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Abstract

In recent years, there has been a rising interest in developing online approximation algorithms for

data streams. Some of the key challenges are posed by the fact that streaming data can be read only

once in a fixed order of arrival and only a limited amount of memory is available for storage. In this

paper, we address the problem of approximately counting tree patterns over a stream of labeled trees

(e.g., XML documents). We propose a new approximation algorithm called SketchTree that computes

a synopsis of the stream in a single pass by processing each tree only once. Using a limited amount of

memory, SketchTree provides approximate answers for both ordered and unordered tree pattern counts.

Furthermore, we discuss a class of count queries that can be handled by SketchTree and their utility.

We provide theoretical analyses to show that our algorithm has provably strong guarantees on the error

bounds. Experiments on real datasets demonstrate that SketchTree can indeed estimate tree pattern

counts within 10-15% relative error with high confidence under various situations.
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Figure 1: A Stream of Labeled Trees and a Query Pattern

1 Introduction

In recent years, the area of data stream processing has received much attention with key focus on developing
online algorithms using a limited amount of memory. The algorithms are single-pass in nature in that every
stream element is examined only once. Internet service providers, e-commerce companies and applications
such as network monitoring and sensor data collection, constantly gather and analyze a large amount of data
to detect trends and/or anomalies in their systems. The volume of data generated by these applications
obviates any traditional indexing and storing techniques. As a result, such applications necessitate efficient
algorithms that can provide statistics or summaries on the data using a limited amount of memory.

Recent research in data streaming has focused on developing approximation algorithms with strong
guarantees on the error bound. A popular approach has been to compute online synopsis on data streams in
a limited space and use the synopsis for approximate query processing. Some of the key challenges that arise
in the streaming environment are (a) to develop a synopsis data structure that requires space logarithmic or
poly-logarithmic in the length of the stream and (b) to compute the synopsis in a single pass over the stream
by incurring a small per-element processing cost. Several theoretical and experimental studies have been
conducted such as online computation of frequency moments [3], join size estimation [2, 12], online quantile
computation [17, 18], and tracking frequent elements [10, 25].

The utility of tree structures spans across many areas such as modeling XML documents, representing
phylogenies in biological applications, networks, web log analysis and so on. Today, the extensible markup
language XML is a popular standard for information representation and exchange on the Internet [5]. Many
emerging applications such as personalized news, stock quotes, and price alerts have become popular over
the Internet. The rich data and query semantics provided by XML has triggered several research attempts to
build selective information dissemination systems [4, 22], content-based routing systems [11, 31] and XQuery
processors [21, 24] for streaming XML data. There is a growing interest in developing software systems for
efficiently processing XML streams.

While finding all occurrences of a query pattern in tree structured data such as XML documents is one
of the core operations on stored data (e.g., XISS [23], TwigStack [7], TSGeneric+ [20], PRIX [29]), it may
not always be necessary to do so for the purpose of analyzing trends in the online activities. Rather it may
be desired to count all matching occurrences from streaming data in a real-time fashion without consuming
too much computing resource.

Problem Description

In this paper, we propose a new algorithm called SketchTree for approximately counting all matching
occurrences of a tree pattern in a stream of labeled trees. Consider the problem of counting the number of
matches of a query pattern Q in a stream of trees processed from left-to-right shown in Figure 1. The query
Q contains a root node A with B and C as its children. Suppose we want to count those ordered matches
for Q where B precedes C in the data. Tree T1 has two matches and tree T3 has one match. Suppose we
want to count those unordered matches for Q with no ordering constraint between B and C, then tree T2

has two matches. (The matching nodes in the trees are shown in bold and the matching edges are drawn
thick.) We shall use the above semantics for query pattern matching in our work, which is slightly different
from the XPath query semantics for XML. The details of the query semantics of SketchTree are discussed
in Section 2.1,

To the best of our knowledge, this work is the first attempt to address the problem of counting tree
pattern matches over streaming labeled trees such as XML documents using a limited amount of memory.
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Formally, we state the tree pattern counting problem as follows.

Given a stream of labeled trees that are looked at only once in the fixed order in which they

arrive, count all matching occurrences of a tree pattern in the stream so far.

Note that this problem is fundamentally different from the problem of filtering for selective information
dissemination [4, 22], where user profiles are represented as standing XPath queries. In the aforementioned
tree pattern counting problem, there exist no standing queries to begin with, and any tree pattern can be
thrown as a query at any moment in time during stream processing.

Motivations and Contributions

To motivate why an approximate counting strategy may be more desirable than tracking counts accurately,
let us consider a stream of ordered labeled trees with node labels chosen from a finite symbol set Σ. In order
to accurately count the number of occurrences for any tree pattern of n nodes, it is necessary to maintain a
counter for each of all possible tree patterns of n nodes. If all node labels in the trees are ignored, then the

total number of distinct ordered unlabeled tree patterns of n nodes is given by 1
n
×

(

2n− 2
n− 1

)

[13]. Since

each node in an unlabeled tree pattern can be assigned any one of the labels in Σ, the number of counters

required in the worst case, to count all possible labeled tree patterns of n nodes, is 1
n
×

(

2n− 2
n− 1

)

×|Σ|n

in the worst case. In the worst case, each counter requires lg(m) bits, where m is the total number of tree
patterns in the stream.

Therefore, the memory requirement may be impractically too high for most realistic applications with
non-trivial alphabet size |Σ| and tree size n. For applications that only need approximate counts with
provable guarantees on error bounds, it would be useful to provide a method that approximately counts all
matching occurrences of any tree pattern using a substantially smaller amount of memory than that required
for accurate counts.

The main contributions of this paper are summarized as follows.

• We propose a new online approximation algorithm SketchTree for counting tree patterns over a stream
of labeled trees using a limited amount of memory with provably strong error bounds.

• We show that SketchTree can estimate counts for a class of queries that includes both ordered and
unordered tree patterns.

• To reduce the memory requirement of SketchTree for guaranteeing a certain level of accuracy, we
propose two strategies that aim at reducing the self-join size of a stream.

• We have developed an intuitive algorithm EnumTree for efficiently enumerating all the tree patterns
in a tree with at most k edges each.

• We have validated the effectiveness of SketchTree using two real datasets with different characteristics.

The rest of this paper is organized as follows. In Section 2, we provide an overview of the streaming
model for labeled trees and basic techniques. In Section 3, we present the synopsis data structure used by
SketchTree with theoretical analyses. Section 4 discusses a class of count queries supported by SketchTree

with some use cases. Section 5 discusses strategies to improve SketchTree’s processing cost and estimation
accuracy. In Section 6, we present some extensions to SketchTree followed by experimental results in
Section 7. Lastly, Section 9 summarizes the contributions of this paper.

2 Streaming Model and Basic Techniques

We begin with a brief description of the streaming model used by SketchTree. As is illustrated in Figure 2,
a synopsis data structure is continuously updated, while each of labeled trees (e.g., XML documents) are
processed. At the end of time t2, three trees have been processed by the system. In the figure, a count query
for Q is issued at time t3 and the system returns an approximate answer.
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Figure 2: Streaming Model for SketchTree

2.1 Query Semantics

Query patterns supported by SketchTree are labeled trees. The edges in a query Q denote a parent-child
relationship between nodes (similar to ‘/’ axis in XPath). In this paper, we restrict Q to contain only
equality predicates. A value in a predicate is treated as a node label. For the stream processed so far, we use
COUNT (Q) to denote the number of all occurrences of Q in the stream, where the matches are unordered in
nature. In addition, we use COUNTord(Q) to denote the number of all occurrences of Q, where the matches
are ordered in nature. SketchTree reports approximate answers for such queries.

It should be noted that our query semantics is slightly different from XPath, in the sense that SketchTree
considers all occurrences of a query pattern whilst XPath considers all occurrences of a target element in an
XPath query. Suppose we want to process COUNT (Q) for the trees shown in Figure 1. Using our query
semantics, COUNT (Q) = 5. On the other hand, using XPath semantics, COUNT (//A[B]/C) = 4.

In the streaming scenario studied in this paper, we assume that there exists no structural summary
such as a schema for the input data. However, if a structural summary is available or can be constructed
online for the data in limited space, then SketchTree can be extended to efficiently process queries with
ancestor-descendant relationship between nodes (similar to ‘//’ in XPath) and wildcard nodes (similar to ‘*’
in XPath). We defer the discussion of these extensions until Section 6.

2.2 Counting Parent-Child Node Pairs

Suppose we want to count the number of occurrences of any parent-child node pair in a stream of labeled
trees. Let Σ denote the set of all possible node labels. A naive counting algorithm would require one counter
for each possible ordered pair of labels to count all possible parent-child node pairs. Thus a total of |Σ|2

counters are required. Initially, each counter is set to zero. For a new tree in the input stream, all the
parent-child pairs are determined and their corresponding counters are updated. At any moment, the result
for COUNT (·) can be obtained from an appropriate counter.

Alternatively, we can process the trees in the following way. Let hash(X) denote a function that returns
a unique number for any given node label X . Then any pair (X,Y) of parent-child nodes can be represented
by an ordered pair (hash(X), hash(Y )). Without loss of generality, we will initially assume that each node
label hashes to a unique number. Later in Section 6, we will describe how to overcome this assumption.

Using the notion of pairing functions, any 2-tuple can be uniquely mapped to a natural number [19].
Pairing functions provide a one-to-one mapping between an ordered pair of non-negative integers and a
single non-negative integer. Tuples with more than two elements can also be mapped to single numbers by
applying pairing functions inductively as follows.

PF2(x, y) =
1

2
(x2 + 2xy + y2 + 3x + y)

PF3(x, y, z) = PF2(PF2(x, y), z)

We shall use the notation PF (·) to denote a family of pairing functions for k-tuples. By applying pairing
functions on the ordered pairs of node labels, a stream of labeled trees can be mapped to a stream of integers
(or one-dimensional points). Existing techniques for computing point estimates with limited memory (e.g.,
AMS sketches [3], COUNT sketches [8]) can be used to estimate the number of occurrences of any parent-child
pair in the stream.
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Figure 3: Example Tree Patterns

2.3 Counting Tree Patterns

In this section, we describe how SketchTree can estimate tree pattern counts. The key idea of our approach
is to map tree patterns into Prüfer sequences and eventually map these sequences into one-dimensional
integers. The use of Prüfer sequence representation for XML document trees was first proposed in the PRIX
system [29] for indexing and querying XML.

Prüfer sequences provide a one-to-one mapping between a labeled tree and a sequence. The algorithm to
construct a sequence from a labeled tree deletes successively the leaf node with the smallest label and notes
down the parent node of the deleted one. This process continues until only one node is left. The ordered
sequence of noted nodes becomes the Prüfer sequence of the tree. As in the PRIX system, we shall construct
a Prüfer sequence of length n−1 for a labeled tree Tn of n nodes by continuing the deletion of nodes till only
one node is left. Note that the time complexity of constructing a Prüfer sequence is linear in the number of
tree nodes [29].

The nodes of a labeled tree are first assigned postorder numbers. As in the PRIX system, the Prüfer
sequence can be constructed by treating the postorder numbers as unique labels for the node removal method
described above. Two sequences are constructed: (1) NPS (Numbered Prüfer sequence) consisting entirely
of postorder numbers and (2) LPS (Labeled Prüfer sequence) obtained by replacing each number in the NPS
by its corresponding label. For the purpose of tree pattern counting, we produce extended Prüfer sequences
by adding a dummy child node to each of the leaf nodes of a labeled tree before applying the sequence
construction. The Prüfer sequence of the extended tree contains the leaf labels of the original tree. The
LPS and NPS of the extended tree together contain complete information needed to reconstruct the original
labeled tree [29].

Example 1 We shall convert the tree patterns in Figure 3 into sequences. Each node has a label and a
postorder number. The nodes of the tree patterns that appear in the data tree are connected by solid edges.
The original leaf nodes in T1 and T2 are extended by adding dummy nodes (connected by dotted edges).
All the nodes including the dummy nodes are numbered in postorder. T1 can be uniquely represented by its
LPS(T1) = Z Y X, and NPS(T1) = 2 3 4. T2 can be uniquely represented by its LPS(T2) = Y X Z X, and
NPS(T2) = 2 5 4 5.

We first deal with estimating COUNTord(·) queries over a stream of labeled trees. Later in Section 3.3,
we extend SketchTree to estimate COUNT (·) queries (unordered matches) with provable error guarantees.

In the SketchTree algorithm, Prüfer sequence representation is adopted for both the data trees and
query tree patterns. A brief outline of the SketchTree algorithm is presented as follows. Let us assume
an algorithm EnumTree(T, k) that enumerates all ordered tree patterns in T with at most k edges each.
(The details of EnumTree(·) will be discussed in Section 5.1.) When a new data tree arrives in the stream,
SketchTree enumerates all the tree patterns in this tree with one to k edges using EnumTree. For each
tree pattern generated from the tree, the (extended) LPS and NPS for the pattern are constructed as in
Example 1. By applying a pairing function to each pair of LPS and NPS, the stream of trees are mapped into
a stream of one-dimensional integer values. Since the LPS and NPS together uniquely identify a tree pattern,
every distinct tree pattern is mapped to a distinct integer using PF (·). As a result, the problem of estimating
tree pattern counts is reduced to that of approximately estimating the frequency of one-dimensional points
in a stream.
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Example 2 Suppose the patterns T1 and T2 in Figure 3 are generated by EnumTree(·). For T1, LPS(T1)
= Z Y X, and NPS(T1) = 2 3 4. Then the sequences can be mapped to one-dimensional values as follows.
We compute ρ1 = PF(hash(Z), hash(Y), hash(X), 2, 3, 4) by treating all the elements in the LPS and NPS
as part of one long tuple. Similarly for T2, we compute ρ2 = PF(hash(Y), hash(X), hash(Z), hash(X), 2, 5,
4, 5).

When required, we shall use ‘.’ to denote the concatenation of a LPS L and a NPS N . Then PF (L.N)
denotes the one-dimensional mapping. The pairing function provides a one-to-one mapping if all the tuples
are of the same length. If not, each tuple should be padded to the size of the largest tuple before being
mapped to a value. For ease of explanation, we shall assume that this padding functionality is incorporated
in the pairing function. It is evident that the range of PF (·) grows rapidly with increase in the length of
the tuple and value of the tuple elements. If the range of PF (·) becomes too large to be represented in fixed
length words (e.g., 32 or 64 bit words), we use an alternate strategy that computes residues using irreducible
polynomials of high degrees. Note that this strategy does not require padding the sequences. In Section 6,
we explain the process of mapping sequences using irreducible polynomials. Until then, we shall continue to
use PF (·) for the mapping process.

3 Synopsis Data Structure

The synopsis data structure maintained by SketchTree for a stream of labeled trees is based on AMS
sketches [3]. In their seminal work, Alon, Matias and Szegedy (hence the name AMS sketches) proposed
the use of randomized linear projection of the frequency vector of the values in a stream. The process of
computing a randomized linear projection X of the frequency vector of a stream S can be summarized as
follows [3].

• Let dom(S) = {1, 2, ..., n} be the domain of S of size n. Select at random a family of four-wise
independent binary random variables ξi = {−1, +1} for each i ∈ dom(S). Note that P (ξi = −1) =
P (ξi = +1) = 1

2 and E(ξi) = 0. By four-wise independence, we mean that for any 4-tuple of ξi’s and
any 4-tuple of {−1, +1} values, the probability that these two 4-tuples match is 1

16 .

• Compute X =
∑n

i=1 fiξi for the values in S, where fi is the frequency of the value i in S. This can be
done online as follows. Initialize X = 0. Each time a value i occurs in S, simply add ξi to X .

The four-wise independent binary random variables can be generated by constructing parity check matrices
of the binary BCH codes [3]. Each sketch requires memory in the order of log of the domain size and the
log of the length of the stream. A useful property of AMS sketches is that deleting values from a stream is
easy. A value i can be deleted from the stream S by subtracting ξi from X .

Our choice of AMS sketches for SketchTreewas influenced by the fact that these sketches have interesting
mathematical properties that allow us to construct unbiased estimators in an intuitive way for a class of
count queries over tree structured data. Furthermore, provable bounds for the approximation error can be
computed for these queries in a methodical way. In the following sections, we present theoretical analyses
for estimating a class of count queries using SketchTree. Our style of analysis is similar to that of Alon et
al. [3] in the sense that first an unbiased estimator is constructed and then its variance is computed. This
is followed by the application of Chebyshev’s Inequality and Chernoff bounds [26] to formulate theorems
regarding the accuracy of the estimators. We shall use the terms ‘frequency’ and ‘count’ interchangeably in
the following discussions.

3.1 Estimating the Frequency of a Tree Pattern

We shall describe how SketchTree can estimate the frequency of a tree pattern Q (i.e., COUNTord(Q)).
Let dom(S) denote the range of the pairing function PF (·) used to map tree patterns into a stream of one-
dimensional values S. Then a sketch X can be computed for S as explained before. Let q denote the PF (·)
value for query Q. It is straightforward to show that E(ξq ·X) is an unbiased estimator of COUNTord(Q).
Note that E(ξ2

i ) = 1 and E(ξiξj) = 0 if i 6= j. By linearity of expectation,

E(ξq ·X) = E(ξq · (ξ1f1 + · · ·+ ξnfn)) = E(ξ2
qfq) = fq. (1)
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Let SJ(S) denote the self-join size of stream S. By applying the standard formula for variance, it can be
shown that V ar[ξq ·X ] ≤ SJ(S).

V ar [ξq ·X ] = E(ξ2
qX2)− E(ξqX)2

= E



ξ2
q (

n
∑

i=1

ξ2
1f2

i + 2
∑

i6=j

ξiξjfifj)



− f2
q

=

(

n
∑

i=1

f2
i

)

− f2
q

≤ SJ(S) (2)

The accuracy of estimation can be improved by applying the standard boosting technique [3] that main-
tains s1 × s2 independent and identically distributed (iid) instances of X (i.e., Xij), where s1 and s2 are
constants. We compute s2 random variables Y1, Y2,..., Ys2

as follows. Each Yi is the average of s1 iid
instances of ξqX . The median of Y1, Y2,..., Ys2

is an improved estimate of COUNTord(Q). The value s1

controls the accuracy of the estimate and the value s2 controls the confidence of the estimate. Independent
instances can be generated by using independent random seeds for generating the four-wise independent
random variables. Note that ξq is not explicitly stored as part of the sketches, but is computed during query
processing using the random seed for each sketch. We now state the following theorem.

Theorem 1 Suppose S denotes a stream of one-dimensional values obtained from a stream of trees by using
the pairing function PF (·). Let X be an AMS sketch for S. Let q be the one-dimensional mapping for query
Q using PF (·). Then COUNTord(Q) (i.e., fq) over S can be estimated with a relative error of at most ǫ

with probability at least 1− δ using s1 × s2 instances of X, where s1 = 8SJ(S)
ǫ2f2

q
and s2 = 2lg 1

δ
.

Proof. We use a strategy similar to that used by Alon et al. [3]. By applying Chebyshev’s Inequality,

Prob(|ξqX − E(ξqX)| ≥ ǫE(ξqX)) ≤
V ar(ξqX)

ǫ2E(ξqX)2

≤
SJ(S)

ǫ2f2
q

(3)

We use the averaging and median selection technique proposed by Alon et al. [3]. By averaging over

s1 = 8SJ(S)
ǫ2f2

q
(iid) instances of ξqX , we can compute Y such that E(Y ) = E(ξqX) and V ar(Y ) =

V ar(ξqX)
s1

.

Note that ξq is not stored separately but it is generated during query processing by using the random seed
for X .

Prob(|Y − E(ξqX)| ≥ ǫE(ξqX)) ≤
1

8
(4)

We compute s2 (iid) instances of Y. Let Zi = 1 if Yi ≥ ǫE(ξiX) and Zi = 0 otherwise for 1 ≤ i ≤ s2. By
applying Chernoff bounds [3] it can be shown that for s2 = 2lg(1

δ
),

Prob(

s2
∑

i=1

Zi >
s2

2
) ≤ δ. (5)

In other words, the median of s2 instances of Y provides a good estimate for COUNT(Q).

3.2 Estimating the Frequency of a Set of Distinct Tree Patterns

For a given set of distinct tree patterns {Q1, Q2, · · · , Qt}, SketchTree can estimate their total frequency
∑t

j=1 COUNTord(Qj). We shall first construct an unbiased estimator and then compute an upper bound
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for its variance. For 1 ≤ j ≤ t, let qj (∈ dom(S)) denote the one-dimensional mapping of a tree pattern Qj .
Due to the property of the Prüfer sequence transformation and pairing function PF (·), each qj is distinct.

We show that X · (
∑t

j=1 ξqj
) is an unbiased estimator of the total frequency

∑t
j=1 fqj

.

X ·





t
∑

j=1

ξqj



 =
t
∑

j=1

ξ2
qj

fqj
+

t
∑

j=1

∑

1≤i≤n,i6=qj

ξqj
ξifqj

fi

E



X · (
t
∑

j=1

ξqj
)



 =
t
∑

j=1

fqj
(6)

By evaluating the expression for variance and applying Cauchy-Schwarz Inequality [26], we obtain the
following result. (See Appendix A.)

V ar



X · (
t
∑

j=1

ξqj
)



 ≤ 2(t− 1) · SJ(S) (7)

Now the following theorem can be stated in a way similar to Theorem 1.

Theorem 2 Let X be an AMS sketch for a stream of one-dimensional values S, obtained from a stream of
trees by using the pairing function PF (·). Given a set of distinct query patterns {Q1, Q2, · · · , Qt}, let qj

(∈ dom(S)) be the one-dimensional mapping of Qj using PF (·). The total frequency
∑t

j=1 COUNTord(Qj)
can be estimated with a relative error of at most ǫ with probability at least 1 − δ using s1 × s2 instances of

X, where s1 = 16(t−1)SJ(S)

ǫ2(
P

t
j=1

fqj
)2

and s2 = 2lg 1
δ
.

Proof. Similar to the proof of Theorem 1.

Alternatively, the total frequency could be estimated by first estimating the frequency of each pattern
separately and then computing the sum. A relative error of ǫ can be guaranteed if each individual estimation

guarantees a relative error of ǫ
t
. Thus if s1 = 8t2SJ(S)

ǫ2(min(fq1
,··· ,fqj

))2 then a relative error of ǫ can be guaranteed.

From Theorem 2, it is clearly evident that using our proposed technique (Equation (6)) requires a smaller
value for s1 to guarantee a certain level of accuracy.

Algorithm 1: Update Process in SketchTree

Input: (T, k, s1, s2): T - input tree, k - maximum tree

pattern size, s1, s2 - # of iid instances

Output: none

procedure SketchTreeUpdate(T, k, s1, s2)
for each tree pattern Tp generated by EnumTree(T,k) do1:

compute LPS(Tp) and NPS(Tp)2:

compute tp ← PF (LPS(Tp).NPS(Tp))3:

for i = 1 to s2 do4:

for j = 1 to s1 do5:

compute ξtp using the random seed for sketch Xij and add it to Xij6:

endfor

endfor

endfor

The steps involved in SketchTree to update the synopsis data structure, when a new tree arrives in
the input stream, is shown in Algorithm 1. Note that the tree-to-sequence transformation and applying the
pairing function take linear time in the size of the tree pattern. The steps involved during query processing
are shown in Algorithm 2. The query pattern is also mapped to a one-dimensional value. The ξ random
variables are generated for each sketch, and the standard boosting technique is applied to compute an
estimate.

8



Algorithm 2: Query Processing using SketchTree

Input: (Qlist, s1, s2): Qlist - list of query patterns

s1, s2 - # of iid instances

Output: count estimate for Qlist

procedure SketchTreeEstimate(Qlist , s1, s2)
for each query pattern Ql in Qlist do1:

compute LPS(Ql) and NPS(Ql)2:

compute ql ← PF (LPS(Ql).NPS(Ql))3:

endfor

for i = 1 to s2 do4:

for j = 1 to s1 do5:

ξ ← 06:

for each Ql in Qlist do7:

compute ξql
using the random seed of Xij8:

ξ ← ξ + ξql
9:

endfor

Zj ← ξ ·Xij10:

endfor

Yi ←
Z1+...+Zs1

s1
11:

endfor

return median{Y1, Y2, ..., Ys2
}12:

B

C

A

D

E B

A

E

CD

A

B

DC

E

A

BE

D C

(a) Q1 (b) Q2 (c) Q3 (d) Q4

Figure 4: Ordered Tree Patterns of Q

3.3 Unordered Tree Pattern Counts

SketchTree supports counting unordered tree pattern matches with provable guarantees on the approxima-
tion errors. Consider an unordered tree pattern Q with four different ordered tree pattern arrangements
Q1, Q2, Q3 and Q4 as shown in Figure 4. In order to estimate COUNT (Q), we use the results obtained
in Section 3.2. Let q1, q2, q3 and q4 be the one-dimensional mappings of the patterns Q1, Q2, Q3 and Q4

respectively. Since the tree patterns are distinct, q1, q2, q3 and q4 are distinct integer values. From Equa-
tion (6), COUNT (Q) can be computed by

∑4
j=1 COUNTord(Qj), which in turn can be estimated using an

unbiased estimator Y = X · (ξq1
+ ξq2

+ ξq3
+ ξq4

).

4 Generalization of Count Queries

In this section, we generalize the class of queries that can be estimated by SketchTree. The benefit of
SketchTree is that probabilistic guarantees on the quality of approximation can be provided. We provide
some use cases of SketchTree in this section for applications that process tree structured data.

The SketchTree algorithm can estimate a class of query expressions that are generated by the following
grammar rules using the arithmetic operators ‘+’, ‘−’, and ‘×’.

E → E + E | E − E | E × E

E → COUNTord(Q)

Note that COUNTord(Q) is a terminal symbol for the rules. We assume that each terminal symbol in the
query expression is distinct. For example, the tree patterns Q1, Q2 and Q3 being counted in an expression
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<S>
    <NP−SBJ> 
         <NNP>Marty</NNP>
   </NP−SBJ>
   <VP>
         <VBD>recognized</VBD>
         <NP>
               <DT>the</DT>
               <NN>man</NN>
          </NP>
   </VP>

.

.

</S>
  .
  .

S

Pattern Q

NP−SBJ

NNP VBD | VBP | VBZ

VP

NP

"Who recognized the man?"
"Marty recognized the man."

Pattern Q
SQ

NP−SBJVBD

NN | NNS

1

2

(a) A snippet of Treebank in XML (b) Query Patterns

Figure 5: Treebank Processing

‘COUNTord(Q1) + COUNTord(Q2) + COUNTord(Q3)’ are all distinct.
For any valid query expression E, SketchTree constructs an unbiased estimator for E using the following

procedure. Each COUNTord(Qi) in E is replaced by ξiX to yield a new expression E
′

. The expression E
′

is
a polynomial of X . Each term in E

′

is divided by the factorial of the power of X in that term to yield E
′′

.
We claim that E

′′

is an unbiased estimator for the query expression E (Appendix C). Note that for higher
powers of X in E

′′

, four-wise independent ξ variables may not be sufficient. In general, we would need k-wise
independent ξ random variables, where k > 4. A general technique has been proposed for generating k-wise
independent binary random variables [1].

Example 3 Suppose we want to estimate the value of the query expression COUNT(Q1) × COUNT(Q2) +
COUNT(Q3) × COUNT(Q4) - COUNT(Q5) × COUNT(Q6). Let q1, q2, ..., q6 denote the one-dimensional

mapping of queries Q1, Q2, ..., Q6 respectively. Then X2

2! (ξq1
ξq2

+ ξq3
ξq4
− ξq5

ξq6
) is an unbiased estimator

for the query expression. Let us first evaluate E(X2

2! (ξq1
ξq2

)). By expansion and linearity of expectation

E(X2

2! (ξq1
ξq2

)) = COUNT(Q1) × COUNT(Q2).

X2(ξq1
ξq2

) = ξq1
ξq2

(
n
∑

i=1

ξifi + 2
∑

i6=j

ξiξjfifj)

E(
X2

2!
(ξq1

ξq2
)) =

2

2!
E(ξ2

q1
ξ2
q2

fq1
fq2

) = fq1
fq2

= COUNT (Q1)× COUNT (Q2)

By linearity of expectation, it can be shown that our estimator is indeed an unbiased estimator.

E(
X2

2!
(ξq1

ξq2
+ ξq3

ξq4
− ξq5

ξq6
)) = COUNT (Q1)× COUNT (Q2)

+ COUNT (Q3)× COUNT (Q4)

− COUNT (Q5)× COUNT (Q6)

The variance for the estimator can be computed using the standard formula for variance of a sum of random
variables (Appendix B).

In the linguistic research community, language treebanks are commonly used, because treebanks provide a
syntactic structure for text data by breaking them into syntactic units such as noun clauses, verbs, adjectives
and so on. Treebanks can be modeled as ordered labeled trees and can be represented in XML (Figure 5(a)).
A linguist could experimentally verify different hypotheses in a language by analyzing its treebanks [35].

Example 4 A language such as English uses the subject-verb-object word order for a sentence. How-
ever, a language that supports free word order uses any six permutations of subject, object and verb and
each permutation is grammatically correct (e.g., German, Hindi). For example, a linguist could verify the
following hypothesis experimentally: “Does a language L support free word order and if so to what extent?”
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Such an experimental validation requires counting tree patterns with nodes corresponding to subject, object
and verb arranged differently. SketchTree can provide tight approximations to the actual counts quickly for
large treebanks. Moreover, approximately counting syntactic structures can be useful for clustering large
amounts of treebank data based on different language properties.

Example 5 Another common use of treebanks is in question answering systems [27]. A linguist may want
to know how many sentences in the data denote the answer to a ‘who’ or ‘how’ or ‘what’ or ‘when’ question.
Consider the query pattern Q1 in Figure 5(b). The operator ‘|’ in the query denotes a boolean OR. There is
a match in the data (Figure 5(a)). This match is the answer to a ‘who’ question [27]: “Who recognized the
man?” The number of such questions (e.g., who, what, how) that can be constructed from the data can be
quickly estimated with a desired level of accuracy by SketchTree when the dataset is large. For example, the
number of ‘who’ question can be estimated as follows. Query Q1 can be represented by three distinct queries
each containing all the nodes of Q1 expect the node with the OR predicate ‘VBD|VBP|VBZ’. The left child
of VP in each query contains one operand of the OR operator. Let Q11, Q12 and Q13 denote the three query
patterns. Then an estimate of

∑3
j=1 COUNTord(Q1j) computed by SketchTree in a single pass over the

treebank data is an approximate answer for the total number of ‘who’ questions.

Example 6 Let us consider the tree pattern Q2 shown in Figure 5(b). Suppose we want to answer the query:
“Compute the number of occurrences of Q2 such that the root node SQ does not have a parent SBARQ.” Q2

can be represented by two distinct patterns containing nodes NN and NNS respectively as in Example 5. Let
Q21 and Q22 denote the two distinct patterns. Query Q2 can be extended by making SBARQ as the parent of
SQ. Let Q

′

2 denote the new pattern that has SBARQ as the root node. Let Q
′

21 and Q
′

22 be the two distinct
patterns for Q

′

2. Of course, SketchTree can provide an approximate answer the above query by computing
an estimate of (COUNT (Q21) + COUNT (Q22)) − (COUNT (Q

′

21) + COUNT (Q
′

22)) by constructing an
unbiased estimator based on the results obtained in Section 4.

Example 7 The usefulness of estimating products of query counts can be realized when computing probabil-
ities for stochastic (probabilistic) grammars used for statistical parsing of sentences. In probabilistic context
free grammars, each production rule is associated with a probability. For example, below are a few production
rules for the English treebank.

S → Aux NP V P (0.2)

NP → Nom (0.01)

V P → V erb NP NP (0.3)

The number to the right of each rule indicates the probability associated with it. Each rule is essentially a
tree pattern. For example, the third rule can be represented by an ordered tree pattern with ‘VP’ as the root
and ‘Verb’, ‘NP’ and ‘NP’ as its children. Given a sentence in English, a parse tree can be constructed for
it. Since multiple parse trees exists, the most likely parse tree for that sentence is the one that has the highest
probability [9]. The probability for each parse tree is computed by computing the product of probabilities of
the production rules used for that tree. This product can be computed approximately using our SketchTree

algorithm.
Consider a parse tree that requires the production rules α1 → β1, α2 → β2 and α3 → β3 for construction.

Then the probability of the parse tree is P (α1 → β1) ·P (α2 → β2) ·P (α3 → β3). The probability of each rule
r say α1 → β1 is computed as the ratio of the number of instances of the rule r in the data and the total
number of instances of rules that have the same non-terminal symbol α1.

P (α1 → β1) · P (α2 → β2) · P (α3 → β3) =
COUNT (α1 → β1)

∑

∀(α1→γi)
COUNT (α1 → γi)

·
COUNT (α2 → β2)

∑

∀(α2→δi)
COUNT (α2 → δi)

·
COUNT (α3 → β3)

∑

∀(α3→ǫi)
COUNT (α3 → ǫi)

(8)

In Equation 8, the numerator can be reduced to evaluating the product of tree pattern counts. In addi-
tion the denominator can be reduced to evaluating three instances of sum of tree pattern counts. Both the
numerator and denominator can be estimated using SketchTree with probabilistic error bounds.
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Figure 6: EnumTree

5 Optimizing Processing Cost and Memory Utilization

In this section, we first describe an algorithm for enumerating all ordered tree patterns with at most k edges
from an input data tree. We then present two strategies to improve the memory utilization of SketchTree,
namely, (1) tracking top-k frequent tree patterns and (2) virtual streams. These two strategies can be combined
together or can be applied separately. Limiting the number of instances of AMS sketches reduces the sketch
update cost during stream processing.

5.1 Tree Pattern Generation by EnumTree

It is essential that SketchTree generates tree patterns from a stream of trees efficiently. We propose an
intuitive algorithm called EnumTree to enumerate all ordered tree patterns in an ordered labeled tree with at
most k edges. EnumTree constructs larger tree patterns from smaller tree patterns and uses a memoization
technique to avoid repeated computation of the same patterns.

Let i denote a unique identifier of a node in the input tree. Let P (i, j) denote the set of tree patterns in
the input tree rooted at node i with j edges each. Each tree pattern can be represented by a set of edges
where each edge is denoted by node id pairs. If there are no qualifying tree patterns with j edges rooted at
i, then P (i, j) = ∅. In addition, let P (i, 0) =⊥.

The EnumTree algorithm generates patterns rooted at each node in a data tree by visiting the nodes
in postorder. To compute P (i, j), EnumTree first picks a set of child edges of i and then picks the re-
maining edges from its descendants. Consider a data tree T in Figure 6(a), where nodes are numbered
in postorder. Suppose EnumTree is currently at node 7 to compute P (7, 3). There are three choices for
edge selection: (7, 5), (7, 6) and ((7, 5), (7, 6)). If (7, 5) is picked, then EnumTree next computes P (5, 2),
which returns edges {(5, 3), (5, 4)}. Similarly, if (7, 6) is picked, EnumTree computes P (6, 2), which is
∅. As a result, a tree pattern {(7, 5), (5, 3), (5, 4)} is generated. Lastly, if ((7, 5), (7, 6)) is picked, then
EnumTree has to choose one more edge from its descendants. There are two possibilities: {P (5, 1), P (6, 0)}
and {P (5, 0), P (6, 1)}. P (5, 1) contains edges (5, 3) and (5, 4), while P (6, 1) is ∅. As a result, tree patterns
{((7, 5), (7, 6), (5, 3)), ((7, 5), (7, 6), (5, 4))} are generated. In a similar way, P (7, 2) and P (7, 1) are computed.
The trees rooted at node 7 are shown in Figure 6(b).

As shown in Figure 6(c), in general, to compute P (i, n), if t child edges are chosen, then P (j1, l1),
P (j2, l2), · · · , P (jt, lt) are computed ∀l1, · · · , lt ≥ 0 such that l1 + · · ·+ lt = n− t. To compute P (i, n), the
cartesian product

C = P (j1, l1)× P (j2, l2)× · · · × P (jt, lt) (9)

is first computed. Each result in C along with the edges (i, j1), (i, j2), · · · , and (i, jt) denotes a tree pattern
of size n rooted at i. Note that if any P (·) =⊥ in Equation (9), then it is not included in the cartesian
product. Also if any P (·) = ∅ in the equation, then C = ∅ and P (i, n) = ∅.

It can be observed that due to the recursive nature of our algorithm, P (i, j) may be invoked many times.
To avoid repeated computations, EnumTree stores each solution set P (i, j). If n is the maximum number
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of allowed edges for a tree pattern generated by EnumTree, then only those solution sets with j < n need
to be stored. Algorithm 3 shows the steps involved during tree pattern generation. We provide an empirical
evaluation of the effectiveness of EnumTree in Section 7.

Algorithm 3: Enumerate Tree Patterns

Input: (k, i): k - maximum size of tree pattern; i - node id

Output: P(i,k), all valid tree patterns of size from 1 to k rooted at i

procedure EnumTree(k, i)
if P(i,k) is memoized then return P(i,k) /* Already computed */1:

if k = 0 then2:

P(i,k) ← ⊥ /* Special case, not included during cartesian product (line 14) */3:

return P(i,k)4:

endif

P(i,k) ← ∅ /* Initialize the result set */5:

let f be the fanout of node i6:

if f > 0 then7:

p ← min(f, k)8:

for each t = 1 to p do9:

/* Number of child edges of i that can be picked */

for each j = 1 to

„

f

t

«

do
10:

Suppose c1, c2, ... ct be the t children of i that are selected in this iteration /* We select child11:

edges */
/* Select the remaining edges from the different child nodes */
Suppose xc1 + xc2 + ... + xct = k - t, such that each xci

≥ 012:

for each solution set xc1 ,xc2,...,xct do13:

/* Compute Cartesian product */
C ← EnumTree(xc1, c1)× EnumTree(xc2, c2)× ....× EnumTree(xct , ct)14:

Let S ← {(i, c1), (i, c2), ..., (i, ct)}15:

/* add the child edges to get the tree pattern of size k */
for each edge set e ∈ C do16:

add edge set (e ∪ S) to P(i,k)17:

endfor

endfor

endfor

endfor

endif

return P(i,k)18:

5.2 Tracking Top-k Frequent Tree Patterns

We present an intuitive strategy to reduce the memory requirement of SketchTree by tracking the top-k
frequent tree patterns in a stream. Theorems 1 and 2 show that the memory requirement of SketchTree
depends on the self-join size of the input stream. Thus by reducing the self-join size, we can improve the
accuracy of the estimate for a given amount of memory.

A key benefit of using AMS sketches is that the process of deleting values from a stream is straightforward.
Consider a stream of integers S that is sketched by X . A value t can be deleted from this stream by
subtracting ξt from X . Furthermore, m instances of t can be deleted from S by subtracting mξt from X .
Suppose the values in S have a skewed distribution. Then, the deletion of top-k frequent values from S can
potentially result in substantial reduction in the self-join size of S.

At any instant of time, E(ξt·X) is an unbiased estimator of the frequency of t in S so far. (See Section 3.1.)
The key intuition for estimating the frequency of t will be clear from the following analysis. Using Markov’s
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Inequality [26], we obtain the following equation.

P (ξt ·X ≥ r) ≤
E(ξt ·X)

r
(10)

If r is large and the actual frequency of t, E(ξt ·X), is small, then the probability of the estimated frequency
of t being larger than r is very small. Essentially, during stream processing, the probability that a low
frequency value is (incorrectly) estimated as frequent is very small. Equation (10) forms the basis of our
memory reduction strategy.

Algorithm 4: Tracking Top-k Frequent Tree Patterns

Input: (t, s1, s2): t - 1D value; s1, s2 - # of iid instances

Output: none

procedure ComputeTopK(t, s1, s2)
if t is present in L then1:

Let ft be the frequency of t stored in H2:

for i = 1 to s2 do3:

for j = 1 to s1 do4:

Compute ξt using the random seed for Xij5:

Add ξt · ft to Xij6:

Delete t and ft from L and H respectively7:

endfor

endfor

endif

Compute estFreqt using s1 × s2 instances of sketch X8:

if estFreqt > 0 and estFreqt > Root(H) then9:

if HeapSize(H) = k then10:

Let fr be the root of heap H and r be its corresponding element in L11:

Add ξr · fr back to each Xij12:

Delete root of H and delete r from L13:

endif

Insert estFreqt into H and add t to L14:

for i = 1 to s2 do15:

for j = 1 to s1 do16:

Compute ξt using the random seed for Xij17:

Delete ξt · estFreqt from Xij18:

endfor

endfor

endif

The data structures maintained by SketchTree include a min-heap H and a list L, each of size k. Thus at
most k most frequent values (mappings of tree patterns) can be tracked. H stores the estimated frequencies
of these frequent tree patterns that are present in L. Before the start of stream processing, both H and L

are empty.
Algorithm 4 describes the steps involved during stream processing. Let fi be a frequency estimate of i.

At any point during top-k processing, the following delete condition holds. If frequent value i is present in
L, then fi instances of i have been deleted from the stream. Since the self-join size of the stream affects the
accuracy of the estimates computed during top-k processing, the delete condition results in low estimation
errors. In Algorithm 4, if input t is present in L, then ft instances of t are added back to the stream and
all the instances of the sketches are updated appropriately (Lines 1 through 7). Next the frequency of t is
again estimated using ξt ·X by using s1× s2 instances of X (Line 8). If the estimated frequency estFreqt is
positive and is greater than the minimum frequency in the heap H , H and L are updated (Lines 9 through
14). If H is full, then all the instances of the frequent value corresponding to the root are added back to
the sketches (Line 12). The root node in H is deleted and the corresponding frequent value is deleted from
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L. Finally, t and estFreqt are inserted into L and H respectively (Line 14). Then estFreqt instances of t

are deleted from the stream and all the sketches are updated (Lines 15 through 18). Note that the delete

condition still holds.
Note that Algorithm 4 is invoked with tp, s1 and s2 as input arguments, after all the s1 × s2 sketches

have been updated in Algorithm 1 (Lines 4 through 6). If invoking top-k processing for every tree pattern
generated by EnumTree(·) is infeasible for an application, then top-k processing could be invoked with a
probability p for each tree pattern. In Algorithm 4, a sorted data structure such as a map container may be
used for L to speed up insert, delete and search operations.1

A few modifications to the query processing algorithm (Algorithm 2) of SketchTree are necessary. The
basic idea is to temporarily add the deleted instances of frequent values in list L, that are also present in the
query list, to the sketches. Let fql

be the frequency of ql (mapping of query Ql ∈ Qlist) that is present in L.
For each sketch Xij , compute d =

∑

ql∈L ξql
fql

. Line 10 in Algorithm 2 is replaced by Zj ← ξ · (Xij + d).

5.3 Virtual Streams

Another memory reduction technique that SketchTree uses, is to split a single stream of one-dimensional
integer values into a set of disjoint virtual streams. As a result, each virtual stream has a smaller self-join size
as compared to the original stream. When a new value appears in the original stream, the value is inserted
into one of the virtual streams. This approach is similar to using a set of buckets in COUNT SKETCHES
[8].

Let p be a prime that denotes the number of virtual streams S0, S1, ..., Sp−1 for the stream S. Note

that dom(S) =
⋃p−1

i=0 dom(Si). For each one-dimensional value t that appears in the original stream, we
compute residue r = t mod p.2 Now the value t is inserted into the rth virtual stream Sr. SketchTree now
maintains AMS sketches for each virtual stream. Let Xi denote an AMS sketch for a virtual stream Si. In
order to estimate COUNT(Q), the one-dimensional mapping q for a query Q is used to compute the residue
rq = q mod p. The sketch Xrq

of the virtual stream Srq
is used for computing an approximate answer for

COUNT(Q).
The sketches X0, X1, ..., Xp−1 can share the same random seed to generate four-wise (or k-wise) inde-

pendent ξ variables. So an AMS sketch for say Si ∪ Sj is simply the addition Xi + Xj . SketchTree can
estimate any query expression (Section 4) by first computing the addition of all the relevant sketches for the
query trees in the expression. The sum of the values in these sketches is used during query processing. The
top-k strategy can be combined with virtual streams. In such a case, SketchTree would maintain a separate
top-k data structure for each virtual stream.

6 Extensions

6.1 Alternate Mapping Function

We have so far assumed that the pairing function PF (·) maps a given LPS and NPS pair to an integer.
As the number of elements in these sequences increases and the element values grow, the range of PF (·)
grows too. In such cases, a 32-bit word (or a 64-bit word) may not be sufficient to store the integers. We
extend SketchTree by adopting Rabin’s fingerprinting technique [6] as a mapping function instead of PF (·).
In Rabin’s work, an irreducible polynomial of large degree is chosen uniformly at random. Let pirr denote
such a polynomial of degree 31 (assuming the use of 32-bit integers). A given LPS and NPS pair can be
concatenated, and the whole sequence can be treated as a long bit string representing the coefficients of a
polynomial with coefficients 0 or 1. Let p denote such a polynomial. The residue polynomial r = p mod pirr

is considered a one dimensional point mapping for the LPS and NPS. Note that r has a smaller degree than
that of pirr and can be stored as a 32 bit integer.

We have also assumed so far that each node label X in the data is mapped to a unique number using
hash(X). (See Section 2.) This mapping can be done in an online fashion too. The node labels can be
treated as bit strings and residue polynomials can be computed in the same way as described earlier.

1The map container is available in C++ Standard Template Library.
2Universal hash families can also be used [26].
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Figure 7: Processing Queries with ‘*’ and ‘//’

It should be noted that the mapping scheme using irreducible polynomials can lead to collisions. However,
the probability of collisions can be made very low by using irreducible polynomials of appropriate degrees
[6]. For our experiments, we chose irreducible polynomials of degree 31.

6.2 Extending the Query Semantics

In the streaming scenario studied in this paper, we have assumed that there exists no structural summary
such as a schema on the data trees. However, if a structural summary exists or can be constructed online
using limited space, then SketchTree can be extended to process queries that contain ancestor-descendant
relationship between nodes (‘//’ in XPath) and wildcard nodes (‘*’ in XPath). Our approach is similar to
that of XSKETCHES [28] in the sense that the original queries are mapped to set of query patterns with
only parent-child edges. The total frequency of this set of query patterns is equal to the frequency of the
original pattern.

Suppose a structural summary of data is available as shown in Figure 7(a). In order to process query Q1

shown in Figure 7(b), the structural summary can be used and ‘*’ can be resolved into two labels B and C.
Thus COUNTord(Q1) is the sum of the frequencies of two distinct patterns shown in Figure 7(b). Similarly,
to process a query Q2 shown in Figure 7(c), the structural summary can be used and ‘//’ can be resolved to
yield two distinct patterns shown alongside. Thus COUNTord(Q2) is the sum of the frequencies of these two
distinct patterns. Recall that in Section 3.2, we show how SketchTree can estimate the frequency of any set
of distinct tree patterns. Note that we assume that the resulting tree patterns are within size k each where
k is the size of the largest tree pattern generated by EnumTree. Otherwise, this simple sum of frequencies
technique cannot be applied. As part of future work, we would like to address issues such as choosing the
right value for k, and counting tree patterns of size larger than k.

7 Experimental Results

In this section, we present the experimental evaluation of SketchTree done with real datasets. We computed
the average relative errors for COUNTord(·) queries on workloads with varying query selectivities. We
observed that using a limited amount of memory, SketchTree could estimate tree pattern counts within
10-15% relative error. In addition, we observed that the cost of processing data trees grew almost linearly
with the total number of tree patterns generated by EnumTree.

7.1 Experimental Setup

The SketchTree was developed in C++ with the GNU Scientific Library (GSL) for generating pseudo
random numbers. We ran all our experiments on 2.4GHz Pentium IV processor with 1 GB RAM running
Red Hat Linux 9.0.

7.2 Data Sets

We experimented with two real datasets (a) TREEBANK and (b) DBLP [33]. Each dataset was originally
a single large XML document. A forest of trees were created by removing the root tag of the document, and
the trees were processed in a single pass. The trees in TREEBANK were narrow and deep with recursive
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Dataset # of Trees Maximum Tree # of Distinct

Pattern Size (k) Tree Patterns

TREEBANK 28,699 6 7,041,113

DBLP 98,061 4 11,301,512

Table 1: Datasets

(a) TREEBANK (b) DBLP

Figure 8: Query Workload

element names. The trees in DBLP were shallow and bushy. Table 1 summarizes the total number of trees
processed, the maximum size of a tree pattern that was generated by EnumTree, and the total number of
distinct ordered tree patterns in each dataset. Recall that a deterministic counting approach would require
one counter for each distinct tree pattern, which would amount to more than 7 million and 11 million counters
for TREEBANK and DBLP datasets, respectively.

7.3 Query Workload

For each dataset, a query workload was generated by selecting ordered tree patterns from it with different
selectivities. Figure 8(a) shows the workload for TREEBANK with the number of queries at each selectivity
range. The size (i.e., number of edges) of each query pattern ranged from 1 to 6. For TREEBANK, since its
value data were encrypted, the queries had only element names. All the queries were in the selectivity range
[0.00001, 0.00020), and the actual counts of these queries ranged in the interval [872, 18256]. Figure 8(b)
shows the workload for DBLP with the number of queries at each selectivity range. The size of each query
pattern ranged from 1 to 4. For DBLP, the queries had element names as well as values (CDATA). All the
queries were in the selectivity range [0.000005, 0.0001), and the actual counts of these queries ranged in the
interval [206, 4547].

7.4 Tree Pattern Generation Cost

A core component of SketchTree is the process of generating tree patterns from data trees. In Section 5.1,
we have proposed an algorithm, EnumTree, that given a tree T and a value k, enumerates all the ordered

(a) Time for Generation (b) Number of Tree Patterns

Figure 9: Evaluation of EnumTree
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(a) TREEBANK (s1 = 25, s2 = 7) (b) TREEBANK (s1 = 50, s2 = 7)

(c) DBLP (s1 = 50, s2 = 7) (d) DBLP (s1 = 75, s2 = 7)

Figure 10: Evaluation of SketchTree

tree patterns in T , each with at most k edges. We evaluated the performance of EnumTree by measuring
the total wall clock time for processing all the trees in DBLP and TREEBANK for different values of k.
This time included the time to generate the patterns, to transform them into sequences, and to compute
their one-dimensional mappings using Rabin’s technique.

In Figure 9(a), the total time taken by EnumTree to process all the trees in the stream is plotted for
both TREEBANK and DBLP for different values of k. In Figure 9(b), the total number of ordered tree
patterns generated by EnumTree are plotted for different values of k. The similarity between the two plots
shows that the the time taken by EnumTree grows almost linearly with the number of tree patterns that are
generated, which attests the effectiveness of EnumTree for generating tree patterns. Note that the number
of tree patterns generated for DBLP was larger than that for TREEBANK. The reason was that since DBLP
had a larger fanout for the tree nodes, there were more choices for picking child edges during enumeration.

7.5 Quality of Answers and Memory Usage

The quality of approximate answers for COUNTord(·) queries can be measured by computing the standard

relative error |approx−actual|
actual

. Note that an approximate count can be negative. In such cases, we use a sanity
bound for the approximate count by approx = 0.1× actual.

As more memory is allocated for the synopses in SketchTree, we expect the relative error to decrease. We
evaluated the effectiveness of SketchTree by increasing the number of instances of the sketches by varying
the value of s1 in increments of 25 with s2 being fixed at 7.3 In addition, the top-k size (# of frequent
patterns to track) was increased in increments of 50. Note that the number of virtual streams (Section 5.3)
was fixed at 229 for all the experiments. (An increase in this number would reduce the self-join size of the
streams and provide better accuracy as expected.) For each query, we computed the average relative error
over 5 runs for a given value of s1 and and top-k size. The total memory allocated for the synopses in
SketchTree is equal to sum of the memory required for s1 × s2 iid instances of AMS sketches, top-k data
structures and independent random seeds required for constructing four-wise independent binary random
variables.

3We computed the value of s2 for δ = 0.1 using Theorem 1.
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The plots in Figure 10 show the average of the average relative error for the set of queries in each
selectivity range. Note that in this case, SketchTree estimated the counts of single tree pattern queries. We
report additional experimental results for estimating query expressions (e.g., sum, product of tree pattern
counts), described in Section 4, in Section 7.8. Based on the theorems stated in Section 3, we expect the
average relative error to decrease as a query becomes less selective. In addition, the accuracy is expected to
improve as the top-k size is increased, since more high frequency values would be deleted from the virtual
streams resulting in a lower self-join size.

7.6 TREEBANK

For TREEBANK, the average relative errors were computed for the query workload shown in Figure 8(a).
The results are shown in Figures 10(a) and 10(b). The total memory allocated for the synopses and top-k
data structures is also shown in these plots.

Figure 10(a) shows the average relative errors for the case when s1 was 25. The total memory allocated
ranged from 316 KB to 1.05MB. We observed that with increase in the top-k size, the average relative
error dropped steadily. This was because SketchTree removed high frequency values (integer mappings of
frequent tree patterns) from the sketches, thereby reducing the self-join sizes of the virtual streams during
query processing. For example, the average relative error, for the selectivity range [0.00002, 0.00004), dropped
from 1.76 (176%) to 0.15 (15%) when the top-k size was increased from 50 to 250. For the selectivity range
[0.00004, 0.00008), the relative error was below 12% for top-k size from 150 onwards.

Figure 10(b) shows the average relative errors for the case when s1 was 50. The total memory allocated
to SketchTree ranged from 472 KB to 1.21 MB. The average relative error dropped steadily with increase
in the top-k size as before. For example, the average relative error for the selectivity range [0.00001, 0.00002)
dropped from 1.27 (127%) to 0.39 (39%) when the Topk size was increased from 50 to 300. For the selectivity
ranges [0.00004, 0.00008) and [0.00008, 0.00020) the relative errors were below 12% for Topk sizes from 50 to
300.

We conclude that tracking frequent tree patterns and deleting them from the sketches is an effective
way of boosting the accuracy of estimates computed by SketchTree. We also observed that by increasing
the value of s1, the relative error dropped significantly for the same value of top-k size. This is consistent
with the theoretical analyses. However, the stream processing time increased when s1 was increased. We
computed the ratio of total stream processing time when s1 = 50 to the processing time when s1 = 25. We
observed that the processing cost increased by a factor of 2.3 when s1 was doubled for different top-k sizes.
Interestingly, when the top-k size was increased for a fixed value of s1, the increase in the processing cost
was marginal. For example, when top-k value was increased from 50 to 300, the processing cost increased
by only 5.4% and 4.0% for s1 = 25 and s1 = 50 respectively.

However, the improvement in accuracy may not as by increasing the top-k size, is not a clear winner
always. Since the accuracy of estimating a frequent value is proportional to the actual value, tracking more
and more values will result in less accurate estimation for values that are less frequent. As a result, the
quality of answers could degrade. In such cases, increasing the value of s1 could be a better choice, provided
if increase in processing time is feasible.

7.7 DBLP

For DBLP, the average relative errors were computed for the query workload in Figure 8(b). The results are
shown in Figures 10(c) and 10(d). The total memory allocated for the synopses and top-k data structures
is also shown in these plots.

Figure 10(c) shows the average relative errors for the case when s1 was 50. The total memory allocated
ranged from 326 KB to 769 KB. We observed a drastic improvement in accuracy when the top-k size
was increased from 1 to 50. On the contrary, we observed a more gradual improvement in accuracy for
TREEBANK. This is because the distribution of tree patterns in DBLP had higher degree of skew than
the tree patterns in TREEBANK. As a result, for DBLP, deleting fewer frequent patterns from the virtual
streams were sufficient to compute estimates with good accuracy. For example, the average relative error
for the queries in the selectivity range [0.000025, 0.000050), dropped from 2.48 (248%) to 0.11 (11%) when
the top-k size was increased from 1 to 50. With further increase in top-k size, the improvement in accuracy
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(a) TREEBANK (SUM) (b) TREEBANK (PRODUCT)

Figure 11: Query Workload

was marginal. For the selectivity ranges [0.000050, 0.000075) and [0.000075, 0.0001), the relative errors were
under 5% for top-k size of 50.

Figure 10(d) shows the results for the case when s1 was 75. The total memory allocated ranged from 488
KB to 931 KB. The average relative error dropped drastically as before when the top-k size was increased
from 1 to 50 due to high skew in the tree pattern distribution. For example, the average relative error for
queries in the selectivity range [0.000005, 0.000025) dropped from 3.75 (375%) to 0.19 (19%) when the top-k
size was increased from 1 to 50. (The relative errors can be further reduced by increasing the value of s1.)
For the remaining selectivity ranges, relative error under 8% was achieved using SketchTree for top-k size
of 50.

As before, our experiments show that deleting frequent patterns from the sketches is an effective way
of improving the accuracy of of SketchTree estimates. As expected, with increase in the value of s1, the
relative errors dropped significantly for the same top-k size. However, the stream processing time increased.
We computed the ratio of total stream processing time when s1 = 75 to the processing time when s1 = 50.
We observed that the processing cost increased by a factor of about 1.6 when s1 was increased from 50 to
75 for different top-k sizes. However when top-k size was increased from 1 to 150 by fixing the value of s1,
the the processing cost increased by only 8.2% and 9.8% for s1 = 50 and s2 = 75 respectively.

7.8 Estimating the Frequency a Set of Distinct Tree Patterns

7.8.1 Query Workload

For the experiments, the TREEBANK dataset was used. A workload of 10,000 queries was generated by
randomly selecting three distinct patterns from the query workload shown in Figure 8(a). Figure 11(a) shows
the distribution of queries in the workload for a range of selectivities. We will refer to the workload as SUM.
The selectivity of each query in SUM was determined by dividing the sum of the actual counts of the three
distinct patterns in it with the total number of sequences processed by SketchTree. The maximum size of
the tree pattern generated by EnumTree was 6.

7.8.2 Results

The average relative error for each selectivity range is shown in Figures 12(a) and (b). As we observed in
the previous experiments, the average relative error reduces steadily with increase in the Topk size. Also by
increasing the value of s1, the relative errors reduced further as per expectation. The tradeoff is that the
processing time increased. Our results show that SketchTree is indeed effective in estimating the frequency
of a set of tree patterns with good accuracy. The Topk strategy was indeed effective in reducing the self-join
size of the virtual streams and reducing the relative errors.
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(a) SUM (s1 = 25, s2 = 7) (b) SUM (s1 = 50, s2 = 7)

(c) PRODUCT (s1 = 25, s2 = 7) (d) PRODUCT (s1 = 50, s2 = 7)

Figure 12: Evaluation of SketchTree

7.9 Estimating the Products of Tree Pattern Counts

7.9.1 Query Workload

For the experiments, the TREEBANK dataset was used. A workload of 6,811 queries was generated by
randomly selecting two distinct patterns from the query workload shown in Figure 8(a). Figure 11(b) shows
the distribution of queries in the workload for a range of selectivities. We will refer to the workload as
PRODUCT. The selectivity of each query in PRODUCT was determined by dividing the product of the actual
counts of the two distinct patterns in it with the total number of sequences processed by SketchTree. The
maximum size of the tree pattern generated by EnumTree was 6.

7.9.2 Results

The average relative error for each selectivity range is shown in Figures 12(c) and (d). As we observed in
the previous experiments, the average relative error reduces steadily with increase in the Topk size. Also
by increasing the value of s1, the relative errors reduced further as per expectation. The tradeoff is that
the processing time increased. Note that the average relative error is larger for the workload PRODUCT

as compared to SUM since the variance of the unbiased estimator to estimate the product is larger. (See
Appendix B.)

8 Related Work

Since finding all occurrences of a query pattern in XML documents is one of the core operations in XML
databases, queries with a path expression have been one of the major foci of research for indexing and
querying XML documents in recent years (e.g., XISS [23], TwigStack [7], TSGeneric+ [20], PRIX [29]).
Recent research work has also focused on selectivity estimation of path and twig queries [14, 28, 34]. However,
none of the previous work has addressed the problem of twig count estimation for streaming XML data.

Several theoretical and experimental studies have been conducted with focus on developing online algo-
rithms in the area of data streaming. Alon et al. proposed techniques for online computation of approximate
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frequency moments [3] and tracking self-join and binary join sizes for data streams [2]. Other recent work
includes online quantile computation [17, 18], tracking frequent elements [10, 25], online construction of
histograms [32] and summaries based on wavelets for approximate aggregate queries [16]. More recently,
processing join aggregates over streams using a limited amount of memory has also been studied [12, 15].

9 Conclusion and Future Work

In this paper, we have addressed the problem of counting tree patterns on streaming labeled trees (e.g.,
XML documents). We propose a new algorithm called SketchTree that constructs a synopsis of the stream
using AMS sketches and provides an approximate answer for the number of occurrences of any tree pattern.
SketchTree can estimate a class of counting queries including unordered tree pattern counts. We provide
theoretical analyses to show that our algorithm has provably strong guarantees on the error bound for
different types of queries. We show that the memory requirement of SketchTree can be further reduced
by keeping track of high frequency tree patterns. We also present empirical results to demonstrate that
SketchTree can estimate tree pattern counts within relative errors of 10-15% using a limited amount of
memory. SketchTree can be useful for tasks such as selectivity estimation over stored data, especially when
the data is very large and multiple passes over the data is impractically expensive. As part of future work,
we would like to compare SketchTree with techniques developed for selectivity estimation of twig queries
such as XSKETCHES [28].
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APPENDIX

A Application of Cauchy-Schwarz Inequality

Given two vectors A = {a1, a2, ..., at} and B = {b1, b2, ..., bt}, such that ai ≥ 0 and bi ≥ 0, it can be shown
by Cauchy-Schwarz Inequality [26] that

t
∑

i=1

aibi ≤

√

√

√

√

t
∑

i=1

a2
i ·

√

√

√

√

t
∑

i=1

b2
i (11)

We would like to compute a bound for

∑

1≤i,j≤t,i6=j

fqi
fqj

. (12)

where F = {fq1
, fq2

, ..., fqt
} is the set of frequency values for q1, q2, ..., qt respectively.

We can replace each ai in A by choosing one element from F without replacement. Similarly we can
replace each bi in B by choosing one element from F without replacement. Now the inner product of A and
B can be computed i.e., (A ·B). Then the right hand side of Equation 11 is

∑t
i=1 f2

qi
. However, not all terms

in Equation 12 are present in (A ·B). To do so, it is essential to form multiple instances of A and B. Each
term fqi

combines with at most t − 1 other frequency elements in Equation 12. Let A = (fq1
, fq2

, ..., fqk
)

and B = (fq2
, fq3

, ...., fqk
, fq1

). B is equivalent to right left-shifting A by one position. Now we can compute
A ·B. Next we can shift B again, and compute A · B and do this product (t-1) times.

As a result,
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B Variance Computation

Based on the standard formula for variance,
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Let us first compute the following.
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Let us assume that the ξ random variables are 5-wise independent. This is because there can be at most five
different ξ random variables in each term in Equation 15. By linearity of expectation,
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Using the result obtained in Appendix A,
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Note that the covariance of two random variables A and B [30] is computed as follows.

Cov(A, B) = E(AB) − E(A)E(B)

The variance of the unbiased estimator can be equated as follows.
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C Generalization of Tree Pattern Counts

Remark 1 The estimator E
′′

constructed for expression E using the technique proposed in Section 4 is
indeed unbiased.

Proof. Given E is a function of COUNT (·). By applying the technique proposed in Section 4, we obtain
an expression E

′′

that is a function of X and ξ random variables, where X =
∑n

i=1 ξifi. If each individual

term of E
′′

is shown as an unbiased estimator of the corresponding COUNT (·) expression in E, then by
linearity of expectation, we can show that E

′′

is an unbiased estimator of E.
We need to first show that a term in E

′′

with deg(X) > 1 is unbiased. If deg(X) = 1, it has been shown
that E(ξqX) = COUNT (Q) (Equation 1). The term Xk has k! terms of the form ξq1

fq1
ξq2

fq2
ξq3

fq3
· · · ξqk

fqk
.

This is equivalent to the number of arrangments of k distinct objects in a line. If Xk is multiplied by
∏k

i=1 ξqi
,

and if ξ random variables are k-wise independent, then

E(Xk ·

k
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ξqi
) = k!

k
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since only k! terms ξq1
fq1

ξq2
fq2

ξq3
fq3
· · · ξqk

fqk
yield a non-zero result on expansion of the L.H.S of Equa-

tion 19. All other terms in the expansion will each have at least one of ξqi
(1 ≤ i ≤ k) with degreee one.

Hence they evaluate to zero. Note that there are at most k distinct ξ variables in each term.
As a result, E

′′

is an unbiased estimator of E.
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