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Abstract. We consider the problem of simultaneous embedding of pla-
nar graphs. We demonstrate how to simultaneously embed a path and
an n-level planar graph and how to use radial embeddings for curvilinear
simultaneous embeddings of a path and an outerplanar graph. We also
show how to use star-shaped levels to find 2-bends per path edge simul-
taneous embeddings of a path and an outerplanar graph. All embedding
algorithms run in O(n) time.

1 Introduction

Simultaneous embedding techniques are useful in the visualization of graphs
that evolve through time, e.g., in the context of visualization of the evolution of
software [6]. Simultaneous embedding of planar graphs is also motivated by its
relationship with problems of graph thickness, geometric thickness, and contour
tree simplification. Embedding trees and other classes of planar graphs on prede-
termined point-sets, small integer grids, and levels is motivated by graph layout
algorithms and applications in visualizing hierarchical information. Level and
radial embeddings can also be used for simultaneous embedding of graphs which
are in turn useful in dynamic graph visualization. Simultaneous embedding of
planar graphs is also motivated by its relationship with problems of graph and
geometric thickness.

A geometric simultaneous embedding of two vertex-labeled planar graphs on n
vertices in the xy-plane is possible if there exists a labeled point set of size n such
that each of the graphs can be realized on that point set (using the vertex-point
mapping defined by the labels) with straight-line edges without crossings. For
example, any two paths can be simultaneously embedded, while there exist pairs
of outerplanar graphs that do not have a simultaneous embedding [5]. Geometric
simultaneous embeddings are quite restrictive: pairs of trees and triples of paths
may not have such embeddings. Less restrictive versions allow for larger classes
of graphs to be embedded without crossings, using few bends per edge [13].

Suppose an n-vertex path P is labeled 1 to n from one endpoint to the other.
In this paper, we show how to simultaneously embed P with an n-vertex planar
graph G (also labeled from 1 to n) that remains planar when the y-coordinate
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of each vertex of G equals its label. We can restrict each vertex of G to lie
on the distinct horizontal line, or level, `j =

{
(x, j) |x ∈ R}

given by its label
j ∈ {1, 2, . . . , n}. Such graphs are called level planar graphs with respect to the
labeling of G. The ability to simultaneously embed P and G in this way depends
on the particular labeling of G. If G is not level planar for the given labeling,
then we give alternative simultaneous embedding techniques provided that G is
outerplanar: we retain the straight-line edges for G, but relax the edges of P to
be either composed of one circular arc each or to have 2 bends per path edge.

1.1 Motivating Example

An example of a simultaneous embedding of a tree and an outerplanar graph
for the 2002 Football World Cup is shown in Fig. 1. While the union of these
two (underlying undirected) graphs contains a subdivided K5, demonstrating it
is non-planar, each individual graph can be drawn without crossings in which
the edges of the second graph have bends in (a), but not in (b). This example
illustrates that sometimes it is preferable to restrict the embedding to a predeter-
mined point set. In this case, the point set of (a) lies on a set levels corresponding
to the stage that a country reached before being eliminated. While (a) has two
bends-per-edge in its second graph, and (b) does not, (a) is more readable since
it preserves this relative vertical ranking of teams for the tree.

1.2 Related Work

The existence of plane (straight-line, crossings-free) drawings for a single planar
graphs is well known [15, 25, 26]. Moreover, plane drawings for n-vertex planar
graphs can be found in O(n) time using O(n2) area with vertices placed at inte-
ger grid points as shown by de Fraysseix, Pach and Pollack [7] and Schnyder [24].
Brass et al. [5] describe linear time algorithms for geometric simultaneous em-
beddings of pairs of paths, cycles, and caterpillars on an O(n)×O(n) grid. Geyer
et al. [17] show that tree-tree pairs do not always have a geometric simultaneous
embedding, and the status of tree-path pairs is open. If bends on the edges are
allowed, Erten and Kobourov [13] show that tree-path pairs can be embedded
simultaneously using at most one bend per tree edge and no bends of path edges
on an O(n) × O(n2) grid. Moreover, pairs of planar graphs can be embedded
simultaneously using at most 3 bends per edge using an O(n2)×O(n2) grid.

A related problem is that of level planarity, where the goal is to display graphs
according to a given hierarchical ordering of the vertices. The class of graphs
where this is possible are called level planar graphs, which have been widely
investigated [8, 19]. In particular, Jünger and Leipert [20] present a linear time
planarity embedding algorithm for level planar graphs using PQ-trees, where the
resulting embedding is a set of linear orderings of vertices on each level. Once a
graph is determined level planar, Eades et al. [12] can produce a plane drawing in
O(|V |) time, though it may require exponential area. In [14], a characterization
of trees that are level planar for any possible labeling of the vertices is given.
These trees are called unlabeled level planar (ULP).
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(a)

(b)

Fig. 1. In (a) the dark thick directed edges with no bends show the outcome of the 2002
Football World Cup in which edges are directed from the victorious to the defeated teams
of the top 16 countries who reached the knockout stages. The light thin directed edges
with bends depict the foreign nationalities for the eight quarter finalist teams in which an
edge goes from originating country that exports one or more players to play in the league of
another country during 2006. A geometric simultaneous embedding of (a) is given in (b).
While all bends are eliminated in both graphs of (b), the relative vertical positioning of the
teams indicating which stage they reached before being eliminated is lost. The five countries
with light gray circles correspond to the five vertices of the subdivided K5 contained in the
union of the two (underlying undirected) graphs.

Track graphs are a generalization of level graphs that can have edges between
vertices on the same level. Bachmaier et al. [1] provide a reduction from track
graphs on k levels to level graphs on 3k levels preserving planarity. Analogous to
level graphs and track graphs, radial level graphs and circle graphs use concentric
circles instead of horizontal lines for levels. Bachmaier et al. [2] extend the linear
time testing and embedding algorithms to radial level graphs, and provide a
similar reduction from circle tracks on k levels to radial level graphs on 3k
levels, provided that the edges are composed of radially monotone polylines.

Related to simultaneous embedding is the problem of graph thickness—the
minimum number of planar subgraphs into which the edges of the graph can be
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partitioned; see survey by Mutzel et al. [22]. Dillencourt et al. [9] study geometric
thickness of graphs, where the edges are required to be straight-line segments,
which directly relates: If two graphs have a geometric simultaneous embedding,
then their union has geometric thickness two just as the union of any two planar
graphs has graph thickness two. Duncan et al. [11] use geometric simultaneous
embedding techniques to show that degree-four graphs have geometric thickness
two. Book thickness adds the further restriction that the vertices must be in
convex position [3].

Simultaneous drawing of multiple graphs is also related to the problem of
fixed point-set embedding of planar graphs. Gritzman et al. [18] and Bose [4] show
that if the mapping between the vertices V and the points P is not fixed, then
trees and outerplanar graphs can be drawn without crossings using straight-line
edges, which is not the case for planar graphs in general. Bose [4] shows that if the
mapping between the vertices V and the points P is not fixed, then outerplanar
graphs can be drawn without crossings using straight-line edges, which is not the
case for planar graphs in general. If bends are allowed, Kaufmann and Wiese [21]
show that two bends per edge suffice for a planar graph. However, if the mapping
between V and P is predetermined, Pach and Wenger [23] show that O(n) bends
per edge are necessary to guarantee planarity, where n = |V |. Felsner et al. [16]
characterize the trees that can be drawn on the n×2 grid and describe a universal
point-set for outerplanar graphs in 3D. In the context of 3D layout, Dujmovic
et al. [10] study the (k, t)-track layouts of graphs, where the graph is vertex t-
colored and edge k-colored. They examine the relationship between such layouts
and geometric thickness.

1.3 Our Contributions

We present results about simultaneous embeddings of pairs of graphs where we
allow the use of curvilinear edges and piecewise-linear edges1 It is straightforward
to simultaneously embed a pair of n-vertex planar graphs without crossings,
where one has straight-line edges and the other has O(n) bends per edge, using
the result by Pach and Wenger [23]. With level and radial embeddings of graphs,
we improve on this result to obtain a planar simultaneous embedding of an n-
vertex planar graph G with no edge bends and an n-vertex path P , which may
have circular arcs or bends depending on the nature of G. Our results illustrate
the following trade-offs between the class of graphs to which G can belong and
the type of edges used for P :

1. Simultaneous embedding of a level planar graph G w.r.t. the labeling of P .
If G is level planar, then we show how both G and P can be simultaneously
embedded with straight-line edges in O(n) time.

1 The generic term simultaneous embedding refers to geometric simultaneous embed-
ding unless otherwise qualified. An example of such a qualifier would be “simultane-
ous embedding with bends” in which the restriction of straight-line edges is relaxed
to edges with bends for one or both graphs. Regardless of the qualifier, the restriction
of realizing each graph without crossings on the same point set is never relaxed.
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Pair (P , G) Edges in P Edges in G Condition Reference

(Path, Path) 0 bends 0 bends none [5]

(Path, Tree) 0 bends 1 bend none [13]

(Path, Planar) 0 bends 0 bends G is ULP Theorem 1

(Path, Planar) 0 bends 0 bends G level planar w.r.t. P Theorem 2

(Path, Outerplanar) circular arcs 0 bends none Theorem 3

(Path, Outerplanar) 2 bends 0 bends none Theorem 8

(Path, Tree) 0 bends 0 bends none Open

Table 1. Summary of results. ULP here stands for unlabeled level planar, as defined above.

2. Simultaneous embedding of an outerplanar graph G and a path P with cir-
cular arcs.
IfG is outerplanar, we show how to find a plane drawing forG simultaneously
with a drawing for P that uses one circular arc per edge in O(n) time.

3. Simultaneous embedding of an outerplanar graph G and a path P with bends.
If G is outerplanar and piecewise-linear edges are desirable, we show how to
obtain a plane drawing for G simultaneously with a drawing for P that uses
two bends per edge in O(n) time.

Table 1 summarizes our current results regarding simultaneous embedding
of pairs of planar graphs and relevant previous results.

2 Geometric Simultaneous Embedding

We try to use standard notation when discussing level graphs while focusing on
the aspects of level graphs that give us simultaneous embeddings using straight-
line segments. In doing so, we omit from our definitions certain properties of
level graphs that are not directly relevant to our problem domain. For instance,
level graphs can, and usually do, have fewer than n levels, and generally, are in
terms of short directed edges, which are restricted to be only between vertices
on adjacent levels. However, we are not interested in such level graphs since for
our application we require n levels, direction is immaterial, and the only graph
on n levels with short edges is a y-monotone path.

Taking all this into consideration, the following definitions are akin to those
given in [19]. Let G(V,E) be an n-vertex undirected graph with a labeling L :
V

1:1−→
onto

{1, 2, . . . , n}, which induces a level graph G(V,E, φ) with a bijective level

assignment φ = L onto n levels. A vertex v in V is a j-level vertex if φ(v) = j. A
level drawing is level planar if it admits a plane drawing such that each j-level
vertex v can be embedded onto the horizontal line `j =

{
(x, j) |x ∈ R}

. A level
graph is level planar if it has a level drawing.

Any planar graph G admits some labeling for which it is level planar, which
can be obtained via the y-ordering of any plane drawing of G perturbed so that
no two vertices have the same y-coordinate. For instance, the graph in Fig. 2(a),
(b) is level planar for the given labeling. However, only some planar graphs have
the property of being level planar regardless of the labeling used. Such graphs are
called unlabeled level planar (ULP) [14] and they can be characterized in terms of
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(a) (b) (c)

Fig. 2. The tree on the left (a) is embedded on parallel levels (b) and then simultaneously
embedded with path P = {1, 2, 3, 4, 5, 6, 7} in (c).

a pair of forbidden subtrees; see Fig. 3. This results in the only ULP trees being
(i) caterpillars, trees such that the removal all degree-1 vertices results in a path,
(ii) radius-2 stars, a K1,k in which each edge is subdivided at most once, and
(iii) degree-3 spiders, an arbitrarily subdivided K1,3. Given this characterization,
the linear-time recognition and embedding algorithms for ULP trees yield a
straightforward way to simultaneously embed an n-vertex path and an n-vertex
ULP tree as illustrated in the following theorem.
Theorem 1 A geometric simultaneous embedding of an n-vertex graph G and
an n-vertex path P can be computed in O(n) time, provided G is ULP.
Proof. Label the vertices of P sequentially 1 to n, and label the vertices of G
so that L = φ for any n-level bijective assignment φ of the vertices in G and
P . If G happens to be a ULP tree, it is either a caterpillar, radius-2 star, or
degree-3 spider, each of which has an O(n) time algorithm [14] to produce a
compact straight-line level planar drawing of G. If G is not a tree, the O(n) time
algorithm of Eades et al. [12] can provide a planar straight-line drawing of G
with level assignment φ = L2. Regardless, the y-coordinate of each j-vertex of
G matches its label j in a level drawing of G. Then we draw the path P in a
y-monotone fashion zig-zagging upward from one level to the next in O(n) time;
see Fig. 2(c). This completes our geometric O(n) time simultaneous embedding
of P and G since no path edges of P can cross given its y-monotone nature. ut

(a) (b) (c) (d)

Fig. 3. Two forbidden trees T1 in (a) and T2 in (b) that fully characterize ULP trees, and
their embeddings with crossings in (c) and (d), respectively, for the given labelings.

2 It should be noted that the distribution of the vertices of G in the drawing produced
by Eades et al. can vary depending on the order in which they are picked in the
algorithm, which is why it is preferable to use the custom embeddings provided
in [14] if G happens to be a tree.
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The requirement for G to be ULP is overly restrictive. One can use the same
approach to simultaneously embed a planar graph G and a path P , provided
that G is level planar with respect to the labeling induced by P . This gives the
following theorem.

Theorem 2 A geometric simultaneous embedding of an n-vertex graph G and
an n-vertex path P can be computed in O(n) time, provided G is level planar
with respect to the labeling given by P .

The disadvantage of this approach to simultaneously embed a path and a pla-
nar graph is that most planar graphs, including most trees, are not level planar
for some labeling. This is not surprising since it is a strong restriction to have
a predetermined order of the y-coordinates of the vertices. What is surprising,
however, is that introducing curvature to the levels, by using concentric circles in
lieu of horizontal lines, is enough to allow us to embed all trees and outerplanar
graphs with circular arcs for path edges. We show this in the next section.

3 Simultaneous Embedding with Curves

This section combines straight-line embeddings of outerplanar graphs with paths
consisting of circular arcs to produce curvilinear simultaneous embeddings. First,
we describe how to obtain a plane drawing of an n-vertex outerplanar graph G
on a set of concentric circles such that each vertex lies on a distinct circle,
determined by the labeling of G. We then use this straight-line crossings-free
drawing of G to simultaneously embed G with an n-vertex path P , such that
each path edge consists of a circular arc that lies between adjacent concentric
circles. This will give the primary theorem of this section.

Theorem 3 An n-vertex outerplanar graph G can be simultaneously embedded
with an n-vertex path P in O(n) time such that G forms a plane drawing and
P is drawn without crossings using one circular arc per edge in which P forms
a radially monotone polyline from some center point o.

However, this method only works if we can fix the radii of the circles to be
relatively close to each other. We conclude this section by showing that it is not
always possible to even draw a tree with straight-line edges without crossings
on a set of concentric circles in which the radii of the circles are uniformly
distributed.

3.1 Embedding an Outerplanar Graph on Concentric Circles

In this section, we describe how to embed a radial plane drawing of an labeled
n-vertex outerplanar graph G on a set of distinct n concentric circles using the
labeling of G. This is similar to a radial level planar embedding on n radial
levels, i.e., circles, except that we are using straight lines instead of radially
monotone polylines for edges. However, as straight-line edges are not necessarily
radially monotone, the radial level planarity test and embeddings algorithms of
Bachmaier et al. [2] cannot be directly applied here. Rather, we use the following
result from Bose [4].

7



(a) (b) (c)

(d) (e) (f)

Fig. 4. The vertices of a 12-vertex outerplanar graph G are embedded on a circle in (a).
This embedding follows the general point set P given in (b). The points are then perturbed
radially inward so that each vertex with label j lies on Cj for j = 1, 2, . . . , 12, where C12

is the outermost circle, yielding point set P ′ in (c). Drawing G on P ′ gives (d). Crossings
are avoided by restricting the ratio between the radii of the innermost circle C1 to the
outermost circle Cn in (e) giving (f).

Theorem 4 (Theorem 6.2 of [4]) If the input point set P is in convex position
then O(n) time and space is sufficient to straight-line embed G into P.

Using this theorem we can obtain our linear time radial straight-line embed-
ding of G onto n concentric circles given by the next lemma.

Lemma 5 Given a set C of n concentric circles {C1, C2, . . . , Cn} centered at
the origin o with monotonically increasing radii r1, r2, . . . , rn, it is a sufficient
condition that r1

rn
> cos 2π

n in order to obtain in O(n) time a radial plane drawing
of an n-vertex outerplanar graph G with vertices labeled 1 to n such that each
vertex with label j is embedded on circle Cj.

Proof Sketch: Our strategy is to first embed G using straight-line edges onto a
circle C with radius r centered at the origin o without crossings in O(n) time
via Theorem 4. We want the vertices of G evenly distributed along the circle,
i.e., on a point set P such that there is a point pi in P at a distance r from the
origin o, i.e., |opi| = r, at every radian angle θk = (k − 1) 2π

n , where θk is the
angle ∠p1opk for k = 1, 2, . . . , n. Clearly, P forms a convex set; see Fig. 4(b).

Then we perturb the vertices in O(n) time in a radial direction so that each
one lies on its own circle according to the labeling of G, i.e., a vertex v labeled
j is placed on Cj where Cn = C. Finally, we determine that if our perturbation
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is sufficiently small, i.e., r1
rn

> cos 2π
n , then the radial drawing remains free of

crossings. We do this by perturbing the point set P to match the new locations
of the vertices of G. We call this perturbed point set P ′; see Fig. 4(c).

We note that while Theorem 4 works for any convex point set P, which vertex
is embedded at which point of P is determined by the algorithm. We can show
that when rerunning the algorithm on point set P ′ instead of P, it makes the
same choices. We omit including a description of this algorithm in this abstract,
except to note that it works by recursively subdividing P into smaller point sets
by recursively picking a pair of points and taking the line passing through them
as a dividing line into which to split the remaining points. In order to do that it
suffices to show that when we perturb the point set P to P ′ the following two
conditions hold:

– all the points of P ′ remain in convex position and
– the order in which each point p′ of P ′ sees all the other points P ′ − p′ using

a radial line sweep centered at p′ remains the same.

Given these conditions and the greedy nature of the algorithm of Theorem 4,
if a vertex v of G is embedded on point pi ∈ P, then v will also be embedded
onto the corresponding point p′i ∈ P ′.

Since the points P are uniformly distributed over all radial angles, retaining
the convexity of P ′ also achieves the condition of retaining relative positioning
provided that the points of P ′ are only perturbed in a radial direction. This is
because the order in which a clockwise radial line sweep centered at point pi

in P encounters the other points will be pi+1, . . . , pn, p1, . . . , pi−1, which is the
order that the vertices P are encountered along the convex hull of P after pi.
Maintaining the convexity of P ′ so that its convex hull is p′1, p

′
2, . . . , p

′
n means

than a radial line sweep centered at point p′i in P ′ encounters the other points
in the same order as pi did in P, namely p′i+1, . . . , pn, p1, . . . , pi−1.

Next, we show that r1
rn

> cos 2π
n is a sufficient condition in maintaining

the convexity and same convex hull of P when perturbing the points to P ′.
Perturbing the point pi+1 of P to lie on the innermost circle C1, while letting its
neighboring points pi and pi+2 along the convex hull of P, remain on C = Cn,
gives a worst case in terms of affecting the convexity of P. Fig. 4(e) illustrates
this. Let x denote the midpoint of pipi+2. In order for pi+1 to remain on the
convex hull of P, it is sufficient that the distance from o to x is less than r1,
the radius of the innermost circle C1. Since the angle ∠xopi is 2π

n , if the ratio of
r1
rn
> |ox|

rn
= cos 2π

n , then pi+1 will lie in the outer half-plane formed by the line
passing through pi and pi+2, i.e., the half-plane not containing the origin o. ut

3.2 Embedding a Path of Circular Arcs Between Concentric Circles

From Lemma 5, we have that given n distinct concentric circles C1, C2, . . . , Cn

of monotonically increasing radii r1, r2, . . . , rn, we can create a plane drawing of
any n-vertex outerplanar graph G(V,E) with labeling L : V 1:1−→

onto
{1, 2, . . . , n}

such that v ∈ CL(v) for all v ∈ V provided r1
rn

> cos 2π
n . Here we assume the
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(a) (b)

Fig. 5. Routing one circular arc per edge so that fits inside two consecutive concentric
circles is in (a). The concentric circles are centered at o where o′ is the center of a circle
that gives a curve connecting vi and vi+1 that stays within the annulus defined by Ci and
Ci+1. An example of this is given in (b) for the outerplanar graph from Fig. 4(a).

n-vertex path P is labeled sequentially 1 to n. We show how to route the edges of
the path using exactly one circular arc per path edge so that the arcs of P form
a radially monotone polyline, which implies that no two circular arcs intersect.

Lemma 6 A radially monotonically increasing crossings-free drawing of an n-
vertex path P (V,E) with vertex set V = {v1, v2, . . . , vn} and edge set E ={
(v1, v2), (v2, v3), . . . , (vn−1, vn)

}
can be realized on n concentric circles C1, C2,

. . . , Cn, where vi ∈ Ci for 1, 2, . . . , n with one circular arc per edge.

Proof. It suffices to show that one circular arc always can be used to connect
two consecutive vertices on the path, vi and vi+1, such that the arc lies strictly
outside circle Ci and inside circle Ci+1 except for the end points of the arc at vi

and vi+1; see Fig. 5(a).
Let o be center of the circles. We compute o′, the center of the circle that

forms the desired circular arc connecting vi and vi+1 as follows. The center o′

is the intersection of the perpendicular bisector of vivi+1 and the line segment
ovi+1. The radius of the circle centered at o′ is given by the distance from o′ to
vi. The shorter circular arc between vi and vi+1 connects the two vertices and is
located in the annulus between circles Ci and Ci+1. Furthermore, the distance
from c to any point along the arc from vi to vi+1 is monotonically increasing.
Therefore, the entire path P can be realized as a radially monotone polyline,
implying no edge crossings, using one circular arc per edge; see Fig. 5(b). ut

Lemma 5 together with Lemma 6 gives us Theorem 3. However, as noted,
this only works when we can restrict the radii of the concentric circles to be in
a small range. One might wonder whether it is possible to use radially uniform
concentric circles instead. The next subsection shows this is not the case.

3.3 Trees on Radially Uniform Concentric Circles

In this section we give an example of a 406-vertex tree with a labeling from 1
to 406 that cannot be straight-line embedded on a set of 406 radially uniform
concentric circles such that each vertex lies on its respective circle.
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(a) (b)

Fig. 6. The 406-vertex tree in (a) cannot be drawn on radially uniform concentric circles
since there must exist one subtree that is a copy of T1 from Fig. 3(a) that fully resides in
a sector such that tangents of circles do not intersect any other circle. We can rotate this
sector so that it lies directly above o so that any vertices placed on the concentric circular
arc in this sector must have strictly increasing y-coordinates as shown in (b).

Lemma 7 There exists an 406-vertex tree T (V,E) with labeling L : V
1:1−→
onto

{1, 2, . . . 406} that cannot be straight-line embedded on a set C of 406 radially uni-
form concentric circles {C1, C2, . . . , Cn} centered at o with radii r1, r2, . . . , r406
such that ri = (i − 1)∆ for i = 1, 2, . . . , 406 for any ∆ > 0, where each vertex
with label j is embedded on circle Cj.

Proof. Here we use the ULP forbidden tree T1 with 8 vertices from Fig. 3(a) to
construct a 406 vertex tree T with root x which has 45 subtrees of 9 vertices
each; see Fig. 6(a). Each of the 45 neighbors of x is a degree-2 vertex connected
to a copy of T1. We start by labeling x with 1 placing it on C1, which has radius
0, so x must be embedded at the center o.

Then we label each of its 45 neighbors with 362, 363, . . . , 406 so that at least
one subtree, which is a copy of T1, call it T ′1, must lie within the radian angle
2π
45 . W.l.o.g we assume that this sector is centered along a vertical line passing
through the center o since we can rotate the drawing of T as needed.

Within this narrow sector, we observe that the tangents to the circles do
no intersect any other circle; see Fig. 6(b). This is because the radius of ri−1

is strictly less than ri cos 2π
2·45 = ri cos π

45 for i = 1, 2, . . . , 405. In particular,
r405 = 404 < r406 cos π

45 = 405 · 0.997564 = 404.013.
Then we label the kth copy of T1 with the labels from Fig. 3(c) adding the

value of (k−1)8+1 to the labels for k = 1, 2, . . . , 45. This preserves the y-ordering
of the labels such that T ′1 (the copy of T1 lying strictly within the radian angle
2π
45 sector) must have strictly increasing y-coordinates. Hence, if T ′1 could be
embedded on its circles, then it could be level planarly embedded, which is not
the case for the given labeling of T ′1. The inability to level planarly embed T ′1
forbids a straight-line embedding of T . ut

4 Simultaneous Embedding with Bends

This section combines straight-line embeddings of outerplanar graphs with paths
whose edges are drawn with bends. We introduce the notion of star-shaped levels
which allows us to obtain the main result of this section:
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Theorem 8 An n-vertex outerplanar graph G can be simultaneously embedded
with an n-vertex path P in O(n) time such that G forms a plane drawing and P
is drawn without crossings with at most 2 bends per path edge.

First, we describe how to project this 3-dimensional embedding of G onto
the 2-dimensional xy-plane. Next we provide an example to illustrate how to
simultaneously embed G with a path P of n vertices using as most 2 bends per
path edge by carefully navigating star-shaped levels. Once the general idea of
how these levels work is understood, we finish this section by giving the detailed
geometric construction of the star-shaped levels that insures no crosses.

4.1 Projecting a 3D Outerplanar Graph onto the 2D xy-plane

We start by using the following theorem to get a 3-dimensional embedding of an
outerplanar graph onto a 3-side prism.

Theorem 9 (Felsner, Liotta and Wismath [16]) Every outerplanar graph G(V,E)
with n vertices admits a crossings-free straight-line grid drawing in three dimen-
sions in optimal O(n) volume that can be computed in O(n) time and with the
vertices of G drawn on the grid points of a prism.

The ability to do this projection can be used to give our next lemma.

Lemma 10 There exists a projection of a 3-dimensional outerplanar graph G on
a 3-sided regular prism onto the xy-plane that preserves the number of straight-
line edge crossings of G.

Proof Sketch: The embedding of [16] uses the shortest-path distance from some
arbitrary root vertex r to every other vertex in the outerplanar graph G. Let
dmod 3(v) denote the shortest-path distance from r modulo 3. Fig. 7 gives an
example of an outerplanar graph to be used in illustrating the embedding on
star-shaped levels. The 3-dimensional regular prism used for this embedding can
be visualized as standing vertically on a triangular base in the xy-plane in which
the vertical edges are numbered 0, 1, and 2 in clockwise order looking down from
the positive z-direction. Then G is “wrapped” around the prism such that each
vertex v is embedded along the edge dmod 3(v) of the prism; see Fig. 8.

Fig. 7. Outerplanar graph G used as an example for embedding on star-shaped levels.
The vertices in this figure and Fig. 8 are in three different shapes (diamonds, circles, and
squares) according to whether the vertex is at a shortest-path distance of 0, 1, or 2 modulo
3 from vertex 1, respectively. The edges are colored one of three colors in a similar fashion
according to the shortest-path distance of the closest endpoint to vertex 1.
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(a)

(b)

Fig. 8. Outerplanar graph G from Fig. 7 projected onto the xy-plane from its 3-dimensional
embedding. In (a) there are crossings since the vertices are not above the 2r threshold,
where r is radius of the circumscribed circle of the base of the prism. In (b) there are no
crossings since all the vertices achieve this threshold.
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We will use the prism to construct the star-shaped levels. Assume that the
base of the prism is an equilateral triangle with side length ` and that the height
of the prism is 3`. Additionally, let r = `/2

√
3 be the radius of the circle that is

inscribed within the triangle; see Fig. 8(b). We need to shift all the vertices so
that they all lie along a fairly narrow band above the distance 2r from the base.
This is so that when we “unfold” each vertical side of the prism by laying it flat
on the xy-plane we do not introduce a crossing; compare Fig. 8(a) to (b).

Since each vertical edge corresponds to two sides of two distinct rectangles, we
pick the side of the rectangular face that is in a 90◦ counter-clockwise direction
from the prism’s base onto which to map the vertices along the prism edge.
The positions of the vertices are then mapped directly to their corresponding
positions along this projected edge in the xy-plane so that the edges on a prism
face map directly to straight-line segments in the xy-plane.

While this unfolding operation is a linear transformation, there is the possi-
bility that extra crossings will be introduced between edges incident to the same
pair of prism edges in which one or both of the endpoints lie within a distance
of 2r from this base. Once all the endpoints lie above this threshold, which is
the point at which an extension of an adjacent prism edge at an angle of 120◦

would intersect the edge in the xy-plane, then no crossings can occur. This is
illustrated by projecting the outerplanar graph G from Fig. 7 onto the xy-plane
in which all the vertices are not above this threshold in Fig. 8(a), but achieve
this 2r threshold in Fig. 8(b) eliminating all crossings. ut

4.2 Simultaneous Embedding using Star-Shaped Levels

In this section we show how to use the star-shaped levels generated by the
outerplanar graph G from the previous section to simultaneously embed a path
P with exactly 2 bends per edge giving our next lemma.

Lemma 11 There exists a 2-bend per path edge crossings-free drawing of a path
P using star-shaped levels for any vertex labeling.

Proof Sketch: Let Vi = {v ∈ V | dmod 3(v) = i} be the partitioning of V by prism
edges, and let ni = |Vi| for i ∈ {0, 1, 2} be the total number of vertices of G at
a shortest-path distance of i modulo 3 from r where nmax = max{n0, n1, n2}
is then the total number of star-shaped levels required for this simultaneous
embedding. Next we need to perturb the ni vertices that lie along edge i (after
performing the above projection to the xy-plane) to lie along one of nmax closely
adjacent nested star-shaped levels. How close these levels need to be is given by
the subsequent lemma. Each star-shaped level has 6 sides and is a scaled-down
version of the outermost level (w.r.t. the center of the circle circumscribed within
the triangular prism base). This includes the 3 prism edges projected onto the
xy-plane, and the 3 edges that each connect the top of one projected prism edge
to the bottom of the next in a clockwise direction, termed connecting edges; see
the dashed 3-pointed star in Fig. 9.

When perturbing the vertices, we are careful to move a vertex in a direction
perpendicular to the prism edge (as well as all of the adjacent edges of the nested
levels) on which it resided. The problem with perturbing the vertices too much

14



Fig. 9. Outerplanar graph G from Fig. 7 embedded onto the star-shaped levels.

is the introduction of crossings in G. For example, the outerplanar graph G in
Fig. 7 is shown in Fig. 9 on a set of star-shaped levels in which the levels are not
spaced sufficiently close enough, resulting in several crossings.

Unfortunately, it is nearly impossible to directly illustrate a true-to-scale
non-trivial example of this perturbation without introducing crossings in the
final simultaneous embedding since the required perturbation is so small that
when drawn on the printed page, all the nested star-shaped levels appear to
coincide. For instance, the path shown in Fig. 10 will induce crossings when
simultaneously embedd with G from Fig. 7.

The vertices are placed clockwise from outermost to innermost star-shaped
level by the order given by the path labeling. However, in order to be able to route
the path back and forth between vertices that alternate back and forth between
adjacent sides of the prism, an extra connecting edge needs to be inserted to lie
half-way between every pair of adjacent connecting edges. Since we need one for
each level, an extra connecting edge also needs to be added to lie just interior
to the nmax

th innermost connecting edge. In Fig. 9 these are shown as dashed
line segments. We denote the levels along which the vertices lie as regular levels,
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Fig. 10. The corresponding simultaneous embedding of the path for the graph G in Fig. 9.

which are depicted in Fig. 9 with solid gray edges, and the in-between levels as
half-levels consisting of dashed edges.

The rule then for going from one vertex u to the next vertex v is that if
going clockwise, then v’s connecting regular level’s edge is used, otherwise, its
connecting half-level’s edge is used. Hence, if going clockwise, 2 bends are intro-
duced at each endpoint of the connecting regular level’s edge corresponding to
the destination vertex. Otherwise, 2 bends are introduced at each endpoint of
the connecting half-level’s edge of the destination vertex. ut
4.3 Geometric Construction of Star-Shaped Levels
In this section we provide a detailed description of the geometry of star-shaped
levels. In particular, we determine how small the separation between the star-
shaped levels need to be and how close the vertices of G along a prism edge need
to be in order to prevent crossings as given by our final lemma.
Lemma 12 Let G be an n-vertex outerplanar graph. Let δ be the maximum sep-
aration between two vertices of G along the same prism edge before perturbing
vertices onto the other star-shaped levels, and let ∆ be the maximum separa-
tion between the nested star-shaped levels. Then G will be crossings-free when
embedded onto the star-shaped levels provided

∆ <
`

10n
and δ <

`

(n− 1)2
.
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Fig. 11. Geometry of the star-shaped levels.

Proof Sketch: We assume the worst case of n = nmax, the number of nested
star-shaped levels. Fig. 11 shows the geometry for one of the three-pointed sides
of the star-shaped levels. Further, we assume that each of the n parallel regular
level edges (corresponding to prism edges) are evenly spaced at a distance ∆
from each other. We shift the n parallel half-level edges in a normal direction for
a distance of ∆

2 so that each half-level lies between two regular levels except for
the innermost half-level. The total width of all 2n regular levels and half-levels
is then (n− 1

2 )∆.
The line segment bk is an extension from an adjacent side of the star-shaped

levels, which intersects the regular level edge ae. Denote the length |ab| = x. If
r is the radius of the circumscribed circle centered at o, we observe |ak| = ` =
2|aj| = 2

√
3r, which implies x = 2r using the properties of 30◦-60◦-90◦ triangles

4ajo and 4kab. The distance x = 2r also represents the minimum threshold
distance that all the vertices of G must lie from the base of the prism.

Let the term height denote the distance of a vertex along the prism edge
from the base before it is perturbed. In particular, before being perturbed in an
inward perpendicular direction, each of the n vertices along all of the prism edges
are evenly spaced at a distance of δ between minimum and maximum heights c
to d. Hence, |cd| = (n − 1)δ. Denote the length |bc| = y, the distance from the
threshold point b to the vertex of minimum height before the perturbation.

The distance hmax of maximum height must be sufficiently high enough, and
the distance hmin of minimum height must be sufficiently low enough, such that
the point f lies on the interior side of di. This is so that a vertex at maximum
height on the outermost level at point d can route an edge counter-clockwise to
the endpoint of the innermost half-level at point i, and not prevent another vertex
at minimum height in the second-to-outermost level at point f from routing a
path edge. This implies that
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Fig. 12. Geometrical relationship between the ∆ of level width and the δ of level height
of star-shaped levels.

|ai|
|ad| =

(
n− 1

2

)
∆

x+ y + (n− 1)δ
<

∆

(n− 1)δ
=
|cf |
|cd| .

If we let κ = (n− 1)δ, and set x+ y = ` > 2r, then we get the inequalities

n− 1
2

`+ κ
<

1
κ
⇐⇒ κ

(
n− 3

2

)
< ` ⇐⇒ (

n− 1
)(
n− 3

2

)
δ < `

⇐⇒ δ <
`(

n− 1
)(
n− 3

2

) =⇒ δ <
`(

n− 1
)2 .

Conversely, the distance hmin must be sufficiently high enough, and the dis-
tance hmax must be sufficiently low enough, such that the point g lies on the
interior side of ch. This is so that a vertex at minimum height on the outermost
level at point c can route an edge clockwise to the endpoint of the innermost
regular level at point h, and not prevent another vertex at maximum height in
the second-to-outermost level at point g from routing a path edge. This implies

|mh|
|mc| =

(
n− 1

)
∆

3`− x− y − z
<

∆

(n− 1)δ
=
|dg|
|dc| .

Again if we set x+ y = ` > 2r, this gives
1

2`−z <
1
δ ⇐⇒ δ < 2`− z,

which is an easy condition to meet since the above condition implies δ < `
(n−1)2 <

` < 2` − z provided n > 1 and z < `. The length tanψ = (n−1)∆
z , where ψ =

1
2 arctan 1

3 is one half of the angle of the point of the star. Hence, z ≈ 6.16(n−1)∆,
which gives a bounding constraint on the size of∆, namely n∆ < `

10 , or∆ < `
10n .

This value of ∆ ensures that 2`− z > ` since z < 7n∆ < ` = 10n∆ for n > 1.
The final condition is that the angle ∠sqt in Fig. 12 must be sufficiently small

enough so that the endpoint u (on the second-to-innermost level) of minimum
height of the edge pu lies above the line segment qt, where p is at height x+y+αδ
for some α ∈ {1, 2, . . . , n−1}. This is a worst case of a point of minimum height
on the outermost level of one prism edge at point q having an edge to a point of
maximum height on the innermost level at point t of the next prism edge. This
condition ensures that this edge qt does not cross the edge pu.
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This condition gives the inequality |st|
|qs| >

|cu|
|qc| . Note that |qa| = √

x2 + `2 =√
(2r)2 + (2

√
3r)2 = 4r. This implies that |qc| = |qa|+ x+ y = 4r + ` in which

we can again set x + y = `. Also, |qs| = |qc| + (n − 1)δ = 4r + ` + (n − 1)δ.
Clearly, |st| = (n− 1)∆ and |cu| = (n− 2)∆. All this gives

(n− 1)∆
4r + `+ (n− 1)δ

>
(n− 2)∆
4r + `

⇐⇒ n− 1
n− 2

>
4r + `+ (n− 1)δ

4r + `

⇐⇒ n− 1
n− 2

− 1 >
(n− 1)δ
4r + `

⇐⇒ δ <
4r + `

(n− 1)(n− 2)

=⇒ δ <
`

(n− 1)2
,

which is satisfied by the same condition as before. ut

5 Conclusions and Open Problems

We presented results in simultaneous embeddings of path and outerplanar graphs
with circular arc edges or a small number of bends. Other open problems include:

1. Do all tree-path pairs have geometric simultaneous embedding?
2. What is the complexity of determining whether two planar graphs admit a

geometric simultaneous embedding?
3. What is the complexity of determining whether a pair of graphs can be

simultaneously embedded?
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