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Abstract. We present the set of planar graphs that always have a si-
multaneous geometric embedding with a strictly monotone path on the
same set of n vertices, for any of the n! possible mappings. These graphs
are equivalent to the set of unlabeled level planar (ULP) graphs that are
level planar over all possible labelings. Our contributions are twofold.
First, we provide linear time drawing algorithms for ULP graphs. Sec-
ond, we provide a complete characterization of ULP graphs by showing
that any other graph must contain a subgraph homeomorphic to one of
seven forbidden graphs.

1 Introduction

Simultaneous embedding enables the visualization of multiple graphs on the
same set of vertices. In order to preserve the “mental map,” graphs are overlaid
so that corresponding vertices have the same location. The mapping between
vertices may be fixed, or may not be given, or may change and dynamically
evolve as in the case of colored simultaneous embeddings [1]. To accommodate
this, we consider all possible 1-1 mappings between graphs. Embeddings that
use no edge bends and in which no pair of edges of the same graph cross are
known as simultaneous geometric embeddings [2].

Determining which graphs share a simultaneous geometric embedding has
proved difficult. While Geyer et al. [6] have shown this cannot always be done
for tree-tree pairs, the question remains open for tree-path pairs. Estrella et
al. [5] partially answer this question by characterizing the set of trees that have
a simultaneous geometric embedding with a strictly monotone path. We now
extend those results by characterizing the set of all planar graphs that have a
simultaneous geometric embedding with a strictly monotone path. The impor-
tance of this result lies in the fact that all positive results showing that certain
pairs of graphs allow simultaneous geometric embeddings rely on reducing at
least one of the graphs in the pair under consideration to a path which is real-
ized in strictly monotone fashion. Thus, our result captures the largest possible
class of graphs that can be embedded using this technique.

⋆ This work is supported in part by NSF grants CCF-0545743 and ACR-0222920.
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Fig. 1. A Venn diagram of the set of graphs characterized by the seven forbidden graphs T8,
T9, G5, G6, Gα, Gδ, and Gκ in F . Graphs that do not contain a subgraph homeomorphic
to of any of these are generalized caterpillars, radius-2 stars, and extended degree-3 spiders
with the subcategory of 2-connected extended degree-3 spiders.

Rotating or stretching a drawing along a single direction does not affect
crossings. As a result, we assume that the path will be drawn in a zig-zag fashion
with a difference of +1 between the y-coordinates of two successive vertices. This
allows us to frame the problem of drawing the planar graph in terms of placing
the vertices along a set of parallel horizontal lines, called tracks, with one vertex
per track. For an n-vertex planar graph, we label the vertices from 1 to n in
which the label is the y-coordinate. If a planar graph has a straight-line drawing
without crossings for all n! permutations of the labels, then it has a simultaneous
geometric embedding with a strictly monotone path for any mapping.

A related problem is that of level planarity [8]. Our labeling forms a partition
of vertices into levels with one vertex per level. If we consider a graph in which
the y-coordinate of each level is distinct and all the edges are y-monotone, then
we have a level drawing. If the drawing is planar, then the graph is level planar for
that labeling. If this holds for each of the n! labelings, then the graph is unlabeled
level planar (ULP). ULP graphs are precisely those that have a simultaneous
geometric embedding with strictly monotone paths for any labeling. Hence, we
can also phrase our problem in terms of level planarity.

Any graph for which this cannot be done must have some subgraph homeo-
morphic to a forbidden graph, or obstruction, that will induce a crossing when
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drawn on tracks for a particular labeling. In this paper we show that ULP graphs
fall into three categories: radius-2 stars, generalized caterpillars, and extended
degree-3 spiders. Furthermore, we show how to simultaneously embed any ULP

graph with a monotone path in linear time. Finally, we complete the character-
ization in terms of a minimal set of seven forbidden graphs, F := {T8, T9, G5,
G6, Gα, Gδ, Gκ}; see Fig. 1.

2 Preliminaries

Two planar n-vertex graphs G1(V, E1) and G2(V, E2) have a simultaneous embed-
ding with mapping if they can be drawn in the xy-plane with bijection f : V 7→ V
in which v and f(v) have the same xy-coordinates while maintaining the pla-
narity of each graph. If this can be done for some bijection f , then G1 and
G2 are simultaneously embeddable. If edges of both E1 and E2 are drawn with
straight-line edges, then G1 and G2 have a simultaneous geometric embedding.

Let an n-vertex graph G(V, E) have a labeling φ : V 7→ [1..n] in which
φ(u) 6= φ(v) for all (u, v) ∈ E. A horizontal line ℓj = {(x, j) |x ∈ R} for some
j ∈ [1..n] is track j. In a realization of G, each vertex v ∈ V is placed along
track φ(v) and each edge (u, v) is strictly y-monotone. Edge bends b1, b2, . . . , bk

may naturally occur at any point edge (u, v) intersects a track provided φ(u) <
φ(b1) < · · · < φ(bk) < φ(v) or φ(u) > φ(b1) > · · · > φ(bk) > φ(v) in which b1 is
adjacent to u, bk is adjacent to v, and bi lies between bi−1 and bi+1 for 1 < i < k.

A realization without crossings is a planar realization of G. A planar realiza-
tion with one straight-line segment for each edge (u, v) is a straight-line planar
realization of G. While any planar realization with bends can be “stretched out”
in the x-direction to form a straight-line planar realization in O(n) time as shown
by Eades et al. [4], the area of the realization can become exponential.

A level graph G(V, E, φ) is a directed graph with leveling φ : V 7→ [1..k] that
assigns every vertex to one of k levels so that φ(u) < φ(v) for every edge (u, v).
In a level drawing all vertices in a level have the same y-coordinate and each
edge is y-monotone. If the level drawing can be drawn without crossings, then
G is level planar. The level planarity of G for a given leveling is independent of
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Fig. 2. Simultaneous embeddings of a path and a ULP tree with and without bends.
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its orientation: First take an n-vertex undirected graph G. Then label G with
labeling φ : V 7→ [1..n]. Next orient each edge (u, v) of G so that φ(u) < φ(v) to
form the level graph G̃(V, Ẽ, φ) with the leveling φ on n levels with one vertex
per level. Then ask is G̃ level planar? If yes, repeat this process for all other
labelings of G. If one never encounters a level nonplanar graph, the graph G
is called unlabeled level planar (ULP). Hence, a ULP graph has a simultaneous
embedding with a strictly y-monotone path for any labeling φ; see Fig 2.

The vertices placed along a track correspond to the levels in a level graph. An
undirected graph with a labeling φ has a “planar realization” if and only if the
corresponding level graph is “level planar”. These two terms are interchangeable
only if edge bends do not matter. If we need a simultaneous geometric embedding
we use the more restrictive term “straight-line planar realization”.

A chain C of G is a simple path denoted v1--v2-- · · · --vt. The vertices of
C are denoted V (C). A vertex v of C is φ-minimal (or φ-maximal) if it has a
minimal (or maximal) track number of all the vertices of V (C). Such a vertex is
φ-extreme if it is φ-minimal or φ-maximal.

In a graph G(V, E), subdividing an edge (u, v) ∈ E replaces edge (u, v) with
the pair of edges (u, w) and (w, v) in E by adding w to V . A subdivision of G is
a graph obtained by performing a series of subdivisions of G. A graph G(V, E)
is isomorphic to a graph G̃(Ṽ , Ẽ) if there exists a bijection f : V 7→ Ṽ such that
(u, v) ∈ E if and only if

(
f(u), f(v)

)
∈ Ẽ. A graph G(V, E) is homeomorphic to

a graph G̃(Ṽ , Ẽ) if a subdivision of G is isomorphic to a subdivision of G̃. The
distance between vertices u and v in a graph is the length of the shortest path
from u to v. The eccentricity of a vertex v is the greatest distance to any other
vertex. The radius of a graph is the minimum eccentricity of any vertex.

A leaf vertex is any degree-1 vertex. A caterpillar is a tree in which the
removal of all leaf vertices yields a path (the empty graph is a special case of
a path). The remaining path forms the spine. A lobster is a tree in which the
removal of all leaf vertices yields a caterpillar. A claw is a K1,3, whereas, a star
is a K1,k for some k ≥ 3. A double star is a star in which each edge has been
subdivided once. A radius-2 star (R-2 S) is any subgraph of a double star with
radius 2. A degree-3 spider is an arbitrarily subdivided claw. The following six
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Fig. 3. The six types of H edges used to from a GC on the second line.
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types of “edges” in Fig. 3 allow us to generalize a caterpillar and to extend a
degree-3 spider to include cycles.

Definition 1

(a) A K3 edge is the cycle u--v--w--u on vertices {u, v, w}
(b) A C4 edge is the cycle u--s--v--t--u on vertices {u, v, s, t}.
(c) A kite edge is the cycle u--s--v--t--u with edge s--t on vertices {u, v, s, t}.
(d) A K∗

3 edge is set of cycles u--v--w′--u with edge u--v on vertices {u, v} ∪W
where w′ ∈ W for some possibly empty vertex set W .

(e) A C+
4 edge is set of cycles u--w--v--w′--u on vertices {u, v, w} ∪ W where

w′ ∈ W for some non-empty vertex set W .
(f) A K4 edge is the complete graph on the vertices {u, x, y, z}.

Definition 2 A generalized caterpillar (GC) is a caterpillar in which each edge
u′--v′ along the spine can be replaced with a K∗

3 , C+
4 , or kite edge (and the two

edges at the end of the spine can also be replaced by a K4 edge) in which vertex
u (and v if present) replaces vertex u′ (and v′); see Fig. 3.

Definition 3

(a) A 1-connected extended degree-3 spider (1-CE 3-S) is a degree-3 spider with
two optional edges connecting

(i) two of three vertices adjacent to the degree-3 vertex and
(ii) two of the three leaf vertices; see Fig. 4(a).

(b) A 2-connected extended degree-3 spider (2-CE 3-S) is a cycle or a cycle with
one K3, C4 or kite edge, see Fig. 4(b).

(c) A extended degree-3 spider (E3-S) is either a 1-connected extended degree-3
spider or a 2-connected extended degree-3 spider.

These definitions allows us to make the following observation.

Observation 4 Every spanning tree of a GC is a caterpillar. Every spanning
tree of a E3-S is a degree-3 spider or a path.

3 Graphs with Planar Realizations on Tracks

In this section we show that radius-2 stars (R-2 S), generalized caterpillars (GC),
and extended degree-3 spiders (E3-S) are level planar for any labeling. We do
this by presenting linear time algorithms for straight-line, crossings-free drawing
of any such graph on the tracks determined by its labeling. More formally, we
show that P = {G : G is a R-2 S, GC, or E3-S} is ULP.

2-Connected
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C4K3
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Fig. 4. A extended degree-3 spider is either (a) a 1-C E 3-S or (b) a 2-CE 3-S.
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Fig. 5. The gray vertices are initial locations of vertices in a straight-line planar realization
of a GC on a 14×32 grid. The arrows avoid crossings or overlapping edges. The K4 edges
incident to v1 and v4 show initial locations with dashed edges leading to crossings that are
eliminated by switching the location of the two incident vertices.

The next lemma from [5] shows this for a R-2S.

Lemma 5 (Lemma 4 of [5]) An n-vertex radius-2 star can be straight-line
planarly realized in O(n) time on a (2n + 1) × n grid for any labeling.

The following lemmas show how a GC and the two types of a E 3-S also have
compact planar realizations on tracks.

Lemma 6 An n-vertex generalized caterpillar can be straight-line planarly real-
ized in O(n) time within an n × n grid for any labeling.

Proof. We first obtain the cut vertices of the GC using the vertices of its spanning
tree, which must be a caterpillar by Observation 4, as candidates. With these
we can draw each incident K∗

3 , C+
4 , kite, and K4 spine edgeusing 2 × n space

for each one except a kite edge that requires 4×n space proceeding left to right
along the spine as shown in Fig. 5. A K4 edge on can be drawn without crossings
by swapping vertices as in Fig. 5.

If we were not constrained to an integer grid, one could place all the incident
edges with leaf vertices in a sufficiently narrow region above and below each cut
vertex. Being restricted to integer coordinates, we shift the endpoint of a leaf
vertex left or right by one space as needed to avoid overlapping edges. In general
we attempt to draw the leaf vertices one to the left of the adjacent cut vertex
except for the last vertex in which we drawn one to the right to allow for a
final K4 edge. While a C+

4 cannot have an overlapping, a K∗
3 edge can have one

overlapping edge in which case the leaf is moved directly above or below the cut
vertex. A kite edge is slightly more involved in that it can have two overlapping
edge, and if both leaf vertices are above or below the adjacent cut vertex, then
one of of the two leaf vertices can always be moved directly above or below the
middle edge of the kite edge. ⊓⊔
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Fig. 6. Examples of three 1-C E 3-Ss on 16 × 16 grids. The only difference is the edge
between one pair of the three vertices adjacent to the root. If this edge is incident to u,
the first vertex along chain with the vertex a, case (i) applies as in (a) and (b). Otherwise,
case (ii) applies as in (c).

Lemma 7 An n-vertex 1-connected extended degree-3 spider can be planarly
realized in O(n) time on an n × n grid for any labeling.

Proof. We show how to draw G on tracks with at most one bend per edge for a
labeling φ. We first draw a subgraph that is a degree-3 spider T with an extra
edge in G between two of three vertices adjacent to the root vertex r (the unique
degree-3 vertex) of T . Next, we accommodate an extra edge in G connecting two
leaf vertices of T .

Let T ′ be portion of the T drawn so far. We maintain two invariants:

(1) two of the leaf vertices vmin and vmax of T ′ are φ-extreme and

(2) T ′ only intersects the track of the third leaf vertex vmid either to the
left or right of vmid.

Provided these invariants hold, we keep placing the next vertex v adjacent to
vmid in T −T ′ one space to the left or right of T ′ at x-coordinate vx depending on
which side of the track of vmid that T ′ intersects. By (2), T ′ does not intersect one
side of the track of vmid. Whenever we draw from v to w (in this case w = vmid),
we bend the edge at

(
vx, φ(w)−1

)
if φ(v) < φ(w) and at

(
vx, φ(w)+1

)
otherwise.

We keep doing this until v becomes φ-extreme. Either vmin or vmax becomes
vmid. Since that vertex was previously φ-extreme by invariant (1), T ′ now only
intersects its track either to the left or right, maintaining invariant (2).

We observe that we do not need to actually detect which side of a track
that T ′ intersects. Rather we simply alternate directions each time we switch
the chain being extended. For instance, if T ′ intersects the track of vmid to the
left, we continue extending the chain to the right until it intersects the track of
vmin or vmax to the right. Then we can safely extend the next chain to the left,
and so on. Once a chain is exhausted, we can safely extend the remaining two
chains to the left and right respectively.

We start drawing T until both invariants hold for T ′. Place r at
(
0, φ(r)

)
.

Let {u, v, w} be the neighbors of r in T . Let vmin, vmid and vmax be these vertices
such that φ(vmin) < φ(vmid) < φ(vmax). If φ(vmin) < φ(r) < φ(vmax), drawing
edges from r to vertices at

(
−1, φ(vmin)

)
,
(
1, φ(vmax)

)
, and

(
2, φ(vmid)

)
satisfies
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both invariants. In this case, we can also add a straight-line edge between any
one pair of {u, v, w}. Otherwise, suppose w.l.o.g that φ(r) < φ(vmin). Let {a, b, c}
be the φ-maximal vertices of the portions of the chains in T from r to the point
each chain crosses the track of r such that φ(a) > φ(b) > φ(c). Assume w.l.o.g.
that u is first vertex of the chain with a. There are two cases:

(i) If edge (v, w) is not in G, assume w.l.o.g. edge (u, w) is in G. Extend the
chain starting with u to the right of r until it reaches a becoming vmax.
Place v one right of a with an edge bend at

(
vx, φ(r) + 1

)
.

(ii) If edge (v, w) is in G, then assume w.l.o.g. v is the first vertex of the chain
with b. Extend this chain to the right until it reaches b. Place u one right
of b with an edge bend at

(
ux, φ(r) + 1

)
and continue to extend the chain

to the right until it reaches a becoming vmax.

Place w at
(
− 1, φ(w)

)
and extend the chain to the left until it becomes

vmin. Edge (u, w) or (v, w) can be drawn with a straight-line edge since u or v
is one right of r. In both cases, invariants (1) and (2) hold; see Fig. 6.

If an edge connects two leaf vertices to form a cycle C in T , we first draw
subtree T̃ in which two leaf vertices cmin and cmax of T̃ are the φ-extreme vertices
of C. The above algorithm ensures the other chain of T̃ only intersects the
tracks of cmin and cmax to the right or left, blocking one direction, but not both.
Whichever cmin or cmax is leftmost or rightmost of T̃ , say that cmin is rightmost,
we extend the rest of C from cmin right until reaching v adjacent to cmax. Then
we draw an edge from v to cmax with a bend at

(
vx, φ(cmax) − 1

)
. ⊓⊔

We next give a similar realization of a 2-CE 3-S with bends—the difference
being that most edges are straight except for one or two edges that might require
a bend.

Lemma 8 An n-vertex 2-connected extended degree-3 spider can be planarly
realized in O(n) time on an n × n grid for any labeling.

Proof. Let φ be a labeling of a 2-CE 3-S G. If G is merely a cycle C, then C
can be planarly realized on an n × n grid with one edge bend. Begin with the

(a) (b)
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bends as in (a). If not, only one edge bend is required as in (b).
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φ-maximal vertex v1 at the first position and proceed left to right placing each
subsequent vertex in the cycle one to the right of the previous one until reaching
the last vertex vk that is also adjacent to v1. The edge v1--vk requires only one
bend directly above vk routing the edge above all the other vertices.

By Definition 3, a 2-CE 3-S is at worst a cycle with a kite edge between u and
v with common neighbors {s, t} connected by edge s--t such that φ(s) > φ(t). If
s and t are φ-extreme, then we can draw the cycle without t starting from s and
ending with v as above and place t below s drawing the straight edges s--t and
t--u. Then we draw t--v with a bend directly below v and route the edge below
all the others; see Fig. 7(a). Otherwise, either s or t is not φ-extreme in which
case the other φ-extreme one is used to draw the cycle so as to not end with u or
v; see Fig. 7(b). Suppose that s is not φ-maximal, then t can be placed directly
below s and the three additional edges can be added as straight edges. ⊓⊔

We can remove the bends on the edges by stretching the layout which yields
the next corollary

Corollary 9 An n-vertex 1-connected extended degree-3 spider with radius r
can be straight-line planarly realized in O(n) time on an O(r! 3r) × n grid for
any labeling, whereas, an n-vertex 2-connected extended degree-3 spider can be
straight-line planarly realized in O(n) time on an n2 × n grid for any labeling.

Proof. The E 3-S in Fig. 8 is a worst case for a degree-3 spider in terms of area.
At each point in the algorithm of Lemma 7, there is only one choice when placing
the next vertex in extending any chain forcing the three chains to form spirals.
For each half spiral of a chain S when going from the lowest level of a vertex s
at

(
sx, φ(s)

)
to the higher level of a vertex t at

(
tx, φ(t)

)
seen so far, the vertical

distance between s and t increases by 3. Consider an adjacent chain W with
its highest vertex v at

(
vx, φ(v)

)
and lowest vertex u at

(
ux, φ(v)

)
such that

φ(v) = φ(s) + 1 and φ(u) = φ(t)− 1 extended so far. Then for edge v--u to clear
t, vx must satisfy

vx = (ux − tx) · (φ(v) − φ(t)) − tx
= (ux − tx) · (φ(v) − φ(t) − 1)
= (ux − tx) · (φ(v) − φ(u)).
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Fig. 8. A 16-level degree-3 spider on a 16 × 16 grid requires O(n) bends.
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Let w be the next vertex of W to be extended, such that φ(w) = φ(u) − 3.
Then

wx = (sx − vx) · (φ(w) − φ(s)) − tx = (sx − vx) · (φ(w) − φ(s) − 1)
= (sx − vx) · (φ(w) − φ(v))
= (sx − [(ux − tx) · (φ(v) − φ(u))]) · (φ(w) − φ(v)).

Hence, the dominating factor for a chain v0--v1--v2-- · · · --vr of length r, where
|φ(vi+1) − φ(vi)| = 3 + |φ(vi) − φ(vi−1)| for i ∈ [1..r − 1], is 3 × 6 × 9 × · · · ×
3i × · · · × 3r = r! 3r. Let k be a constant greater than all of the initial factors
for the three chains. In practice k = 2 suffices. Then, if the each vi of the E 3-S

has coordinates
(
xvi

, φ(vi)
)
, by moving vi to

(
− k|xvi

|! 3|xvi
|, φ(xi)

)
if xvi

< 0

or
(
kxvi

! 3xvi , φ(xi)
)

if xvi
> 0 is sufficiently far to the left or right so that it

will clear all adjacent vertices so that straight edges can always be used.

Getting rid of the bends of a cycle in a 1-CE 3-S requires stretching out the ob-
scured vertices sufficiently far to the right. When drawing a cycle v1-- · · · --vn--v1,
a worst case in terms of space occurs when the vertex vn−1 placed at

(
n −

1, φ(vn−1)
)

has level φ(vn−1) = φ(v1)−1, and the vertex vn placed at
(
n, φ(vn)

)

has φ-minimum level φ(vn) = 1. In this case, in order for a straight edge v1--vn

to clear vn−1, vn must be placed at
(
n2, φ(vn)

)
since the slope of the edge is 1/n

taking n2 × n space. ⊓⊔

Combining Lemmas 5, 6, 7, 8, and Corollary 9, we have our first theorem.

Theorem 10 Any graph from P has a simultaneous geometric embedding with
a strictly monotone path for any labeling.

4 Forbidden Graphs

We give seven forbidden graphs F := {T8, T9, G5, G6, Gα, Gδ, Gκ} that do
not always have a simultaneous geometric embedding with a strictly monotone
path; see Fig. 9. For each we provide a labeling that forces self-crossings. As noted
previously for a given labeling, a graph has a straight-line planar realization if
and only if it also has a planar realization that allows edge bends provided the
edges remain strictly monotone [4]. Hence, it suffices to only consider straight-
line edges in this section.

Lemma 11 There exist labelings that prevent each graph in F from having pla-
nar realizations on tracks.

T9 G5 G6T8 GδGα Gκ

Fig. 9. The seven forbidden graphs of F .
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Fig. 10. Labelings that force self-crossings for G5, G6, Gα, Gκ, and Gδ.

Proof. The labelings of T8 and T9 were shown not to have planar realizations
in [5]. We need to do the same for the labelings of the remaining five graphs in
F given in Figure 10.

Let C denote the chain a--b--c--d--e, which is highlighted in each of the graphs
in Figure 10. Observe that φ(a) > φ(d) > φ(c) > φ(b) > φ(e) in which C forms
an backwards ‘N’. If the rest of C intersects the track of c only on the left or
right of c, then some part of the chain a--b--c must cross the chain c--d--e. Hence,
we only need to consider embeddings in which c lies between the edge a--b and
d--e, i.e., one of those edges intersect the track of c to the left, while the other
intersects on the right. To avoid a self crossing of C, a--b must intersect the
tracks of c and d on the same side of both vertices. The same goes for the d--e
intersecting the tracks of b and c on the same side. So we can assume w.l.o.g.
that a--b intersects the tracks of c and d to the their left while d--e intersects the
tracks of b and c to the their right as is the case in all the figures.

For G5, c and d being on the same side of a--b means that the edge b--d
must also lie between the two edges. The only question is whether b--d intersects
the track of c to the left or right. If it is to the left, then b--d must cross a--c,
otherwise, it must cross c--e as in Fig. 10(a).

For G6, from the assumptions, the edge c--f either crosses
(i) a--b if it intersects the track of b to the left since c is right of a--b,
(ii) d--e if it intersects the track of e to the right since c is left of d--e,
(iii) b--e otherwise since it must intersect the track of b to the right and e to

the left as in Fig. 10(b).
In Gα, Gδ and Gκ for c--f and c--g to avoid crossing C, c--f must intersect

the track of d to the left while c--g must intersect the track of b to the right.
Since φ(f) > φ(a) > φ(e) > φ(g) in Gα and Gκ, c--f must intersect the track
of a to the right while c--g must intersect the track of e to the left. However, in
Gδ φ(a) > φ(f) > φ(g) > φ(e) so that a--b must intersect the track of f to the
right while d--e must intersect the track of g to the left.

This means in Gα for a--e to avoid crossing C, as in Fig. 10(c), it must either
intersect the track of d to the right in which case it must cross c--f or b to the
left in which case it must cross c--g.

This also means in Gκ if b--d intersects the track of c to the right as in
Fig. 10(d), it will cross c--g. Otherwise, b--d will cross c--f .

Finally, in Gδ if f--g intersects the track of c to the right as in Fig. 10(e), it
will cross c--d--e. Otherwise, f--g will cross a--b--c. ⊓⊔
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Corollary 12 A graph containing a subgraph homeomorphic to a graph in F
does not have a simultaneous geometric embedding with a strictly monotone path
for all labelings.

Proof. We provide a labeling φ of a graph G containing a subgraph homeomor-
phic to a graph G̃ ∈ F . Let h be the homeomorphism that maps an edge in G̃
to a path in G and a vertex in G̃ to the endpoint of such a path in G. Label
the vertices of G̃ using the appropriate labeling φ′ from Lemma 11 that forces
a self-crossing in G̃. We maintain the same relative ordering of the labels in G
as in G̃. In particular, we want φ

(
h(u)

)
< φ

(
h(v)

)
if and only if φ′(u) < φ′(v)

for each edge (u, v) in G̃. For each path h
(
(u, v)

)
= p(u,v) = v1--v2-- · · · --vk in G

that corresponds to an edge (u, v) in G̃, we want φ(v1) < φ(v2) < · · · < φ(vk)
if φ′(u) < φ′(v). We can assign the other vertices of G not in the image of h
arbitrary labels. Then every edge (u, v) in G̃ corresponds to a strictly monotone
path p(u,v) in G preserving the nonplanarity of the realization of G̃. ⊓⊔

5 Completing the Characterization

The next lemma shows that the seven forbidden graphs of F are minimal; the
removal of any edge from any of the seven yields a graph from P .

Lemma 13 Each forbidden graph is minimal, in that the removal of any edge
yields one or more GCs, R-2 Ss, or E3-Ss.

Proof. Showing that the removal of any edge from T8 or T9 yielded a caterpillar,
radius-2 star, or degree-3 spider, all members of P , was done in [5]. For G5

in which a--b--d--e--c--a, a--b--c--a, b--c--d--b, c--d--e--c all form cycles shown in
Fig. 10(a), the removal of edges b--c or c--d forms a 2-CE 3-S, while removing of
any other edge forms a GC. For G6 in which b--e--d--c forms a 4-cycle shown in
Fig. 10(b), the removal of any edge leaves a GC. For Gα shown in Fig. 10(c),
the removal of c--f or c--g leaves a E3-S. Removing any other edge yields a GC.
For Gκ in which b--c--d--b forms a 3-cycle shown in Fig. 10(d), the removal of
c--f or c--g leaves a 1-CE 3-S, while removing any other edge leaves a GC. For
Gδ in which c--f--g--c forms a 3-cycle shown in Fig. 10(e), the removal of c--b or
c--d leaves a GC and a lone edge. Removing a--b, d--e, or f--g leaves a GC, and
removing c--f or c--g leaves a degree-3 spider. ⊓⊔

Finally, the next theorem completes our characterization.

Theorem 14 Every connected graph either contains a subgraph homeomorphic
to one of the seven forbidden graphs of F , or it is a generalized caterpillar,
radius-2 star, or a extended degree-3 spider, which form the collection of graphs
P that have simultaneous geometric embeddings with strictly monotone paths for
any labelings, the set of ULP graphs.

Proof. Let G(V, E) be a connected graph and let T (G) denote the set of all
spanning trees of G, and let C, R, S denote the sets of all caterpillars, radius-2
stars, and degree-3 spiders, resp. By Theorem 7 of [5], any T ∈ T (G) must either
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Fig. 11. Various cases of Theorem 14 in which shaded edges are subgraphs and white
vertices are cut vertices in the proof.

have a subdivision of T8 or T9 or T ∈ C ∪R∪S. For G not to have a subdivision
of T8 or T9, none of the spanning trees in T (G) can.

We cannot have a case in which T1, T2 ∈ T such that T1 and T2 are in separate
categories with neither in the common intersection. For instance, suppose T1 ∈
R−S, and T2 ∈ S −R. Clearly both T1 and T2 contain a minimal lobster L (a
K1,3 in which each edge has been subdivided once). Label the three chains of L
as r--p--q, r--s--t, r--x--y with root vertex r as in Fig. 11(a). Since T1 ∈ R − S,
r must have degree at least 4 with extra edge r--d. Since T2 ∈ S − R, it must
have radius of 3 or greater in which one of the chains has an incident edge, say
that it is y--z. Then L, r--d, and y--z form a copy of T9 in G as in Fig. 11(b).
However, if T1 ∈ (R ∪ S) − C, then T1 must contain L (using the same labeling
as above) preventing T1 ∈ C. On the other hand, if T2 ∈ C − (R ∪ S), then T2

must contain two vertices of degree > 2. One of these is r and suppose that the
other is a. This gives a path r  a, call it P , having a pair of edges incident to
v, namely a--b and a--c that are not on P . Then L and P along with edges a--b
and a--c form a copy of T8 as in Fig. 11(c).

Hence, G ∈ GX = {H : H is a graph such that T ∈ X for all T ∈ T (H)},
where X is either C, R, or S. We argue that G must be a R-2S, GC, E3-S if one
adds the restrictions of G not containing G5, G6, Gα, Gδ, or Gκ. If G ∈ GR,
then G can has at exactly one vertex of degree > 2, given G has a R-2S as a
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subgraph and if there were more than one vertex v of degree > 2, then there
would exist a T ∈ T containing at least two such vertices. This implies that G
can have at most one cycle with v as a vertex, which must be K3 since otherwise
there would a T ∈ T with radius > 3. Since G cannot contain Gδ, if G has K3, v
has at most one incident path of length 2 and any number of incident leaf edges,
which forms a GC. Hence, G is either a R-2S or such a GC.

If G ∈ GS , G could be a E3-S, but must have maximum degree 3. We need
to show that this is equivalent to G not containing any of the forbidden graphs.
Clearly, G cannot contain G5, Gα, Gδ or Gκ since they have spanning trees
with vertices of degree 4. Neither can G contain G6 since it has a spanning tree
with two vertices of degree 3. This shows that the condition of having maximum
degree 3 to be sufficient. To show that it is necessary, suppose that G has a
vertex v of degree 4. If G /∈ GC , then there exists a T ∈ T (G) containing lobster
L /∈ C with chains r--p--q, r--s--t, r--x--y and root vertex r as in Fig. 11(a). If
v is r, this implies the existence of an incident edge r--d. We can assume that
G /∈ R, since G ∈ R has already been considered. Hence, G must have radius
greater than 2, implying w.l.o.g. the existence of the edge y--z creating a copy
of T9 as in Fig. 11(b), or another vertex a of degree 3 with incident edges a--b
and a--c not on the path r  a. Then this path and these edges along with L
create a copy of T8 as in Fig. 11(c).

If G ∈ GC , then G could be a GC. However, a GC has three extra conditions:
(1) all cycles of length at most 4, (2) no three pairwise adjacent cut vertices, and
(3) no adjacent pair of cut vertices in the same 4-cycle. The forbidden graphs
G5, G6 and Gα combine to impose condition (1): Aside from the two special
cases of a C5 with one incident edge or a C5 with a chord, which are both a
E3-S, no other graphs with a cycle of length greater than 4 contain either L or
a subdivision of G5, G6, or Gα. We see this in that G has a copy of L as soon
as there is a path of length two incident the cycle as in Fig. 11(d). This means
that only chords or incident edges can be added to C5. If more than one incident
edge is added to the same vertex, then G has a copy of Gα as in Fig. 11(e). If
more than two vertices have incident edges added, then a subdivision of G6 is
created; see Fig. 11(f). Finally, if more than one chord is added, then a copy of
G5 is created regardless if the chords are incident or not as in Figs. 11(g–h). The
forbidden graph Gκ imposes condition (2) limiting the type of K3’s found in a
GC. Aside from the special case of a lone K3 of three pairwise cut vertices u, v, w
with one incident edge each, namely u--x, v--s, and w--t, that is a E 3-S, any
graph having a K3 on three pairwise adjacent cut vertices u, v, w either contains
a copy of L or Gκ. As soon as we add another incident edge to u, v, or w, say
that it is u--y, we create a copy of Gκ as in Fig. 11(k). Otherwise, adding an
incident edge to x, s, or t, say that it is x--z, then one has a copy of L as in
Fig. 11(l). Adding an edge between any of the six vertices, stops u, v, and w from
being three pairwise cut vertices so that condition (2) would no longer apply.
Finally, the forbidden graph G6 directly imposes condition (3) in that as soon
as there is a 4-cycle u--x--y--z--u with adjacent cut vertices u and x, implying
incident edges u--v and x--w, there is a copy of G6 in G as in Fig. 11(i).
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This shows that the forbidden graphs collectively impose the three additional
conditions on a GC, showing that they are necessary. However, what is left to
show is that a GC cannot contain any of the forbidden subgraphs, i.e., to show
that the three conditions are also sufficient. Condition (1) immediately prohibits
the existence of either G5 or Gα in G. Also G cannot contain Gδ since it contains
L as proper subgraph excluding G from GC as in Fig. 11(j). If G contains G6 with
the 4-cycle u--x--y--z--u and incident edges u--v and x--w, in order to prevent the
creation of a cycle of length greater than 4 violating condition (1), no edges or
paths can be added between these six vertices, which means that u and x would
be cut vertices violating condition (3).

Suppose that G contains Gκ with the K3 u--v--w--u with incident edges u--x,
u--y, v--s, and w--t. We consider all the non-isomorphic ways in which an edge
can be added to Gκ There are six non-isomorphic edges that can be added to Gκ

without introducing another vertex, namely, s--t, s--u, s--w, x--s, y--w, and x--y.
Adding s--u, s--w, or y--w has either v and w or u and w as adjacent cut vertices
of the cycles, s--u--w--v--s, s--w--u--v--s, or y--w--v--u--y, respectively, violating
condition (3) as in Figs. 11(m–o). Adding s--t, creates a 5-cycle, s--t--w--u--v--s,
violating condition (1) as in Fig. 11(p). Adding x--y or x--s creates a copy of
L, namely u--x--y, u--v--s, and u--w--t with u as the root vertex as in Fig. 11(q)
or v--s--x, v--u--y, and v--w--t with v as the root vertex as in Fig. 11(r), which
prevents G ∈ GC . Hence, we only have to consider adding some other vertex z to
the non-isomorphic vertices s, u, v or x. of Gκ. Adding incident edges s--z or s--x
also creates a copy of L, namely v--s--z, v--u--x, and v--w--t with v as the root
vertex as in Fig. 11(s) or u--x--z, u--v--s, and v--w--t with u as the root vertex
as in Fig. 11(t). Adding incident u--z or v--z allows for u, v and w to remain as
three pairwise adjacent cut vertices violating condition (2). This completes the
proof since we have shown that the definition of a GC is equivalent to G ∈ GC

where G does not contain a forbidden graph. ⊓⊔

6 Linear Time Recognition

We use our characterization to obtain a linear time recognition algorithm.

Corollary 15 The class of graphs P that have a simultaneous geometric em-
bedding with a strictly monotone path can be recognized in linear time. Given an
graph G with a labeling, one can decide in O(n) time if it is always possible to
planarly realize G.

Proof. Let G(V, E) be a graph with n vertices and m edges. As detailed in [5],
an R-2 S is recognized by verifying all degree-2 vertices are adjacent to the root
vertex and a leaf, which forms the basis of a linear time recognition algorithm.
A E3-S has maximum degree 3 where every spanning tree is a degree-3 spider.
We can find a spanning tree T of G in O(m) time. However, if m > 3n− 6, then
G cannot be planar, hence cannot be level planar for any level assignment, and
thus is not in P . As such, we only consider graphs with no more than 3n − 6
edges. Hence, it only takes O(n) time to find T , or we reject G for having too
many edges. From the possibilities given by Definition 3, a E 3-S has at most four

15



vertices of degree 3 giving at most three more edges than T . We determine if G
is 2-connected by seeing if removing any of the (at most four) degree-3 vertices
disconnects the graph, which takes O(n) time. If not, then it must match the
form of a 1-CE 3-S of 2(i) of Definition 3, in which there can be at most two extra
edges that is easily verified. Otherwise, it must match the form of a 2-CE 3-S

of 2 (ii) of Definition 3, in which case the extra edges can be verified to match
one of the three sub-possibilities shown in Fig. 4(ii). If G is a GC, then T must
a caterpillar, which can be determined in linear time by removing all degree-1
vertices. Using T , we apply the procedure outlined in the drawing algorithm for
a GC in Lemma 6 to decompose the GC via T into its four sets of edges, K4, K∗

3 ,
C+

4 and kite edges w.r.t T spending constant time per edge. If this cannot be
done, or some edge, such as K4, exists in the middle of the GC, then we reject
the G as not being in P . Thus, we can determine in O(n) time if G is in P by
being a R-2 S, GC, or E 3-S, or reject G accordingly. ⊓⊔

7 Previous and Future Work

Level planar graphs are historically studied in the context of directed graphs,
which restricts the types of levelings that can be assigned. Additionally, they are
generally considered in the context of a particular leveling such as ones given by
hierarchical relationships with an emphasis on minimizing the number of levels
required to maintain planarity. In contrast, our application of level planarity has
been in terms of the underlying undirected graph with one vertex per level with
no consideration given to minimizing levels.

Many of the problems regarding level planarity have been addressed, includ-
ing the ability to recognize a level planar graph and produce an embedding in
linear time [8, 9]. However, all of these results are for a particular leveling and
do not generalize to the context of considering the level planarity of all the level
graphs induced by all possible n! labelings of a given undirected graph. Running
either of these linear time algorithms for each possible level graph leads to an
exponential running time. Using our approach we achieve this in linear time

We gave a characterization of ULP graphs akin to Kuratowksi’s characteri-
zations of planar graphs [10]; we provided a forbidden set of graphs F in Fig. 11
that play the same role with respect to ULP graphs that K5 and K3,3 play with
respect to planar graphs. Just as Kuratowksi’s theorem states that a graph is
planar if and only if it does not contain a subgraph that is a subdivision of K5

or K3,3, we show a graph is ULP if and only if it does not contain a subgraph
homeomorphic to a forbidden graph of F .

The analogue of Kuratowksi’s theorem for level planar graphs are minimum
level non-planar patterns [7]. These are based on the characterization of hierar-
chies by Di Battista and Nardelli [3]. Unlike our characterization, these patterns
are not solely based upon the underlying graph, but also upon the given leveling.
The same graph with two different levelings that is level non-planar for each may
very well match two distinct patterns since the reasons that a crossing is forced
in each can be entirely different.
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Estrella et al. [5] presented linear time recognition algorithms for the class
of ULP trees. We provided a similar linear time recognition algorithm for ULP

graphs. What is missing from the recognition algorithm and left for future work
is a certificate of unlabeled level non-planarity, i.e., the vertices that correspond
to the offending forbidden graph it exists.
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9. M. Jünger, S. Leipert, and P. Mutzel. Level planarity testing in linear time. In 6th
Symposium on Graph Drawing (GD), pages 224–237, 1998.
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