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Abstract. Universal pointsets can be used for visualizing multiple relationships on the same set of objects or for

visualizing dynamic graph processes. Using the same point in the plane to represent the same object helps preserve

the viewer’s mental map. Small universal pointsets are highly desirable but often do not exist because of the restriction

that a given object must be mapped to a fixed point in the plane. In colored simultaneous embeddings this restriction is

relaxed, by allowing a given object to map to a subset of points in the plane. Specifically, consider a set of graphs on the

same set of n vertices partitioned into k colors. Finding a corresponding set of k-colored points in the plane in which

each vertex is mapped to a point of the same color so as to allow a straight-line plane drawing of each graph is the

problem of colored simultaneous geometric embedding. For trees, we show that there exists small universal pointsets

(1) for 3-colored caterpillars of size n, (2) for 3-colored radius-2 stars of size n+3, and (3) for 2-colored spiders of size

n. For outerplanar graphs, we show that these same universal pointsets also suffice for (1) 3-colored K3-caterpillars,

(2) 3-colored K3-stars, and (3) 2-colored fans, respectively. We also show that there exist (i) a 2-colored planar graph

and pseudo-forest, (ii) three 3-colored outerplanar graphs, (iii) four 4-colored pseudo-forests, and (iv) three 5-colored

pseudo-forests without simultaneous embeddedings.

1 Introduction

Applications in bioinformatics, social sciences, and software engineering often need to simultaneously visu-

alize a set of related graphs. For instance, in Unified Modeling Language (UML) diagrams there can be many

different relationships between the same set of entities. A given class or component can be present in many

different types of diagrams. Some diagrams depict internal structures, while others show global interactions,

while still others show a combination of both. These interactions are often complex and difficult to visualize

in a single diagram and so users need to extract information from multiple diagrams of different types.

As a result, the user has to maintain an internal mental map of the system. In order to navigate a system,

preserving the mental map of related structures that serve as landmarks in the different diagrams is vital. To

facilitate easier reconstruction of the mental map when the user examines a series of related diagrams, corre-

sponding nodes can be co-located and common edges can be drawn in the same way. To improve readability,

edge crossings within each diagram, or layer, are undesirable. However, crossings between edges of different

layers is permitted. This leads to the problem of simultaneous geometric embeddings [3], which generalizes

the notion of planarity to multiple layers.

In this paper, we only consider geometric drawings with straight-line edges. We omit the “geometric”

clarification henceforth. There are two variations of simultaneous embeddings: with and without mapping. In

the first, a 1-1 mapping between vertices of different layers is part of the input. Two corresponding vertices in

different graphs are then drawn on the same point. In the latter, each vertex of a layer can be placed at any one

of the points in the pointset, irrespective of the placement of the vertices in other layers.

The problem of colored simultaneous embedding [2] generalizes these two extremes. The input is a set

of planar graphs G1 = (V,E1), G2 = (V,E2), . . . , Gr = (V,Er) all on the same set of vertices |V | = n strictly

partitioned into k colors. That is to say V =V1∪V2∪·· ·∪Vk where Vi∩Vj = ∅ for 1≤ i < j≤ k in which the

vertices of Vi have color ci for i ∈ [1..k] in each graph G j for j ∈ [1..r].
The output is a set of points |P| ≥ n that are also strictly partitioned into k colors (in which each color

class of P is at least the size of the corresponding color class of V ) with a fixed embedding in the Euclidean

plane such that each graph G j for j ∈ [1..r] has a straight-line planar drawing where each vertex of color ci for
i ∈ [1..k] is placed on exactly one point of P also of color ci. Unless specified otherwise, |P| = n.
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The partitioning of V into k colors gives a partial mapping between graphs. If all k = n colors are used,

then it is a 1-1 mapping in which each vertex of V is mapped to precisely one point of P. If only k = 1 color

is used, then there is no mapping, and each vertex of V can be freely placed on any one point of P. This

corresponds to the problems of simultaneous embedding with and without mapping, respectively.

1.1 Previous Work

Brass et al. [3] showed that some planar pairs, such as pairs of cycles and pairs of caterpillars (removal of all

endpoints leaves a path) always admit a simultaneous embedding with mapping. They also showed that this is

not always possible with pairs of outerplanar graphs on 6 vertices, a path and a planar graph on 9 vertices, and

three paths also on 9 vertices. More recently, Kaufmann et al. [16] showed that simultaneous embedding with

mapping do not always exist even for pairs of trees. If no mapping is given, Brass et al. [3] also showed that a

planar graph and any number of outerplanar graphs share a simultaneous embedding. It is not known whether

this is possible for an arbitrary pair of planar graphs.

Simultaneous embedding is also related to universal pointsets problems, where the goal is to find a pointset

P in the Euclidean plane that allows for any number of graphs of a given class to be drawn with straight-line

edges and no crossings on P. Rosenstiehl and Tarjan [17] posed the question of whether there exists a universal

pointset of size n for all n-vertex planar graphs. The question was answered in the negative by de Fraysseix et

al. [4] who presented a set of n-vertex planar graphs that requires a pointset of size Ω(n+
√
n). For restricted

classes of n-vertex planar graphs universal pointsets of size n have been found. Gritzman et al. [14] showed

that a set of n points in general position is a universal pointset for trees and outerplanar graphs for which

Bose [1] gives efficient drawing algorithms.

For the problem of colored simultaneous embedding, Brandes et al. [2] proved that any set of 2-colored

n points in general position separable by a line in the plane forms a universal pointset of size n for any number

of 2-colored paths. This allows the simultaneous embedding of a tree or an outerplanar graph with any number

of paths on 2 colors. Brandes et al. showed there also exists a universal pointset of size n for 3-colored paths,

and provided several negative results in showing that five 5-colored paths, four 6-colored paths, three 6-colored

cycles, and three 9-colored paths do not always share a simultaneous embedding.

Relaxing the constraint on the size of the pointset allows for a way to more easily obtain near-simultaneous

embeddings, where we attempt to place corresponding vertices relatively close to one another in each drawing.

For example, if each clusters of points in the plane has a distinct color, then even if a red vertex v drawn at red

point p in G1 has moved to another red point q in G2, the movement is limited to the area covered by the red

points. This has applications in visualizing dynamic graphs, where the viewer’s mental map is preserved by

limiting the movement of the vertices [5, 13].

1.2 Our Contribution

We provide universal and near-universal pointsets for three classes of trees: (1) 3-colored caterpillars of size

n, (2) 3-colored radius-2 stars (stars, K1,k, in which each edge is subdivided at most once) of size n+ 3, in

general, and of size n+ 1 in a more restricted case, and (3) 2-colored spiders (stars in which each edge is

subdivided arbitrarily) of size n; see Fig. 1(a)–(c). We extend these three universal pointsets to accommodate

classes of outerplanar graphs in which every spanning tree is one of the above classes of trees: (1) 3-colored

K3-caterpillars (caterpillars with extra edges (u,w) and (w,v) for any cut-edge (u,v)), (2) 3-colored K3-stars

(stars with an extra edge (u,v) for any pair of leaves u and v), and (3) 2-colored fans (biconnected outerplanar

graphs in which all chords are incident to a common vertex); see Fig. 1(d)–(f).

We also show that the following sets of graphs do not always have a colored simultaneous embedding: (i) a

pseudo-forest (a graph with at most one cycle) and a planar graph on 2 colors, (ii) three outerplanar graphs on

3 colors, (iii) four pseudo-forests on 4 colors, and (iv) three pseudo-forests on 5 colors.

Note that the only previously known universal pointset for 3-colored graphs was that for paths by Brandes

et al. [2]. The three types of graphs for which we provide universal pointsets are considerably larger and

more involved than paths. Furthermore, taken together, caterpillars, radius-2 stars and degree-3 spiders form
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(a)

(c)(b) (f)(e)
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Fig. 1: Three classes of trees: (a) caterpillars, (b) radius-2 stars, and (c) spiders; and three classes of outerplanar graphs:

(d) K3-caterpillars, (e) K3-stars, and (f) fans.

the unlabeled level planar (ULP) trees, which play a role in minimum level non-planar patterns [15] and

simultaneous geometric embeddings and level planarity [8].

2 Universal Pointsets for Trees

We present universal pointsets of cardinality n+ c, where c ∈ {0,1,3} for three classes of n-vertex trees. The

first pointset for 3-colored caterpillars has size n. The second pointset for 3-colored radius-2 stars has size

n+3, in general, and size n+1 in a restricted case, so that not every point is used in every radius-2 star. The

last pointset for 2-colored spiders is easily seen to have size n+2. By using alternate embedding approaches

for roots of different colors, 2 points can be eliminated to get an optimal pointset of size n.

Caterpillars, radius-2 stars, and degree-3 spiders (with three legs) form the class of unlabeled level planar

(ULP) trees [7], which has two known practical applications. First, the question posed in [3] of whether a path

and a tree always have a simultaneous embedding with mapping remains open. Even if this cannot always be

done, the question would become for which trees this is possible. The class of ULP trees partially addresses

this more general question in that these trees are the only ones that can always be simultaneously embedded

with any monotone path. Second, the ULP trees were used in showing that the set of minimum level non-planar

(MLNP) patterns of Healy et al. [15] is incomplete [11].

2.1 Caterpillars on Three Colors

Recall that caterpillars are trees in which the removal of degree-1 vertices leaves in a path. Here we show that

there exists a universal pointset for 3-colored caterpillars.

Theorem 1. There exists a universal pointset P of size n on which any number of n-vertex 3-colored caterpil-

lars can be simultaneously embedded.

Proof. Let T be any 3-colored caterpillar on colors c1, c2, and c3, where |c1|+ |c2|+ |c3| = n. Let ℓ1, ℓ2 and
ℓ3 be three line segments each with endpoint O at the origin meeting at 120◦ angles. Start by placing |ci|
points along ℓi so that the first point of each color ci is at a distance of 1 from O, the last point is at a distance

of 3 from O, and the remaining points are uniformly distributed in between. Perturb the points of each ℓi in
a clockwise direction so that they lie along a common circular arc with no point perturbed by more than a

distance ε. For sufficiently small ε, each point has a line of sight to any other point without intersecting any

circular arc; see Fig 2(a).

Let S be the spine (the path after all leaves are removed) of the caterpillar T . Starting from an endpoint of

S, draw all incident legs before drawing the next edge of the spine. We repeat this process for each spine vertex

and its incident legs until the whole caterpillar is drawn. In doing so, pick the point of the corresponding color

that is closest to the origin not already taken; see Fig 2(b). Since every point has a line of sight to any other
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Fig. 2: The universal pointset for 3-colored caterpillars in (a) has the property where the line segment pq for any pair of points p and q

does not intersect any of the circular arcs on which the points lie. This allows any caterpillar to be drawn without crossings as in (b).

point and for a given p of T , the previously drawn edges only blocks line of sight to the points already taken,

a plane drawing is the result. ⊓⊔

2.2 Radius-2 Stars on Three Colors

A radius-2 star is the result of subdividing each edge of a star, a K1,k, at most once. It is a tree consisting of

any number of paths, or legs, of length at most 2 sharing a common endpoint r, the root. We show how to

simultaneously embed a radius-2 star on n+3 points. If we constrain each color class to have the same size,

n/3, and do not permit legs of length 1, we reduce the pointset to n+1 points.

Theorem 2. There exists a universal pointset P of size n+ 3 on which any number of n-vertex 3-colored

radius-2 stars can be simultaneously embedded.

Proof. Let T be any 3-colored radius-2 star on colors c1, c2, and c3, where |c1|+ |c2|+ |c3| = n. Place one

point pi of each color ci at (i− 2,0) so that p2 lies at the origin O, p1 lies one unit left of O, and p3 lies one

unit to the right of O. Let A be a concave circular arc centered above O that is visible in its entirety from each

point pi. Place |c1| points of color c1 along the leftmost part of the arc A, followed by |c2| points of color c2
along the central part of A, and then |c3| points of color c3 along the rightmost part of A; see Fig. 3.

We contend that these n+3 points comprise a universal pointset for T . Place the root r of T (the vertex of

maximum degree) on the corresponding point pi of its color ci, and call this point X . Each leg of radius-2 star

(a) (b)
ℓ3

ℓ1 p1 p3

p2

A

Fig. 3: The universal pointset for 3-colored radius-2 stars (a) has the property shown in (b) that all the points along the arc A are

contained in the half-planes given by the lines, ℓ1 and ℓ3.
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will be drawn from X to a point Y along the arc A with the line segment XY , and if the leg has length 2, from

Y to Z along A with the additional line segment YZ. We need to ensure that the appropriate points Y and Z are

selected for each leg of length 2 in order to avoid crossings.

We denote the legs of T of length 1 as r−s and the legs of length 2 as r−s−t where vertices s and t have

colors c j and ck, respectively. We start by drawing each leg r−s of length 1 in which we pick the free point

nearest to X of the color c j to be the point Y . We next draw the legs r−s−t in which c j and ck differ. If neither

c j nor ck is c2, we pick the free points furthest from X of colors c j and ck, respectively, to be the points Y and

Z. In this case, the triangle △XYZ contains all remaining points.

Otherwise, either c j or ck is c2. We pick the free points that consist of the furthermost free point of color

c2 and the nearest free point of the other color c1 or c3, the colors c j and ck, respectively, to be the points Y

and Z. In this case, the triangle △XYZ only contains previously used points of colors c j and ck. Finally, we

draw the legs r−s−t in which s and t share the same color c j. We pick the remaining two points nearest to X

of color c j to be the points Y and Z. Given that any points between Y and Z along A must also be of color c j,

the triangle △XYZ contains no unused points.

For each leg, all remaining free points either lie inside or outside of the respective triangle △XYZ. Hence,

the line segment YZ cannot cross any previous line segment, giving a plane drawing of T ; see Fig. 3. ⊓⊔

For some colorings of a radius-2 star, we can reduce the size of the pointset by always using the points p1
and p3. For instance, if the root has color c2 so that it uses p2, then any leg with all three colors can be drawn

using p1 and p3 if they are placed below p2. Alternately, if there is a leg in which the two non-root vertices

have the color c1 (or c3), then the leg can be drawn using p1 (or p3) and the uppermost point of color c1 (or

c3). In the next lemma, we show that such colorings always exist for some 3-colored radius-2 stars.

Lemma 3. For any n-vertex radius-2 stars on colors c1, c2, and c3, in which |c1| = |c2| = |c3| = n/3, the root
has color c j, and each leg has length 2, then either (1) there is a leg with all three colors or (2) there are two

legs colored c j−ck−ck for each k 6= j.

Proof. Not all legs can be colored c j−c j−ck or c j−ck−c j. This would imply |c j| > n/2, contradicting |c j| =
n/3. Hence, at least one leg is colored c j−ci−ck or c j−ck−ci in which i 6= j 6= k. If i 6= k, then the leg has all

three colors.

Otherwise, if no such leg with three colors exist, then i = k so that the leg is colored c j−ck−ck. We need

to show that there exists another leg colored c j−cl−cl where j 6= l 6= k. For this not to be the case, then the

only two types of legs with color cl are colored c j−c j−cl or c j−cl−c j. However, this is impossible since

|c j| = |cl|. ⊓⊔

This lemma allows us to eliminate two of the points with colors c1 and c3 to give the next theorem.

Theorem 4. There exists a universal pointset P of size n+ 1 on which any number of n-vertex 3-colored

radius-2 stars can be simultaneously embedded provided that each color class has the size n/3 and each leg

has length 2.

Proof. We modify the pointset from Theorem 2 by moving the points p1 of color c1 and p3 of color c3 down

by a distance ε to lie at (−1,−ε) and (1,−ε), respectively. All three points pi still have full visibility of the

circular arc A. All the points of A must lie in the intersection of the two half-planes given by the two lines ℓ1
defined by p1p2 and ℓ3 defined by p2p3; see Fig. 3(b). Furthermore, we delete one point of color c1 and one

point of color c3 along A so that the pointset is of size n+1.

We have two distinct cases: either the root r has color c2 or r has color c1 or c3. In the first case, all three

points pi can always be used when drawing T as previously observed, but in the second case, the point p2 may

not always be used, which is why we do not eliminate the extra point of color c2.

If r has color c2, we place r at point p2. By Lemma 3, either (1) there is a leg with all three colors or (2)

there are two legs, one colored c2−c1−c1 and the other colored c2−c3−c3. In case (1), we can draw the leg on

the points pi without blocking visibility from p2 to any point on A since p1 and p3 lie below p2, which avoids

crossings. In case (2), we draw the first leg on the points p2, p1, and the leftmost point of color c1 on A; then
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we draw the second leg on the points p2, p3, and the rightmost point of color c3 on A. In neither case, do these

legs block the visibility of p2 to any other point of A.

If r has color c1, we place r at point p1. We apply Lemma 3, to have either (1) a leg with all three colors

or (2) two legs, one colored c1−c2−c2 and the other colored c1−c3−c3. In case (1), we can draw the leg on

the three points pi without blocking visibility from r on p1 to any of the other points of A since A is contained

in the intersection of the half-planes given by ℓ1 and ℓ3.
However, in case (2), we can only draw the leg with non-root vertices colored c3 using the points p1, p3,

and the rightmost point of A. We cannot use the point p2 to draw the leg with non-root vertices colored c1
without blocking visibility of p1 to some portion of A. An analogous argument holds if r has color c2 in not

being able to always use the point p2. However, since both points p1 and p3 can always be used regardless of

the color of r, this gives us our desired universal pointset of size n+1. ⊓⊔

2.3 Spiders on Two Colors

A spider is an arbitrarily subdivided star, K1,k. It is a tree consisting of any number of paths, or legs, sharing a

common endpoint r, the root. We present a universal pointset of size n for n-vertex spiders. We first show how

to embed any spider on a larger pointset of size n+2 and then show how to eliminate the two extra vertices.

Lemma 5. There exists a universal pointset P of size n+2 on which any number of n-vertex 2-colored spiders

can be simultaneously embedded.

Proof. Let T be any 2-colored spider on colors c1 and c2, where |c1|+ |c2|= n. Let ℓ1 and ℓ2 be two rays with
a common endpoint O at the origin meeting at a 90◦ angle; see Fig. 4(a). Start by placing |ci| points along
ℓi so that the first point of each color ℓi is at the nearest integer grid position (i.e., (1,1) and (−1,1)). The
remaining points are consecutive integer grid points along the lines ℓi. Next we place one point pi of each

color ci directly below the origin at positions (0,−i), i.e., (0,−1) and (0,−2).
We show that this pointset is universal for T . Place the root r on the point of the correct color below

the origin. For each leg (a 2-colored path from r to an endpoint), place its vertices at the correctly colored

free point nearest to the origin O. The first path is drawn without crossings, as consecutive points along the

path are either of the same color in which case there clearly are no crossings, or are of different color which

leads to the path zig-zagging between points on ℓ1 and ℓ2. In the latter case, there are no crossings as the path

always takes vertices farther away from the origin. For the kth leg in the spider, the previous paths have taken

a set of consecutive points of each color, defining a triangle △k−1, determined by r and the last two taken

points, farthest from the origin along l1 and l2. The k
th leg is embedded as before, by placing its vertices at the

correctly colored free point nearest to the origin O. As before, the edges of the kth leg do not cross each other

as the path zig-zags farther and farther away from O. The path does not enter the triangle △k−1 as all but the

first edge of the kth leg are above△k−1, and the first edge stays clear of△k−1 as it goes from r to a point either

strictly to the left or to the right of △k−1. ⊓⊔

Next, we consider the two colorings of the root of the spider to show that we can always use the other

point below the origin, thereby reducing the pointset to size n.

(c)(b)(a)

Fig. 4: The universal pointset in (a) for 2-colored spiders starts with size n+2 and can have size n as in (b) and (c) in which the roots

of the spiders are colored c1 and c2, respectively.
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Theorem 6. There exists a universal pointset P of size n on which any number of n-vertex 2-colored spiders

can be simultaneously embedded.

Proof. We start with the pointset given in Lemma 5 and instead of placing |ci| points along ℓi, we only place

|ci| − 1 points. The resulting set of points is of the desired size n and, as we show below, is universal for

2-colored spiders.

First, we consider spiders in which the root, r, has color c1. As before, we place r on the point p1 at

(0,−1). We need to show that it always possible to use the point p2 at (0,−2) of color c2 for some leg of the

spider. We use the next available correctly colored point that is nearest to O with one notable exception: We

ignore the point p2 below r until we encounter the last vertex of color c2 in drawing T in which case we use

p2; see Fig. 4(b). This prevents the leg from self-intersecting when drawn—any edges incident to p2 must lie

along the convex hull of the points used to draw the leg.

Next, we consider spiders in which the root is colored c2. We place r on the point p2 at (0,−2). We attempt

to follow the previous strategy from Lemma 5. We draw each leg as before starting with the next available

point that is nearest to O of the correct color, but this time we use the point p1 as the first free point for the

color c1. However, this may not always work if the vertices of the first leg, r−a−b−c−·· · , strictly alternate

between the colors c1 and c2 in which a and c have color c1 and b has color c2. In this case, edge (r,a) crosses
edge (b,c). To avoid this, we revise our strategy by reversing the order in which we draw each leg. We start

with the next available correctly colored point that is the furthest from O, instead of the one nearest to O; see

Fig. 4(c). Point p1 is the point of color c1 nearest to O, and hence, p1 will be chosen as the last point for color

c1 instead of being chosen first.

The (k+ 1)th leg is fully contained inside the triangle △k formed by r and the two taken points along

ℓ1 and ℓ2, nearest to the origin O, along the kth leg. These triangles nest as in Lemma 5, so no crossings are

introduced between legs. Since we avoid crossings as we draw each leg, a plane drawing is the result. ⊓⊔

3 Universal Pointsets for Outerplanar Graphs

We extend the previous pointsets to accommodate any outerplanar graph which has as a spanning tree one of

the trees from the previous section (caterpillars, radius-2 stars, and degree-3 spiders).

3.1 K3-Caterpillars on Three Colors

A K3-caterpillar is an extension of a caterpillar in which each cut-edge (u,v) can have extra incident edges

(u,w) and (w,v). The resulting graph is no longer a tree given the introduction of cycles, but is an outerplanar

graph with a similar structure. We take advantage of this structural similarity to show that the universal pointset

for 3-colored caterpillars is also a universal pointset for 3-colored K3-caterpillars.

Theorem 7. There exists a universal pointset P of size n on which any number of n-vertex 3-colored K3-caterpillars

can be simultaneously embedded.

Proof. We use the same pointset as in Theorem 1. We proceed to draw the K3-caterpillar as before in which

we draw legs before cut edges that are incident to the same cut vertex. However, we need to be careful when

drawing the additional edges of each K3 so as to avoid crossings. In drawing each K3 that consists of the

cut-edge (u,v) and the edges (u,w), and (w,v) (vertex w is of degree 2), we first draw the edges in the order

(u,w), (w,v), and (u,v), before drawing any other edges incident to u, using the first available point of the

correct color. This ensures that the edge (u,v) does not cross any other edge since the point v is still visible

from u; see Fig. 5(a). Hence, a plane drawing results. ⊓⊔
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(d)(c)(a)

(b)

Fig. 5: Universal pointsets of size n for 3-colored K3-caterpillar in (a), of size n+ 3 for 3-colored K3-stars in (b), and of size n+ 1 for

2-colored fans in (c) and (d).

3.2 K3-Stars on Three Colors

A K3-star is extension of a star with root r with extra edges added between any pair of leaves s and t. The root

remains the only vertex with degree greater than 2. In Theorems 2 and 4, each leg of a radius-2 star consists

of two of the three edges of a triangle formed by the points r, s, and t. At any one point, the leg r−t−s could

be substituted for the leg r−s−t so that a K3 could be drawn on the points r, s, and t without introducing

crossings; see Fig. 5(b). This gives the following two theorems:

Theorem 8. There exists a universal pointset P of size n+ 3 on which any number of n-vertex 3-colored

K3-stars can be simultaneously embedded.

Theorem 9. There exists a universal pointset P of size n+ 1 on which any number of n-vertex 3-colored

K3-stars can be simultaneously embedded provided that each color class has the size n/3 and no vertices

have degree 1.

3.3 Fans on Two Colors

While a spider is formed by connecting an arbitrary number of paths to a single root, a fan is formed by

connecting all vertices of a path of length n−1 to a single root vertex.

However, unlike the previous results of this section, the size of the universal pointset for the graph is not

the same as the size of the universal pointset of its spanning tree.

Theorem 10. There exists a universal pointset P of size n+1 on which any number of n-vertex 2-colored fans

can be simultaneously embedded.

Proof. We use the same pointset used in Theorem 6 except that we need an additional point of color c1 along

ℓ1. We proceed to draw the path s t along the outerface, not including the root r, using a strategy based upon

Theorem 6. We pick the nearest correctly colored free point first with two exceptions: (1) we ignore p1 if the

root has color c2 in order to avoid a potential crossing (if the coloring of the outerface is strictly alternating)

and (2) we only use p2 for the last vertex of color c2 if the root has color c1. As a result, p2 is always used, but

either p1 or the point furthest from O of color c1 is not used. In both cases, the path s t is drawn without a

self-intersection, and all points along the path are visible from point of r. Hence, an edge can then be added

from r to each of the other n−1 points in the pointset on which s t was drawn. This clearly yields a plane

drawing. ⊓⊔
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4 More Graphs Without Simultaneous Embeddings

We next consider graphs without simultaneous embeddings for 2≤ k ≤ 5 colors.

4.1 Two Colors

Fowler et al. [9] presented a set of 16 pairs of planar graphs that cannot always be simultaneously embedded

whose unions are either homeomorphic to K5 or to K3,3. Most of these pairs require for the vertices to be

distinctly colored. However, the 5−vertex pair given in Fig. 6(a) can be 2-colored and still not always have a

simultaneous embedding as we show next.

Theorem 11. There exist a 2-colored planar graph and a pseudo-forest that cannot be simultaneously em-

bedded.

Proof. Let G1 be the planar graph consisting of a K5 minus an edge e in which the endpoints of the missing

edge are red and the remaining three vertices are blue. Let G2 be the pseudo-forest consisting of a K3 on three

blue vertices and an non-incident edge on two red vertices; see Fig. 6(a). In both G1 and G2, the vertices with

the same color have the same adjacencies. Hence, there is only one non-isomorphic mapping of the vertices

onto the three blue points and the two red points. Each pair of non-incident edges in the non-planar K5 union

is present in one of the graphs. In any straight-line embedding of the vertices of these graphs in the plane, at

least one of the graphs must have a crossing as incident straight-line edges cannot cross. ⊓⊔

4.2 Three Colors

We next show that there exist outerplanar triples on 3 colors that cannot be simultaneously embedded.

Theorem 12. There exists three 3-colored outerplanar graphs that cannot be simultaneously embedded.

Proof. Consider the following three 3-colored outerplanar graphs (the third is a path) on 5 points given in

Fig. 6(b) whose union is K5:

1. a−b−c−d−e−a and b−e (dark blue edges),

2. a−c−e−b−d−a and b−a−e (light yellow edges),

3. b−c−a−d−e (dashed red edges),

where a is yellow, b and e are blue, and c and d are red.

For each graph, vertices with the same color have the same adjacencies. Hence, there is only one non-

isomorphic mapping of the vertices onto one yellow point, two blue points and two red points. Each pair of

non-incident edges in the non-planar union is in one of the three graphs, forcing at least one of the graphs to

have a crossing. ⊓⊔

(d)(c)(b)(a)

d c

e b

a

d c

e

a

b
b c

e

a

d f

b

a

e

d c

Fig. 6: A planar graph and a pseudo-forest on 2 colors in (a), three outerplanar graphs on 3 colors in (b), four pseudo-forests on 4 colors

in (c), and three pseudo-forests on 5 colors in (d) without simultaneous embeddings.
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4.3 Four and Five Colors

We next turn our attention to pseudo-forests, a proper subclass of outerplanar graphs.

Theorem 13. There exists four 4-colored pseudo-forests and three 5-colored pseudo-forests that cannot be

simultaneously embedded.

Proof. Consider the following four 4-colored pseudo-forests shown in Fig. 6(c) whose union is K5:

1. a−b−e−c−d−e (dark blue edges),

2. a−c−e−b−d−a (light yellow edges),

3. b−c−a−d−e (dashed red edges),

4. b−c−d−b and a−e (dash-3 dot green edges),

where only c and d have the same color and the following three 5-colored pseudo-forests shown in Fig. 6(d)

whose union is K3,3:

1. a−d and b− f−c−e−b (dark blue edges),

2. a−e−c− f−a and c−d−b (light yellow edges),

3. a−e−b− f−a and c−d (dashed red edges),

where only e and f share a color. For each graph, vertices with the same color have the same adjacencies,

so there is only one non-isomorphic mapping of the vertices onto points of the same color. Each pair of non-

incident edges in the non-planar union is in one of the graphs, forcing at least one graph to have a crossing.

⊓⊔

5 Conclusions and Open Problems

We introduced the problem of small sets supporting colored simultaneous embedding (CSE) and universal

CSE pointsets. We provided universal or near-universal pointsets for caterpillars and radius-2 stars on 3 colors

and degree-3 spiders on 2 colors, which comprise the three classes of ULP trees [7]. However, we only have

partial results for ULP outerplanar graphs. Of all of the classes of ULP graphs described in [10], two subclasses

are outerplanar: (1) outerplanar generalized caterpillars, a superset of the K3-caterpillars for which we gave a

3-colored universal pointset, and (2) 1-connected extended degree-3 spiders, a proper subsets of fans for which

we gave a 2-colored near-universal pointset; see Fig. 7(b) and (c) in the appendix. This leaves the question of

whether there exists a 3-colored universal pointset for all ULP trees, and if so, for all ULP outerplanar graphs.

In the context of CSE, previous examples of graphs without simultaneous embeddings, such as the 16 pairs

given in [9], required for each vertex to be distinctly colored. We presented several examples in which this was

not the case. We accomplished this by ensuring that vertices with the same color had the same adjacencies.

Table 1 summarizes the current status of colored simultaneous embedding. A “X” indicates that it is always

possible to simultaneously embed the type of graphs, a “7” indicates that it is not always possible, and a “?”

indicates an open problem. New results are in bold with asterisks.

(a)

(b) (c) (d)

K3-edge kite-edgeC4-edge bi-K3-edge

Fig. 7: Four types of outerplanar “edges” in (a) are used to construct outerplanar generalized caterpillars as in (b). Extended

degree-3 spiders (every spanning tree is degree-3 spider or a path) can be 1-connected as in (c) or 2-connected as in (d).
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k = 1 2 3 4 5 6 9 n

*** Three paths P1 . . .P3 X X X ? ? ? 7 [3] 7

*** Four paths P1 . . .P4 X X X ? ? 7 7 7

*** Three cyclesC1 . . .C3 X X X ? ? 7 7 7

Two outerplanar graphs O1,O2 [3, 12] X ? ? ? ? 7 7 7

*** Three outerplanar graphs O1 . . .O3 X ? 7 7 7 7 7 7

*** Three pseudo-forests F1 . . .F3 X ? ? ? 7 7 7 7

*** Four pseudo-forests F1 . . .F4 X ? ? 7 7 7 7 7

*** Any number of paths X X X ? 7 7 7 7

*** Any number of caterpillars X X X ? 7 7 7 7

Two trees T1,T2 [16] X ? ? ? ? ? ? 7

*** Tree T and path P X X ? ? ? ? ? ?

*** Outerplanar graph G and path P X X ? ? ? ? ? ?

Planar graph G and path P [3, 6] X ? ? ? ? ? 7 7

*** Planar graph G and pseudo-forest F ? 7 7 7 7 7 7 7

Table 1: k-colored simultaneous embeddings on n points: new results and open problems.
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