDT. This requires the kernel to compute di-
gests, which increases the complexity of the kernel
and slows down the handling of page faults that re-
quire the page to be added to the GDT. The Slinky
prototype adopts a simpler solution in which it only
shares pages between executables that are owned by
root. This is simple to implement and reasonably se-
cure, as a malicious user who gains root access could
modify the digests, but he could also simply modify
the pages of the executables he wishes to subvert.
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3.2 Sharing Disk Space

Digests can also reduce the disk space required to
store statically-linked executables. One option is to
store data based on the per-page digests stored in
the executable. Although this will reduce the space
required, it is possible to do better. This is be-
cause the digests only refer to the executable’s code
pages, and the virtual memory system requires those
pages be fixed-size and aligned within the file. Ad-
ditional sharing is possible if arbitrary-size chunks of
unaligned data are considered.

Slinky shares disk space between executables by
breaking them into variable-size chunks using Rabin’s
fingerprinting algorithm [14], then computing the di-
gests of the chunks. The technique is based on that
used in the Low-Bandwidth File system (LBFS) [9].
A small window is moved across the data and the Ra-
bin fingerprint of the window computed. If the low-
order N bits of the fingerprint match a pre-defined
value, a chunk boundary is declared. The sliding
window technique ensures that the effects of inser-
tions or deletions are localized. If, for example, one
file differs from another only by missing some bytes
at the beginning, the sliding window approach will
synchronize the chunks for the identical parts of the
file. Alternatively, if fixed-size blocks were used, the
first block of each file would not have the same hash
due to the missing bytes, and the mismatch would
propagate through the entire file.

Slinky uses the same 48-byte window as LBFS
as this was found to produce good results. Slinky
also uses the same 13 low-order bits of the fingerprint
to determine block boundaries, which results in an
8KB average block size. The minimum block size
is 2KB and the maximum is 64KB. Using the same
parameters as LBFS allows us to build on LBFS’s
results.

The Slinky prototype contains tools for breaking
files into chunks, computing chunk digests, and com-
paring digests between files. It does not yet use the
digests to share disk space between executables. We
intend to extend Slinky so that executables share
chunks based on digest, but that work is in progress.
The current tools allow Slinkyś space requirements
to be compared to dynamic libraries, as described in

Section 5.

3.3 Reducing Network Bandwidth

The final piece of the puzzle is to reduce the
amount of network bandwidth required to transport
statically-linked executables. Digests can also be
used for this purpose. The general idea is to only
transfer those chunks that the destination does not
already have. Suppose we want to transfer an ex-
ecutable from A to B over the network. First, A
breaks the executable into chunks and computes the
digests of the chunks. A then sends the list of di-
gests to B. B compares the provided list with the
digests of chunks that it already has, and responds
with a list of missing digests. A then sends the miss-
ing chunks to B. This is the basic idea behind LBFS,
and Slinky will use a similar mechanism. Slinky
will integrate network transport with file storage, al-
lowing both to use the same chunks and digests for a
file. This will avoid having to re-chunk and re-hash
data in the network transport system, as is done in
LBFS. LBFS also compresses chunks before trans-
ferring them, something that will likely be useful in
Slinky as well. The current Slinky prototype does
not use digests to reduce network bandwidth, but we
have developed tools to determine how much chunk
sharing there is between executables, as described in
Section 5.

3.4 Limitations

Since Slinky statically links executables, it does
not provide some of the benefits of dynamic link-
ing. In particular, updating a library has no effect
on statically-linked executables. This can be a good
thing, as it means incompatible library upgrades or
inadvertent library deletions do not affect executa-
bles, but it also means that library updates have no
effect until the executables are relinked. It is ques-
tionable how much benefit this flexibility really pro-
vides, and is a subject of future work in the Slinky
project. Slinky can ameliorate the problem by in-
cluding library version information in the executables
to help in determining which executables use which
library versions. It is likely that Slinky will retain

8



dynamic linking of libraries determined at run-time,
such as plugins, since that functionality isn’t easily
provided by static linking.

4 Related Work

Slinky is unique in its use of digests to share data in
memory, across the network, and on disk. Other sys-
tems have used digests or simple hashing to share
data in some, but not all, of these areas. Wald-
spurger [22] describes a system called ESX Server
that uses content-based page sharing to reduce the
amount of memory required to run virtual machines
on a virtual machine monitor. A background process
scans the pages of physical memory and computes a
simple hash of each page. Pages that have the same
hash are compared, and identical pages are shared
copy-on-write. This allows the virtual machine mon-
itor to share pages between virtual machines without
any modification to the code the virtual machines
run, or any understanding by the virtual machine
monitor of the virtual machines it is running. Al-
though both ESX Server and Slinky share pages
implicitly, the mechanisms for doing so are very dif-
ferent. ESX Server finds identical pages in a lazy
fashion, searching the pool of existing pages for iden-
tical copies. Hashing is not collision-free, so pages
must be compared when two pages hash to the same
value. In contrast, Slinky avoids creating duplicate
copies of a page in the first place. Digests avoid hav-
ing to compare pages with the same hash. Slinky
also shares only read-only pages, avoiding the need
for a copy-on-write mechanism.

Slinky’s scheme for breaking a file into variable-
sized chunks using Rabin fingerprints is based on
that of the Low-Bandwidth Network File System [9].
LBFS uses this scheme to reduce the amount of data
required to transfer a file over the network, by sharing
chunks of the file with other files already on the recip-
ient (most notably previous versions of the same file).
LBFS does not use digests to share pages in memory,
nor does it use the chunking scheme to save space
on disk. Instead, files are stored in a regular UNIX
file system with an additional database that maps
SHA-1 values to (file,offset,length) tuples to find the

particular chunk.
The rsync [19] algorithm updates a file across a net-

work. The recipient has an older version of the file,
and computes the digests of fixed-size blocks. These
digests are sent to the sender, who computes the di-
gests of all overlapping fixed-size blocks. The sender
then sends only those parts of the file that do not
correspond to blocks already on the recipient.

Venti [13] uses SHA-1 hashes of fixed size blocks to
store data in an archival storage system. Only one
copy of each unique block need be stored, greatly
reducing the storage requirements. Venti is block-
based, and does not provide higher-level abstractions.

SFS-RO [5] is a read-only network file system that
uses digests to provide secure file access. Entire files
are named by their digest, and directories consist of
(name, digest) pairs. File systems are named by the
public key that corresponds to the private key used to
sign the root digest. In this way files can be accessed
securely from untrusted servers. SFS-RO differs from
Slinky in that it computes digests for entire files,
and does not explicitly use the digests to reduce the
amount of space required to store the data.

There are numerous tools to reduce the complex-
ity of dynamic linking and shared libraries. Linux
package systems such as rpm [16] and dpkg [4] were
developed in part to deal with the dependencies be-
tween programs and libraries. Tools such as apt [1],
up2date [20], and yum [23] download and install
packages, and handle package dependencies by down-
loading and installing additional packages as neces-
sary. In the Windows world, .NET provides facilities
for avoiding DLL Hell [11]. The .NET framework
provides an assembly abstraction that is similar to
packages in Linux. Assemblies can either be private
or shared, the former being the common case. Pri-
vate assemblies allow applications to install the as-
semblies they need, independent of any assemblies
already existing on the system. The net effect is for
dynamically-linked executables to be shipped with
the dynamic libraries they need, and for each exe-
cutable to have its own copy of its libraries. This
obviously negates many of the purported advantages
of shared libraries. Sharing and network transport
is done at the level of assemblies, without any provi-
sions for sharing content between assemblies.
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Task Dynamic (sec.) Slinky (sec.) Slowdown
Untar Linux kernel 148 154 4%
Build Linux kernel 205 206 1%
Format this paper 2.6 2.7 4%

Table 1: Times to perform a variety of tasks.

Dynamically loading code in a secure fashion has
received much attention. Type-safe languages such
as Java [6] were developed in part to address this
concern. Other techniques such as software fault iso-
lation [21] and proof-carrying code [10] try to ensure
that loading malicious code does not affect the main
program. Systems such as SPIN [2] and Vino [18]
focus on loading secure extensions into the operating
system.

5 Evaluation

We performed several experiments on the Slinky
prototype to evaluate the performance of statically-
linked executables vs. dynamically-linked executa-
bles, as well as the space required to store them.

5.1 Performance

We ran several benchmarks to compare the per-
formance of Slinky with that of a standard
dynamically-linked Linux system. These experiments
were performed on a system with a 2.4 GHz Intel Pen-
tium 4 CPU, 1GB of memory, and a Western Digi-
tal WD800BB-53CAA1 80GB disk drive. The kernel
was Linux 2.4.21, and the Linux distribution was the
“unstable” Debian distribution as of 12/12/03. The
machine was a desktop workstation used for operat-
ing system development, so it had a representative
set of software development and GUI applications in-
stalled. All numbers are the average of three trials.

Table 1 shows the elapsed time of various tasks us-
ing dynamically-linked and statically-linked executa-
bles. As can be seen, the performance impact is at
most 4%. This is not surprising, as the only perfor-
mance overhead that Slinky introduces is manipu-

lating the PDTs and GDT, both of which are domi-
nated by the cost of handling a page fault. These ta-
bles are currently implemented by linked-lists in the
Slinky prototype, so it is likely that performance
will improve as we tune the system.

5.2 Space Requirements

Table 2 shows the space required to store
dynamically-linked executables vs. statically-linked.
These numbers were also collected on the “unsta-
ble” Debian distribution as of 12/12/03. The Dy-
namic column shows the space required to store the
dynamically-linked ELF executables in the given di-
rectories, plus the dynamic libraries on which they
depend. Each dynamic library is only counted once.
The All row is the union of the directories in the
other rows, hence its value is not the sum of the
other rows (since libraries may be shared between
rows). The Slinky column shows the space required to
store the statically-linked executables, and Expansion
shows the ratio of space required by the statically-
linked executables to the dynamically-linked. Obvi-
ously the space overhead is significant unless efforts
are made to reduce it, as described next. The cur-
rent Slinky prototype does not statically link the ex-
ecutables very efficiently (Section 3.1.1); as a result
the executables contain a lot of wasted space filled
with zeros. The Waste column shows this amount,
which is significant.

Table 3 shows the amount of space required to store
the dynamic and static executables if they are bro-
ken into variable-size chunks and the digest of each
chunk computed. Only one copy of each chunk is
stored. The dynamic executables show a modest im-
provement over the numbers in the previous table due
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Directory Dynamic (KB) Slinky (KB) Expansion Waste (KB)
/bin 5008 93078 18.6 7633
/sbin 6529 192576 29.5 16050
/usr/bin 218786 3219889 14.7 372176
/usr/sbin 20253 210422 10.4 21611
/usr/X11R6/bin 35613 325936 9.2 31083
All 259628 4041901 15.6 448553

Table 2: Storage space required for statically-linked and dynamically-linked executables.

Directory Dynamic (KB) Slinky (KB) Expansion
/bin 4712 6913 1.5
/sbin 6107 10860 1.8
/usr/bin 210470 295348 1.4
/usr/sbin 20141 24913 1.3
/usr/X11R6/bin 34168 42524 1.3
All 249041 352213 1.4

Table 3: Storage space required for chunks.

to commonality in the files. The static executables,
however, show a tremendous reduction in the amount
of space. This is because most of the extra space in
Table 2 was due to duplicate libraries; the chunk-and-
digest technique is able to share these chunks between
executables. The Slinky space requirements are rea-
sonable – across all directories Slinky requires 40%
more space than dynamic linking. Slinky consumes
350MB to store the executables instead of 250MB,
or 100MB more. This is a very small fraction of a
modern disk drive, but nonetheless we are confident
that tuning the system will significantly reduce the
overhead. Part of the problem is the wasted space
shown in the previous table, although it is unclear
how much of a contribution it makes. Compression
can be used to reduce the size of the chunks, as was
done in LBFS, and we expect that it would work well
for Slinky too, although we haven’t experimented
with it. The wasted space will obviously compress
very well, though.

6 Conclusion

Static linking is the simplest way of combining sepa-
rately compiled programs and libraries into an ex-
ecutable. A program and its libraries are simply
merged into one file, and dependencies between them
resolved. Distributing a statically linked program is
also trivial — simply ship it to the user’s machine
where he can run it, regardless of what other pro-
grams and libraries are stored on his machine. In
this paper we have shown that the disadvantages as-
sociated with static linking (extra disk and memory
space incurred by multiple programs linking against
the same library, extra network transfer bandwidth
being wasted during transport of the executables) can
be largely eliminated. Our Slinky system achieves
this efficiency by use of digest-based sharing. Slinky
has a performance decrease of at most 4% and a space
increase of 40% relative to dynamic linking, and we
are confident that these can be improved with system
tuning. Slinky makes it feasible to replace compli-
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cated dynamic linking with simple static linking.
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