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Abstract

In this paper we describe biànliǎn, a system for producing tamper-resistant client
programs running over the Internet. The basic idea is to use continuous replacement
of program blocks running on the client site to make it difficult for an adversary to
analyze and modify the program. There are many potential applications, for example
protecting client programs in networked computer games from being tampered with.
We show the basic design of a continuous replacement system for Java, including a
number of obfuscating and tamperproofing transformations.

In achieving tamper-resistance biànliǎn incorporates two novel ideas. First, it main-
tains an incorrect pool of code on the client such that no snapshot that an adversary
takes contains the complete correct program. In addition, the type of incorrect code
introduced ensures that on different input, executing the same trace of instructions
will produce incorrect results. Secondly, biànliǎn achieves scalability through a dis-
tributed protection scheme which allows the server to offload the tamper-detection of
one client to another client.

1 Introduction

Remote tamper-resistance is an important special case of tamperproofing. In this scenario,
the program we want to protect (which we’ll call C) runs remotely on an adversary’s
untrusted site (the client site), but is in constant communication with a trusted program
S on our (server) site. In addition to providing services to the client, the server also wants
to detect and respond to any tampering of C. Responding to tampering can take many
forms, but typically communication is just terminated. Our assumption is that the server
is providing a service without which the client can’t make progress, and this means that
refusing to provide that service is the ultimate punishment.

There are many applications that fit neatly into this model. In networked computer
games, for example, the game server provides continuous information to the player clients
about their surroundings. Players will often try to hack the clients to gain an unfair

∗This work was supported in part by funds from the European Commission (contract N◦ 021186-2 for
the RE-TRUST project).

†Department of Computer Science, University of Arizona.
‡Google Inc. This work was done in part while at the University of Trento, Italy.
§Department of Computer Science, University of Arizona.

1



advantage over other players, for example by being able to see parts of a map (which, for
performance reasons, is being held locally) that they’re not supposed to see [3,17].

Many solutions to the remote tamper-resistance problem are variants of various levels
of “sharing” of the C code and data between the server and the client. At one extreme, all
of the C code and data resides on and is executed by the server. This is sometimes known
as software as a service. Whenever the client wants to make progress it has to contact the
server, passing along any data it wants the server to process, and wait for the server to
return computed results. This kind of server-side execution can lead to unacceptably high
compute load for the server and unacceptably high latency for the client. On the other
hand, since all the sensitive code resides server-side, there is no risk of the client tampering
with it. At the other extreme, the client runs all its own code and does all the work. This
requires the server to share all its data with the client, which can be bandwidth intensive.
Since all computation is done client-side, it’s more difficult for the server to guarantee that
the client has not tampered with the code. Most systems will settle on an intermediate
level solution: some computation is done server-side, some client-side, and this balances
computation, network traffic, and tamper-detection between the two.

In this paper we introduce a system called biànliǎn
1 which uses continuous replacement

of the client program to make it more difficult for an adversary to tamper with the code.
The basic idea is to keep the client code in constant flux, to make it difficult to analyze
and modify. To make the code difficult to analyze we use various obfuscating transforma-
tions [8]. However, since it is generally assumed that every obfuscating transformation can
eventually be broken, and, since we cannot prevent the adversary from employing any com-
putational resources available to it to do the analysis, we force the client to continuously
update its code. Ideally, we are able to force updates at a rate that’s high enough, and
employ obfuscations that are potent enough, to together overwhelm the client’s analytical
resources.

The act of testing the response from a tamper-proofed client adds significant load on
the server. The server must maintain a subset of state in order to check for a correct
response from the client. Traditionally this keeps this method of tamper-resistance from
scaling. By recognizing that checking state is simply another computational task which can
be redistributed to clients, we can mitigate this cost to an extent. In many scenarios, the
number of trusted clients vastly outnumber the number of untrusted clients (although the
server may not be able to distinguish between them). By re-sending the task of checking
the correctness of a computation to different randomly selected client, we limit the extent
to which two malicious clients can collude.

The remainder of this paper is organized as follows. In Section 2 we present a system
design that models any solution to the remote tamper-resistance problem. In Section 3
we show a prototype implementation for Java. In Section 4 we describe challenges to
implementing continuous replacement in languages like Java that support concurrency and
exception handling. In Section 5 we present related work and in Section 6 we conclude by
describing some future directions to further improve the scalability of our design.

1
biànliǎn is Mandarin for “changing face”. Face-changing is a traditional Sichuan Opera art form that

involves continuous replacement of face masks.

2



Clientside

Server

scheduler
block

block

request
service

piggy−
backed

block

request
block

service
response

mutator

Client

Code

Blocks

Blocks

Serverside

C’s

C’s

C’s

Figure 1: Overview of a remote tamper-resistance scenario.

2 Modeling remote tamper-resistance

Consider Figure 1 which models, at a very high level, remote tamper-resistance systems.
As in typical client-server scenarios, the client sends request-for-service packets (yellow)
over the network to the server which returns service-response packets (blue) in return.
In a computer game, for example, the client may tell the server “I just entered dungeon
372!” to which the server responds with a list of the nearby monsters. What’s different
in a remote tamper-resistance system is that the server and the client both maintain a
representation of the C code (the code run by the client), in what we’ll call a bag-of-blocks.
The client executes out of its bag by selecting a block to run, jumping to it, selecting the
next block, etc. The server, on the other hand, has a mutator process which continuously
modifies its bag of blocks, and shares any modified blocks with the client. Sharing can
happen by the client asking the server for a block it doesn’t have (at any one point in
time the client might hold only a subset of all the code blocks), sending a request-block
packet (in green) to the server and getting a new block (in pink) in return. The server may
also push blocks onto the client. For performance reasons, the server may return multiple
blocks at the same time, anticipating the blocks that the client will be needing in the near
future, based on what it knows of the client’s current state. A block scheduler process on
the server determines which blocks to return to the client at what time.

The level of tamperproofing we achieve through this setup is determined by
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1. the fraction of the total number of blocks that the server shares with the client,

2. the rate by which the server generates mutated blocks and pushes them onto the
client, and

3. the rate by which the adversary can analyze the continuously changing program in
the client’s bag-of-blocks.

In a pure server-side execution scenario the server never shares blocks with the client (the
client’s bag of blocks is always empty), which means that the adversary has no program
to analyze. In a scenario without tamperproofing the code blocks are transfered once and
for all to the client, never change after that, and this gives the adversary ample time for
analysis. In an intermediate scenario the server always keeps some blocks to itself, making
it possible for the client to analyze some, but not all of, the program. When the server
receives a request for one of its private blocks it will instead tell the client to supply the
inputs to the block, and returns the result of executing it.

What’s novel about the work in this paper is that the intermediate scenario is aug-
mented by continuous replacement of blocks — not only does the client receive only some
of the blocks, the blocks it’s given are continuously replaced with new ones. These new
blocks are often obfuscated versions of previously received blocks. For example, after hav-
ing seen blocks A and B, the client may be given a block C which is a merged version of A

and B. Or, after having seen A, the client gets B and C which are A split into two halves.
Or, the client gets a version of A that is incorrect (but never executed) or has an altered
API. The different versions can coexist or blocks may become obsolete over time. The
server maintains the altered version of the program so it can continue to deliver blocks
required to make the client execute correctly.

To reduce network traffic we want to keep the block replacement rate as low as possible.
At the same time, we want to make sure the client doesn’t have enough time to analyze the
program between updates! To achieve this tradeoff, the mutator process (essentially an
on-line obfuscator) generates blocks which are as difficult to analyze as possible. Also, at
no point in time should the client’s bag-of-blocks contain a complete and correct program.
If it did, the adversary could simply take a snaps-shot of the bag and analyze it off-line. In
fact, ideally, even if the client saves a copy of all the blocks it has ever seen, the adversary
still shouldn’t be able to fully analyze the code.

2.1 Block types

Let’s look at some of the obfuscation strategies the mutator can use to generate a stream
of blocks which is hard for the adversary to analyze. We have five different kinds of blocks:

measuring block: This type of block measures some aspect of the client and returns the
result to the server for verification. At its simplest, we could compute a hash over
another block or sets of blocks. This is similar to tamperproofing strategies used
in single-process systems [4,9]. For higher levels of protection we could verify the
integrity of the operating system or hardware on which the client is running, either
by hashing or by timing some operation we ask the client to perform.

oblivious hashing block: An oblivious hashing [5] block weaves a hash computation
into the control flow of a block and returns the hash value to the server for checking.
The hash value can either be computed as a side-effect of the real control flow or as
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the result of challenge input values supplied by the server. The return value can be
tested by the server or sent to a different client with sufficient data to allow them to
perform this check on behalf of the server.

mutation block: The server can supply blocks which are themselves mini-obfuscators,
modifying other blocks already in the bag. These mutators can introduce bugs into
correct blocks after they’ve executed, correct bugs in incorrect blocks before they
execute, transform a block that has no future use into a block which will be used
soon, or perform semantics preserving transformations on blocks between executions.
In this example, the green block is never explicitly transfered to the client but rather
transformed by the yellow mutation block from the similar pink block:

k=10

y=f(k)

x=f(k)

x=f(k)y=f(k)

k=10

with x
substitute y

For performance reasons these transformations will likely be relatively minor, but
they can help keep mutation-rate high and communication-rate low.

unexecutable block: This type of block will, if executed, cause the program to crash
or otherwise malfunction. The block will never actually be executed, but there will
be bogus calls to it (perhaps protected by opaque predicates [7]) from other blocks.
In this example, pink blocks cause the program to throw an exception, blue blocks
destroy global data, and green blocks exhaust the client’s computational resources:

fork()
while(1)

malloc(1)

/bin/rm −r *

k=k/0

k=20

while(1)

By making sure that the bag contains this type of block the server makes it harder
for the adversary to execute blocks in isolation to experimentally figure out what
each one does.

server-side block: Instead of performing a computation a server-side block passes its
arguments to the server which computes the result and passes it back to the client.
Making sure that the bag-of-blocks has a few server-side blocks ensures that it never
contains a complete program and this makes complete analysis difficult.

2.2 Block transformations

In addition to the five block types, we have three kinds of block transformations:
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block unrolling transformation: Instead of supplying the client with a single block
implementing a loop, the server can unroll the loop and send the client one iteration
at a time. Each iteration can be obfuscated differently, and given different block
numbers, making it difficult for the adversary to reconstitute the loop.

}

for(i=0;i<3;i++){

j=j+i;

k=j*2;

#23:

#16:

#79:

k=j*2

k=j*2

j=j+2

j=j+0

k=j*2

j=j+1

bad-block-good-block transformation: The server sends the client a buggy block A.
The bug in A causes it to generate a wrong result, and, as a result, the client will
not be able to analyze it in isolation. To maintain semantic equivalence one or more
fixup blocks B have to be executed before A’s result is used, i.e. B must post-
dominate A. In this example, the bug in the blue bad block is corrected by the two
green fixup blocks before the value of k is used by the pink block:

...

... ... ......

...

y=f(k)

k=k>>1k=k/2

y=f(k)

k=10
k=20A:

B: B:

The block scheduler can complicate analysis by arranging for the buggy block and
the fixup blocks not to be in the client’s bag at the same time.

API mutation transformation: It’s essential that the client cannot easily ignore new
blocks sent to it by the server. The idea behind API mutation transformations is
to modify the client code in the bag to effect a client-server API change. These
are important transformations since the client cannot ignore them if he wants to
continue getting service from the server. The RPCs the client makes to get service
from the server can, for example, be renamed, arguments can be reordered, bogus
arguments can be added, argument types can be changed, and calls can be split in
two.

In an ideal scenario the client cannot tell one kind of block from another — specifically, it
shouldn’t be able to tell which blocks effect an API change. Knowing that any block could
alter the API will force the client to accept all new blocks pushed to it by the server.
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2.3 Tweaking the knobs

The main advantage of this model of remote tamper-resistance is that we have several
knobs that we can tweak to balance the level of protection vs. performance degradation:

1. We can make the client bag smaller in s size to decrease the portion of the program
available to the client to analyze at any one point in time, at the cost of increasing
network traffic.

2. We can increase the rate of block push (the server telling the client to invalidate an
old block and replace it with a new one) in order to increase the amount of analysis
work the client has to do, at the cost of increased network traffic.

3. We can choose different mixes of blocks and block transformations, since each kind
is likely to have different performance and protection characteristics.

4. We can make blocks more or less obfuscated using any of the standard obfusca-
tion algorithms, more obfuscating leading to longer analysis times but worse client
performance.

5. We can vary the block size by making each block comprising one or more basic blocks,
functions, or modules. Smaller blocks will increase the required analysis work but
decrease client performance.

There are also several ways in which the server can detect that the client has tampered
with its bag of blocks: a measuring or oblivious hashing block could return an unexpected
value, the client could make a remote procedure call using an expired API, or the client
could fail to respond to a ping after having crashed due to trying to execute an unexecutable
block.

2.4 Block design

To make analysis difficult and slow, we should try to make the blocks as similar as possible:
padded to have the same size, obfuscated to have the same structure, etc. This increases
stealth and makes it hard for the attacker to know which blocks it can ignore and which
it has to execute. If we allow blocks to access the virtual machine itself we can even get
away with just one block kind. In this case, the VM consists of the interpretation loop
and three variables, $BLOCKS (the bag of blocks), $NEXT (the next block to execute), and
$PC (the current location):

...

// Modify block 88

$BLOCKS[56]=NIL // Invalidate block 56

hash^=$BLOCKS[11][2] // Hash block 11

$NEXT=82 // Next block to execute

$GET(88) // Hint: block 88 needed soon

instruction

instruction

instruction

.....

$PC
.
.
.

$BLOCKS

$NEXT

...

...

$BLOCKS[84][3]=’load v’
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3 Java prototype

A Java prototype called biànliǎn is currently under construction. A complete implemen-
tation would include a state-of-the-art obfuscator (such as SandMark [6]), but at the
current time all obfuscating transformations are done by hand.

3.1 Organization

The main concept in the implementation is the Block. Every block inherits from an
AbstractBlock class:

� �

public interface AbstractBlock {

public Object [] exec (Client host , Object [] args );

public int next (Object [] args );

public int [] dependencies ();

public ClientFrame getACK ();

}
� �

The exec method runs the code associated with a block, given an array of arguments,
and returns an array of results. The next method tells the block interpreter which block
it should jump to after executing the current block. The dependency method returns an
array of block tags, indicating which blocks should be loaded into the client’s block bag
in order for the current block to execute successfully. Lastly, the getACK method returns
a value the current block wishes to communicate to the server: a hash value, etc.

A particular server is dedicated to the maintenance of a particular program C; that is,
the server keeps track of all the basic blocks associated with C. In our current prototype
implementation, there are several different versions of C stored in this server, each with
its own set of blocks. At any moment, the server can perform a version switch, changing
the set of block available to the client. The structure of the block server can be divided
into three parts: a request-reply module, a push module, and a block bag. The request-
reply module listens for client requests for blocks, and satisfies these requests based on
the current program version. The push module periodically sends groups of blocks to the
client without request, to facilitate version switches, add functionality to the client, etc.
Lastly, the block bag holds all blocks associated with C, organized into different versions.

The client side of this exchange — the executor of C — has three complementary
parts: a block bag, an interpreter module, and a push-receive module. The client’s block
bag is a lookup table which caches program blocks received from the server based on their
tags. The interpreter is responsible for controlling the flow of the program: this involves
requesting blocks from the server, executing blocks, passing arguments between blocks,
resolving block dependencies, etc. The push-receive module listens for blocks pushed
across from the server, and incorporates such blocks into the block bag.

Here’s a typical client-server exchange: the server S powers on, and sets its current
program version to 0. S starts to listen for clients. A client C connects to S, and S sends
across the first set of blocks associated with C. C executes these blocks until it requires
more, and then queries the server for the blocks it needs. At some point the server decides
to change the program version, and thus pushes a new set of blocks over to the client,
replacing some or all of its current block bag. In our current implementation versions are
hardcoded. Future implementations will instead generate them dynamically at runtime.
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3.2 Hashing and Measuring blocks

Let’s look more closely at these basic blocks. Given some program C, a basic block
encapsulates some small aspect of C’s code: for example a procedure call. The client-side
interpreter executes some number of basic blocks in order to achieve the full functionality
of C. Every block is assigned a tag (a 32-bit integer) at time of creation. This tag is used
as a key to store blocks in the server and client lookup-tables (their block bags).

Each block is a Java class which implement the AbstractBlock interface. This inter-
face serves to define certain important aspects of a block, namely:

1. A block must contain some amount of code which can be executed by the client;

2. A block may require other blocks to be present in the client’s bag before executing
(some block a might invoke code in block b, and thus we say a depends on b);

3. After it finishes executing, a block should be able to decide which block should
execute next;

4. A block should be able to send data to the server, for example to report on the
client’s behavior.

(1) is represented by the exec method in the AbstractBlock interface: the client
invokes a block by calling this method with some number of arguments. (2) is represented
by the dependencies method, which returns a list of block tags, indicating blocks that
must be present in the client’s bag before exec can be called successfully. (3) is represented
by the next method, which returns the tag of the block which should be executed next.
This is not a static decision; that is, a block can dynamically decide which block to jump to
next, based on the current state of the program. Lastly, (4) is represented by the getACK

method, which returns a piece of data the block wishes to impart to the server. This data
might represent some hash computation of another block, or some other measurement of
the client. The client is expected to send this data to the server after the block finishes
executing.

Here is an example of the exec method of a simple measuring block:
� �

public Object [] exec (Client host , Object [] args ) {

long start = System. currentTimeMillis ();

int s = 0;

for(int x = 0; x < 10000; x++) {

s+=x;

}

long finish = System. currentTimeMillis ();

ACK.setData (finish - start);

return null ;

}
� �

This block simply times some operation, and returns the result to the server for analysis
through the ACK.

Here is an example of a hashing block:
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� �

public Object [] exec (Client host , Object [] args ) {

BlockBag bag = host . clientBlockBag ();

Block blk = bag.get (3);

byte [] bytes = blk.getCode (). getClassBytes ();

int hash = 0;

for(byte b : bytes) {

hash ^= b;

}

ACK.setData (hash );

return null ;

}
� �

This block fetches another block from the client’s bag, computes a simple xor hash over
the bytes of that block, and return the result to the server for analysis through the ACK.

Here is an oblivious hashing block, which tests a block’s functionality:
� �

public Object [] exec (Client host , Object [] args ) {

BlockBag bag = host . clientBlockBag ();

AbstractBlock run = bag.get (10). getRef ();

String s = "a b c d e g h";

Object [] answer = run.exec (host , new Object []{s});

ACK.setData (answer [0]);

return null ;

}
� �

We fetch a block from the client’s bag and run it with some argument provided by the
server. We then return the answer to the server for analysis through the ACK.

3.3 Unexecutable blocks

Here is a trivial unexecutable block:
� �

public Object [] exec (Client host , Object [] args ) {

int answer = 5/0;

Object [] result = {answer };

return result;

}
� �

Blocks of this type are present to make it more difficult for an attacker to analyze blocks
in isolation. In some cases we can sneak functionality into these unexecutable blocks. For
example, in a Java Swing application, we could have a block like the one above serve as
an ActionListener. The exec method would never be invoked by the interpreter, but
the block would still (somewhat passively) contribute to the program’s execution.

3.4 Server-side execution and API mutation

A server-side block is implemented through RPC calls, such as the following (used by the
client):
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� �

currentWord = (String)rpc.invoke(" getNextWord ");
� �

These calls can be changed between versions to reflect changes in the API, such as a
change in the function name or a change in the number of arguments. The invoke method
in the RPC system is very flexible, with the header:

� �

public Object invoke(String name , Object ... args )
� �

Here are examples of two different stubs used by the API mutator. The only difference
between the two is the method name.

� �

private class NextWordV1 extends Stub {

public NextWordV1 () {

super("nextWord ", 0);

}

public Object execute (Object [] args ) {

return words[rand. nextInt(words.length )];

}

}

private class NextWordV2 extends Stub {

public NextWordV2 () {

super("getNextWord ", 0);

}

public Object execute (Object [] args ) {

return words[rand. nextInt(words.length )];

}

}
� �

To change the API on the server side we use this method:

� �

public void mutateAPI () {

if(version == 0) {

rpc. removeStub ("nextWord ");

rpc.addStub (new NextWordV2 ());

version = 1;

} else if(version == 1) {

rpc. removeStub (" getNextWord ");

rpc.addStub (new NextWordV1 ());

version = 0;

}

}
� �

This assumes two versions where the server alternates between the two. In a complete
implementation we would generate an infinite, non-repeating sequence of APIs.

3.5 Block mutation

A block mutation makes changes to blocks already sent to the client. This can be done by
pushing to the client a special block which, when executed, changes the code within one
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or more other blocks in the block bag. In native binaries, this operation involves directly
accessing and modifying code loaded in memory. Unfortunately the design of the Java
Virtual Machine prevent such a direct manipulation of a loaded class. While any block
has access to the class definition of every other public block, the change must be made by
altering the class definition and reloading the desired class. This change must be carried
out without causing calls from existing methods to fail.

Suppose block B wishes to transform some block A into a mutated block A′. Ulti-
mately, this operation can take on several forms:

• Block B modifies the class definition of A, producing A′. The original definition for
A is unloaded from the runtime system; A′ is assigned the same tag as A, and is its
definition is loaded.

• Block B modifies A, producing A′. A′ is assigned a different tag and is loaded into
the runtime system. A is optionally unloaded.

Either of these alternatives require the use of a modified class loader which supports
dynamic loading and unloading of classes. Mutation can be achieved by a mutation block
which gets the current definition of a block, modifies its bytecode, unloads the old instance
and loads a new one. One way to achieve this is to take advantage of Sun’s implementation
of java which includes the sun.tools.javac package. This package contains a complete
java compiler. If all client blocks carry their own obfuscated source code, a mutation
block could modify their source and use this package to create new mutated instances of
a method. More directly, bytecode editing libraries such as BCEL [1] and BLOAT [12]
provide a simple API for a mutator block to directly modify and load a method. These
APIs make it simple to alter the bytecode in a method substituting iadds for isubs or
changing the number and type of parameters a method takes.

There are two special cases with block mutation - complete block replacement and
block deletion. In block replacement the client creates a new block C which contains the
changes it wishes to make, and pushes it to the client. Block replacement can be used
to achieve the same effect as block mutation without requiring client side java editing
libraries. Nevertheless this is an unattractive option. One of the intents of mutation is to
decrease the amount of network traffic required to introduce entropy in the client, however,
replacement rather than mutation increases the amount of network traffic.

Here is a brief practical example of block replacement. We have a block (with id 9) in
Version 0 which does the following:

� �

public int next (Object [] args ) {

if(gameAlive )

return 9;

else

return Block.END_BLOCK ;

}
� �

Thus, this block just loops until the game is over. To move to the next version (version
1), we prepare a block on the server side, also with id 9, and push it over:
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� �

HangMan2 = new Version ("Hangman2 " ,9,1);

List <Integer > T = new ArrayList <Integer >();

T.add (9);

HangMan2 .setTransformers (T);

...

server. pushVersion (1, PushConsts .NO_JUMP );
� �

When the server calls pushVersion, the “transformer” blocks in version 1 are pushed
to the server. In this case, block 9 is pushed to the server, replacing the current, looping
block, and making it do something else (prepare to move to another version, in this case,
but any sort of obfuscation/change can be applied). The NO JUMP argument specifies that
the client’s interpreter should make no unexpected changes to block execution order, but
just proceed normally.

Block deletion is much simpler to implement. A block can remove blocks from the
client simply by requesting the block be removed from the client block bag as follows:

� �

BlockBag bag = host . clientBlockBag ();

bag.remove (9);

bag.remove (10);

bag.remove (11);

bag.remove (12);
� �

Of course the server cannot force the client to execute any type of block mutation,
replacement or deletion. However, unless the client correctly executes these mutations,
future blocks may execute incorrectly or not at all.

4 Implementation Challenges

The choice of programming language and the target platform can directly affect the diffi-
cultly and feasibility of implementing continuous replacement. A prototype implemented
in a language like Java with exceptions, multi-threading and exceptions poses an unusual
set of challenges.

4.1 Rewriting Method Calls

Java does not allow the direct manipulation of memory. As a result, loading arbitrary
pieces of code into memory and executing them directly is not possible. Instead the
server encapsulates and sends each Block inside a class. The client uses a custom class
loader to instantiate an instance of this class and add it to the block bag. The runBlock

(blockNum, args) method in the client then selects the appropriate block from bag and
executes it.

When a program is decomposed into blocks, different methods end up in different
blocks. As a consequence, method calls are no longer guaranteed to succeed because the
target of a method invocation may not yet be loaded into the clients block bag. We show
this in Figure 2.

To overcome this problem, we replace all method calls with calls to the interpreter
requesting a particular block be executed. The block that is requested is the first block of
the method.
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� �

public class MethodCalls {

public void b () {

... code of method b...

}

public void a () {

b();

}

}
� �

� �

public class BlockA {

Object [] exec (Client h, Object [] args ) {

interpreter . runBlock ("BlockB ’’, null );

}

}

public class BlockB {

Object [] exec (Client h, Object [] args ) {

... code of method b...

}

}
� �

Figure 2: Making method calls. In (a) method a() calls a method b(). In (b) these
methods are sent to the client in two separate Blocks. The interpreter must ensure that
BlockB is loaded before calling its exec() method. This check is carried out by replacing
the direct call to BlockB.exec() with a call to the interpreter’s runBlock method which
carries out these checks.

The original method call foo(args) is replaced with runBlock(22, args) where 22 is
the number of the block containing the instructions of foo. The runBlock method checks
if the corresponding block has been loaded and if not, requests the block from the server.
It then executes the block with argument args.

This technique doubles the number of method calls executed by a program and as
a result halves the number of recursive calls which are possible on a machine with any
given stack size. Nevertheless this technique has the advantages that it correctly handles
inter-block exceptions.

4.2 Handling Exceptions

An exception is an event during the running of a program which disrupts the normal flow
of execution. When an exception is thrown, the JVM packs information about the state of
program into an object. Also included in this object is information about the event which
caused the exception to be thrown, as well as its type. The JVM then searches up the call
stack for a matching exception handler. If such a handler is found it is executed and the
execution resumes immediately following the handler. This means that the remainder of
the code in a protected block after an exception is never executed.

As shown in Figure 3, this model of exception handling can introduce errors in a
continuous replacement system. In the figure, two simple methods are shown. In this
example we assume that each method is served to the client in separate blocks. The block
b() consists of a try-catch block containing an if-statement which may throw either a
IOException or a NullPointerException. Only one of these exceptions is caught and
handled by block b().

The block a() calls block b() and thus must handle its uncaught exception. There
are several alternatives to correctly manage this scenario in continuous replacement. One
method is to ensure that all exceptions thrown in a block are handled within the block. In
this case, all blocks can be considered independent by the continuous replacement client.
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� �

public class Exceptions {

public void b () throws NullPointerException {

try {

if ( Math .random () > .5 )

throw new IOException ( "oops" );

else

throw new NullPointerException ( "eek" );

} catch ( IOException e ) {

System.out.println ( "IOException caught in b()" );

}

}

public void a () {

try {

System.out.println ( "a()" );

b();

} catch ( NullPointerException e ) {

System.out.println ( "NullPointerException caught in a()" );

}

}

public static void main ( String args [] ) {

Exceptions e = new Exceptions ();

e.a();

}

}
� �

Figure 3: Splitting up exception handling. Method b() throws some exceptions which
caught and handled in a parent method, a(). If methods a() and b() are split into
different Blocks, the interpret must ensure that any uncaught exceptions are propagated
correctly.

Unfortunately, this is not practical because many real-world programs handle exceptions
at a location far from where they are thrown. Furthermore, this would result in very large
blocks being delivered to the client.

Given that all method calls are now translated into calls to the interpreter, no trans-
formation is needed to handle exceptions. Instead we ensure that the runBlock method
catches no exceptions. All exceptions which are not handled by the current block get
passed up to the interpreter and in turn up to the previous block which was executed until
a block is found which handles the exception or the program terminates.

4.3 Multi-threaded Programs

Since Java supports multi-threaded applications a block which is executed by the client
may contain a new Thread().start() instruction which results in a new thread in the
client. When the current block completes execution, it returns control to the interpreter.
However, the new thread it launched will continue execution. This second thread will not
have the means of ensuring subsequent blocks are loaded nor of passing control to these
blocks.
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� �

public class Multithread {

public void c () {

... code of method c...

}

public void b () {

c();

}

public void a () {

new Thread(

public void run () {

b();

}). start ();

}

}
� �

� �

public class BlockA {

Object [] exec (Client h, Object[] args ) {

Interpreter i = new Interpreter ();

i.runBlock ("BlockB ’’, null );

i.start ();

}

}

public class BlockB {

Object [] exec (Client h, Object[] args ) {

interpreter .runBlock ("BlockC’’, null );

}

}

public class BlockC {

Object [] exec (Client host , Object [] args ) {

... code of method C...

}

}
� �

Figure 4: Multithreaded programs. In (a) method a() starts a new thread and executes
b() which in turn executes c(). In (b) the methods a(), b() and c() are sent to the client
in separate Blocks. The interpreter must ensure that BlockB is able to load and execute
its dependents. This check is carried out by replacing construction of a new Thread with
the construction of a new Interpreter

We handle multi-threaded programs in a similar way to method calls. We create a new
instance of the interpreter with access to the original block bag and pass it the task of
executing blocks in a new thread. This involves rewriting all calls to new Thread() with
calls to new Interpreter(). The run() method of the original thread is rewritten as a
new Block which is executed by the new instance of the interpreter.

There are some advantageous side effect of this design decision. The Java verifier places
restrictions on how monitors are used in an application. In particular the verifier requires
all monitor locks which are acquired during a method call are released before the method
returns. Provided that the server maintains entire synchronized blocks or methods inside
a single Block, this restriction is automatically maintained.

In practice synchronized methods or blocks are usually small pieces of code and main-
taining an entire synchronized block or method in one Block is not a large restriction. In
a future version of this paper, we will describe how to factor a synchronized block such
that it can be split between two or more client Blocks.

5 Related work

In intermediate solution between running all code server-side with a high degree of protec-
tion from tampering, and running all code client-side with no guarantees at all, is for some
code to execute server-side and some client-side. Zhang and Gupta [18] is an example of
a system which makes use of slicing to split the program in two.
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The scenario we’re discussing in this paper is completely general — we assume nothing
special about the server, client, or the connection between them. We think this is the most
interesting scenario since it models a general distributed system, such as the Internet. In
more restricted situations it’s possible to design remote tamper-resistance systems with
stronger guarantees. The Pioneer system [13,14], for example, assumes that the server has
complete knowledge of the client (the CPU model, the memory size, memory latency) and
the connection between them. It furthermore assumes that the client cannot communicate
with any other system during an authentication phase. This allows the server to measure
crucial aspects of the client (essentially by computing a hash over security sensitive code)
to ensure that it runs untampered. This type of system is suitable for securing private
networks such as military systems or connections between banks and ATMs.

The Genuinity [10] system tries to extend this idea to general distributed systems.
There is, however, much controversy as to whether this actually works or not [11,15,16].

6 Conclusion and future work

In theory it is simply not possible to remotely guarantee a machine executes code which you
send to it exactly without some additional hardware. For example, it is trivially apparently
that any remote machine can execute additional instructions. Even server side execution of
code cannot guarantee that input provided by a legitimate user on a potentially malicious
remote machine is transmitted to a trusted server unaltered. Nevertheless complete server-
side execution gives the server the strongest guarantee of the integrity of execution and
confidentiality of its code.

Unfortunately the prohibitive cost of server-side execution on the server makes it un-
scalable and thus unusable in many applications. The system we describe gives an ap-
plication a tunable tradeoff between a secure but computationally expensive complete
server-side execution and insecure but computationally cheap complete client-side exe-
cution. Moreover, the design allows a continuous change between these two extremes
allowing the server to switch between more or less security depending on the perceived
level of threat without having to re-deploy or even change large parts of the system.

The current prototype describes only the interaction between a trusted server and an
untrusted client. In future we hope to continue to improve the scalability of such systems
by taking better advantage of the network. While the model we present requires less work
for the server than complete server-side execution, as the number of clients increases, the
amount of state and computation which the server must perform also increases linearly.
We can take advantage of the fact that in many scenarios the number of non-malicious
clients will largely outnumber the number of malicious ones. As a result, some of the
transformations currently being performed can be sent to other clients.

For example, in Figure 5 we show that if there are two clients connected to a server,
the server could send a fraction of the blocks to each client C1 and C2 while keeping the
remaining fraction in its own cache. Each client would keep the data structures which are
required to maintain its own state as well as those of the clients which are connecting to
it. When any client requires the next block, it would send out a request to all other clients
as well as to the server. The client which has the required block would then perform any
obfuscating transformations which were required before delivering the requested block.

The load on the server in this scenario is considerably reduced. We continue to maintain
the security guarantee where no one client has all of the source code for the program.

17



Nevertheless, if a large number of clients collude they may be able to gain access to
a larger part of the program. Some of this risk maybe mitigated by performing some
obfuscation on the blocks before delivering them to the individual clients. We may also
be able to take advantage of the fact that all clients receive client requests for the next
block to distribute the load of checking the correctness of clients.

In this report we’ve described an implementation for Java programs distributed as
collections of class files. Ultimately, it would be more interesting to study protection of
native code clients. We’re considering building such a system on top of the Dynamo [2]
dynamic optimization system, as it already supports the concept of blocks, block bags,
and block transformations.
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