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Abstract. Problems in simultaneous graph drawing involve the layout
of several graphs on a shared vertex set. This paper describes a Graph
Simultaneous Embedding Tool, GraphSET, which can aid in the investi-
gation of several embedding problems. In particular, GraphSET can be
used in studies of simultaneous geometric embedding, simultaneous em-
bedding with fixed edges, and colored simultaneous embedding. The tool
can be used in two ways: (i) to study theoretical problems in simultane-
ous graph drawings by helping produce examples and counter-examples
and (ii) to produce drawings of given input graphs using built-in imple-
mentations of known algorithms. GraphSET is available for download at
http://graphset.cs.arizona.edu.

1 Introduction

Two n-vertex graphs G1(V, E1) and G2(V, E2) have a simultaneous embedding

with mapping if each can be drawn in the xy-plane without crossings such that
there exists a bijection f : V 7→ V in which v and f(v) have the same xy-
coordinates. If this can be done for some bijection f , then G1 and G2 are si-

multaneously embedable without mapping. If edges of both E1 and E2 are drawn
with straight-line segments in which no pair of edges from the edge set cross,
then G1 and G2 have a simultaneous geometric embedding.

If edges e1 ∈ E1, e2 ∈ E2 where e1 = (u, v) and e2 = (f(u), f(v)) for some
u, v ∈ V , then a fixed edge between u and v is one which is drawn the same way
in both drawings (which holds trivially for straight-line edges but is not neces-
sarily true when edge-bends are allowed). The problem of colored simultaneous

embedding is a relaxation of the simultaneous embedding with mapping problem
in which V is partitioned into k colors V1, V2, . . . , Vk such that V1∪V2∪· · · ∪ = V

and Vi ∩ Vj = ∅ if i 6= j. Here the bijection f respects this coloring such that
f |Vi

: Vi 7→ Vi in which v ∈ Vi if and only if f |Vi
(v) ∈ Vi for i ∈ [1..k]. Clearly,

these definitions can be extended to an arbitrary number of graphs.
These problems are difficult to solve and require extensive manipulation of

different instances in order to gain insight. A tool that allows dynamic manip-
ulation of the vertices while keeping track of how the crossings change in each
graph being simultaneously embedded can be very useful. We present our tool
through a series of applications where the tool has benefited us. Our hope is that
others investigating simultaneous embeddings can also find the tool beneficial.

⋆ This work is supported in part by NSF grants CCF-0545743 and ACR-0222920.



Fig. 1. The three types of ULP trees: (a) caterpillar, (b) radius-2 star, and (c) 3-spider.

A related tool is the Interactive Multi-User System for Simultaneous Graph

Drawing [7]. It only considers simultaneous geometric embedding of two graphs
and the emphasis is on collaboration by using the DiamondTouch device [2].
Another related tool that can be used to obtain simultaneous drawing of graphs
using force-directed methods is described in [3].

2 Applications

2.1 Unlabeled Level Planar Trees

A level graph G(V, E, φ) is a graph with mapping φ : V 7→ [1..k] assigning
every vertex to one of k levels so that φ(u) 6= φ(v) for every edge. In a level

drawing all vertices of a level share the same y-coordinate with each edge drawn
in a y-monotonic fashion. If G can be drawn this way without edge crossings,
then G is level planar. For our problem, we only consider bijections in which
φ : V 7→ [1..n] with one vertex per level. This allows us to restrict each vertex to
its own horizontal line based upon its y-coordinate, called a track. If G is level
planar overall all n! labelings, then G is unlabeled level planar (ULP). The set
of ULP graphs are precisely those that can be simultaneously embedded with a
strictly monotonic path since one can draw the path as a y-monotonic zig-zag
fashion. In [4] we characterized the set of ULP trees to be either

(i) a caterpillar in which the removal of all degree-1 vertices leaves a path or
empty graph,

(ii) a radius-2 star that is subgraph of a double star of radius 2, or

(iii) a degree-3 spider that is homeomorphic to a claw, K1,3.

Fig. 1 show examples of each of these being simultaneously embedded with
a strictly monotonic path. Our tool has the feature of allowing the user to snap
and lock vertices to tracks to investigate not only unlabeled level planar graphs
but the planarity of multiple level graphs being simultaneously embedded.
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Fig. 2. A pair of trees whose union has a subdivision of K5 is shown in (a) in which
one tree has the red edges and the other has blue edges. A simultaneous geometric
embedding for this pair is given in (b).

2.2 Simultaneous Geometric Embedding

For this example we consider simultaneous geometric embedding of two trees
T1(V, E1) and T2(V, E2) on n2−2n+2 vertices whose union contains a subgraph
homeomorphic to the complete graph Kn on n vertices for a given n. Both T1

and T2 have a root vertex labeled ‘0’ that is adjacent to n − 1 vertices of V

labeled ‘1’, ‘2’, . . . , ‘n − 1’. In each tree these n − 1 vertices have n − 2 leaves
so that each non-leaf vertex has degree n − 1. The leaves are labeled i, j for
i, j ∈ [1..n − 1] such that i 6= j. In T1 the vertex labeled i ∈ [1..n − 1] has
leaves i, j for j ∈ [1..n − 1] such that i 6= j. Similarly, in T2 the vertex labeled
j ∈ [1..n − 1] has leaves i, j for i ∈ [1..n − 1] such that i 6= j.

Fig. 2 shows two trees for case of n = 5 on 17 vertices that illustrates a schema
for generating a layout that works up to n = 5. We show another more complex
example for n = 7 on the website http://graphset.cs.arizona.edu. For large
values of n these tree pairs do not have a simultaneous geometric embedding, as
show by Geyer et al. [6]. However, it is not known what is the smallest value of
n that forces a crossing; for example, the case n = 8 is open.

2.3 Simultaneous Embedding with Fixed Edges

GraphSET can handle multiple edges with different colors. These edges can
include bends and can be treated as a single edge (for fixed edges) or as different
edges (for multi-graphs). An application of this tool for simultaneous embedding
with fixed edges is the manipulation of gadgets for complexity proofs.

In [5] Gassner et al. proved that simultaneous embedding with fixed edges
is NP-Complete for 3 graphs. The proof is a reduction to 3-SAT using clause
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(a) (b)

Fig. 3. (a) Gadget for a clause with 3 literals in a 3-SAT reduction; (b) A non-obvious
crossings-free drawing of the gadget.

gadgets and literal gadgets (See Fig. 3(a)). There are two possible embeddings
for each literal gadget, these embeddings corresponds to true or false values in
the corresponding literals. The argument is that a drawing of the clause without
crossings is only possible if one of the literals is true. In the drawing this implies
that we can only get rid of a crossings by flipping a literal gadget (changing
the embedding of the gadget). The tool is useful in finding problems in the
gadget construction by exhibiting non-obvious embeddings that may break the
argument (see for example Fig. 3(b)). The flipping operations included in the
tool are helpful in this situation.

Fig. 4. Example of fives paths on five colors that cannot be simultaneously embedded.
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Fig. 5. Example of how swapping adjacencies between vertices of the same color allow
for simultaneous embedding.

2.4 Colored Simultaneous Geometric Embedding

Fig. 4(a) shows an example of five paths on five colors on distinctly colored
vertices that was used in [1] to show that there does not exist a universal pointset
for 5-colored paths. Each path is represented by edges of the same color. Here
edge color is used to distinguish between the different paths being simultaneously
embedded, which is unrelated to the coloring of the vertices characterizing the
mappings between the five paths. In this case of distinct colors, this is equivalent
to the problem of simultaneous embedding with mapping.

The tool allows one to easily verify that regardless of the placement of ver-
tices, at least one of the graphs has a crossing, as seen in Fig. 4(b) with only one
crossing, the minimum possible. By showing and hiding various edge colors, one
can elect to see only a subset of graphs where the crossings occur, as in Fig. 4(c).

Fig. 5 shows a more complex example of five paths on five colors on ten
vertices in which each color has two vertices. Here the tool provides a special
command to swap the adjacency lists between two vertices of the same color for
one of the graphs. As given in Fig. 5(a) a crossing will always occur regardless
of placement of vertices. However, swapping the adjacencies of vertices of same
color amongst the five graphs in Fig. 5(b) allows one to obtain a simultaneous
geometric embedding without crossings in Fig. 5(c).
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3 Implementation

GraphSET is a Windows application written in C++. It is a stand-alone appli-
cation that does not require any third-party libraries and can be launched from
http://graphset.cs.arizona.edu, where the source code is available.

GraphSET includes other algorithms for graph drawing in addition to those
described above. For example, a PQ-tree implementation and a planarity testing
algorithm that draws the PQ-trees at each step of the reduction is included; see
Fig. 6.

Fig. 6. PQ-tree reduction to show that K5 is non-planar.

4 Conclusions and Future Work

We presented GraphSET, a tool that has been very valuable to us in the research
of various problems related to simultaneous embedding. We hope that other
researchers interested in these problems will find this tool useful.

While currently GraphSET includes the recognition and drawing algorithms
for ULP trees, in the future we plan to incorporate algorithms for all ULP graphs.
The addition of colored tracks and operations to swap vertices between tracks
can help in the research of colored simultaneous embedding.

References

1. U. Brandes, C. Erten, J. Fowler, F. Frati, M. Geyer, C. Gutwenger, S. Hong,
M. Kaufmann, S. Kobourov, G. Liotta, P. Mutzel, and A. Symvonis. Colored simul-
taneous geometric embeddings. In 13th Computing and Combinatorics Conference
(COCOON). To appear in 2007.

2. P. Dietz and D. Leigh. Diamondtouch: a multi-user touch technology. In 14th ACM
Symposium on User interface software and technology, pages 219–226, 2001.

6



3. C. Erten, S. G. Kobourov, A. Navabia, and V. Le. Simultaneous graph drawing:
Layout algorithms and visualization schemes. In 11th Symposium on Graph Drawing
(GD), pages 437–449, 2003.

4. A. Estrella-Balderrama, J. J. Fowler, and S. G. Kobourov. Characterization of
unlabeled level planar trees. In 14th Symposium on Graph Drawing (GD), pages
367–369, 2006.
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