
Cost-aware view materialization
for highly distributed datasets

Justin Cappos
University of Arizona

Tucson, Arizona
justin@cs.arizona.edu

Austin Donnelly, Richard Mortier,
Dushyanth Narayanan, Antony Rowstron

Microsoft Research
Cambridge, United Kingdom

{dnarayan,austind,mort,antr}@microsoft.com

ABSTRACT
Querying large datasets distributed over thousands of endsys-
tems is a challenge for existing distributed querying infras-
tructures. High data availability requires either replicating
or centralizing the dataset but both require infeasibly high
network bandwidth. In-situ querying provides low band-
width overheads but requires users to tolerate low data avail-
ability.

This paper advocates partial data replication, increasing
the availability of a subset of the data through centralization
and/or in-network (peer-to-peer) replication. This is anal-
ogous to materializing views in centralized databases, but
where materialized views in centralized databases trade view
update overheads for query overheads, in the distributed
case they trade bandwidth usage for availability.

Given an example workload, state-of-the-art tools for cen-
tralized databases are able to determine a set of materialized
views that will improve performance. Key to this is the abil-
ity to estimate view maintenance costs with different hypo-
thetical materialized views. This paper describes estimation
of view maintenance costs in a highly distributed database.
We present metrics that capture the cost of different ma-
terializations, and show that we can estimate these met-
rics accurately, efficiently, and scalably on a real distributed
dataset.

1. INTRODUCTION
Querying highly distributed datasets suffers from data un-

availability due to endsystem and network outages [5, 16].
To achieve high availability the entire dataset would ideally
be centralized by migrating it to a single site where it can
be located within a single database and maintained with
high-availability using standard techniques. Unfortunately,
for large-scale distributed datasets this can result in pro-
hibitively large incoming data rates. For example, a network
of 300,000 endsystems each generating a modest 10 Kbps re-
sults in an incoming data stream of 3Gbps.
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At the other extreme is in-situ querying [16] where the
dataset is not replicated but queries are executed through
a scalable distributed protocol. The bandwidth overhead of
in-situ querying is significantly lower than that of data cen-
tralization. However, in-situ querying suffers from low data
availability: when endsystems are offline, the data stored on
those endsystems cannot be queried.

On the spectrum between centralization and in-situ query-
ing is in-network (peer-to-peer) replication. This provides
high data availability through data replication to a few se-
lected peers but requires more maintenance bandwidth per
endsystem than centralization. Its benefit over centraliza-
tion is that bandwidth usage is distributed over the entire
network rather than concentrated into a single location.

With large datasets, it is infeasible to use either central-
ization or in-network replication for the entire dataset. How-
ever, it may be possible to centralize or in-network replicate
selected views on the data. The infrastructure would then
support three materialization options for each view: cen-
tralized, in-network replicated, or not materialized at all.
Depending on bandwidth constraints, some views would be
centralized, some in-network replicated, and the remaining
data left on the endsystems where they were generated.

Correspondingly there would be three modes of query exe-
cution: centralized, in-network, and in-situ. Queries against
the centralized views are executed against the centralized
database, with high data availability and low response times.
Queries against in-network replicated views require a query
distribution protocol and hence higher response time, but
data availability is still high. For queries against data that
are neither centralized nor in-network replicated, the system
uses in-situ querying, which also requires a query distribu-
tion protocol and further may have low data availability.

A major challenge is to select the views to be centralized or
in-network replicated. We must ensure that the bandwidth
costs of view maintenance are acceptable: a badly chosen
configuration can easily overwhelm the network. Thus the
key challenge, and the focus of this paper, is answering what-
if questions about the cost of hypothetical materialized view
configurations. Given this ability, a DBA or automated tun-
ing tool can explore multiple configurations and choose the
best one.

Answering what-if questions about hypothetical material-
ized views is well understood for centralized databases [7].
Automatic tuning tools such as AutoAdmin [1, 2] leverage
this to determine appropriate view materializations for a
given dataset and workload. They trade the increased cost
of updating materialized views for the reduced cost of query-



ing against those views. However, the analogous problem in
the distributed case presents a fundamentally different set
of challenges. Materialization in this case consists of mi-
grating tuples across a network rather than writing them to
disk. Thus the cost tradeoff is between the network band-
width required for view maintenance and the increased data
availability for queries against views.

Estimating distributed view materialization costs accu-
rately and efficiently is non-trivial. The costs depend on the
local data update rates on each endsystem, which means
the cost information is distributed across the entire net-
work. Further, such large networks exhibit endsystem churn,
i.e., the availability of endsystems in the network changes
dynamically. Hence the challenge is to provide cost esti-
mation mechanisms that are scalable and fault-tolerant yet
accurate.

Since the update rate of many datasets varies over time,
the bandwidth required by our system to maintain a materi-
alized view will also vary over time. For many applications,
such as endsystem-based network monitoring, the update
rate will have hourly, daily or weekly patterns. It is im-
portant to capture these, especially when aggregating costs
across multiple endsystems with correlated patterns. Our
cost estimation mechanisms explicitly capture these pat-
terns by representing costs as timeseries rather than single
time-invariant quantities.

1.1 Contributions
The main contribution of this paper is to describe how

to support cost-aware materialized views for a highly dis-
tributed dataset. We present and evaluate the following:

• Two complementary schemes for materializing views
on a highly distributed dataset,

• Cost metrics for comparing different hypothetical con-
figurations of materialized views, and

• Efficient, scalable and fault-tolerant methods for esti-
mating these cost metrics.

1.2 Road map
Section 2 describes our system model and view material-

ization mechanism, and gives a high-level overview of our
cost estimation techniques. Section 3 provides an overview
of Seaweed, upon which we build our system. Section 4
describes our motivating application, endsystem-based net-
work monitoring. Section 5 details the design and imple-
mentation of our cost metrics and cost estimation mecha-
nisms. Section 6 presents experimental evaluation of our
materialization mechanisms and cost estimation techniques.
Section 7 discusses integration of our work with automated
tuning techniques. Finally, Sections 8 and 9 discuss related
work and conclude.

2. OVERVIEW
Our target domain consists of large-scale datasets dis-

tributed over many networked endsystems. In our model,
the data consists of a small number of tables, each of which
is horizontally partitioned across all the endsystems. Thus
each endsystem locally generates and is responsible for man-
aging a small subset of each table. We assume that unavail-
able endsystems do not generate new tuples.

Figure 1: Average per-endsystem bandwidth re-
quired if all tuples were centralized.

Availability Maintenance bandwidth
Max/endsystem Aggregate

Centralized Very high Very high Medium
In-network High Medium Very high
In-situ Low None None

Table 1: View materialization tradeoffs

An example application is an endsystem-based network
management system in an enterprise network containing thou-
sands to several hundred thousand endsystems [9]. In such
an environment it is usually not feasible simply to centralize
all the data. Figure 1 shows, over a week, the average band-
width per endsystem to migrate all tuples to a centralized
DBMS. The per-endsystem average and peak bandwidth
are 5.0Kbps and 34.5Kbps respectively. A typical large
enterprise network might have ∼ 300, 000 endsystems. At
this size the average inbound bandwidth to the centralized
DBMS would be 1.5Gbps and the peak bandwidth would
exceed 10Gbps, which is infeasibly high.

Since complete data migration is infeasible, we provide
mechanisms to centralize or in-network replicate one or more
views on the data. For any hypothetical configuration, a
DBA or auto-tuning tool needs to know the cost entailed.
This what-if functionality [7] is supported through cost es-
timation queries.

The remainder of this section describes our system model
and our approach to cost estimation. Section 5 describes in
detail the implementation of view materialization and the
cost estimation algorithms.

2.1 System model
Although tables are horizontally partitioned across a large

number of endsystems, this partitioning is abstracted away
by the system. Users issue queries against entire tables.
The query might then be executed against tuples stored in
a centralized database, or distributed across endsystems in
the network. In the latter case, each endsystem computes
query results for its locally stored tuples, and the results are
aggregated back in the network.

Queries are performed against views that are either main-
tained in a centralized DBMS, in-network or in-situ. Table 1
shows the tradeoffs between these three options. Centralized
and in-network querying requires that the view tuples are



replicated. In the centralized case the tuples are replicated
on a centralized DBMS, while in-network requires that tu-
ples are replicated on other endsystems. We assume that a
view maintained on a centralized DBMS has high availabil-
ity. The centralized DBMS is hosted in a well-managed data
center with redundant hardware, and is therefore highly
available and resilient to failures.

If a view is replicated in-network, the tuples are replicated
on arbitrary endsystems with availability orders of magni-
tude lower than that of the centralized DBMS; in a large
enterprise network 20% of endsystems are unavailable on
average [5]. Hence, multiple replicas of each tuple must be
maintained; then with high probability at least one of the
replicas should be available at all times, and thus the view
has high availability. Table 1 summarizes this, showing that
creating a centralized view provides higher data availability
in general than in-network, but the trade-off is in the main-
tenance bandwidth. With in-network view materialization,
each tuple has to be replicated multiple times which requires
a high per-endsystem outbound bandwidth and high aggre-
gate bandwidth across the network when compared to cen-
tralized view materialization. However, the inbound band-
width requirement for centralized view materialization at
the centralized DBMS is orders of magnitude higher than
that required at any individual endsystem to materialize the
view in-network.

The final option is to query the view in-situ, which re-
quires no replication of the view tuples, as advocated in
Seaweed [16]. Tuples are simply stored on the endsystems
that generated them, and queries are performed at each of
these endsystems. However, at any point in time only a sub-
set of a view’s tuples will be accessible as tuples stored on
endsystems that are unavailable will obviously not be acces-
sible. Seaweed addressed this issue by estimating for each
query the number of tuples that are currently unavailable
and when these tuples are likely to become available. There-
fore, unlike centralized and in-network materialized views,
querying a view in-situ provides much lower data availabil-
ity. In-situ querying persists the query, and distributes it
to endsystems as they come online, thus increasing the data
availability over time. However, it may take many hours to
reach a sufficiently high level of coverage, say 99% of all tu-
ples. As Table 1 show the benefit of in-situ querying is that
no bandwidth is required to maintain the view, as the view
tuples are stored on the endsystem which generates them.

In general, we assume that query results are typically
small and can be efficiently aggregated in-network. Thus
the network costs are dominated by the cost of view main-
tenance. Centralized views impose a high load on the in-
coming link to the centralized DBMS; in-network replicated
views cause a high aggregate load distributed over the net-
work; and in-situ querying with no materialized views incurs
no view maintenance costs, but provides much lower data
availability.

In our query model we assume single-table select-project-
aggregate queries against horizontally partitioned tables. We
only support joins against centralized views: distributed
joins are very difficult to perform efficiently over hundreds
of thousands of networked endsystems, and we chose not to
provide functionality that could overwhelm the network if
used carelessly.

2.2 View materialization
We assume there is a highly available centralized DBMS

with a limit on its inbound bandwidth. The bandwidth us-
age of centralization must be kept under this limit: even a
well-connected DBMS could be overwhelmed by the com-
bined data rates of a large number of endsystems.

Each endsystem e in the network has a limit Le on the
outbound bandwidth that it can use for centralization or in-
network replication. In a typical enterprise network scenario
such as we discuss in Section 4, view maintenance will run
as a low-priority, background service. Thus Le will be con-
strained to be a small fraction of the endsystem’s network
link, dependent on local connectivity and policy.

A view configuration is a pair < SC , SP >. SC is the
set of views to be centralized. Endsystems transmit tuples
in these views to the centralized DBMS. Since the limiting
factor when centralizing data is the inbound bandwidth at
the centralized DBMS, individual endsystems may not be
using all their available capacity Le to maintain SC . Thus
each endsystem can use any remaining bandwidth to in-
network replicate an additional set of views SP to a small
number of other endsystems.

Aggregation views can be materialized but require differ-
ent cost estimation metrics and mechanisms since they use
an in-network aggregation tree. Typically, they require very
little bandwidth to maintain and hence network costs are
dominated by select-project views. We do not present cost
estimation mechanisms for aggregation views in this paper
but we are confident that our techniques can be extended to
estimate their costs.

2.3 Partial materialization
A view is materialized by broadcasting a view materializa-

tion command to all endsystems, containing the view query
and the materialization mode (centralized or in-network repli-
cated). Endsystems then begin to transmit tuples matching
these views either to the centralized DBMS or to other se-
lected endsystems in the network.

In a distributed system some endsystems will be offline
when the materialization command is inserted. We cannot
centralize tuples held by those endsystems until they come
online which may take hours or days. However, we would
still like to allow queries on the centralized DBMS against
some clearly defined subset of the view tuples. We achieve
this by introducing the notion of a partially materialized
view.

A partially materialized view has a “start time” Ts, typ-
ically the time that the materialization command was in-
serted into the system. Tuples generated by available endsys-
tems after time Ts will be proactively pushed to the central-
ized DBMS. Thus queries on the view that relate only to
tuples after time Ts can be executed immediately on the
centralized DBMS without the need for distributed query-
ing. If the query references tuples generated before Ts, then
in-network or in-situ querying must be used.

Most queries in our motivating application — endsystem-
based network management — require high availability of
the most recent data; thus when materializing a view the
natural assumption would be that the tuples produced after
the view creation are required to be highly available. This
motivates our decision to prioritize these tuples over histor-
ical tuples for transmission over the network.

Note that since the tuples originate from a large num-



Figure 2: Average per-endsystem bandwidth re-
quired if only tuples relating to SMB were central-
ized.

ber of sources in a wide-area network, there may still be
some network delay before they reach the centralized DBMS,
and there is no ordering across tuples arriving from differ-
ent endsystems. Thus the partially materialized view corre-
sponds to a (partial) dilated reachable snapshot [13] of the
view tuples in the distributed dataset. Note that in our
model unavailable endsystems do not generate new tuples,
or equivalently, that any such tuples are only considered part
of the dataset when the endsystem next becomes available.

Endsystems also propagate older view tuples (i.e., those
generated before time Ts) lazily to the centralized DBMS.
When all such historical tuples have been received, the view
is marked as fully materialized. At this point, all queries on
the view, irrespective of time, can be redirected to the cen-
tralized DBMS. For applications such as network manage-
ment, users are often more interested in recent data. Hence
there is great value in immediately materializing views on
the recent data, and lazily centralizing the historical tuples,
rather than waiting for all tuples to be centralized before
allowing use of the view.

For in-network replication, it is difficult to determine the
point at which a view becomes fully materialized, due to the
dynamic and distributed nature of the replication. Hence
we regard all in-network replicated views as partially mate-
rialized. In-network replicated data generated after Ts will
be fully materialized and queries on this data will see high
data availability. Queries on older data will see low data
availability initially but over time, as older tuples are lazily
replicated, their data availability will improve.

2.4 View cost estimation
Distributed view cost estimation is very different from

that in a centralized database. The main cost of distributed
view materialization is network bandwidth and the main
benefit is higher data availability. This differs from the tra-
ditional cost metrics used in a centralized DBMS. Further,
bandwidth and data availability depend on the dynamic
availability of endsystems as well as the data update rates
on individual endsystems. Hence any estimation mechanism
has to collect this distributed information scalably and in a
fault-tolerant manner, and also to generate accurate esti-
mates despite endsystem unavailability.

Figure 3: The data in Figure 2 shown over an ex-
tended 3-week period. Daily (day/night) and weekly
(weekday/weekend) periods are clearly visible.

Both bandwidth usage and data availability vary over
time and between endsystems. For example, in the con-
text of a network management tool, a view that captures
tuples relating to remote filesystem activity will have higher
update rates during working hours (Figure 2). This time-
dependence need not be the same for all endsystems: large
enterprise networks contain endsystems in different time zones.
Thus, although we are interested in statistics such as the
average and 95th percentile of bandwidth usage at the cen-
tralized DBMS, we cannot simply derive them from the cor-
responding statistics on individual endsystems; we need cost
metrics that preserve the time correlations.

Thus we use timeseries representations of expected band-
width usage and endsystem availability. It is important
that the timeseries representation captures any cyclic pat-
terns observed in the dataset. In our network management
dataset we observe hourly, daily, and weekly patterns as
shown in Figure 3, and so we use a timeseries that spans
a week. In our implementation each of these timeseries is
represented by a histogram with 2016 bins, each bin repre-
senting a 5min interval, the typical timescale of interest for
network operators [14]. This gives us a good compromise
between fine granularity and estimation overhead: unneces-
sarily fine granularity will increase the size of the timeseries
and hence the network overhead of cost estimation queries.

A cost estimation query specifies a proposed hypotheti-
cal configuration < SC , SP > and is efficiently broadcast
through the system. A per-endsystem cost estimate in time-
series form is computed for every endsystem in the system.
Each online endsystem locally generates its own cost metric;
for each offline endsystem a single online endsystem assumes
responsibility for estimating the cost on its behalf. These
per-endsystem timeseries are then efficiently aggregated in
the network to give the overall cost estimate. To ensure
that aggregation is efficient it is essential that the cost met-
rics be additive, i.e., that the global cost estimate can be
computed by applying a commutative, associative operator
to the endsystems’ local cost metrics. With timeseries we
can maintain this additive property without losing the time
correlations across endsystems.

The local cost estimate timeseries at each endsystem is
based on past history. In other words, to answer the ques-



tion “what will be the future cost of centralizing or in-
network replicating these views”, we answer the question
“what would have been the cost if I had started centralizing
or in-network replicating these views in the past”. In our
evaluation we use 2 weeks of history and maintain it as a
1-week timeseries, e.g., a timeseries of update rates for each
base table on each endsystem.

The response to a cost estimation query for a configura-
tion < SC , SP > is a 4-tuple of timeseries:

< BC(t), BP (t), AC(t), AP (t) >

BC(t) and BP (t) are the aggregate bandwidth cost esti-
mates of maintaining the centralized and in-network views
respectively. The aggregate centralized bandwidth BC(t)
is the same as the inbound bandwidth to the centralized
DBMS. Any feasible configuration must ensure that this
bandwidth BC(t) is always within the capacity of the cen-
tralized DBMS. Since the centralized DBMS sinks data from
a very large number of endsystems, we expect BC(t) to
determine the feasibility of SC , independent of the per-
endsystem transmit caps.

AC(t) and AP (t) are the availability of the data in the cen-
tralized and in-network views respectively. We define (data)
availability as the fraction of the tuples in a view that are
available for querying at any given time relative to the total
number of tuples in that view. Endsystems preferentially
centralize/replicate tuples from views with low availability.
The effect is to equalize availability across views, hence we
report a single mean availability for all views in SC and
similarly for SP . In other words, we aggregate over views
at each local endsystem and over endsystems in the network
but we do not aggregate over time, maintaining availabil-
ity as a timeseries. The aggregate data availability across
endsystems is the the mean availability weighted by each
endsystem’s tuple count.

Since the bottleneck for centralization will be the cen-
tralized DBMS’s incoming link, and we avoid configurations
that overwhelm this link, most tuples will be centralized
soon (i.e., to within network latency) after they are pro-
duced on the local endsystem. Hence AC(t) will be very
close to 1, only dropping occasionally when the centralized
DBMS’s incoming link is temporarily overloaded causing a
backlog. Since we expect such backlogging to be rare, the
main metric of interest for centralized views is the band-
width BC(t).

On the other hand for in-network replication the aggre-
gate bandwidth usage BP (t) is of secondary importance,
since each endsystem locally ensures that its bandwidth con-
straints are met. However, the resulting data availability
will vary depending on the amount of churn in the system
and the degree of replication that each endsystem e can
achieve given its bandwidth cap Le. Thus the main metric
of interest for the in-network replicated views is AP (t).

One of the main challenges in cost estimation is in generat-
ing estimates for endsystems that are currently unavailable,
but will become available in the future and begin to central-
ize or replicate data. Our general approach is to have online
endsystems estimate costs on behalf of offline endsystems
using the underlying protocols to ensure that exactly one
estimate is submitted for every endsystem. It is key that
these estimation algorithms use no global knowledge, but
rely only on small amounts of meta-data which are repli-
cated periodically by each endsystem to a small number of

other endsystems. The details of the estimation techniques
used depend on whether the view is centralized or in-network
replicated, and are described in Section 5.

3. BASE SYSTEM
We build our view materialization and cost estimation

mechanisms on top of Seaweed [16], an infrastructure for in-
situ querying of highly distributed data. Seaweed does not
centralize or replicate data, and thus has low maintenance
overheads but also suffers low availability when endsystems
are offline. Seaweed is implemented as a decentralized over-
lay application built on top of the Pastry [17] distributed
hash table, and implements a number of overlay-related ser-
vices through scalable, fault-tolerant distributed protocols.
Here we briefly describe how we utilize these underlying Sea-
weed services; a detailed description of Seaweed can be found
in [16].

Seaweed provides support for in-situ querying, and we
use this unmodified for queries against data that is nei-
ther centralized nor in-network replicated. This support in-
cludes disseminating each query to every online endsystem;
storing each query in the network and ensuring it is deliv-
ered to every offline endsystem that subsequently comes on-
line; and building, per-query, a persistent aggregation tree
that includes each endsystem’s contribution without dupli-
cation, incrementally refining the aggregation result as of-
fline endsystems come online.

Seaweed also supports in-network metadata replication:
each endsystem can replicate small objects to a small num-
ber of replicas. Seaweed implements replica-set maintenance,
ensuring that all replicas have a consistent view of the set
and that objects are correctly re-replicated when there is
churn in the replica set. Seaweed also supports estimation
queries against these replicated objects. These are used to
estimate data availability over time. Estimation queries are
executed locally by each online endsystem, and exactly one
of each offline endsystem’s replicas will respond on its be-
half. Since estimation queries do not wait for endsystems to
come online, their results are aggregated using a lightweight
aggregation tree rather than the heavyweight persistent tree
used by in-situ querying.

We use Seaweed’s metadata replication and estimation
query mechanisms to support view cost estimation queries
by extending the replicated metadata to support more com-
plex estimation queries. This lets us estimate view mainte-
nance costs for both online and offline endsystems. To do so,
we replicate a small amount of additional metadata about
data update rates.

We extend Seaweed’s mechanisms to support in-network
view replication. Here the “objects” to be replicated are
the local tuple-sets corresponding to each view. These can
be much larger than the small objects supported by Sea-
weed’s replication mechanism. Thus, we rely on Seaweed’s
replica-set maintenance but implement our own mechanisms
for object replication. In particular, we implement mecha-
nisms for partial replication of tuple-sets, and prioritization
across different tuple-sets.

We also extend the Seaweed query mechanisms to imple-
ment queries against in-network replicated views. Seaweed
guarantees that only one replica of each offline system will
respond on its behalf. We further ensure that queries against
an in-network replicated view are always answered by the
replica holding the most tuples for that view, thus maximiz-



ing data availability.

4. MOTIVATING APPLICATION
Our motivating application is endsystem-based monitor-

ing of enterprise networks [9]. Each endsystem locally cap-
tures its own network activity into a table, Packet. A record
is generated in the Packet table per transmitted or received
packet. Each record contains a timestamp, local and re-
mote IP addresses and ports, application, protocol, direc-
tion of the packet (receive or transmit), and the packet size
in bytes.

Network administrators perform queries over the dataset.
For example, a typical query could be to determine the num-
ber of bytes of web traffic:

SELECT SUM(Bytes) FROM Packet WHERE LocalPort=80

or, the traffic on privileged port numbers (those below 1024),
which would capture server traffic:

SELECT SUM(Bytes), LocalPort FROM Packet

WHERE LocalPort < 1024 GROUP BY LocalPort

ORDER BY SUM(Bytes).

Another example would be to discover the busiest web servers:

SELECT TOP (10) LocalIP, SUM(Bytes) FROM Packet

WHERE LocalPort=80 GROUP BY LocalIP

ORDER BY SUM(Bytes)

perhaps followed by a query pertaining to a specific web
server that has been identified as a “heavy hitter”:

SELECT TimeStamp, Bytes FROM Packet

WHERE LocalPort=80 And LocalIP=IPLookup(‘myserver’)

As these are common queries, it would be useful if a view
could be centralized that would allow all these queries to be
answered with high availability and low response time. The
single view:

SELECT Timestamp, Bytes, LocalPort, LocalIP

FROM Packet WHERE LocalPort < 1024

would achieve this for the above queries. However, users
often generate new query variants dynamically, e.g., to di-
agnose an unexpected performance issue. Therefore, only
a sample of the queries to be performed is known ahead of
time. Thus, it may be better to centralize a more general
view even though it will incur a higher bandwidth mainte-
nance cost:

SELECT * FROM Packet WHERE LocalPort < 1024

or even:

SELECT * FROM Packet

Unfortunately the administrator has no way of knowing
the cost of centralizing these views. The last proposed view
is typically too large to centralize. Depending on available
bandwidth, data update rate, and the bandwidth usage of
other materialized views, even the first proposed view might
have been too large to materialize centrally. If the adminis-
trator knew these costs, she might choose to centralize the
views:

SELECT Timestamp, Bytes, LocalPort, LocalIP

FROM Packet WHERE LocalPort < 1024

and:

SELECT * FROM Packet WHERE LocalPort = 80

and additionally in-network replicate the view:

SELECT * FROM Packet WHERE LocalPort < 1024

rather than centrally. Thus queries on server traffic that
could not be satisfied by the centralized view could still use
the in-network replicated view, giving high availability with
response times higher than centralized querying but lower
than in-situ querying. Any queries not against materialized
views would fall back on in-situ querying.

5. DESIGN
Given a configuration < SC , SP > each endsystem mon-

itors its locally generated tuples to detect updates to each
of the materialized views. The tuples are locally queued for
transmission and are then transmitted whenever possible,
subject to the local bandwidth constraint Le. When there is
insufficient bandwidth, higher-priority tuples are sent first
and lower-priority ones are queued until there is available
bandwidth. Centralized views are always prioritized ahead
of those for in-network replicated views. Historical tuples,
those generated before the view creation time Ts, receive the
lowest priority of all. Within a view, tuples are prioritized
by timestamp, earlier tuples receiving higher priority sub-
ject to the constraint that historical tuples are always lower
priority than tuples generated after the view was material-
ized. Within each view set (SC or SP ), we prioritize views
by availability as described below.

In this section we describe how tuples are prioritized for
transmission, and the estimation algorithms that predict the
network costs of this transmission and the resulting avail-
ability, first for centralized views and then for in-network
replicated views.

5.1 Centralized views
Each endsystem e has a set of objects {oe

i}. Each oe
i con-

tains the tuples owned by e (i.e., locally generated by it)
and contained in some view vi where vi ∈ SC . We define
the availability at any time of each oe

i as the fraction of its
tuples that are stored on the central server C:

AvailCentral(oe
i ) =

TupleCount(C, oe
i )

TupleCount(e, oe
i )

Each endsystem e always prioritizes the object with the low-
est current availability and transmits its tuples to C.

5.1.1 Cost estimation
Given a cost estimation query containing a set of views

SC , each endsystem computes its local cost estimate
< BC(t), AC(t) > for centralization. This pertains only to
tuples generated after time Ts: historical tuples do not have
any periodic long-term costs, and they are transmitted in
the background until they have all been centralized.

Each endsystem e first computes the update rate time-
series Ue

v (t) for each view v ∈ SC . Ue
v (t) is generated by

observing when tuples in the recent past, e.g., the last week,
would have been generated for each view v. New endsystems
with less than 1 week of history are ignored for the purposes
of estimation; typically there are a very small number of
such endsystems at any given time.



Locally at each endsystem the update rate timeseries for
the data to be centralized is:

Ue
C(t) =

∑
v∈SC

Ue
v (t)

The mean utilization, i.e., the average fraction of available
bandwidth used, is:

Me
C =

∑
t Ue

C(t)

NtLe

where, Nt is the number of timeseries intervals (2016 in the
implementation and experiments described in this paper)
and Le is the local transmit bandwidth cap, represented as
the maximum amount of data that can be transmitted in a
single timeseries interval. If Me

C > 1, then centralization of
this set of views is infeasible for this endsystem, since there
will be insufficient long-term bandwidth to transmit all the
view tuples.

Each endsystem e also imposes its limit Le on transmis-
sions within each interval. Hence, the actual amount of
transmission bandwidth used in each interval [t − 1, t] is

Be
C(t) = min(Le, Q

e
C(t − 1) + Ue

C(t))

where Qe
C(t−1) is the backlog at time t−1, i.e., the number

of untransmitted tuples from previous intervals.

Qe
C(t) =

{
0 if t = 0∑t

τ=0(U
e
C(τ) − Be

C(τ)) if t > 0

Given Qe
C(t), it is also possible to compute the availability

over time:

Ae
C(t) =

{
1 − Qe

C(t)∑ t
τ=1 Ue

C
(τ)

if Me
C ≤ 1

0 if Me
C > 1

In other words, if the average bandwidth is sufficient to
replicate all tuples, then availability will occasionally fall
below 1 as tuples get temporarily backlogged. However, if
the average bandwidth is not sufficient, then the backlog
will grow indefinitely, and availability will stay consistently
below 1, i.e., some of e’s tuples will never become avail-
able at the centralized DBMS. The long-term “availability”
of e’s tuples will then be the ratio of available bandwidth
to required bandwidth. However, since our aim is only to
centralize views which can be maintained with a long-term
availability of 1, we conservatively estimate e’s availability
to be 0.

5.1.2 Estimating for offline endsystems
In addition to online endsystems, we must also generate

estimates for offline endsystems. In order to achieve this we
replicate a small amount of metadata per endsystem to a
replica set. When an endsystem e is offline a single member
M of its replica set is selected as its manager and assumes
responsibility for generating e’s cost estimate.

The metadata does not directly contain the per-view up-
date rate as it is infeasible to replicate the update rates for
all possible views. The metadata contains:

• An availability profile Pe(t) which contains e’s recent
availability, i.e., the times at which it was online and
offline, and

• An update rate timeseries Ue
T (t) for each base table in

the dataset, and
• The transmission bandwidth limit Le.

The manager uses the metadata to generate cost estimates
for e. To do this, it computes e’s update rate for any view
v on the base table T as:

Ue
v (t) = fe

v (t)Ue
T (t)

where fe
v (t) is the amount of data reduction due to selection

and projection. This is estimated from M ’s local data:

fe
v (t) = fM

v (t) =
UM

v (t)

UM
T (t)

Using this, M is able to estimate Be
C(t) and Ae

C(t) for the
offline endsystem e. This is an approximation based on the
assumption that the selectivity of the view v will be similar
for M ’s data and e’s data.

5.2 In-network replicated views
For in-network replication, endsystems use the replica set

maintained by Seaweed. Each endsystem e is provided with
a replica set containing n live endsystems:

R = {r1, r2, . . . , rn}

The replicas are ranked such that when e goes offline, Sea-
weed will choose r1 to be its manager, or if r1 is offline at
that point, it will chose r2, etc.

For each object oe
i where vi ∈ SP , we define its availability

on each replica rj similarly to the centralized case:

Avail(rj , o
e
i ) =

TupleCount(rj , o
e
i )

TupleCount(e, oe
i )

We define the overall availability of an object oe
i as a vector

of per-replica availabilities sorted in decreasing order:

AvailAll(oe
i ) = {a1, a2, . . . , an} =

Decreasing({Avail(r1, o
e
i ), Avail(r2, o

e
i ), . . . , Avail(rn, oe

i )})

This availability vector defines an ordering on the objects:

oe
i < oe

j ⇐⇒ ∃m, (ai
1 = aj

1)∧. . .∧(ai
m = ak

m)∧(ai
m+1 < aj

m+1)

The object prioritized for replication is always the one with
the least vector in this ordering. In other words, we priori-
tize the object with the least availability on its best replica
by first comparing the best replicas (highest availability)
across all objects, breaking ties by comparing the second-
best replicas, and so forth.

The endsystem e then chooses a target replica for this
high-priority object oe

i . This is chosen to be the highest-
ranked replica in the Seaweed ranking that does not already
have an availability of 1. It then transmits missing tuples
to the target replica in timestamp order.

5.2.1 Replicating for offline endsystems
View materialization works as described above for online

endsystems. Offline endsystems are assumed not to generate
tuples, but for each offline endsystem e, it is necessary to
maintain the availability of its in-network replicated objects
{oe

i}. This is achieved by re-replicating the tuples belonging
to {oe

i} as replica set membership changes due to endsystem
failure or recovery.

When e is online, it manages all in-network replication of
its tuples. When offline the underlying Seaweed infrastruc-
ture assigns to it a manager M . The manager takes respon-
sibility for ensuring availability of the tuples, re-replicating



v1 SELECT * FROM Packet

v2 SELECT * FROM Packet WHERE LocalPort < 1024

v3 SELECT * FROM Packet WHERE App=‘SMB’

Table 2: Example views used in experiments.

the objects oe
i as necessary. Over time the manager of an

endsystem changes as other endsystems become available or
the manager fails.

The manager uses the same algorithm as described above
to prioritize views for replication. It will be responsible for
replicating objects owned by it as well as those of other
endsystems for which it is the manager. The availability
criterion for prioritization is applied across all these objects
irrespective of their owner. However availability is now com-
puted with respect to the number of tuples of each object
that are stored on M , which may be less than that on the
original owner e. The target replica is chosen from M ’s
ranked replica set. Typically M will have more tuples than
any other replica and will push tuples to the target replica;
in rare cases where the target replica has more tuples, M
pulls missing tuples from it.

5.2.2 Cost estimation
Unlike centralized views, the bandwidth and availability

timeseries for in-network replication cannot be computed
easily through a formula, since they depend on the interac-
tion between tuple update rates and endsystem availability.
To compute these timeseries, each endsystem e simulates the
effect of in-network replication by stepping forward through
each interval in a week-long timeseries.

The input to the simulation is the view update rate and
availability timeseries for the endsystem as well as its repli-
cas: these are computed based on local history. Another
input is the bandwidth timeseries representing the band-
width left over after centralization. The simulator then steps
through the timeseries, at each step computing the number
of tuples replicated from each object. In other words, we
estimate our future behavior based on simulating our hypo-
thetical past behavior, i.e., by answering the question “what
if I had materialized these views 1 week ago?”

The estimation does not capture the impact on bandwidth
and availability of the endsystem e re-replicating objects for
which it is the manager but not the owner. Based on lo-
cal information alone, e cannot predict how many objects it
would be required to manage, since that depends on changes
in the replica sets of other endsystems, and this is not in-
cluded in the metadata replicated to e. In Section 6 we
show that, despite ignoring re-replication costs, our estima-
tor has good accuracy for enterprise networks where churn
is moderate and re-replication is relatively infrequent.

Similarly to the centralized case, estimates for each offline
endsystem are generated by its manager, and in this case
the view update rates are estimated based on the manager’s
data reduction factor fM

v (t).

6. EVALUATION
In order to evaluate the proposed system we implemented

a discrete event simulator, which allowed evaluation of a
large number of configurations and design choices. The
simulator models each endsystem independently and incor-
porates events for addition of new tuples to base tables

and views, transmission of tuples for centralization or in-
network replication, meta-data replication, and endsystem
churn (i.e., endsystems failing and recovering). The sim-
ulator models per-link bandwidth for the links connecting
endsystems to the network, allowing us to examine the ef-
fect of varying the outbound link capacity Le.

To drive the experiments we used a number of real-world
traces: an endsystem availability trace from an enterprise
network and an application dataset representative of an end-
system based network management application. To generate
the representative application dataset we collected a packet
trace of all routed network traffic in our building for the
period 30 Aug 2005—20 Sep 2005. The raw packet trace
was then processed to generate per-endsystem Packet ta-
bles for the 456 endsystems in our building, containing a
total of 13 billion tuples. In the Packet table each tuple
corresponds to a packet and contains timestamp, local and
remote IP addresses and ports, application name, protocol,
packet direction, and packet size in bytes. The 456 endsys-
tems represented in the trace are significantly fewer than
those targeted by our design. Scaling the dataset could in-
troduce biases (e.g., by replicating each endsystem’s data
multiple times), so we present results for the trace network
size.

The bandwidth overhead of performing estimation and in-
situ querying will increase with the number of endsystems,
but previous work has demonstrated that these can be im-
plemented scalably [16]. The total bandwidth required to
centralize or in-network materialize a set of views will in-
crease linearly with the number of endsystems. In the eval-
uation we focus on the accuracy of cost estimation. We
believe that the accuracy of cost estimation achieved on
our dataset is representative of that achievable with a much
larger number of endsystems.

In order to evaluate the effectiveness of estimating the
materialization costs for offline endsystems we require per-
endsystem availability profiles. However, the packet trace
does not capture endsystem availability and inferring this
from network packet traffic is unreliable. Therefore, the per-
endsystem availability was generated using an availability
trace gathered over approximately 4 weeks in
July/August 1999 in the Microsoft corporate network [5].
This trace actively probed each of 51,663 endsystems on
the corporate network hourly. For each experiment the
456 endsystems were each mapped to a single endsystem
randomly selected from the set of 51,663 endsystems in the
availability trace. When mapping the availability trace to
the packet trace we performed the mapping such that we
maintained both time of day and day of week. If the packet
trace indicated that a tuple was generated during a period
when the endsystem was unavailable it was discarded, since
in reality endsystems would not generate or log network traf-
fic when unavailable. We observed approximately 20% of the
tuples being discarded in the experiments, and this is an
unavoidable artifact of using independent packet and avail-
ability traces.

Each experiment covers three weeks of simulated time.
During the first two weeks tuples are appended to local
tables but not centralized or in-network replicated. Also,
each endsystem accumulates statistics on base table update
rates, as well as availability patterns of itself and its replica
set members. At the end of the two weeks, a cost estima-
tion query for a specific view configuration < SC , SP > is



(a) < {v1}, {} > (b) < {v2}, {} >

(c) < {v3}, {} >

Figure 4: Bandwidth annotated with availability, predicted and measured for each centralized view materi-
alization configuration. Histograms give the mean bandwidth, error bars give the 5th and 95th percentiles.

inserted, the local endsystem cost estimates are computed
and aggregated to generate the global estimates.

We then inject the materialization command for the con-
figuration < SC , SP >. During the third week of simulation,
the configuration is maintained through centralization or in-
network replication of tuples. The simulator also gathers
statistics of bandwidth usage and view availability. Thus at
the end we are able to compare the cost estimates at the
beginning of the third week with the measured costs during
the third week.

In our experiments we used a number of different views,
which varied update rates, update patterns and so forth.
Due to space constraints we limit the results shown to cover
the three views specified in Table 2.

6.1 Centralized view materialization
The first set of experimental results presented evaluates

the effectiveness of centralized view materialization. In par-
ticular we evaluate the feasibility of materializing different
views, the accuracy of bandwidth cost estimation, and the
sensitivity of bandwidth prediction to the per-endsystem
bandwidth caps.

We ran three simulations using the specific view config-
urations: < {v1}, {} >, < {v2}, {} > and < {v3}, {} >,
i.e., configurations where exactly one view is centralized and
no views are in-network replicated. In each run we recorded
the tuple < BC(t), AC(t) > returned by cost estimation,
which captures the estimated inbound bandwidth on the
centralized DBMS and the estimated availability for a week,
using 5-min buckets. The predicted mean incoming band-
width on the centralized DBMS, as well as the 90% confi-
dence interval, i.e., the 5th and 95th percentiles of our 5-min

buckets are generated using BC(t). We then materialized
the configuration and measured, over the following 7 days,
the actual mean bandwidth as well as the 5th and 95th per-
centiles. While the mean provides an indication of the long-
term bandwidth requirements, the 95th percentile measures
the short-term “burst” load inflicted on the inbound network
link to the centralized DBMS. In order to examine the sensi-
tivity of the predictor to the per-endsystem bandwidth caps
we ran each experiment with 4 different values of Le = ∞,
1 Mbps, 10Kbps and 1Kbps.

Figure 4 shows the results for each of the three view con-
figurations. Within each configuration, the actual and pre-
dicted mean bandwidths and confidence intervals (shown as
error bars) are shown for different values of per-endsystem
bandwidth Le. Each graph also shows the estimated and
actual median availability above the appropriate column.
When Le is low the data availability is correctly predicted as
being too low to be useful. When Le is sufficiently large the
data availability is correctly predicted as being high. The
inbound bandwidth to the centralized DBMS is predicted
with good accuracy across all values of Le, despite a factor
of 5 variation in bandwidth usage across the different views.
This is important as the inbound bandwidth determines the
feasibility of materializing the view.

Figure 4(a) shows that v1, which centralizes all tuples, has
a mean bandwidth cost of 1.8Mbps and a 95th percentile of
7.8Mbps, even for the small sample of 456 endsystems. A
similar per-endsystem data rate for an enterprise network of
300,000 endsystems would result in a mean incoming band-
width of 1.2Gbps and a 95th percentile of 5.1Gbps, which is
clearly infeasible for a single system to handle. The value of
cost estimation is to avoid such situations before they occur.



(a) < {}, {v1} > (b) < {}, {v2} >

(c) < {}, {v3} >

Figure 5: Availability prediction for in-network view materialization. Histograms give the mean availability,
error bars give the 5th and 95th percentiles.

6.2 In-network view materialization
The next set of experiments evaluates prediction perfor-

mance for in-network view materialization. We ran three
simulations using the specific view configurations:
< {}, {v1} >, < {}, {v2} > and < {}, {v3} >, i.e., configu-
rations with exactly one in-network replicated view and no
centralized views. In each run we recorded AP (t) returned
by cost estimation, capturing the expected availability. We
ran each experiment with 5 different values of Le = ∞,
1Mbps, 10Kbps, 1Kbps and None. In the None case there
is no replication of view tuples, representing the data avail-
ability for in-situ querying. We always attempt to maintain
8 replicas of the data. However, the actual number of repli-
cas maintained depends on the per-endsystem bandwidth
limit.

Figure 5 shows the results for each of the three view con-
figurations. Within each configuration, the actual and pre-
dicted availability and the confidence intervals (shown as
error bars) are shown for different values of Le. As ex-
pected, as Le drops the actual availability decreases and
this is accurately predicted. The results also show the ben-
efit of view materialization in general, as the availability for
in-situ querying (none) is lower than that for all other con-
figurations.

To conclude, the results for both the centralized and in-
network view materialization experiments demonstrate the
availability gain achieved by materializing the view. The re-
sults also show that the proposed cost estimation techniques
accurately predict the required bandwidth and achieved avail-
ability of view materialization.

7. AUTOMATED TUNING
There has been considerable work on automated database

tuning tools such as AutoAdmin [2, 7], the DB2 Design Ad-
visor [21] and the Oracle SQL Access Advisor as part of their
Automatic SQL Tuning feature [10], which rely on “what-if”
queries. We believe that the view cost estimation proposed
in this paper represents an important step to allowing such
tuning tools for highly distributed databases.

To automate the selection of materialized views, we pro-
pose to combine our cost estimation techniques with pre-
viously published methods for auto-tuning in centralized
databases. As a specific example, we consider AutoAd-
min [1, 2, 6], a tool that aids DBAs by automatically propos-
ing materialized views to improve the performance of a given
workload on an existing DB configuration. AutoAdmin com-
bines three techniques:

• Generation of candidate materialized views using syn-
tactic analysis and pairwise view merging,

• Heuristic searching of the configuration space defined
by the candidate views, and

• What-if cost estimation of hypothetical configurations.

We believe candidate view generation can be used without
major modifications, other than ensuring that we log the
query workload. The heuristic search technique will need to
be extended. Currently, AutoAdmin uses a Greedy(m, k)
technique [6] to first exhaustively search the space of all
configurations with up to m views, and then greedily adds
up to k − m additional views, where m is a small number,
e.g. m = 2. The number of configurations examined by
Greedy(m, k) on a set of N candidate views is O(Nm +
Nk). We need to adapt the technique to make the search
efficient in terms of the network overhead, which is directly



proportional to the number of estimation queries executed.
For the search, a key observation is that the cost metrics

for centralized views are additive. Thus we can estimate the
cost of each candidate view independently, and hence derive
the cost estimate of any configuration of centralized views.
However, the cost metric for in-network replication is not ad-
ditive, since each endsystem could have its own bandwidth
constraints, and hence cost is measured in terms of avail-
ability. Hence we cannot consider views independently, and
therefore each in-network configuration needs to be run on
an entire configuration. The searching also requires estima-
tion of query-time cost, which in this case simply becomes
a function of availability and view materialization location
(in-network or centralized).

8. RELATED WORK
Prior work on infrastructures supporting highly distributed

databases has focused on two extremes. Systems like PIER [13]
replicate all the tuples in the network whereas systems like
Seaweed [16] do no replication and rely on in-situ querying.
The approach proposed in this paper is between these two
extremes. We assume that we can, if necessary, perform in-
situ querying and use replication of a subset of the tuples as
an optimization to improve availability. This is fundamen-
tally different from proposals to redistribute (rather than
replicate) tuples for load-balancing and other purposes [12].
The replicated subset of the data is specified as a view, and
to achieve scalability we need to provide cost estimates of
view maintenance to ensure that we do not cause network
overload.

Mid-tier transparent database caching [15] reduces load
on back-end databases by caching query results at inexpen-
sive intermediate nodes. Cached results are dynamically
maintained, and the differences in latency between query-
ing the cache and the back-end database are exposed to the
optimizer. We use replication to increase availability rather
than reduce load, and we are interested in much larger sys-
tem scale.

Segev et al. [19, 18] propose “distributed views” with
batched, differential updates where a single centralized DBMS
pushes entire views to remote sites for efficiency and load
balancing. This is very different from our scenario, where
the tuples are initially distributed over a very large network.
Further, in the case of in-network replication, a single view
can be horizontally partitioned across the entire network.

The centralized views we provide have some similarities
with streaming query systems such as [3, 4, 8, 11, 20]. Tu-
ples are routed from endsystems to the central DBMS for
processing. However, there is a key difference: we store the
tuples for later querying, i.e., for use as a view. In general,
streaming query systems route tuples through a network of
online processing operators. Results may be stored for later
processing but the original tuple is discarded.

9. CONCLUSION
In this paper we have proposed and evaluated mechanisms

for cost-aware view materialization for highly distributed
datasets. Materialized views are stored either on a central-
ized database or in-network, where view tuples are repli-
cated over peers. Materializing views increases data avail-
ability and reduces query latency, using network bandwidth
to replicate tuples.

We have described and evaluated cost estimators for both
centralized and in-network view materialization, allowing a
DBMS administrator or automated tool to understand the
tradeoffs between bandwidth usage and data availability.

Given these two view materialization mechanisms, cost
estimators allow an administrator to understand the trade-
offs involved in view materialization. Furthermore, they
are a critical component in enabling auto-tuning tools for
querying infrastructures designed for large-scale distributed
datasets.
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and M. Ziauddin. Automatic SQL tuning in Oracle
10g. In VLDB, pages 1098–1109, 2004.

[11] A. Deshpande and J. M. Hellerstein. Lifting the
burden of history from adaptive query processing. In
VLDB, pages 948–959, Toronto, CN, Aug. 2004.

[12] P. Ganesan, M. Bawa, and H. Garcia-Molina. Online
balancing of range-partitioned data with applications
to peer-to-peer systems. In VLDB, pages 444–455,
Toronto, Canada, 2004.

[13] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo,
S. Shenker, and I. Stoica. Querying the Internet with
PIER. In VLDB, pages 321–332, Berlin, Germany,
Sept. 2003.



[14] K. Keys, D. Moore, and C. Estan. A robust system for
accurate real-time summaries of Internet traffic. In
SIGMETRICS, pages 85–96, 2005.
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