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Abstract. A set of planar graphs share a simultaneous embedding if they can be drawn on the same
vertex set V in the plane without crossings between edges of the same graph. Fixed edges are common
edges between graphs that share the same Jordan curve in the simultaneous drawings. While any number
of planar graphs have a simultaneous embedding without fixed edges, determining which graphs always
share a simultaneous embedding with fixed edges (SEFE) has been open.

We partially close this problem by giving a necessary condition to determine when pairs of graphs have
a SEFE. As a direct application, we are able to determine for the set of planar graphs P and for the set
of outerplanar graphs O (all vertices lie on an outerface), what the proper subsets of P and O are that
always have a SEFE with all of P and O, respectively. In both cases, we provide algorithms to compute
the simultaneous drawings. Finally, we provide a polynomial time decision algorithm for deciding when
a specific pair of outerplanar graphs has a SEFE. Whether two planar graphs have a SEFE can similarly
be decided in polynomial time remains as an open problem.

1 Introduction

In many practical applications including the visualization of large graphs and very-large-scale inte-
gration (VLSI) of circuits on the same chip, edge crossings are undesirable. A single vertex set can
suffice in which multiple edge sets correspond to different edge colors or circuit layers. While the
union of any pair of edge sets may be nonplanar, a planar drawing of each layer may be possible,
as crossings between edges of distinct edge sets is permitted. This corresponds to the problem of
simultaneous embedding (SE) that generalizes the notion of planarity among multiple graphs.

Without restrictions on the types of edges used, this problem is trivial since any number of
planar graphs can be drawn on the same fixed set of vertex locations [15]. However, difficulties
arise once straight-line edges are required. Moving one vertex to reduce crossings in one layer
can introduce additional crossings in other layers. This is the problem of simultaneous geometric
embedding (SGE). If edge bends are allowed, then having common edges drawn the same way is
important for mental map preservation. Such edges are called fixed edges leading to the problem of
simultaneous embedding with fixed edges (SEFE). Since straight-line edges between a pair of vertices
are also fixed, any graph that has a SGE also has a SEFE, but the converse is not true; see Fig. 1.
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Fig. 1. The path and planar graph in (a) do not have a SGE with straight-line edges [2], but but have a SEFE in (b).
The two outerplanar graphs in (c) do not have a SEFE, but have a SE in (d) if edge (b, e) is not fixed.
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Deciding if two graphs have a SGE is NP-hard [8], whereas, deciding if three graphs have a SEFE

is NP-complete [11]. However, deciding if two graphs have a SEFE in polynomial-time remains open.
In this paper we present a necessary condition in terms of forbidden subgraphs for whether pairs of
graphs always have a SEFE. While this does not yet lead to a polynomial-time decision algorithm
in the general case, it does in the more restricted case of pairs of outerplanar graphs. Additionally,
we characterize which pairs of planar graphs and which pairs of outerplanar graphs have a SEFE

and provide simultaneous drawing algorithms when possible.

1.1 Related Work

Relatively little is known regarding which graphs share a SGE. While it is known that any number
of stars, two caterpillars (trees whose removal of leaf vertices is a path) and two cycles can always
be done, whereas three paths [2] and two trees cannot [12], it is open as to whether a path and a
tree always have a SGE. Moreover, which graphs always have a SGE with a path, a caterpillar, a
tree, or a cycle remains unknown. The closest any of these questions has been answered is for a SGE

with a path drawn monotonically. The set of graphs for which this is always possible was recently
determined and characterized in terms of seven forbidden graphs [9]. Relaxing the straight-line edge
condition slightly, three bends per edge suffice for pairs of planar graphs [7], whereas, simultaneous
embedding an outerplanar graph with a straight-line path only requires one bend per edge [5].

Little more is known regarding SEFE. While a planar graph and a tree can always be done,
whereas two outerplanar graphs cannot [10], which (outer)planar graphs share a SEFE with the
set of all (outer)planar graphs has been open. Planar graphs are characterized in terms of the
forbidden graphs, K5 and K3,3 [14]. These form two minimum examples of nonplanarity. No similar
description for SEFE in terms of forbidden graphs or minimum examples has been given until now.

Related to simultaneous embedding is the thickness of a graph G, the minimum number of planar
subgraphs whose union is G. If vertices are co-located and straight-line edges are used as in SGE,
the number of subgraphs is the geometric thickness of the graph. Using simultaneous embedding
techniques, it was shown that graphs with degree at most 4 have geometric thickness 2 [6].

1.2 Our Contribution

Each of the subsequent sections is devoted to one of our three main contributions.

1. We show there exist three paths without a SEFE. On the other hand, while most pairs of graphs
whose union forms a subdivided K5 or K3,3 share a SEFE, we provide 16 minimal forbidden
pairs that do not. This gives a necessary condition for SEFE of two graphs.

2. Using this condition we show that the only graphs that always have a SEFE with any planar
graph are either (i) forests, (ii) circular caterpillars (removal of all degree-1 vertices leaves a
cycle), and (iii) subgraphs of K4; see Fig. 2(a)–(c). We also show that the the only outerplanar
graphs that always share a SEFE with any outerplanar graph either are (i) biconnected in which
the endpoints of every chord are at a distance of two from each along the outerface (K3-cycle) or
(ii) have a cut vertex in which no two chords can be incident in the same biconnected component

(a) (b) (c) (d) (e)
Fig. 2. Forests in (a), circular caterpillars in (b), and subgraphs of K4 in (c) have a SEFE with any planar graph. K3-cycles
as in (d) and outerplanar graphs composed of cubic K3-cycles as in (e) have a SEFE with any outerplanar graph.
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SGE SEFE

Path Tree Forest Circular K4 K3-cycle each biconnected

caterpillar subgraph subgraph is a cubic K3-cycle

Path X ? X X X X X

Caterpillar X ? X X X X X

Tree ? ✗ X X X X X

Outerplanar ? ✗ X X X X X

Planar ✗ ✗ X X X ✗ ✗

Table 1. Old and new results for SGE and SEFE pairs. The last two rows for SEFE with shaded cells are new.

(each biconnected subgraph is a cubic K3-cycle); see Fig. 2(d)–(e). Table 1 summarizes our
results. In each case, we provide O(n2 lg n) simultaneous drawing algorithms.

3. By comparing all possible subsets of vertices in a pair of outerplanar graphs against the two
forbidden outerplanar pairs, we have a necessary condition for SEFE. We show that this condition
also suffices, giving a O(n2) time decision algorithm for SEFE of two outerplanar graphs.

1.3 Preliminaries

Let P be a set of n distinct points in the xy-plane. A planar drawing of G(V,E) consists of a
bijection σ : V 7→ P with Jordan curves in the xy-plane connecting each pair of points σ(u) and
σ(v) for each edge (u, v) ∈ E where curves can only intersect at their endpoints. Let G be a set
of planar graphs {G1(V,E1), G2(V,E2), . . . , Gk(V,Ek)}. The set G has a simultaneous embedding if
there exist planar drawings of Gi(V,Ei) with the same bijection σ : V 7→ P . If each edge is only
composed of one straight-line segment, then G has a simultaneous geometric embedding (SGE). If
every common edge in G connecting a pair of vertices uses the same Jordan curve, then G has a
simultaneous embedding with fixed edges (SEFE).

Two vertices u and v are adjacent if (u, v) ∈ E. A vertex u and edge (v,w) are incident, if
u = v or u = w, and nonincident otherwise. Likewise, two edges e and f are incident if they share
a common endpoint. The degree of a vertex v, denoted deg(v), is the number of incident edges to v.

In a graph G(V,E), subdividing an edge (u, v) ∈ E replaces edge (u, v) with the pair of edges
(u,w) and (w, v) in E by adding w to V . A subdivision of G is a graph obtained by performing
a series of subdivisions of G. A graph G(V,E) is isomorphic to a graph G̃(Ṽ , Ẽ) if there exists
a bijection f : V 7→ Ṽ such that (u, v) ∈ E if and only if

(

f(u), f(v)
)

∈ Ẽ. A graph G(V,E) is

homeomorphic to a graph G̃(Ṽ , Ẽ) if a subdivision of G is isomorphic to a subdivision of G̃. The
induced subgraph of G for the subset V ′ ⊆ V is subgraph given by the edge set E ∩ (V ′ × V ′).

2 Forbidden Simultaneous Embeddings with Fixed Edges

We start by stating the seminal theorem by Kuratowski [14] that characterizes all planar graphs.

Theorem 1 (Kuratowski) Every nonplanar graph has a subgraph homeomorphic to K5 or K3,3.

2.1 Forbidden Triples of Paths and Cycles

The examples without a SGE in [2] and [1] for three paths and cycles, resp., also prevent a SEFE.

Theorem 2 There exist three paths on 9 vertices and three cycles on 6 vertices without a SEFE.

Proof. Consider the paths g--d--h--c--e--a--f --b--i, h--d--i--b--e--c--f --a--g, and i--d--g--a--e--b--f --c--h
and cycles a--d--c--f --b--e--a, a--e--c--d--b--f --a, and a--f --c--e--b--d--a shown in Fig. 3. In both cases,
the union forms a subdivided K3,3 and must have a crossing by Theorem 1 in any drawing. Each
edge in the union belongs to two paths (or cycles). Such a crossing must then be between two pairs
of paths (or cycles). Since there are only three paths (or cycles) and fixed edges are being used,
one must self-intersect. ⊓⊔
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Fig. 3. Triples of graphs without a SEFE.

This shows that the set of triples for SEFE is fairly restricted. As a result, we can focus our
attention to forbidden pairs of graphs without a SEFE.

2.2 Minimal Forbidden Pairs

Suppose a pair of graphs G1(V,E1) and G2(V,E2) does not have a SEFE as in Fig. 4(a). If deleting
any edge from either graph allows a SEFE, then G1 and G2 are edge minimal as is Fig. 4(b). If a
degree-2 vertex v (adjacent to u and w) in the union is not a degree-1 vertex in either G1 or G2,
then we can unsubdivide the vertex by deleting v and replacing edges (u, v) and (v,w) with the edge
(u,w) in G1 and/or G2. A pair of graphs for which this can no longer be done is vertex minimal as
is Fig. 4(c). A minimal forbidden pair does not have a SEFE and is edge and vertex minimal.

We define the union G1 ∪ G2 and the intersection G1 ∩ G2 to be the graphs with edge sets
E1 ∪ E2 and E1 ∩ E2, respectively. Suppose then that the union of the pair is homeomorphic to a
graph G without any degree-2 vertices. Let u v denote the path corresponding to the subdivided
edge (u, v) in G. Path u v is incident to x y if and only if (u, v) and (x, y) are incident in G.

An alternating edge is a u v path in which the edges strictly alternate between being in either
G1 and G2, but not both. An exclusive edge is a u v path composed of the single edge (u, v) only
in G1 or G2, while an inclusive edge is composed of the single edge (u, v) in the intersection.

Claim 3 Any pair of graphs G1(V,E1) and G2(V,E2) can be reduced to a pair in which every u v

path is either an inclusive edge, an exclusive edge or an alternating edge.

Proof. While a minimal forbidden pair already has this property, we show how this can be done
for an arbitrary pair. We examine each u  v path p in the union. If p is in G1 ∩ G2 we replace
it with a single inclusive edge (u, v) in both G1 and G2. If p is in Gi but is missing edges in Gj ,
we replace it with the single exclusive edge (u, v) in Gi for i 6= j. If p is missing edges from both
graphs, we make p into an alternating edge by deleting edges from p in either G1 or G2 until each
edge along p is no longer in G1 ∩ G2. Then we unsubdivide p until it is strictly alternating. Since
we can always avoid crossings along edges of u  v paths contained in G1 ∩ G2 reduced in this
way, neither of these operations change whether the pair has a SEFE. Any pair of graphs for which
this has been done for all u v paths is called a reduced pair. ⊓⊔

Suppose G1 and G2 are a reduced pair. The alternating edge subgraph, denoted G1 ⊎ G2, is
the subgraph of G1 ∪ G2 consisting only of alternating edges. The exclusive edge subgraph of G1,
denoted G1 \G2, is the subgraph of G1 ∪G2, of exclusive edges from G1, where G2 \ G1 is defined
analogously. Hence, edges of G1 ∪G2 are partitioned into G1 ⊎G2, G1 \G2, G2 \G1, and G1 ∩G2;
see Fig. 4(c)–(g). Next we see why we only need to consider crossings between nonincident edges.

(a) (b) (c) (d) (e) (f) (e)
G1 ∪ G2 G1 ⊎ G2G1 ∩ G2 G1 \ G2 G2 \ G1

Fig. 4. Removing extra edges from (a) gives (b). Unsubdividing vertices gives (c) with the four subgraphs (d)–(g).
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Observation 4 Crossings in a nonplanar drawing between a pair of incident edges can be removed
without affecting the number of crossings of nonincident edges.

This can be done by swapping Jordan curves from the incident vertex to the first intersection
point p. Separating the curves at p by a distance ε eliminates the crossing at p without affecting the
rest of drawing. Repeating this process removes all crossings of incident edges. Hence, we only need
to consider crossings of nonincident edges in simultaneous drawings with fixed edges. Applying this
observation to the minimal examples K5 and K3,3 of Theorem 1 gives the following corollary.

Corollary 5 (a) Every drawing of K5 or K3,3 has at least one crossing between nonincident edges.
(b) Any K5 and K3,3 can be drawn with only one crossing between any pair of nonincident edges.

We use this corollary to produce a sufficient condition for SEFE.

Lemma 6 Suppose the union of a reduced pair G1 and G2 is homeomorphic to K5 or K3,3. Let
u v and x y be nonincident paths in G1 ∪G2 but not in G1 ∩G2. G1 and G2 share a SEFE if
either path belongs to G1 ⊎ G2 or one belongs to G1 \ G2 and the other belongs to G2 \ G1.

Proof. By Corollary 5(b), a K5 or K3,3 can always be drawn so that only (u, v) and (x, y) cross.
Hence, there is a SEFE in which an alternating edge in G1⊎G2 only crosses an edge in either G1\G2

or G2 \ G1 or an edge in G1 \ G2 only crosses an edge in G2 \ G1. ⊓⊔

Applying Lemma 6, we next determine when a pair of graphs forming K5 or K3,3 has a SEFE.

Corollary 7 Suppose the union of a reduced pair G1 and G2 is homeomorphic to K5 or K3,3.
G1 and G2 do not share a SEFE if and only if (i) every nonincident edge of an alternating edge in
G1 ⊎G2 is in G1 ∩G2 and (ii) every nonincident edge of an exclusive edge in G1 \G2 is also in G1.

Proof. For necessity, suppose G1 and G2 do not have a SEFE. If there is a nonincident edge x y

of an alternating edge u v that is not in G1 ∩ G2, by Lemma 6, G1 and G2 would have a SEFE

since u  v is in G1 ⊎ G2 and neither path is in G1 ∩ G2. If there is a nonincident edge x  y of
an edge (u, v) ∈ G1 \G2 that is not in G1, then again by Lemma 6, G1 and G2 would have a SEFE

since x y is either in G1 ⊎ G2 or G2 \ G1.
For sufficiency, suppose conditions (i) and (ii) hold. Since the union forms a subdivided K5 or

K3,3, by Corollary 5(a) at least one pair of nonincident paths u  v and x  y cross. If either is
in G1 ∩G2, then there must be a crossing in G1 or G2. If either is in G1 ⊎G2, then by (i) the other
would be in G1 ∩ G2, again giving a crossing in G1 or G2. If both are in Gi \ Gj for i 6= j, then
there is a crossing in Gi. Finally, (ii) prevents one edge being in G1 \ G2 and the other edge being
in G2 \ G1. Hence, G1 and G2 do not have a SEFE. ⊓⊔

Theorem 8 There are 16 minimal forbidden pairs whose union is homeomorphic to K5 or K3,3.

Proof. Let Gi,j denote the 16 pairs of graphs for i ∈ {1, . . . , 16} and j ∈ {1, 2} shown in Figs. 5
and 6. The union of the first ten pairs is homeomorphic to K5, while the union of the remaining
six is homeomorphic to K3,3. One can verify that all the nonincident edges of any alternating edge
are in the intersection and every edge nonincident to an exclusive edge of Gi,1 is also in Gi,1. This
satisfies Corollary 7 implying that none of these pairs has a SEFE.

Removing an edge from any pair either means (i) their union no longer forms a K5 or a K3,3

or (ii) their intersection does not contain all nonincident edges of Gi,1 ⊎Gi,2 or of Gi,1 \Gi,2 (other
than those already in Gi,1). This then implies by Corollary 7 they would then have a SEFE, which
shows that all 16 pairs are minimal forbidden pairs.

To show that our set of 16 pairs are complete, assume w.l.o.g. (G1, G2) are a reduced minimal
forbidden pair whose union forms a K5 or K3,3 where G1 \G2 has no more edges than G2 \G1. We
consider all the possibilities for edges in G1 \ G2 or G1 ⊎ G2 in turn.
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(c)(a) (d)(b)

(f) (g)

(e)

(h) (i) (j)

G3,2G3,1G1,2G1,1 G4,2G4,1G2,2G2,1

G6,2G6,1 G7,2G7,1

G5,2G5,1

G8,2G8,1 G9,2G9,1 G10,2G10,1

Fig. 5. Ten K5 minimal forbidden pairs. The dark edges are in G1 ∩ G2 and the dashed edges are in G1 ⊎ G2.

Pairs (G1,1, G1,2), (G2,1, G2,2), (G11,1, G11,2), and (G12,1, G12,2) are the only possibilities in which
there is exactly one exclusive edge in G1 or one alternating edge in G1 ⊎ G2. Two nonincident
alternating edges would violate Corollary 7, so the other case for a pair of nonincident edges are
two exclusive edges in G1 given by pairs (G6,1, G6,2) and (G13,1, G13,2). Three nonincident edges
are only possible in a K3,3, but including all nonincident would mean that G1 was the whole K3,3.

For a pair whose union is homeomorphic to K5, pairs (G3,1, G3,2), (G4,1, G4,2), and (G5,1, G5,2)
give the three possibilities for two incident edges in (G1 \ G2) ∪ (G1 ⊎ G2), namely, two exclusive,
one exclusive and one alternating, and two alternating. Two incident exclusive edges with a third
edge, exclusive or alternating, is not possible since G3,1 with two exclusive edges already has seven
edges. Adding another exclusive or alternating edge and its nonincident edge, would leave only one
edge for G2 \ G1, contradicting our assumption of G1 \ G2 being no larger. Two incident exclusive
edges with a third alternating edge is given by the pair (G7,1, G7,2). Finally, three and four incident
alternating edges are given by pairs (G9,1, G9,2) and (G10,1, G10,2).

For a pair whose union is homeomorphic to K3,3, if (G1 \ G2) ∪ (G1 ⊎ G2) contains two inci-
dent edges, then all remaining edges except for the third incident edge u  v (in the union) are
nonincident and must be in G1. Since edges nonincident to u  v are also in G1, G2 \ G1 only
contains u  v, so G1 \ G2 has at most one edge by assumption. Thus, pairs (G14,1, G14,2) with
one exclusive edges and one alternating edge and (G15,1, G15,2) with two alternating edges are the
only possibilities for two incident edges. Adding a third edge, means that it must be an alternating
edge. However, G15,2 already has one exclusive edge with two incident alternating edges leaving
three incident alternating edges given by pair (G16,1, G16,2) as the final possibility. ⊓⊔
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G11,1 G11,2 G12,1 G12,2

G15,1 G15,2G14,1 G14,2 G16,1 G16,2

G13,1 G13,2

Fig. 6. Six K3,3 minimal forbidden pairs. The dark edges are in G1 ∩ G2 and the dashed edges are in G1 ⊎ G2.

3 Characterizing Simultaneous Embeddings with Planar Graphs

In this section we determine which graphs always have a SEFE with any planar graph and show
how to produce a simultaneous drawing. Let P be the set of planar graphs and PSEFE ⊂ P be the
subset of forests, circular caterpillars and subgraphs of K4.
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Fig. 7. Planar drawings of each of the graphs in the pairs (G1,1, G1,2), (G7,1, G7,2), and (G13,1, G13,2).

Lemma 9 The set PSEFE are the only graphs that can always have a SEFE with any planar graph.

Proof. Let G1 ∈ PSEFE and G2 ∈ P. Both graphs of each of 16 pairs of Theorem 8 have a subgraph
homeomorphic to G1,1, which is a K3 and a disjoint edge; see Fig. 7(a). First, we show that G1 does
not contain a subgraph homeomorphic to G1,1. This can allow G1 to have a SEFE with G2 since
they cannot match any of the 16 pairs. Clearly, a forest cannot since G1,1 has a cycle. A circular
caterpillar has a single cycle and all other edges are incident to the cycle unlike G1,1 that has an
edge nonincident to its K3. Finally, K4 only has four vertices and G1,1 has five.

Next, we show that any graph in P \ PSEFE must contain a subgraph homeomorphic to G1,1.
If G ∈ P does not have a cycle, it is a forest. Otherwise, assume G has a cycle C and let C be
maximal in terms of the number of edges. If any other edge e in G is nonincident to C, G has a
subgraph homeomorphic to G1,1, namely C and e. Hence, all edges are incident to C. If any edge
e forms a chord of C where C has length greater than four, then one of the cycles C ′ containing e

would have a nonincident edge e′ on C such that C ′ and e′ would be homeomorphic to G1,1. If C

has length four or less, then G is a subgraph of K4. For C to be maximal, no pair of edges can be
incident to C and share a common endpoint. Hence, all the edges not in C are degree-1 vertices
forming a circular caterpillar. ⊓⊔

Next we show that the graphs PSEFE from Lemma 9 that can have a SEFE with any planar
graph, do indeed have one with the next theorem.

Theorem 10 Pair G1 ∈ PSEFE, G2 ∈ P on n vertices have a SEFE computable in O(n2 lg n) time.

Proof. Frati [10] gave an algorithm using the dual of the graph for a forest and a planar graph
without bounding the time complexity. Our algorithm is based on finding Euclidean shortest paths
in the plane with a set of line segments incident only at endpoints as potential obstacles.

Let G1 ∈ PSEFE and G2 ∈ P. First, we draw G2 in O(n) time. We can find an embedding of G2

in O(n) time [3] and then draw it on an (n − 2) × (n − 2) grid in O(n) time [4]. Some of the edges
of G1 are then drawn simultaneously with G2. We then ignore the edges in G2 \ G1 and draw the
remainder of G1. In the case of a forest or circular caterpillar in which the cycle is not yet drawn,
there is a single face giving some shortest Euclidean path between two vertex locations. In the case
of the circular caterpillar with the cycle already drawn, the remaining points either lie interior or
exterior to the cycle. All edges are incident with the cycle, so a Euclidean path always exists from
the cycle vertices to the degree-1 vertices. Finally, for a K4 there is a cycle of length 4 in which all
vertices lie on the cycle. We first draw this cycle if not already drawn. The other two edges, which
form chords, can always be drawn since one can be drawn inside and the other outside the cycle.

Using the line segments of the edges of G1 already drawn as obstacles, we proceed to add edges
using an optimal Euclidean shortest path algorithm [13] that runs in O(n lg n) for each step. For
each step i, a new bend bi,k is either caused by an endpoint pk of an original line segment or a bend
bj,k from a previous step 2 ≤ j < i. However, for each such bend bi,k only at most two points in the
set {pk, b2,k, . . . bi−1,k} (the inner and outer ones) can contribute since bends added more recently
hide bends caused by the original point pk in previous steps. Hence, each time we add edges, at
most O(n) new bends are being introduced giving an overall running time of O(n2 lg n). ⊓⊔
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4 Characterizing Simultaneous Embeddings with Outerplanar Graphs

We next determine which outerplanar graphs always have a SEFE with any other outerplanar graph
and produce simultaneous drawings when possible. A K3-cycle is a biconnected outerplanar graph
such that the endpoints of every chord are at a distance 2 from each other along the outerface. A
cubic graph has maximum degree 3. Let O be the set of outerplanar graphs and OSEFE ⊂ O be
the set of outerplanar graphs that consist of a single K3-cycle or have a cubic K3-cycle for each
biconnected subgraph.

Lemma 11 The set OSEFE are the only outerplanar graphs that can always have a SEFE with any
outerplanar graph.

Proof. Let G1 ∈ OSEFE and G2 ∈ O. Of the 16 pairs from Theorem 8, only both graphs of pairs
(G7,1, G7,2) and (G13,1, G13,2) are outerplanar. Both G13,1 and G13,2 have an outerface of length six
with one chord forming two C4’s, which we call a bi-C4; see Fig. 7(b). The non-alternating edges of
G7,1 and G7,2 each form a K3-cycle with an outerface of length five and two chords, both incident
creating a degree-4 vertex, which we call a tri-K3; see Fig. 7(c). Hence, by Theorem 8 any pair of
outerplanar graphs with a SEFE cannot each have subgraphs both isomorphic to G13,1, a bi-C4, or
G7,1, a tri-K3 (with an extra edge with at most one endpoint in the tri-K3). Clearly, a K3-cycle
cannot contain either of these since there is at most one C4 and no extra edges. If each biconnected
component is only a cubic K3-cycle, it has at most one C4 and no degree-4 vertices so G2 cannot
contain either a bi-C4 or a tri-K3.

Next we show that all graphs in O \OSEFE have a subgraph homeomorphic to G7,1 or G13,1. If
G is biconnected, all the vertices must lie along a single cycle C along the outerface. If each chord
(u, v) has endpoints u and v at a distance 2 along the outerface, then G is a K3-cycle. Otherwise, the
vertices u and v must have at least two immediate vertices along the outerface in both directions,
so that C and edge (u, v) are homeomorphic to G13,1.

Otherwise, G is not biconnected. If G has no biconnected components, then G is a tree in OSEFE.
So G must have at least one biconnected component H with cycle C for its outerface. If C has no
chords, then it is trivially a cubic K3-cycle. If C has one chord such that its endpoints (u, v) are
separated by more than one vertex along C, then C and (u, v) are isomorphic to G13,1. Otherwise,
they are separated by one vertex w and are at a distance 2 along C, which means H is a K3-cycle.
If H has two incident chords (u, v) and (u,w), then C and the two chords and another edge not
in H are homeomorphic (which must exist since G is not biconnected) to G7,1. If all chords are
nonincident, then H has maximum degree 3 and H is a cubic K3-cycle. Otherwise, it has one chord
(u, v) separated by at least two vertices in both directions so that C and (u, v) are G13,1. ⊓⊔

We show all the outerplanar graphs OSEFE of Lemma 11 have a SEFE with any outerplanar
graph with the next theorem.

Theorem 12 Pair G1 ∈ OSEFE, G2 ∈ O on n vertices have a SEFE computable in O(n2 lg n) time.

Proof. We augment the drawing algorithm from Theorem 10 for the case of outerplanar graphs.
However, we need to be careful when closing cycles along the outerface so as not to include any
vertices of any other biconnected component. By Lemma 11, each biconnected component is a
K3-cycle. First we draw G2 in O(n) time as before and ignore edges in G2 \G1. We transverse the
biconnected components in a depth first order. For each biconnected component B that has not
been drawn, we proceed along the outerface of B by drawing each edge (u, v) with a Euclidean path
(with at least a distance ε from any point causing a bend) that proceeds in a clockwise direction
except for the last edge closing the cycle of the outerface. For that last edge (u, v) we must close
the cycle without enclosing any other points of any other biconnected component. We follow the
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(a) G1 (b) G2

(c) Planar drawing of G1 with fixed edgess using vertex locations of G2.

Fig. 8. SEFE of two outerplanar graphs. The edges of the four biconnected component of G1 are colored distinctly.
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boundary of B from u to v in the clockwise direction. Any interior chord (x, z) not already drawn
must have a common neighbor y, such that the chord can follow the paths from (x, y) and (y, z)
within a distance ε on the interior of the cycle. The overall running time remains O(n2 lg n).

See Fig. 8 for a non-trivial example of this algorithm. Please note that the bends are placed
at a fixed distance apart (for readability) which distorts the drawing from the algorithm. The
purple cycle 1--2--3--4--5--6--1 of the first biconnected component was drawn first, and then the
black cycle 1--7--8--14--15--21--1 of the interior biconnected component was drawn second. Then the
third biconnected component with the green cycle 8--9--10--11--12--13--8 was drawn next leaving
the blue cycle 15--16--17--18--19--20--15 for last. ⊓⊔

5 Deciding Simultaneous Embeddings for Outerplanar Graphs

Theorem 13 Deciding if a pair of outerplanar graphs have a SEFE can be done in O(n2) time.

Proof. We spend O(n) time reducing the pair by spending O(n) time removing extra edges along
degree-2 paths in the union and unsubdividing accordingly. Let G1, G2 ∈ O. By Lemma 11 and
Theorem 12, we know that the pairs (G13,1, G13,2) and (G7,1, G7,2) determine which pairs of out-
erplanar graphs do not have a SEFE. All we need to do is examine all possible pairs of subgraphs
whose union is homeomorphic to K5 or K3,3 to see if any pair meets the appropriate conditions,
which determines whether G1 and G2 have a SEFE.

For the pair G13, the intersection is a tree on six vertices with a pair of adjacent degree-3 vertices;
see Fig. 7(b). So we examine each of the O(n) chords (u, v) in each biconnected component in G1

with outerface cycle C in which u and v are separated by at least two vertices in each direction
along C. Let {x, y} and {w, z} be the vertices adjacent to u and v, where (x, u, y, w, v, z) are their
ordering along C. Then if all six vertices are in the same biconnected component of G2 (which we
can test in constant time with a preprocessing step that takes O(n) time to find all biconnected
components of each graph in which we number all vertices in clockwise order for each biconnected
component), and (y, u, x,w, v, z) is the order along the cycle in G2 (that can also be determined in
constant time), then we have the pair being homeomorphic to (G13,1, G13,2). Hence, we can find all
possible pairs that can form (G13,1, G13,2) in O(n) time.

For the pair (G7,1, G7,2), the intersection is a K3, {(u, v), (v,w), (u,w)}, with two edges (x, v) and
(v, y) incident to v; see Fig. 7(c). For each vertex v with degree-4 or greater along each biconnected
component in G1 with outerface cycle C, we pick (u, v) and (v,w) to be the chords in which v and
w have the greatest separation along the C in the intersection, and take x and y to be the vertices
adjacent to v, where (x, v, y, w, u) are their order along C. We need to perform two checks with
G2. First, we check that all five are in the same biconnected component in G2 with cycle order
(y, v, x,w, u) (again done in constant time with an O(n) time preprocessing step). Second, we check
that x and y are connected to each other in the union minus the vertices {u, v,w, x, y}. This is also
done in O(n) time. Thus, we find all possible pairs forming (G7,1, G7,2) in O(n2) time. ⊓⊔

6 Conclusion

We gave a necessary condition for two graphs to have a SEFE. Using this condition we characterized
which graphs always have a SEFE with any planar graphs as well as which outerplanar graphs always
have a SEFE with any outerplanar graph. This allowed us to give a polynomial time algorithm for
deciding if a pair of outerplanar graphs has a SEFE. Finding an analogous polynomial time algorithm
for deciding if a pair of planar graphs has a SEFE remains open.
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14. C. Kuratowski. Sur les problèmes des courbes gauches en Topologie. Fundamenta Mathematicae, 15:271–283,

1930.
15. J. Pach and R. Wenger. Embedding planar graphs at fixed vertex locations. In Proceedings of the 6th Symposium

on Graph Drawing, pages 263–274, 1998.

11


