
Bodyguard:
Running Protected Applications in

Untrusted Operating Systems

by

Russell Lewis

Submitted to the Department of Computer Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

at the 

UNIVERSITY OF ARIZONA

Technical Report TR10-03

April 30, 2010



Abstract

In this thesis, we present a method to run an application within a commodity operating system without 
risking  either  the  correctness  or  privacy  of  the  application  should  the  operating  system  be 
compromised.   Using a  hypervisor,  we invisibly intercept  all  attempts  by the  operating  system to 
corrupt the state of the application or access its data.  We accomplish this first by tracking the current 
state of the virtual space and verifying all actions by the operating system which might change this 
state,  and second  by replacing  the  contents  of  physical  pages  with  randomly generated  restorable 
signatures  when the  operating  system attempts  to  access  the  contents.   The  system is  sufficiently 
flexible to allow a binary-unmodified operating system to perform typical tasks such as copy-on-write, 
fork(),  and  swap,  and  sufficiently  automatic  that  the  protected  application  only  needs  small 
modifications.  Finally, we present automatic methods for adapting a legacy application which are able 
to provide complete and seamless protection for many applications.



Contents

1 Introduction..................................................................................................................................6
1.1 Signatures...........................................................................................................................6
1.2 Why not just fix corruption?..............................................................................................7
1.3 Why not isolate resources?.................................................................................................7
1.4 Thesis Organization...........................................................................................................8

2 Vulnerabilities in Operating Systems.........................................................................................9
2.1 Motivation..........................................................................................................................9
2.2 Design Principle: Thin Emulation....................................................................................10
2.3 The Players.......................................................................................................................10
2.4 Attack Classes..................................................................................................................11
2.5 Attack Vectors..................................................................................................................11
2.6 Memory Model................................................................................................................12
2.7 Limitations.......................................................................................................................13
2.8 Summary..........................................................................................................................13

3 Security Risks and Protection...................................................................................................14
3.1 Corruption Attacks...........................................................................................................14

3.1.1 Basic Corruption (memory, registers)..................................................................14
3.1.2 Other Miscellaneous Corruption Attacks.............................................................14
3.1.3 Shared Memory Attacks.......................................................................................15

3.2 Snooping Attacks.............................................................................................................18
3.3 Valid OS Page Accesses...................................................................................................21

3.3.1 mmap()/munmap()...............................................................................................21
3.3.2 write() and Similar Syscalls.................................................................................21
3.3.3 read() and Similar Syscalls..................................................................................21
3.3.4 COW....................................................................................................................22
3.3.5 Swap.....................................................................................................................22
3.3.6 Signals..................................................................................................................23

3.4 Summary..........................................................................................................................23

4 Bodyguard Design......................................................................................................................24
4.1 Hypervisor........................................................................................................................24
4.2 Entities.............................................................................................................................24

4.2.1 Destroying an Entity............................................................................................25
4.3 Processes..........................................................................................................................26

4.3.1 The First Process..................................................................................................26
4.3.2 fork()....................................................................................................................26
4.3.3 Lingering Processes.............................................................................................27
4.3.4 Jumping Into a Process........................................................................................27
4.3.5 Jumping Out of a Process.....................................................................................28
4.3.6 Example: Syscall..................................................................................................28
4.3.7 Threads.................................................................................................................28

4.4 Working Set......................................................................................................................28

1



4.5 Virtual and Logical Pages................................................................................................30
4.5.1 Public vs. Private..................................................................................................30
4.5.2 Shared Pages........................................................................................................30
4.5.3 Initialization.........................................................................................................31
4.5.4 Saved Contents.....................................................................................................32
4.5.5 Destruction...........................................................................................................32
4.5.6 State Machine.......................................................................................................32

4.6 Physical Pages (a.k.a. Frames).........................................................................................33
4.7 Signatures and Saved Pages.............................................................................................35

4.7.1 Signature Persistence...........................................................................................36
4.7.2 Signatures and COW Pages.................................................................................36
4.7.3 Signatures and Readonly Pages...........................................................................37

4.8 Masking Page Table Entries.............................................................................................37
4.9 Detecting Memory Corruption.........................................................................................38
4.10 Register Protections.........................................................................................................39
4.11 Syscall Handler................................................................................................................41
4.12 Shim.................................................................................................................................41

4.12.1 Limitations...........................................................................................................41
4.13 Entity Bootstrap...............................................................................................................43

4.13.1 Modifying an Executable File..............................................................................43
4.13.2 Calculate the Starting Image................................................................................44
4.13.3 Create the New Entity..........................................................................................44
4.13.4 Start the Program in the Untrusted OS.................................................................45

4.14 Detailed Examples...........................................................................................................45
4.14.1 Read a Private Page, Inside the Protected Process...............................................45
4.14.2 Write a COW Private Page, Inside the Protected Process....................................46
4.14.3 Syscall..................................................................................................................47
4.14.4 Swap Out/Swap In...............................................................................................47
4.14.5 Simple Corruption................................................................................................48

4.15 Summary..........................................................................................................................48

5 Overshadow................................................................................................................................49
5.1 Shadows...........................................................................................................................49
5.2 Shadowed vs. Unshadowed Pages...................................................................................51
5.3 Protected Objects.............................................................................................................51

5.3.1 Encryption............................................................................................................51
5.3.2 Validation & Decryption......................................................................................52
5.3.3 Discarding Objects...............................................................................................52
5.3.4 Serialization of Metadata.....................................................................................52
5.3.5 Serialization of Contents......................................................................................53

5.4 Shim.................................................................................................................................53
5.4.1 The Trampoline....................................................................................................54
5.4.2 Syscall Emulation................................................................................................54
5.4.3 File Emulation......................................................................................................55

5.5 Virtual Memory Protections.............................................................................................56
5.6 Applications.....................................................................................................................57
5.7 Address Spaces................................................................................................................57

2



5.7.1 fork()....................................................................................................................57
5.8 Threads.............................................................................................................................58
5.9 Detailed Examples...........................................................................................................59

5.9.1 Read a Private Page, Inside the Protected Process...............................................59
5.9.2 Write a COW Private Page, Inside the Protected Process....................................60
5.9.3 Syscall..................................................................................................................61
5.9.4 Swap Out/Swap In...............................................................................................62
5.9.5 mmap().................................................................................................................62

5.10 Similarities.......................................................................................................................63
5.11 Differences.......................................................................................................................63
5.12 Tradeoffs..........................................................................................................................64

6 Prototype Implementation.........................................................................................................68
6.1 Overview..........................................................................................................................68
6.2 Modifications Made to Bochs..........................................................................................69
6.3 TLB Intercept...................................................................................................................70
6.4 Structures.........................................................................................................................71

6.4.1 Entity....................................................................................................................71
6.4.2 Process.................................................................................................................71
6.4.3 VirtualPage...........................................................................................................71
6.4.4 LogicalPage..........................................................................................................71
6.4.5 SavedPage............................................................................................................72
6.4.6 Frame...................................................................................................................72
6.4.7 SharedPage...........................................................................................................73
6.4.8 BitKeyTree...........................................................................................................73

6.5 Functions..........................................................................................................................74
6.5.1 untrustedOS_execPage()......................................................................................74
6.5.2 untrustedOS_readPage()......................................................................................75
6.5.3 untrustedOS_writePage().....................................................................................75
6.5.4 FindInWorkingSet().............................................................................................76
6.5.5 untrustedOS_interrupt_400_handler().................................................................76
6.5.6 untrustedOS_syscallAlert()..................................................................................76
6.5.7 untrustedOS_startInterrupt()................................................................................77

6.6 Shim Implementation.......................................................................................................77
6.6.1 Loading the Shim.................................................................................................77
6.6.2 Shim Initialization................................................................................................77
6.6.3 Adding Pages to the Working Set........................................................................78
6.6.4 Syscall Handler....................................................................................................78

6.6.4.1 Example syscall wrapper: read..............................................................79
6.6.4.2 Example syscall wrapper: write.............................................................80

6.7 TODO List.......................................................................................................................80
6.8 Difficulties and Lessons Learned.....................................................................................80
6.9 Summary..........................................................................................................................82

7 Results.........................................................................................................................................83
7.1 Legacy Applications Run Correctly.................................................................................83
7.2 Corruption Prevented.......................................................................................................84

3



7.3 Snooping Prevented.........................................................................................................87
7.4 Custom Test App..............................................................................................................88
7.5 Chapter Summary............................................................................................................95

8 Conclusion...................................................................................................................................96
8.1 Future Work......................................................................................................................96
8.2 Close.................................................................................................................................98

Appendix A: Glossary..............................................................................................................101

Appendix B: Linux Syscall Table............................................................................................104

4



Figures
Figure 1: Signatures...................................................................................................................................6
Figure 2: The Players...............................................................................................................................10
Figure 3: Virtual vs. Logical Pages..........................................................................................................16
Figure 4: CORRUPTION EXAMPLE: Invalid Sharing..........................................................................17
Figure 5: CORRUPTION EXAMPLE: Failure to Share.........................................................................18
Figure 6: Signatures Prevent Snooping....................................................................................................19
Figure 7: Entities and Processes in the Untrusted OS..............................................................................25
Figure 8: fork()ing the Working Set of a Process.....................................................................................26
Figure 9: The Shared Page Table.............................................................................................................31
Figure 10: Allocating a Shared Page........................................................................................................31
Figure 11: Logical Page State Machine (Private Pages)..........................................................................32
Figure 12: Logical Page State Machine (Public Pages)...........................................................................33
Figure 13: Frame State Machine (Private and Public Pages)...................................................................34
Figure 14: Detecting Corruption..............................................................................................................39
Figure 15: Modifying an Executable for Bootstrap.................................................................................43
Figure 16: Various Views of the Virtual Space (most pages)...................................................................50
Figure 17: Various Views of the Virtual Space (private page).................................................................50
Figure 18: From Virtual Address to Page Validation...............................................................................57
Figure 19: From Virtual Address to Page Validation...............................................................................59

5



Chapter 1: Introduction

This thesis presents Bodyguard, a system we have devised that allows a critical application to run on a 
completely unmodified commodity operating system.  Bodyguard monitors the actions of the OS, and 
allows most operations to complete normally, but it is able to identify and prevent many attacks.

Bodyguard implements this protection with a hypervisor, which runs at a higher authority level than the 
OS.  The hypervisor tracks the working set of a certain number of protected processes, and is able to  
tell which code in the system is “trusted” code (authorized to access and modify the state of a protected 
process) and which is untrusted.  If untrusted code attempts to do something dangerous, Bodyguard 
will  either  modify  the  action  in  order  to  make  it  safe,  or  terminate  the  protected  process  before 
corruption can occur.

Remarkably,  Bodyguard's  protections  allow  an  entirely  unmodified  operating  system  to  perform 
seemingly-risky operations,  such as  changing page  tables,  moving pages  to/from a  swap file,  and 
handling COW (copy-on-write).  While Bodyguard gives the untrusted OS complete access to the page 
tables  and  the  contents  of  all  physical  frames,  it  enforces  that  the  internal  state  of  all  protected 
processes are always preserved, and that no private data leaks to untrusted code.

Traditional security systems attempt to prevent an attacker from taking control of the OS, so that the 
state of critical applications will not be compromised.  Bodyguard instead assumes that an attacker has 
(or might have) control of the operating system from the very start,  and implements complete and 
almost invisible protection despite that fact.

1.1 Signatures

The  central  concept  in  Bodyguard  is  the 
signature, which is a randomly generated page of 
data that represents the contents of a private page, 
as it existed at some point in time.

Any time that untrusted code attempts to read or 
write  a  private  page,  Bodyguard  ensures  that  it 
sees  the  signature  for  the  page,  rather  than  the 
private data.   The untrusted code may copy the 
signature to other pages (COW), store it to disk 
(swap),  or  use it  for  any other  purpose.   Later, 
when  the  protected  process  attempts  to  access 
some physical page, Bodyguard expects to finds 
the  signature.   If  it  does,  then  Bodyguard  will 
automatically  convert  the  signature  back  to  the 
private data that it represents.  Thus, when the OS 

6

“Honey, I forgot to duck.”

– Ronald Reagan, to his wife, shortly after being shot

An important political figure must interact with the public.  While most of the people 
he meets will have good intentions, a handful may attempt to cause him harm.  The 
job of a bodyguard is to allow appropriate interactions between the politician and the 
people, while preventing attacks of all kinds.

Figure 1: Signatures

(a) The signature “abcd” represents the private data “1234”
(b) The trusted app reads the page, and sees “1234”
(c) The OS reads the same page, and sees “abcd”

“1234”
=>

“abcd”

One Guest 
Physical PageTrusted

App

Commodity 
OS

Hypervisor

(a)

(b)

(c)



copies a signature to some other frame, it is effectively copying the private data, yet doing so in a 
manner that cannot be used to reveal any secrets.

Signatures also play a major role in preventing an attacker from corrupting the state of a protected 
process.  Any time that Bodyguard is forced to replace a page with a signature, it records the expected 
contents of that page (the signature).  Later, when the protected process attempts to access the page 
again, Bodyguard confirms that the physical page actually contains the expected signature.  If it does 
not, Bodyguard terminates the process, rather than allow a corrupted access.

Bodyguard uses a similar technique to defend against page table attacks (where the OS might change 
the page tables to cause a certain virtual page point to incorrect data).  Bodyguard keeps track of which 
physical page currently is used as the backing store for each virtual page.  If this changes from one  
access to the next, Bodyguard converts the old physical page to a signature, and then confirms that the 
new physical page has the same signature.  If it does (as would happen in a valid COW scenario), then 
the access is permitted.  If it does not, then Bodyguard detects an attack and terminates the process.

1.2 Why not just fix corruption?

When corruption is detected, Bodyguard knows what the frame was supposed to contain.  One possible 
design alternative would be, rather than to terminate the protected process, to instead fix the frame by 
writing the correct data to it.  Why does Bodyguard terminate the protected process?

First, we believe that once the operating system has done something obviously wrong, it is difficult to  
“fix” it without breaking some other thing within the OS.  What if the page contains critical data for 
some other program, or for the kernel?  Any attempt to force the program to run, despite operating 
system misbehavior, could have any number of ugly side effects.

Second, we see little point in attempting to continue to run inside an OS known to corrupt protected 
programs.  Even if the hypervisor could safely drive the protected program past this point, it seems 
quite likely that additional, perhaps more serious, problems may lurk on the horizon.  We believe it best 
to crash the program immediately, which informs the user that this untrusted OS has been compromised 
and that it should not be used for future work.

1.3 Why not isolate resources?

Another alternative would be to implement each page in a process' working set in hypervisor memory,  
totally ignoring the OS page tables.  Likewise, Bodyguard could implement private networking and 
private disk.  All of the resources could be guaranteed to operate correctly because they are isolated 
from the untrusted OS.  However, in such a scenario, the protected processes are effectively running on 
the “bare metal” of the hypervisor.  If the program is capable of doing so, why is it running inside an 
untrusted OS at all?

Bodyguard  is  designed to  protect  programs  that  need to  run  inside  a  commodity OS because  the 
commodity OS provides compelling features, which are not easily emulated or replicated inside the 
program itself.  Programs that can be adapted to run on the bare metal of the hypervisor do not need 
Bodyguard's protection.  Therefore, Bodyguard assumes that the process must run under the control of 
the untrusted OS, with the OS allowed to manage paging, CPU allocation, networking, disk, and all  
other resources.  Bodyguard's strategy is to validate the actions that the untrusted OS performs, not to  
emulate them.

7



1.4 Thesis Organization

Chapter 2 defines the scope and motivation of this invention.  Chapter 3 details the various types of 
security risks that exist  in a typical operating system, as well  as several valid situations where an 
operating system might want to read or write pages that contain private data.  It will then sketch a 
system that could be used to allow the valid accesses while preventing all of the attacks.  Chapter 4 
discusses Bodyguard's design in detail.  Chapter 5 discusses Overshadow, a similar existing system for 
protecting applications, and compares/contrasts it with our work, discussing tradeoffs and advantages. 
Chapter 6 details our implementation, including its current limitations.  Chapter 7 discusses our results. 
Chapter 8 concludes with a brief discussion of future work.

8



Chapter 2: Vulnerabilities in Operating Systems
This chapter specifies the scope of the problem and Bodyguard's solution.

First,  it  discusses  the  motivation  of  this  work.   Next,  it  details  the  types  of  attacks  we consider,  
including  the  elements  of  computing  that  might  be  used  for  an  attack.   Finally,  it  details  the 
assumptions, design principles, and general limitations of Bodyguard's protection.

2.1 Motivation

While all programs are designed to run correctly, some are of particular importance.  A program may 
perform critical business functions, deal with classified information, or provide critical safety features. 
Such programs are carefully designed and thoroughly debugged to maximize quality.  Some may be 
formally analyzed with static analysis tools  [1][2][3][4][5], and all are thoroughly empirically tested. 
The programs are as trustworthy as modern computer science can make them.

However,  many of  these  programs run on commodity operating systems that  are  far  less  reliable. 
Security analysts and hackers regularly find major flaws in operating systems or applications that may 
give an attacker arbitrary access to the machine.  Thus, all the work to perfect an application is (in part)  
wasted, as a determined attacker is likely to eventually find a flaw in the operating system and use it to  
disrupt the trusted application.

A variety of strategies exist to combat this problem.  First and most importantly,  the user must be 
vigilant about keeping the operating system up-to-date with the latest patches.  However, this solution 
is both incomplete and risky.  It is incomplete because there always exists a window of time between 
when a vulnerability is  found and when it  is  patched;  the machine could be compromised in  this 
timeframe  [6].   It  is  risky  because  patches  may  sometimes  introduce  new  bugs  [7]:  either  new 
vulnerabilities may be created, or the implementation of the operating system may change, causing the 
application to no longer function as designed.

Another alternative is to isolate the machine from the network.  This can vary from using firewall 
software on the computer, to external firewall devices, to actually disconnecting the machine from any 
network [8].  However, these are only a partial solution [9].  Most firewalls allow outgoing connections 
(that is, for the machine to access the outside Internet), and client applications have been known to 
have  vulnerabilities.   Thus,  a  machine  can  be  attacked  even  through  a  firewall.   Moreover, 
disconnecting the machine entirely is often impractical.  In some cases, such as programs that provide 
services over the Internet, it may be impossible to use a firewall.

Yet another alternative is to run the program on a secure operating system (or hardware platform) that 
is  believed to  have fewer vulnerabilities  [10][11][12][13][14][15][16][17].   This is  problematic  for 
several reasons.  First, porting a program to a new operating system generally requires major rewrites 
of the code, which may be impractical for cost reasons.  Such a port may also open new vulnerabilities  
in  the trusted  program, if  the programmer is  not  aware of  the  subtleties  of  the  new environment. 
Second, a non-standard operating system may actually have  more vulnerabilities than a commodity 
operating system, because it has fewer users and less time is spent examining it for flaws  [18][19]. 
Third, a non-standard operating system is likely to lack key features that the program may want to 
make  use  of,  such  as  communication  protocols,  interoperability  with  other  computers,  or  device 
drivers.  As the non-standard operating system is expanded to match the capabilities of the commodity 
operating system, it will get more complex, and thus become much more difficult to verify.

9



A final alternative is to port the operating system itself to a new platform.  For instance, one may 
implement a VMM which provides some sort of security features inside a paravirtualized environment. 
OSes may then be ported to run on the new VMM.  However, this may be difficult or impossible if the 
operating system is very large, or if the source is unavailable [20].  Moreover, it may be impractical to 
keep such a port up-to-date with the latest updates of such a system.

2.2 Design Principle: Thin Emulation

This thesis presents a system in which the untrusted OS is expected to perform all of its normal tasks;  
the hypervisor simply verifies that such tasks are implemented in such a way that the security of the 
program is not violated.  Most application actions are handled automatically by the untrusted OS; a 
handful of actions must be intercepted and emulated by a very thin emulation layer.

An alternative solution to this problem is to write a complete operating system (or a subset of one) that 
is linked into existing applications.  This operating system provides a backward-compatible interface to 
the trusted application (so that the trusted application does not have to be ported), but provides an 
implementation that emulates most operating system functions.  For instance, the emulation layer could 
perform virtual  memory page allocation,  implement  a  file  system, do timeslicing amongst  various 
processes and threads, etc.

The advantage of such a design is that the hypervisor implements very simplistic and absolute security 
policy.  For instance, it forces a protected process to execute whether or not the untrusted operating 
system gave it a timeslice; the hypervisor could make it impossible for the untrusted OS to overwrite or 
read protected physical memory pages or disk blocks; etc.

We reject  this  design  because,  in  our  view,  this  would  require  that  we re-implement  most  of  the 
operating system logic.  The complexity of the emulation layer would approach the complexity of a full 
operating system, and thus be just as difficult to verify.  Moreover, if the emulation layer implements 
all of these operations internally, then there is no 
clear reason why to run the untrusted OS at all. 
Why not just run the emulation layer directly on a 
hypervisor?

2.3 The Players

In this thesis, we assume that there are three key 
players: the attacker, hypervisor, and client.  (See 
Figure 2: The Players.)

We assume that the attacker is a malicious person 
with  complete  knowledge  of  the  commodity 
operating system,  the protected  application,  and 
our protection mechanisms.  We will assume that 
the  attacker  may  have  taken  control  of  the 
operating system arbitrarily long before the client 
initiates the application, and that the attacker has 
the ability to control the OS in any way that he 
desires.

The  hypervisor is  a  hardware  or  software 

10

Figure 2: The Players

Hypervisor

Untrusted OS

Protected Process

Client

Attacker

Attacker
Infects

Untrusted OS

Client creates
process,
which is

protected by
Hypervisor



mechanism (probably a VMM) that implements the protections described in this thesis.  We assume 
that it is simple enough that it has no exploitable bugs, and thus that the attacker has no ability to  
control or snoop on the hypervisor.

Finally,  the  client is  an external  computer  system, which we presume to be  not corrupted by any 
attacker.  It interacts with the hypervisor, giving it the initial state of new protected processes to run.  
This client might be a trusted guest OS running inside the same hypervisor as our untrusted OS, or it 
might  be  an  external  computer.   We  also  assume  that  there  is  a  secure  communication  channel  
(presumably ssh or similar) between the client and the hypervisor.

2.4 Attack Classes

This thesis addresses three classes of attack: snooping, corruption, and DOS.

Snooping attacks  involve  the  attacker  accessing  private  data  of  the  process,  perhaps  without  ever 
corrupting its state.  Bodyguard makes these impossible; any attempt to read private data, by any entity 
other than the protected application, will return a signature rather than the private data.

Corruption attacks involve changing the process's state in a way that the attacker hopes will not be 
detected.   This could involve corrupting data values in registers or pages, changing the instruction 
pointer, swapping two or more otherwise-valid data pages or code pages, corrupting the process's initial 
state,  or even causing the application to  run code pages  generated by the attacker.   Bodyguard is 
designed to prevent all such corruption attacks.  When corruption is detected, Bodyguard forces the 
application to crash, meaning that the attack, once detected, will resolve to a DOS attack, which can be 
detected as discussed in the previous paragraph.

DOS (Denial of Service) attacks deny some sort of critical resource to a running application.  This 
could involve rejecting requests when the application attempts to allocate resources, failing to provide 
promised resources (including CPU time), or illegally removing resources (such as causing segfaults on 
virtual addresses that should be valid).  Since an attacker could trivially DOS the application simply by 
refusing to allow it any CPU time, it is impossible to entirely prevent these attacks.  However, we 
assume that the client will implement timestamps and/or heartbeating to confirm that the protected 
application is making progress.  Other types of DOS attacks should be detectable by the protected 
application, and reportable to the client using normal mechanisms.  Thus, Bodyguard does not have to 
take any explicit action to detect, prevent, or report DOS attacks.

2.5 Attack Vectors

This thesis provides direct protection for memory and registers.  We believe that this is sufficient to 
provide both correctness and privacy for all other types of resources.

Memory

This thesis presents a method for protecting memory that makes it impossible for the OS to corrupt the 
application's memory.  (More accurately, what it provides is a mechanism to detect corruption, and 
crash1 the application before it uses corrupted data.)

1 Why crash the application?  Why not report the error to the application, and allow it to handle the problem as it sees fit? 
It is certainly possible to notify the application instead of crash.  However, remember that the error handling code would 
need to be protected, just like the rest of the code.  It would be possible to hit errors in the error handling code (the 
classic “double exception” problem).  In that circumstance, the hypervisor would have no choice but to crash the 
application immediately.

11



This thesis will also present a method for ensuring the privacy of data pages while still allowing the OS 
to perform ordinary page management tasks, such as swap and copy-on-write.

Registers

This thesis presents a method for protecting registers such that it is impossible for the OS to alter the  
registers in such a way as to corrupt the application.

This thesis also presents a method for ensuring the privacy of data stored in registers.

IPC

This  thesis  assumes  that  the  trusted  application  will  encrypt  all  IPC  channels  between  protected 
processes so as to prevent both corruption and snooping.  Or, as discussed in Future Work, it may 
emulate IPC using shared memory.

In either case, protection of IPC becomes a matter of protecting the memory and registers that are used 
to  perform the  encryption  or  emulation.   Since  this  can  be  implemented  entirely in  the  protected 
process  using  existing  data  protection  primitives,  we consider  this  to  simply be  a  special  case  of 
register and memory protection.

Disk, Network, UI

This thesis does not present a method for protecting disk storage.   This thesis assumes that,  if the 
application  needs  to  write  to  disk,  it  performs  encryption  (or  some  other  sufficient  security 
methodology) to ensure the security of what is written.

Likewise, this thesis assumes that the program uses encryption (perhaps via ssh, in a protected child 
process) to read or write data over the network.

Finally,  this  thesis  assumes that UI is  similarly protected.   On current operating systems, the only 
practical UI solution (other than an encrypted command line) is an ssh tunnel to a remote X server. 
However, one could imagine using a secure UI; this thesis assumes that this program implements its  
part of any such protocol inside its own process space, or that of a protected child process.

2.6 Memory Model

This  thesis  depends  heavily  on  a  certain  memory  model,  namely  the  virtual  memory  model 
implemented by Linux and other  modern operating systems.   We acknowledge that  other  memory 
models are conceivable, but they are not in common use in modern computing.

In particular, this thesis assumes that:

1) The code and data pages of a process share the same virtual address space.

2) The data pages of a process always have the same contents, when viewed from any block of 
code in that same process.

3) The address space of a process may contain code and data that are part of the kernel, but such 
virtual pages always map to different physical pages than application pages (except for the 
special case of COW pages, which temporarily share a physical page).

Thus, the hypervisor must crash the application in some worst-case circumstances.  If some future version of Bodyguard 
attempts to also implement error handling within the application when possible, that is a valid (but, in our view, not 
critical) enhancement.

12



4) The code and data pages of a process never have their contents change, and are never relocated 
nor removed (in the virtual space)2, without explicit application action.  (Explicit action may 
involve a write by the application, or a syscall from the application to the kernel.)  Overlays  
(where the same virtual address is used for different code or data, depending on context) are 
either not used, or are manually managed by the program with mmap/munmap.  In particular, 
there are no automatic mechanisms that magically change overlays without explicit application 
action.

5) All threads in the same process see the exact same virtual memory contents at all times.

6) When there are multiple  processes that  are part  of the same protected application,  memory 
writes by one process affect the contents of pages in other process if and only if the affected 
pages are shared pages, such as MAP_SHARED mmap()s, shmat() regions, etc.

7) The kernel never composes code that the application must run.  (During initial loading of an 
application, or during dynamic linking, the kernel may map in new pages from a file, but the 
contents precisely reflect the contents of the file and are not modified by the kernel.)

2.7 Limitations

This thesis assumes that the trusted program does not have fundamental errors.  For instance, this thesis 
assumes that the trusted program can accept arbitrary input (verifying it if needed), and respond to any 
ordinary operations that the operating system might perform (such as sending signals, timeslicing, page 
swapping, etc.).   It must be able to handle any errors that an uncorrupted operating system might 
deliver, such as disk full or other resource limitations.

Additionally, the trusted program must respond correctly to all possible signals whenever they are not 
masked off.  Bodyguard does not have any way to determine when a signal might or might not be 
sensible (other than assuming that they cannot be sent while masked off).  For example, the attacker 
might cause SEGV to be sent even though the application has not performed any access which would 
justify that signal.  Thus, the application must include a reasonable default action (which might be to 
terminate) for all signals which are not masked.

Likewise, the trusted application also must not depend on the delivery of signals for correctness; it  
must never produce an incorrect result if signals are not delivered, or are delivered out of order.

Finally, if privacy is needed, then the trusted program should not write out any non-encrypted data to 
disk (including temporary files), network, or any other device.

If the program has fundamental errors, this thesis will not be able to fix them.

2.8 Summary

In this chapter, we specified the scope of the problem and the solution.  We discussed the three major 
players, the three classes of attack, and the various elements of computing vulnerable to attack.  We 
then discussed various design principles, assumptions, and limitations of this work.

2 The OS may move pages to swap, but the effective virtual contents are not changed, because the OS will swap the page 
back in before any future access is permitted.

13



Chapter 3: Security Risks and Protection
This chapter will detail the various types of attacks that are possible, and also several valid operations 
that the OS might perform and thus Bodyguard must tolerate.  Along the way, it will provide a sketch 
of Bodyguard's protection scheme, and discuss how it operates in when it encounters various attacks or 
valid operations.

3.1 Corruption Attacks

Corruption attacks take many forms.  They may involve overwrites of existing virtual pages, moving 
pages around inside the virtual space, adding virtual pages that the program didn't ask for, corrupting 
the initial state of the process (or newly mapped pages), altering the contents of registers (including, but 
not limited to, the instruction pointer), or corrupting input/output.

3.1.1 Basic Corruption (memory, registers)

There are many different ways in which an attacker might try to corrupt the state of a protected process. 
These vary from the trivial (overwrite some data) to the complex (swap two valid code or data pages, 
putting each at  the wrong virtual  address).   Rather  than detail  every possible  strategy,  we instead 
present a general theory for protection.

A protected process only cares about the contents of its registers, and of the pages that it accesses.  It  
doesn't care how the page tables are laid out, which physical pages are used for which virtual pages, 
etc.  It also doesn't care about pages that it never touches.  All it cares about are the actual bytes that it 
accesses.

All corruption attacks, then, have the same form: they alter the contents of a register, or of virtual 
memory, so that the process reads the wrong data, causing it to perform the wrong action (or to later 
write the wrong value to another register, or memory).  If Bodyguard ensures that the registers always 
have the correct  contents,  and that  the code and data  pages they access likewise have the correct 
contents at the moment that they are read, then Bodyguard knows that each action that the protected 
process takes is also correct.

Later in this thesis, we will document how Bodyguard keeps track of whether protected code is running 
or  not,  how  it  protects  registers,  how  it  protects  virtual  page  contents,  and  how  it  uses  these 
mechanisms to prevent snooping.

3.1.2 Other Miscellaneous Corruption Attacks

The  discussion  above  assumes  that  there  exists  some  current  state  of  the  process  (memory  and 
registers) that the hypervisor can track, protect, and update.  However, we must also consider attacks 
that corrupt the initial state of the process, or inputs to it:

– Bootstrap Attacks: Bodyguard  needs a way to verify the initial state of the process when the 
entity is first created.  This will be detailed in a later section.

– Mmap()  Attacks: Bodyguard  needs  a  way to  verify  that  newly  mmap()ed  pages  have  the 
correct contents. This requires that the program verify the page contents immediately after an 
mmap().  Bodyguard requires that the program use a custom mechanism to confirm its pages, 

14



perhaps  by knowing the  checksum of  all  files  that  it  maps.   In  Future  Work,  we hope to  
investigate ways to automate this  by creating a special  file format that includes checksums 
within the file itself.

– Fork(): Bodyguard needs a way to handle fork(), and ensure that the newly-created process 
is an exact duplicate of the old process (but that their pages are COW copies of each other).  
This will be detailed later.

– Protected  IPC: Bodyguard  needs  a  way for  two protected  processes  in  the  same entity  to 
communicate via IPC mechanisms (including pipes) in a way that prevents both corruption of, 
and snooping on, the private data.  Bodyguard assumes that all IPC channels will either be 
encrypted or (as discussed in Future Work) emulated using shared memory.

– Client  Network  Connections: Likewise,  the  process  may need  a  network  link  to  its  client, 
through which it may receive inputs and report outputs.  Bodyguard assumes that the program 
will use ssh or similar to protect these connections.  Thus, data traveling from the client to the  
program is protected by ssh while over the network, and then by the protected IPC mechanism 
above when traveling between the ssh process and other protected processes in that entity.

– Files  on  Disk: The  hypervisor  does  not  protect  files  on  disk.   If  the  protected  application 
chooses to write out data to a local disk and later read it back, it must have a way to verify the 
contents  [21].   This  can  be  tied  into  the  same  mmap() verification  mechanism  that  we 
mentioned above.

– IPC and Network to Untrusted Elements: The program may also include IPC and/or network 
links  to  untrusted  programs.   These  will  not  be  protected,  obviously,  but  the  program  is 
expected to verify the inputs (if appropriate) before making use of them.  The  program must 
realize that an attacker could corrupt input sent into the program, or corrupt the status that it 
reports out.

3.1.3 Shared Memory Attacks

Shared  memory  attacks  are  attacks  where  the  untrusted  OS  does  not  properly  implement  shared 
memory, either by sharing a physical page between two unrelated virtual pages (allowing a write to one 
page to modify the other), or by failing to share two virtual pages which should have mapped to the 
same physical page.

In truth, shared memory attacks are just another form of corruption attack, but we give them special 
consideration because they require that Bodyguard add a layer of indirection to our protection.  (See 
Figure 3 below.)  Bodyguard does not protect  virtual pages; instead,  it  protects  logical pages.   A 
logical page has one or more virtual pages associated with it; a non-shared page has one virtual page,  
while a shared page can have arbitrarily many virtual pages associated.

When a process attempts to access (execute, read, or write) a virtual page, the hypervisor looks up the 
virtual → logical association.  The logical page stores the information about the current contents of the 
page; the hypervisor compares the stored contents of the page with the contents of the physical frame, 
and the access is valid if the contents match.

15



Invalid Sharing

Imagine that there exist two virtual pages that should not be shared, but the untrusted OS configures the 
page table such that they do.  (See Figure 4 below.)  How is corruption detected?

We'll assume, for this example, that the two pages originally share the same contents; perhaps they are 
COW copies of each other.  Thus, the hypervisor allows them to share the same frame at first.   (It is 
valid that they share the same frame, since they currently have the same contents.  What is invalid, in  
this scenario, is that the OS makes one or both of the pages writable.  When COW pages share a frame,  
all of the virtual pages must be readonly.)

When the protected process attempts to write through one of the virtual addresses, the hypervisor looks 
up the logical page for this virtual page.  This logical page maps to a certain frame; this frame is  
currently shared with one other logical page.

Since this operation is a write, the hypervisor unmaps the  other logical page from the frame.  Thus, 
while there are two logical pages, only one is mapped to the frame; the hypervisor knows what the 
contents of the other ought to be (the old contents of the frame).

Now, the write proceeds, and modifies the frame.  This virtual page (the one through which the write  
happens) has the correct data for now, since it points at the frame.  However, its sibling page now has 
incorrect data, since the saved state shows that it should have the old contents, but the page table points 
it to the frame that has the new contents.

The hypervisor discovers this at some later point, when the protected process attempt to access data  
through the 2nd virtual page.  The hypervisor attempts to map the 2nd logical page to the frame, but the 
contents do not match.

16

Figure 3: Virtual vs. Logical Pages

Untrusted OS View

Hypervisor View

proc A

proc B

Virtual 
Pages

Frames

Shared 
Page

proc A

proc B

Virtual 
Pages

Frames

Shared 
Page

Logical
Pages



This is reported as a corruption, and the protected process is killed.

Failure to Share

Now imagine that there exist two virtual pages that should be shared, but the untrusted OS fails to do 
so.  (See Figure 5 ).  How is corruption detected?

In this case, the hypervisor knows that there is only one logical page, but the untrusted OS has set up  
page table entries pointing to two different frames.

When the write occurs, the hypervisor maps the virtual page to the logical page.  There are no other 
logical pages mapped into that frame, so the write is allowed to proceed without problem.  The write  
changes the contents that are stored in that frame.

As with the previous example, the virtual page through which the write occurred has the correct data, 
since it points at the frame that contains the recently modified data.  However, its sibling now has the  
wrong data, as it points to the wrong frame.

The hypervisor detects the corruption when the protected process attempts to access the 2nd virtual 
page.  The logical page is currently mapped into the 1st frame, but the page tables tell the hypervisor 
that this virtual address should map to the 2nd frame.  Therefore, the hypervisor unmaps the logical page 
from the 1st frame, changing that frame to contain the signature for that data.  It then attempts to map 
the logical page into the 2nd frame, but the contents do not match.

The hypervisor reports this as a corruption, and the protected process is killed.

17

Figure 4: CORRUPTION EXAMPLE: Invalid Sharing

new contents

(a) Hypervisor Expectation

Virtual 
Pages

FramesLogical
Pages

old contents

(b) Actual (WRONG) Page Tables

Virtual 
Pages

Frames

(c) Write Causes Corruption

Virtual 
Pages

Frames

new contents

Logical
Pages

new contents

old contents

On write, the hypervisor breaks 
association between the frame 
and any other logical pages

(d) Miscompare on Read

Virtual 
Pages

Logical
Pages

old contents

Corruption detected on read of 
2nd virtual page

old contents

old contents

old contents



3.2 Snooping Attacks

Snooping attacks are where the attacker attempts to determine the private data of the protected process. 
These  include  direct  attacks,  where  it  attempts  to  directly  read  memory or  registers,  and  indirect 
attacks, where it attempts to corrupt the state of the program such that it will expose its private data.  
Since we already have mechanisms to prevent corruption, this section will discuss only direct snooping 
attacks.

Private pages in memory are protected with signatures. As outlined in Chapter 1, Bodyguard ensures 
that  the  protected  application  always  sees  the  private  data,  while  untrusted  code  always  sees  the 
signature which represents the data.  (See Figure 6 below for more details on how this is implemented.)

To protect registers, the hypervisor automatically wipes most registers when code jumps out of trusted 
code into untrusted code for any reason (branch, syscall, interrupt, exception, breakpoint, etc.).  Thus, 
even if the operating system uses interrupts or breakpoints to intercept the application, it cannot read 
the private data stored in registers.  (The contents of these registers are automatically restored when the 
CPU eventually returns to the protected process.)

18

Figure 5: CORRUPTION EXAMPLE: Failure to Share

(a) Hypervisor Expectation

Virtual 
Pages

FramesLogical
Pages

(b) Actual (WRONG) Page Tables

Virtual 
Pages

Frames

old contentsold contents

old contents

(c) Write Causes Frame Values to Diverge

Virtual 
Pages

FramesLogical
Pages

new contents

new contents

old contents

(d) Miscompare on Read

Virtual 
Pages

FramesLogical
Pages

new contents

new contents

old contents

old contents



IPC Snooping

An attacker may attempt to snoop on the data carried on IPC mechanisms between processes (for 
instance, reading the data on a pipe between ssh and the main process).  As noted above, we expect the 
trusted application to either encrypt its IPC, or (as discussed in Future Work) emulate it using shared 
memory.  In either case, snooping will be prevented.

I/O Snooping

19

Figure 6: Signatures Prevent Snooping

Untrusted OS Creates Page Table Entry

Virtual 
Pages

Frames

Hypervisor Protects Logical Page Contents:
Both Private Data & a Signature

Virtual 
Pages

FramesLogical
Pages

private data

Virtual Page is Accessible from both
Trusted and Untrusted Code

Virtual 
Pages

FramesLogical
Pages

Trusted
Code

Untrusted
Code

signature

private data

signature

Untrusted Code sees the Signature

Virtual 
Pages

FramesLogical
Pages

signature

Trusted
Code

Untrusted
Code

private data

signature

Virtual 
Pages

FramesLogical
Pages

private data

Trusted
Code

Untrusted
Code

private data

signature

Trusted Code sees the Private Data



An attacker  may attempt  to  read  the  contents  of  a  file  or  network  stream used  by the  protected 
application.  File snooping may be prevented simply by ensuring that all file I/O uses page-aligned 
private pages; when the OS tries to write the page to disk, it will write the signature.  As detailed later, 
these pages can be later  read up into the process,  into new virtual  pages,  and the hypervisor  will 
automatically  recognize  the  signatures  and  show  the  private  data  to  the  process.   (While  this 
mechanism trivially prevents snooping, it doesn't prevent corruption.  As discussed above, if corruption 
is a concern, the process will also need to use validate the contents of such pages.)

As discussed above, this thesis  assumes that the trusted application uses ssh, with a protected IPC 
channel, to encrypt (and thus prevent snooping on) network traffic.

Simultaneous Attacks

Since  memory snooping  is  prevented  by replacing  pages  with  signatures,  and  the  private  data  is 
automatically restored when the protected application accesses it, an attacker may attempt (on an SMP 
system) to snoop by running an attacking process at the same time as a protected process, and accessing 
the private data through an inappropriate mapping to the frame.

The hypervisor handles this easily.  When a frame contains private data, no untrusted code, on any 
processor, is allowed to access the page.  If any untrusted code attempts to do so, the hypervisor will  
intercept the access, replace the page with its signature, and then allow the access to proceed.

Likewise,  while  the  hypervisor  contains  the  signature,  no  protected  process,  on  any processor,  is 
allowed to access the page.  If any protected process attempts to do so, the hypervisor will intercept the  
access, restore the private data, and then allow the access to proceed.

Thus, if an attacker attempts simultaneous access, it may cause very poor performance (because the 
page is constantly switching back and forth between the signature and the private data), but the attacker 
will never be able to see any private data, nor cause the protected processes to see improper data.

DMA

An attacker may attempt to read or write private data pages by instructing a device (such as a hard disk  
or network card) to read or write physical pages using DMA [22].  Any such access, by any device, is 
treated as an access by untrusted code.  DMA is thus simply a special form of a simultaneous access 
attack: the device will see signatures, while the protected process will see the private data.

Replay Attacks

In  a  replay  attack,  the  untrusted  operating  system  runs  multiple  copies  of  the  same  protected 
application, perhaps duplicating it and running several in parallel, or perhaps rewinding it to a previous 
state and running it again.  The attacker's hope would be that, over time, it might be possible to find a 
workable attack (for instance, by feeding the application random inputs in hopes that some are not 
handled appropriately).

Bodyguard prevents this implicitly.  There is only one copy of the process in the hypervisor's tables,  
and thus only one set of valid registers and one valid working set.  If an attacker were to attempt to 
rewind the process to a previous state, even if that state is an exact duplicate of a previously-valid state, 
the hypervisor will view this as register corruption (and/or memory corruption) and crash the protected 
process.

Thus, it is impossible to even attempt a replay attack.

Dictionary Attacks

20



An attacker might attempt to expose the contents of a private data page through a dictionary attack. 
For instance, it might run its own protected process and read the pages at various points in time, hoping 
to map signatures to private data.  Or, it  may attempt to gain insight into the process, looking for 
duplicate pages, by scanning a process's working set for pages with duplicate signatures.

Dictionary  attacks  fail  because  signatures  are  randomly  generated3.   Thus,  dictionary  attacks  are 
impossible, since two different pages, which happen to have the same private data, will have different 
contents when read by untrusted code4.

3.3 Valid OS Page Accesses

This  section discusses various  valid ways in  which the OS might  access pages that  could contain 
private data.  We will also provide an overview of how the hypervisor should handle each scenario.

3.3.1 mmap()/munmap()

The program may ask the operating system to  mmap() new pages, or  munmap() existing pages. 
These actions change the working set of the process in valid ways.  However, from the perspective of 
the hypervisor, sometimes these actions will look like corruption.  For instance, imagine that a certain 
page was mapped into the protected process, and known to the hypervisor.  The process unmaps this 
page, and maps another page in its place.  Although this is a valid change, the hypervisor will perceive 
this as an attempt to corrupt the contents of that page.

Therefore, the hypervisor depends on the protected application to inform it when such operations occur. 
This allows the hypervisor to tell the difference between valid working set changes and corruption. 
This thesis performs most of this work implicitly and lazily.

3.3.2 write() and Similar Syscalls

Some syscalls, such as write(), legitimately read the private contents of a page.  To accomplish this 
safely, a protected application performs two additional steps.  First, it copies the data to a “bounce 
buffer” (initializing any unused space in the buffer, to prevent leak of old private data that might reside 
there).  Second, it notifies the hypervisor that the page(s) of the bounce buffer are now “public” pages, 
meaning that they contain data that may be shown to the operating system.  Once steps these are 
accomplished, the protected process actually performs the syscall; when the OS attempts to read the 
buffer, it is allowed to see the correct data because the protected process marked the page(s) public.

3.3.3 read() and Similar Syscalls

Some syscalls, such as read(), legitimately write to virtual pages.  Such modifications should not be 
considered corruption by the hypervisor.

3 In Overshadow (see Chapter 5), the pages are encrypted using a standard (but private) key.  However, they still prevent 
dictionary attacks; they generate a random initialization vector for each new encryption action.  Thus, two encrypted 
pages, encrypted at different times, will have different ciphertext values.

4 The only exception is COW pages, where two pages might have the same signature because the signature for both was 
generated at the same time, when they were both mapped into the same frame.  It is no leak, though, to tell the untrusted 
OS that these pages were duplicates of each other; it already knew that, and that is why they were both mapped to the 
same frame.

21



To  accomplish  this,  the  protected  process  must  first  allocate  a  new  buffer  in  the  process  space 
(initializing it if necessary, to prevent a leak of old data that might have resided there before).  Second, 
it tells the hypervisor to forget the contents of that buffer, effectively removing it from the working set 
of the protected process.  Third, it performs the syscall.  Fourth, the protected process accesses the 
virtual pages, which implicitly brings them back into the working set.  Finally, it copies the data from 
this buffer into the destination buffer in private space.

3.3.4 COW

In  some situations,  the  operating  system may perform COW on private  pages.   For  instance,  the 
protected process might fork() itself; then there exist two virtual pages for each physical page, and 
as the processes run, the OS must perform COW on the various pages.  That is, the operating system 
will (upon the first attempt to write to the COW page) read the physical page, copy it to another, and 
then update the page tables such that the virtual pages no longer share the same physical page.

Fork

To handle this, the hypervisor duplicates the virtual and logical pages of the process, at the moment 
when the fork() occurs.  It initializes their contents to be duplicates of each other (namely, it records 
that 2 logical pages now map to the same physical), but the new logical pages do not share any logical 
link.  Later, when the OS needs to copy the page, the hypervisor will generate a single signature, which 
is saved as the “current contents” of both logical pages, because both are mapped into the same frame. 
When these pages are accessed again (by the protected processes), the hypervisor restores each from 
the signature, entirely independent of the other.

Other Instances of COW

COW can also happen when the untrusted OS knows that two pages map to the same physical page in 
their initial  state.   For instance, when the process is bootstrapped, the same physical page may be 
mapped into one location as a (readonly) code page, and mapped into another location as a (read-write) 
data page.  The untrusted OS will point both of these virtual pages to the same physical page until the 
data page is modified.

The hypervisor allows the initial state of the protected process to include a plurality of pages that all  
have the same private contents, and the same signature.  The untrusted OS selects one frame, and fills it 
with the signature; any number of logical pages may be mapped to the same frame.

3.3.5 Swap

At any time, an operating system may choose to swap a page to disk.  This, of course, means that the 
untrusted OS (or, DMA) will read the contents of a private page, and later write it back.

In this scenario, the untrusted OS sees the signature, rather than the private data.  Thus, what is written 
to disk is the signature.  Later, when the protected process attempts to access the page, a page fault will 
result, and the OS will restore the signature.  Possibly, it will reside in a different physical page than 
before.   However,  since the hypervisor  only cares  about  the  contents of  pages,  not  their  physical 
implementation, it will confirm that the logical page has the correct contents, swap the signature back 
to the private data, and allow the process to use its memory.

22



3.3.6 Signals

If the process registers for signals, then the untrusted OS is justified in sending signals to the process at 
any time (except when they are masked), forcing code into the defined signal handlers.  Note that this 
will look like register corruption, since the kernel will change the IP (and perhaps the SP).  It may also 
look like virtual space corruption, if the kernel has to write out values to the virtual space, such as 
creating a stack frame.

This paper does not describe how signals might be handled.   We hope to implement a secure and 
general solution in our Future Work.

3.4 Summary

In this chapter, we detailed the various types of attacks that are possible.  We discussed valid operations 
that an uncorrupted OS might perform.  It also sketched Bodyguard's protection mechanism and how it 
applies to these various operations.

23



Chapter 4: Bodyguard Design
This chapter starts by describing the hypervisor.  It then describes an “entity,” which is our protection 
boundary.

Next, it details the properties of a protected process, including discussing how the hypervisor knows 
when one  is  running.   It  describes  the  characteristics  of  the  virtual  space  of  a  protected  process, 
discussing the working set, virtual pages, and logical pages.  It discusses how the hypervisor handle  
physical frames, and how it controls access to those frames.

Next, the chapter will discuss more abstract concepts, such as signatures, how the hypervisor maps the 
guest page table to the effective host page table, and how it protects registers.

Next,  the  chapter  will  detail  how the  shim works  (including the  syscall  handler).   The  shim is  a 
mechanism we use to adapt a legacy process to Bodyguard protection without having to rebuild it.

Next, the chapter will discuss how the client and hypervisor work together to initialize a new entity in a 
secure manner.

Finally,  the  chapter  will  present  a  number  of  detailed  examples,  demonstrating  how  Bodyguard 
provides protection in a practical environment.

4.1 Hypervisor

The hypervisor is a hardware or software component that implements Bodyguard's basic protections. 
In our prototype implementation, the hypervisor is special code running inside the Bochs x86 emulator.  
Thus,  our  experimental  setup  effectively emulates  a  new hardware  implementation.   However,  we 
believe that the ideal setup (to be explored in Future Work) would be a VMM, such as Xen [23].

The hypervisor supports a set of hypercalls, which are direct calls from the protected application to the 
hypervisor.  The hypervisor interprets the call, and determines the return value; Bochs then swallows 
the operation (effectively turning it into a NOP) so that the untrusted OS never sees it.

Ideally, Bodyguard would use a new instruction for this, but our work uses a simpler approach (since it 
is  currently  limited  to  Linux).   The  hypervisor  inside  Bochs  monitors  all  system  calls.   If  any 
application uses system call 400, which is undefined in Linux, it is interpreted as a hypercall.

In most cases, hypercalls and syscalls are separate operations.  However, there are a few cases where it 
is necessary to perform a hypercall, and then atomically perform some syscall (without ever returning 
to the protected application).  Currently, these few operations are hard-coded for the Linux system call 
numbers and system call mechanism, but this could be generalized in the future.

4.2 Entities

In Bodyguard, the hypervisor keeps track of one or more entities.  An entity is a single instance of a 
protected application, encompassing one or more processes.  All of the processes in the same entity 
have the ability to read and write each other's private data pages (if the appropriate mappings are set up, 
of  course),  but  nothing  outside  of  the  entity  (including  untrusted  code  mapped  into  any of  these 
processes, such as kernel code) will be allowed to read or write any of the private pages.  Several 
entities can be running in the same untrusted OS at any given time.

24



We describe the entity initialization process later 
in this chapter.

4.2.1 Destroying an Entity

The  hypervisor  destroys  an  entity  in  three 
different circumstances:

1) When  the  last  process  within  it  dies. 
(See below for a description of process 
destruction.)

2) When the entity fails any sort of check, 
and the hypervisor believes that the state 
has been corrupted.

3) When  the  link  between  the  hypervisor 
and the client drops.   (See below for a 
description  of  the  link  to  the  client, 
which is also used for initialization.)

When an entity is destroyed, the hypervisor deletes each process within it.  This involves, of course,  
deleting all of the virtual and logical pages within each.  If any of the logical pages are currently 
mapped  into  any  frame  (showing  the  private  data,  not  a  signature),  the  hypervisor  ensures  the 
confidentiality of the private data by replacing the data with a signature before the logical page is 
destroyed.  (See below for details about how a logical page is destroyed.)

Once all of the processes, virtual pages, and logical pages have been destroyed, the hypervisor destroys  
any record of any saved pages or signatures associated with this entity.5

Finally, the hypervisor reports status to the client (if the link is still up), and closes the link to the client.

In some cases, the untrusted OS may continue to run a protected process after its entity has been 
destroyed.  (This can happen if the client link dies, or if the hypervisor detects corruption.)  The process 
will die very quickly in this state, because the code pages are all converted to signatures (with no way 
to restore them).  Thus, as soon as the process runs its next instruction, it will execute random data, and 
the process will immediately fail with an illegal instruction exception.

Lingering Entities

As mentioned below, it is possible for a protected process to die without notifying the hypervisor.  This  
means that it is possible for an entity to linger after the last process has died (because the hypervisor 
still thinks that one or more processes are running).  A lingering entity may tie up hypervisor memory,  
since the hypervisor must keep around copies of all of the signatures ever created for this entity.  (See 
Section 4.7: Signatures and Saved Pages below for a discussion why.)  However, a dead entity should 
get cleaned up relatively quickly, as the client should become aware of the situation before long, either 
by receiving a completion message through the network, losing the network connection, or simply 
timing out.  When the client detects the termination, it will drop its connection to the hypervisor, and 
the entity will be cleaned up automatically.

5 As detailed below, the hypervisor is required to keep track of every signature ever created, and the private data that each 
maps to.  This data can be discarded when the entity dies, since there will never again be a need to recognize a signature 
and restore the private data.

25

Figure 7: Entities and Processes in the Untrusted OS

Untrusted OS View

Proc 1 Proc 2 Proc 3 Proc 4

Hypervisor View

Entity A Entity B
Proc 1 Proc 2 Proc 3 Proc 4



4.3 Processes

A protected process is a process within the untrusted OS 
that is known to the hypervisor and receives protection 
for  its  memory and registers.   Each entity  includes  at 
least one protected process.

4.3.1 The First Process

The  first  process  in  an  entity  is  created  using  the 
initialization method described later in this chapter.  The 
initial state of the working set, and the initial state of the 
saved  registers,  are  determined  by  the  client  and 
communicated to the hypervisor.

4.3.2 fork()

All protected processes, other than the first in each entity, 
are  created  with  fork()6,  duplicating  an  existing 
protected  process.   When  the  process  performs  a 
fork() within the untrusted OS, the hypervisor is also 
notified and duplicates the process.

Duplicating the process requires that the hypervisor duplicate the working set of the process.  (See 
Figure 8.)  Each virtual page is duplicated in the new process.  Virtual pages that point to shared logical 
pages will point to that same logical page in the new process.  However, virtual pages that point to non-
shared logical pages will point to new logical pages, which are duplicates of the ones from the existing 
process.  The result is that pages that must be shared will share a common logical page, and pages that 
need to not be shared will not share logical pages.  Thus, the hypervisor can enforce that the untrusted 
OS properly implements COW semantics.

Likewise, the saved register state is copied to the new process.

Atomicity

fork() has some unusual complexities because both the hypervisor and the untrusted OS need to 
duplicate the process state, and they must duplicate precisely the same state.

A naïve implementation of fork() might have the protected process first hypercall to the hypervisor, 
asking it to duplicate the process state, then return to the process and perform the  fork() syscall. 
However, this will not work, because the process state might change between the hypercall and the 
syscall.  Thus, when the child process eventually ran, the hypervisor would believe that corruption had 
occurred.

Instead,  Bodyguard implements a hypercall  that atomically performs the hypervisor copy, and then 
calls the syscall on behalf of the process, without ever returning to the process.  Thus, the process state 
that the hypervisor copies is exactly the same as the process state that the untrusted OS copies.  Thus,  
when the child process runs, it will have exactly the state that the hypervisor expects.

6 The current version of this thesis was designed for use with Linux, which uses fork() to create new processes.  In the 
Future Work, we may investigate how to generalize the design to handle Windows and other operating systems.

26

Original Protected Process

After fork()

proc A

proc B

Virtual 
Pages

Logical
Pages

abc

def

abc

proc A

Virtual 
Pages

shared page

Logical
Pages

abc

def

shared page

shared page



4.3.3 Lingering Processes

The hypervisor does not have any automatic way to know when a process dies in the untrusted OS7. 
Instead,  the  hypervisor  expects  a  dying  protected  process  to  use  the  “kill-process-then-call-exit” 
hypercall.  Like the fork hypercall, this is an atomic hypercall; it first cleans up the current protected 
process inside hypervisor memory, and then immediately calls Linux's exit() syscall.

If a protected process fails to die cleanly (say, because of  kill -9), then the hypervisor will not 
realize that this process is dead, because this hypercall will never run.  However, as we noted above, 
the entity will die eventually, for some reason; at that time, the process will get automatically cleaned 
up.  A process that thus lingers in the hypervisor memory is harmless, other than that it consumes a 
small amount of memory for its working set table.

4.3.4 Jumping Into a Process

Nothing ever explicitly informs the hypervisor when the untrusted OS schedules a protected process to 
run.  Instead, the hypervisor implicitly discovers that a protected process is running when it discovers 
that the CPU is executing code that resides in a private page. [24]  Since each private page is owned by 
exactly one entity, the hypervisor knows which entity is running, based solely on the private page. 
However, the entity may include multiple processes, and so the hypervisor needs a way to tell which 
process is running.  It does this by inspecting the process ID8.

Once the process ID is known, the hypervisor looks up the saved register state for this process.  It 
confirms that the current contents of the registers are correct, and then restores the contents of any 
registers that were wiped when the process last left protected code.

Once the registers are restored, the hypervisor looks up the instruction pointer, and checks the contents 
of that page.  That is, it looks up the correct virtual page in the working set of this process, compares 
the saved contents9 with the frame.

If the contents of the code page are correct, then the protected process is allowed to run.  However, if  
any of the above checks fail, the hypervisor interprets this as corruption and destroys the entity.

Running Untrusted Code Inside the Process

Kernels typically map their code and data pages into the same context as user processes.  Thus, the 
hypervisor will often find that a process with a known process ID is executing untrusted code pages. 
This is allowed, but the code is not said to be executing the protected process; it is executing untrusted 
code.  Therefore, the code has no right to read or modify private pages.

7 We could implement a handler for SIGCHLD to catch processes as they die, but we would still have the fundamental 
problem that there would be some “grandparent” process of everything, which could be killed without the untrusted OS 
knowing about it.  Thus, we have to consider the possibility of lingering processes, even if we eventually implement a 
SIGCHLD handler to make them less common.

8 In our current design, we use the page table pointer as the process ID, as we have never observed it to change in our 
system, during the lifetime of a process.  However, we realize that this is not necessarily reliable, and a better method 
should be found.

9 The hypervisor always requires that the protected process bring all code pages into the working set (with reads or writes) 
before attempting to execute them.  If the process attempted to execute a virtual page which was not yet in the working 
set, then an attacker could drop in any arbitrary page, and thus corrupt the process.  Thus, we can always assume that the 
page to be executed is in the working set of the current process.

27



4.3.5 Jumping Out of a Process

Likewise, nothing ever explicitly informs the hypervisor when untrusted code is running.  Instead, the 
hypervisor implicitly discovers this when it discovers that the CPU is executing code that resides in a 
public page.

Any jump from protected code into unprotected code,  for any reason (fall-through, call  or branch, 
interrupt, exception, or breakpoint) is treated the same way; the hypervisor notes that the processor is 
now executing untrusted code.  Any attempt to access private pages will be intercepted, as detailed 
below.

4.3.6 Example: Syscall

Imagine that a protected process is running, and it performs a syscall.  Before it executes the syscall, its  
instruction  pointer  points  to  a  private  page.   Since  this  is  a  private  page,  and  the  process  ID  is 
recognized, we say that Bodyguard is running a protected process.  This means that the code may both 
read and write private pages associated with this entity.

When the process performs a syscall, this forces the code to jump to a different page, which is not a 
private page (it is kernel code).  Since the process is jumping out of private pages into public pages, the 
hypervisor (as detailed below) saves the registers and zeroes out most of them (leaving only the critical 
ones necessary for the syscall).  It also disables any access to private pages.  The process executes code 
within the kernel.

When the kernel is  ready to return to the protected process,  it  performs the return-from-exception 
instruction.  Amongst other things, this instruction jumps the process back to the instruction after the 
syscall.  This, of course, is back in private code pages.  The hypervisor confirms that the instruction 
pointer and registers are correct (that is, that they match the saved values).  It also verifies the contents 
of the code page that is being executed.  If all checks out, then the protected process starts executing 
again.

It's important to note that all of this happened within the context of a single process.  The process ID 
never  changed;  the  guest  OS  page  tables  may  not  have  changed.   However,  the  hypervisor 
automatically detected the transition from the protected process to the kernel (and back again), and was 
able to confirm that the kernel did not corrupt the state of the process.  All of this happens implicitly,  
without  any explicit  action by the process.   The hypervisor can detect  these transitions simply by 
checking which code pages are public and which are not.

4.3.7 Threads

We have not implemented support for multiple threads in a single process, but it should be fairly easy 
to generalize the register-snapshotting mechanism (see below) to support multiple buffers (one buffer 
per thread).  One key difficulty is that we must find some way to determine which thread is running  
when code jumps into private pages.  Some architectures already store the thread ID in a register, which 
would solve the problem; another option is to treat the instruction pointer/stack pointer pair as a unique 
identifier.  We leave this as something to examine in the Future Work.

4.4 Working Set

The  working set of  a protected process is the list  of virtual pages that are in this  process's virtual 

28



address space and that are known to the hypervisor.

Adding a New Page

New pages are added to the working set lazily, when they are first read or written by the protected 
process10.  The initial contents of the page may be a signature, or they may be arbitrary data of any 
other kind.  If it is a signature11, then the page is initialized as a private page; before the protected 
process is allowed to perform the access, the hypervisor replaces the signature with the private data 
associated with that signature.

On the other hand, if the physical page does not contain a signature, then the virtual page is initialized 
as a public page (just as if the process had written this data to a page and then told the hypervisor to 
“mark it public”).  Since the page is public, untrusted code will be able to read its contents until the 
application modifies it.  Once the application modifies it, it becomes a private page.

This implicit design elegantly handles new anonymous pages (mapped with MAP_ANONYMOUS), 
which are normally zero pages.  It also handles  mmap() of files where the contents of the file are 
public  data.   Moreover,  it  handles  situations  mmap() of  files  where  the  contents  of  the  file  are 
signatures (written at some earlier time by this same entity).

However, a downside of this design is that the protected process must verify the contents of each new 
mmap(), since the hypervisor has no idea what to expect.  For instance, with a new page mapped with 
MAP_ANONYMOUS, the page may not actually be initialized to zero as it was supposed to be; an 
mmap() of a file may not reflect the true file contents.

Removing Pages from the Working Set

Any time that the process performs munmap(), it must remove the page(s) from the working set.  This 
is so that later, if the process mmap()s new pages to the same virtual addresses, the hypervisor will not 
interpret this as corruption.  It accomplishes this with a “forget range from working set” hypercall.

Likewise, any time that the process is about to perform any syscall that will modify any buffers in the 
virtual space, it must remove the page(s) from the working set before the syscall.  Again, this is so that 
changes to the pages will not be interpreted as corruption by the hypervisor.

Destruction of the Working Set

When the process dies, all of the virtual pages in the working set are automatically cleaned up.  Of 
course, if some of those pages point to shared logical pages, then those logical pages will  persist;  
however, most of the virtual pages will point to non-shared logical pages, and those logical pages will 
get cleaned up as part of process destruction as well.  (Later, we will discuss exactly how Bodyguard 
cleans up logical pages.)

10 The hypervisor never imports a page into the working set based on an attempt to execute a page, which means that a 
protected process cannot simply jump into a newly mmap()ed code page.  If a protected process attempted this, an 
attacker could drop in any contents that he desired into that page.  Even if the hypervisor knows that the code page is a 
private page (that is, the frame contents match a signature), it doesn't know that the attacker mapped in the right code 
page.  Instead, the protected process must always read a code page, and confirm its contents, before its first attempt to 
execute it.

11 It must be a signature of a private page associated with this entity.  If one entity attempts to access the private data of 
another, this is treated as a normal access by untrusted code, and the attacker will see the signature, not the private data.

29



4.5 Virtual and Logical Pages

As discussed in Section 3.1.3: Shared Memory Attacks above, Bodyguard distinguishes between virtual 
and logical pages.  A logical page represents the logical contents of a page; a virtual page represents 
one page in the working set of a protected process.  There is a many-to-one relationship between virtual 
and logical pages; if multiple virtual pages map to the same logical page, then this means that all of 
these virtual pages are shared pages, all the protected process expects all of them to be mapped to the 
same physical backing page.

Initialization

When a protected process reads or writes a virtual page which is not in its working set, Bodyguard 
creates new virtual and logical pages to represent it.  The new virtual page points to the new logical  
page, and the virtual page is added to the working set of the process.

If the physical page (as determined by the page table entry) contains a known signature from this entity, 
then the logical page will be initialized as a private page.  Its current contents will be equal the private 
data associated with this signature.

If the physical page does not contain a signature12, then the page will be initialized as a public page. 
The current contents will be the current contents of the physical page.  Like any public page, the page 
will become private if/when the protected process writes to it.

4.5.1 Public vs. Private

Most logical pages are private.  Private means that the page contains (or might contain) private data 
that the process does not want a snooping attacker to be able to read.  If an attacker attempts to read a 
private page, it will see a signature instead.

Public pages are those that the protected process has declared are safe to share with untrusted code, or 
recently added pages whose contents were initialized by the kernel.  They often contain data that must  
be sent to the kernel, but may also include recently allocated pages that have not yet been modified.

If the protected process writes to a public page, it  automatically transitions from public to private.  
However, the contents of the page (as seen by the protected process) will still mostly contain the old 
data from the public page (until overwritten).

Both types of pages are protected from modification.  That is, the hypervisor keeps track of the current 
contents of both types of pages, and untrusted code is not allowed to modify it.

4.5.2 Shared Pages

A  shared  logical  page is  a  logical  page  that  represents  a  shared  page  explicitly  declared  by  the 
protected process.  It represents a shared page mapping that may be shared amongst various processes 
in this entity.13

A process declares an existing14 virtual page to be shared with a hypercall.  The hypercall gives the 

12 ...or contains a signature from some other entity!
13 Note that “shared” means “shared between processes in this entity,” not “shared with untrusted code.”  Shared pages are 

still private pages, unless you explicitly make them public.  (The author cannot imagine why this would be desirable, but 
it is conceivable.)

14 We do not allow the process to declare a page shared until it is in the working set.

30



virtual address and the shared page identifier.   The hypervisor searches through the entity's  list  of 
shared pages, looking for a logical page with that identifier.  If it finds one, then it associates the virtual  
page with that preexisting logical page15.  However, if it does not find one, then it it creates a new 
shared logical page, associates the virtual page with that, and adds it to the entity's list of shared pages. 
The old logical page is destroyed.

Thus, if two processes (or the same process, at two different times), declares two shared virtual pages 
with the same identifier, then those virtual pages will point to the same logical page until they are 
removed from the working set.

This means that the various processes in an entity must have a 
shared table in virtual memory (see Figure 9: The Shared Page
Table and Figure 10: Allocating a Shared Page) that is used to 
assign  and  store  identifiers.   Since  we  cannot  trust  the 
untrusted OS to handle communication between the processes, 
the processes will use shared memory to implement this table. 
Each process, as part of its initialization, uses mechanisms in 
the  untrusted  OS (shmget()  or  similar)  to  allocate  a  shared 
virtual page.  It then notifies the hypervisor about this page, 
using a magic value16 as the identifier.  This page becomes the 
root  of  a  data  structure  of  shared  pages  through which  the 
various processes may maintain a table of allocated identifiers; 
each entry in the table maps an identifier in the untrusted OS 
world to an identifier in the table.

For instance, when a shared memory region is declared in the untrusted OS, the page(s) of that region 
are assigned private identifiers,  and the association is stored in the table.   All  protected processes, 
which map to the shared memory,  will  thus give the same ID to the hypervisor.   This allows the 
hypervisor to understand which virtual pages in the various processes are shared logical pages.

There is no way to turn a shared logical page into a non-shared one.  However, it is possible to delete a 
virtual page that points to a shared logical page, and then to touch the virtual pages to bring them back 
into the working set as non-shared.  (Note that this means that there is a window of time where the 
virtual page will not be in the working set, and thus an attacker could change the contents without 
detection.  If you care about this, then copy the contents to another page, break the link, and then  
confirm that the contents didn't change.)

4.5.3 Initialization

15 The hypervisor will demand that the two logical pages – the old shared one, and the new one which is just being 
declared shared – have the exact same contents.  This will, of course, be true if shared memory is working correctly, 
since the two logical pages should already share the same frame.  If the pages have different contents, Bodyguard 
interprets this as corruption, and kills the entity.

16 The magic value will be hard-coded into the design of the trusted application (or the shim, if that implements this shared 
table); the only requirement is that all processes know to use this same value for the bootstrap of their copy of the table. 
Note that it is fine if the attacker knows the magic value; it is not a secret, simply a convention used for bootstrap.  The 
attacker, even if he knows the magic value, cannot access the page, because any attempt to map the shared page from 
untrusted code will be rejected.  (Untrusted code is not allowed to modify the working set of any protected process.)

31

Figure 9: The Shared Page Table

Figure 10: Allocating a Shared Page

shmget()
identifier

0x1234
0x5678

hypervisor
identifier

10
11

key = shmget(...);
private_key = lookup(key);
addr = shmat(key, ...);
...touch addr...
hypercall(..., private_key, addr)



4.5.4 Saved Contents

The  hypervisor  always  keeps  track  of  the  contents  of  each  logical  page.   Sometimes,  this  is 
accomplished implicitly, by recording that a certain physical frame contains the data.  Other times, this 
is accomplished explicitly, copying the contents to private hypervisor memory.  If this is a private page, 
the hypervisor will also keep the signature in hypervisor private memory.

4.5.5 Destruction

Any time that the hypervisor destroys any logical page for any reason, it checks to see if that logical 
page currently resides in any frame.  If so, it unmaps the logical page from the frame.  If this was a 
private logical page, and if it was the last logical page mapped into the frame, the hypervisor will drop 
the  page's  signature  into the  frame before unmapping it.   This  will  ensure  that  no private  data  is  
forgotten and left around in old frames.  However, a frame may continue to hold the private data if 
there exist one or more surviving logical pages still mapped into it.

4.5.6 State Machine

Sometimes, a logical page is mapped to a frame.  Sometimes, it is not.  Sometimes, the frame contains 
a signature; sometimes, it contains private data.  We can model this with a state machine (see Figure
11).

In this state machine, transitions are always driven by accesses, either by untrusted code or trusted 
code.  Accesses by untrusted code drive the state towards the left of our figure; accesses through this 
logical page by protected processes drive the state towards the right.

The three possible states are:

– UNMAPPED: The page is not currently mapped into any frame.

– MAPPED (Signature): The page is mapped into a specific frame, and the frame contains the 
signature for this logical page.

– MAPPED (Private Data): The page is mapped into a specific frame, and the frame contains the 
private data for this logical page.

There are only four transitions possible:

32

Figure 11: Logical Page State Machine (Private Pages)

UNMAPPED MAPPED
(Private Data)

MAPPED
(Signature)

Any access to this 
frame by untrusted 
code

Any write to this frame, 
unless through this 
logical page

Any access to this 
logical page by trusted 
code

Any access to this 
logical page by trusted 
code



– UNMAPPED → MAPPED (Signature):  Confirm that  the  contents  of  the  frame match  the 
signature saved for this logical page.  If they match, then it is OK to map the page to the frame.  
Otherwise, the hypervisor detects corruption.

– MAPPED (Signature) → MAPPED (Private Data): Replace the signature with the private data, 
so that protected code can access the data.

– MAPPED (Private Data) → MAPPED (Signature): Generate a signature (if one doesn't already 
exist), and replace the private data with the signature.

– MAPPED (Signature) → UNMAPPED: Break the association between the logical page and the 
frame.  Record the expected contents of the logical page as you unmap.

Public Pages

Public pages have the same basic state machine, the difference being that they do not have signatures, 
and thus do not need a MAPPED (Signature) state.  (See Figure 12.)

4.6 Physical Pages (a.k.a. Frames)

A physical page (a.k.a. frame) is a guest-physical page; that is, it is a physical container for one page 
worth of data.

Frames are managed by the untrusted OS.  It decides which pages from which processes should reside 
in which frames.  It performs COW; it performs swap; it initializes new processes, and cleans up old 
pages after a process dies.

The job of the hypervisor is to monitor the actions taken by the untrusted OS and confirm that they do 
not allow corruption of, or snooping on, protected processes.  To accomplish this, the hypervisor keeps 
track of which logical pages (if any) are mapped into each frame at any given time.

A frame may be modeled as a state machine with four states (Figure 13)17.

– NO_MAPPING: No logical page is mapped into the frame

– PUBLIC: One or more public logical pages are mapped into the frame

17 Note that this state machine is effectively the merging of the private logical page and public logical page state machines 
given above.

33

Figure 12: Logical Page State Machine (Public Pages)

UNMAPPED MAPPED
(Public Data)

Any write to this frame, 
unless through this 
logical page

Any access to this 
logical page by trusted 
code



– SIGNATURE:  One  or  more  private  logical  pages  are  mapped  into  the  frame;  the  frame 
currently contains the signature for those pages.

– PRIVATE: One or more private logical pages are mapped into the frame; the frame currently 
contains the private data for these pages.

It is worthwhile to look at the frame state machine, in addition to the logical page state machines, in 
order to understand what happens when untrusted code attempts to access the frame.  First, untrusted 
code is never allowed to access the frame while it is in the PRIVATE state; if it attempts any such 
access, the frame will be driven to the SIGNATURE state immediately.  (Of course, this means that the 
private logical pages are each driven to the MAPPED (Signature) state as well.)

Read accesses by untrusted code are permitted while the frame is in the NO_MAPPING, PUBLIC, and 
SIGNATURE  states.   However,  write  accesses  by  untrusted  code  are  only  allowed  in  the 
NO_MAPPING state (so that the write doesn't alter the contents of a logical page).  Thus, if untrusted 
code attempts to write to a frame, and one or more logical pages are mapped into the frame, those 
logical pages are forcibly unmapped before the write is allowed to take place.

Taken  together,  the  logical  page  state  machines,  and  the  frame  state  machine,  give  a  thorough 
understanding of how logical pages are mapped and unmapped.  The logical page state machines are 
most useful when we want to understand accesses by the protected process; the frame state machine is 
most useful when we want to understand accesses by untrusted code.

Lazy Updates

When the untrusted OS decides to unmap a certain virtual page from a certain frame (or map a new one 
in), it updates the page tables immediately.  However, the hypervisor does not immediately notice the 
change.  Instead, the logical page → frame mappings are updated lazily, the next time that the logical 
page or frame is accessed.

34

Figure 13: Frame State Machine (Private and Public Pages)

UNMAPPED

MAPPED
(Signature)

MAPPED
(Private Data)

MAPPED
(Public Data)

Any access to this frame 
by trusted code, through 
a public logical page.

Any write by untrusted 
code to this frame.

Any write by untrusted 
code to this frame.

Any access to this frame 
by trusted code, through 
a private logical page. Any access to this 

frame by trusted code.

Any access to this frame 
by untrusted code.



For example, imagine that a certain private logical page is mapped into a certain frame, with the private 
data showing.  The untrusted OS decides to move this virtual page to swap.  It therefore reads the frame 
contents.  This read forces the frame into the SIGNATURE state; the OS then reads the signature, and 
writes it to disk.  It then updates the page tables to indicate that this virtual page is no longer valid.  The 
hypervisor, however, is unaware of this; since the frame has not been modified, the hypervisor still 
thinks that the logical page is mapped into the frame.

At some later point, the untrusted OS decides to map in a different page to the frame.  It therefore 
writes the correct contents into the frame.  This write is intercepted, since the hypervisor still has a 
logical page mapped in.  The hypervisor unmaps the logical page from the frame before the write is  
allowed to proceed.

Thus, the hypervisor does not become aware of page mapping changes until there happens to occur a 
write to the frame, at some point after the untrusted OS actually unmapped the page.  This is perfectly 
safe, because the hypervisor knows that the contents of the page didn't change during that window of 
time.  Therefore, until the write actually is allowed to proceed, the frame still contains the signature of 
the logical page.

Likewise, when  the untrusted OS maps in a new page to a frame, the hypervisor is unaware of the 
change until a protected process actually accesses the page.  Again, there is a window of time where the 
page is mapped into the frame (from the untrusted OS's perspective), but the hypervisor doesn't know; 
this is safe because the hypervisor will perform content validation before the first actual use of the 
page.

Finally, if an attacker corrupts a logical page (that is, the untrusted OS allows a mapping to a frame 
with  incorrect  contents),  the hypervisor  also will  not  detect  this  until  the first  access.   Again,  the 
hypervisor doesn't attempt to map the logical page to the frame until the logical page is accessed by a 
protected process; at that moment, it  performs the necessary content validation, and will detect the 
corruption.  This means that if a page is never accessed after it is corrupted (or, if the corruption is fixed 
somehow, before it is accessed), then the hypervisor will not detect corruption.  This is intentional; 
there is no need to crash the application if the corruption never actually affects the state of the protected 
process.

4.7 Signatures and Saved Pages

A signature is a page-sized block of data that uniquely represents the contents of a logical page at a 
point in time (or, a group of at-that-time identical logical pages).  Any time that untrusted code attempts 
to access18 a frame that contains private data, the hypervisor automatically generates a signature for that 
data (or, re-uses an old one if the page has not been modified since the old signature was generated) 
and replaces the private data in the frame with the signature.  Thus, untrusted code, when it attempts to 
access any frame that contains private data, instead sees the signature.

A signature is made up of a magic string, followed by random data.  Since the data is random, it is  
impossible for an attacker to read a signature and guess what the private data might have been.

Later, when the protected process attempts to access the page for any reason (read, write, or execute), 

18 It's obvious that a signature is necessary when untrusted code wants to read.  But it is also true that a signature is 
required when untrusted code wants to write.  Otherwise, an attacker could overwrite one byte and then read back the 
page and see the rest of the private data.  Note that we don't have to worry about untrusted code trying to execute a 
private page.  If the code jumps to a private page, this is interpreted as a jump into the protected process.  This will result 
in either running the protected process, or detecting corruption and crashing.

35



the  hypervisor  automatically  restores  the  private  data.   The  hypervisor  automatically  bounces  the 
various frames back and forth between the two states (signature and private data) as often as the access 
patterns require it.

4.7.1 Signature Persistence

Signatures may be used to initialize the contents of a new page.  That is, the untrusted OS may take a  
signature that was saved at some point in the past, copy it into a frame, and then map a new virtual  
address to that page.  This might be useful, for instance, if the protected process wrote out a page to a  
file  (without  using  a  bounce  buffer);  the  file  would  contain  the  signature.   Later,  if  the  process 
mmap()ed that file to a new address, the hypervisor would detect that the frame contained an old 
signature;  when the  process  accessed  the  page,  it  would  see  the  old  saved data.   Alternatively,  a 
programmer might implement a pipe between two protected processes, making sure to only copy page-
aligned, page-multiple buffers; the receiving process would get the private data because the OS copied 
the signatures around.  Of course, in both cases,  the programmer must worry about validating the 
pages, but this might be accomplished with something as simple as a magic value and sequence number 
buried inside the private data.

There is no limit on how long the untrusted OS might hold an old signature before using it again.  For 
this reason, a signature, once created, will be stored for the entire lifetime of the entity.  This means that 
the total amount of hypervisor memory consumed by the entity will grow over time and without bound; 
however,  all  of  this  memory will  be  released  the moment  that  the entity is  destroyed.   (We have 
considered alternative schemes where we might track which signatures are in use, and destroy them 
when they are no longer needed, but these are not part of the current design.  They may be investigated 
in Future Work.)

4.7.2 Signatures and COW Pages

Sometimes, multiple private logical pages will be associated with the same frame.  This happens when 
there are multiple logical pages that the untrusted OS knows to be COW copies of each other; it will  
map them to the same frame19.  As the protected process(es) access each page in turn, the hypervisor 
will discover that they all reside in the same frame, and it will thus map the various logical pages to the 
same frame.

If untrusted code attempts to access the frame, the hypervisor generates a single signature and stores it  
in the frame.  Note that this changes the state of all of the logical pages currently mapped into the 
frame; all of them move to the MAPPED (Signature) state at the same time (see Figure 11 above).

If it becomes necessary to unmap one or all of these pages from the frame, each logical page will point  
to the same signature as its “saved contents.”  That is, even though we have multiple logical pages, we 
only have a single signature shared amongst them, because they were all mapped into the same frame. 
Of course, as the protected process writes to some of these pages, their contents may diverge; however,  
they will share a signature until that point.

19 The untrusted OS can know that several pages are COW copies of each other without knowing their contents.  One 
example of this comes about when we fork() a protected process.

36



4.7.3 Signatures and Readonly Pages

When a protected process attempts to read or execute a private page that previously was a signature, the 
signature will be retained.  If it becomes necessary to switch back to a signature before the page is  
modified, the hypervisor will simply restore the old signature, rather than generate a new one.  Not only 
is this convenient and fast, it is also necessary for correctness.

Remember that a signature is generated when untrusted code attempts to access a private page.  The 
untrusted code may legitimately have copied that signature to another location, or even written it to 
disk (such as, but not limited to, swap).  Now imagine that the hypervisor restores the private data and 
the protected process uses it for a bit.  But then, before the protected process changes the page, the OS 
decides to discard this frame (swapping it out to make space for something else).  The OS knows that 
the page is clean (that is, has not been modified since it was last copied or written to disk) and thus it is  
entitled to simply discard the frame without copying it again.

Shortly thereafter, the frame will be reused for some other purpose; when this access first happens, the 
hypervisor will put the signature back in place, and then a moment later record that the logical page is  
no longer associated with that frame (since untrusted code has written to the frame).  If a new signature 
were created, then the saved contents of the logical page would reflect the new signature, but the saved 
copy that the OS has would reflect the old.

Thus, when the hypervisor needs a signature for a readonly page, it always chooses to simply re-use the 
old signature instead.

4.8 Masking Page Table Entries

In order to facilitate rapid execution of code inside a virtual machine, most VMMs translate the “guest 
page tables” (page tables defined by the guest OS) into an “effective page table.”  This is some sort of 
data structure or set of mappings which allows code inside a virtual machine to access its virtual pages 
without the VMM having to intercept and manually translate each access.

Throughout this document, we have said that the Bodyguard hypervisor will intercept memory accesses 
(read, write, execute) so that it may implement its various protection mechanisms.  Obviously, we don't 
want to intercept every single operation; instead, the hypervisor masks off entries in the effective page 
table.  Thus, under Bodyguard, the effective page table in the host is a subset of the guest page table 
defined by the untrusted OS.

Sometimes, an entry cannot be immediately used by the current entity in any form; these entries are 
masked off  entirely.   Other  times,  only certain  types  of  permissions  may be  masked off,  such as 
masking off the execute permission from certain code pages.  The hypervisor will receive page faults 
when masked-off operations are attempted, or the masked-off pages are accessed; it will perform the 
proper fixup routines (see the logical page state machines above) to make the access possible.

When  the  hypervisor  is  implemented  as  a  component  inside  a  traditional  VMM,  masking  can  be 
performed while the VMM is converting the guest page tables into the host page tables.  Such an 
implementation probably needs to perform eager updating of the masks.  The VMM may also choose to 
cache two copies of certain page tables; one that represents valid accesses by protected code, and one 
that represents untrusted code.

However, our current implementation (based off the Bochs x86 emulator) uses an alternate approach. 
Our code lazily generates masks as page table entries are imported into the TLB.  When the CPU jumps 

37



into or out of a protected process, the hypervisor simply tells Bochs to flush the TLB.  This ensures that 
TLB entries present in the processor are only those that are valid for the current running code.

TLB-fill time is also our opportunity to fixup the frame (if required) before an access is attempted.  For 
instance, if the frame contains a signature but we need to show the private data, we do this during the  
TLB-fill operation.  Or, if the frame contains private data and untrusted code it accessing it, we swap in 
the signature during the TLB-fill operation.

Finally, TLB-fill time is also our opportunity to unmap pages from a frame when untrusted code is 
attempting to modify the frame.

4.9 Detecting Memory Corruption

When code attempts to perform any access (execute an instruction, read, or write), this access will 
happen at a particular virtual address.  This access is represented by a page table entry, defined by the 
untrusted OS,  which indicates the frame that  stores  this  page.   If  the CPU is  running a  protected 
process, then this virtual address is also represented by a virtual page data structure in the hypervisor. 
The virtual page structure points to a logical page,  which points to either a frame, or to metadata  
indicating the stored contents of the logical page.

In the simplest case, the page table and the logical page both indicate the same frame.  In this case, the 
frame is already known to contain the current contents of the page (or, a signature representing said 
contents).  No verification is required.

In another case, the logical page may not be associated with any frame.  The contents of the page-table-
specified frame are thus compared with the either the saved contents (in the case of a public page) or 
the signature (in the case of a private page).  If the two are exact binary matches, then the hypervisor  
may associate the logical page with the frame; if not, then corruption has been detected (see Figure 14 
below) and the entity will be destroyed.

Finally, it is possible for a logical page to be associated with some other frame than the one specified 
in the page table.  (One example is a recent COW-copied page.)  In this case, the hypervisor must 
unmap the logical page from the old frame and then map it into the new frame.  Of course, when the 
hypervisor maps it with the new frame, it must perform the same content verification as we discussed  
in the previous paragraph.

Thus, we see that corruption is always detected while the hypervisor is attempting to associate a logical 
page with a frame; once the association exists, the hypervisor trusts the frame to accurately keep track 
of the contents.

38



4.10 Register Protections

In order to protect registers, the hypervisor saves their contents and then wipes them each time that the 
CPU jumps from a protected process to untrusted code.  The hypervisor automatically implements this 
protection so that it will be functional in all types of events, including branches, syscalls, exceptions, 
interrupts, or breakpoints.  Likewise, when the CPU jumps from untrusted code back into the protected 
code, the hypervisor automatically confirms that the registers match the (wiped) state that is expected, 
and then restores the old saved values before allowing the operation to proceed.

This  protects  the application against  both corruption and snooping.  First,  it  prevents  snooping by 
wiping the register values, so an attacker cannot interrupt the program as it runs to steal critical data. 
Second, it prevents corruption by saving the registers as the CPU leaves the protected application and 
restoring them when it returns.  Thus, the operating system is unable to change the state of the process.

Isn't register verification redundant?

If registers are saved and restored, then why does hypervisor check that the registers have the correct 
values after returning from the operating system?  In truth, this is not absolutely necessary.  However,  
with Bodyguard, we chose to implement this for two reasons.  First, it constitutes a sanity check that 

39

(a) Logical Page is not mapped to a frame

Virtual 
Pages

FramesLogical
Pages

private data

(b) Untrusted OS defines page table entry,
pointing to a frame with the wrong data

Virtual 
Pages

FramesLogical
Pages

bad data

signature

private data

signature

Page Table 
Entry

(c) Miscompare on Read

Virtual 
Pages

FramesLogical
Pages

bad data
private data

signature

Page Table 
Entry



our  protected  application  is  coded  correctly;  if  an  innocent  operating  system might  modify  some 
registers which the application believes should be saved, then it probably indicates that the programmer 
does not actually understand the semantics of the operating system completely.  Second, it acts as a 
detector  for  attackers;  as  with  memory,  we  judge  that  if  the  attacker  has  attempted  to  corrupt  a 
protected process once, it is likely to do so again.  Thus, we require the hypervisor to verify, when the 
operating system returns to the protected application, that the registers have the proper (wiped) values 
before restoring their old values.

The register set

In the paragraphs above, we have described how Bodyguard saves, wipes, confirms, and restores “the 
registers.”  The actual set of registers thus protected is, of course, architecture- and operating system-
dependent.  Stated informally, the registers to be protected, checked, and restored are those registers 
that  the  program  does  not  expect  will  ever  change  during  an  interrupt  or  other  non-application-
requested event.  This includes most or all of the general purpose registers, floating point and other 
miscellaneous  registers,  segment  registers  (if  any),  and  most  bits  of  most  machine  state  registers. 
Moreover, since different operating systems may have different conventions, we recognize that the list 
of registers should probably be configurable (controlled, most likely, by the client).  Since our current 
project is limited to Linux on the x86, however, we don't have to worry about this complication.

(Note that the list of registers that should be wiped is likely to be a little shorter than the list to be  
protected; probably,  any application can afford to leak the instruction pointer  and stack pointer,  at 
least.)

Additionally,  when  the  application  actually  performs  a  syscall,  the  list  of  wiped,  confirmed,  and 
restored registers will be even shorter.  Many syscalls will pass some arguments in registers; most will 
expect  a  return code,  at  least.   Before  it  makes  a  syscall,  a  protected application must  perform a 
hypercall,  which tells the hypervisor which registers to wipe, and which to confirm and restore on 
return.  Note, however, that this request does not automatically apply to the next time that the process 
leaves protected code.  (If it did, an attacker could snoop on variables, in this window of time, using a 
breakpoint.20)  Instead, the request applies only to the next time that the process actually performs an 
explicit syscall.

Signals

Our current design is not able to handle signals, since, with a signal, the kernel alters (at least) the IP 
register, and probably others.  We hope to address this in our Future Work.

20 The idea here is that the protected process will first make a hypercall informing the hypervisor that a syscall is 
forthcoming, then initialize the argument registers, and finally make the call.  Thus, there is a finite, non-zero amount of 
code which executes between the hypercall and the syscall.

Imagine that the “allow registers X to pass through next syscall” affected the next transition out of the kernel, and was not 
specific to syscalls.  An attacker could then set up a hardware breakpoint immediately after the return from this 
hypercall.  When the breakpoint fired, the attacker would be able to snoop on registers which were not yet filled with 
syscall arguments; they would have lingering information from earlier in the program.

By limiting this hypercall to only applying to syscalls, we allow the untrusted OS to interrupt the program arbitrarily many 
times in the window between the hypercall and the syscall; registers are protected during each such interrupt.  Only 
when the program actually performs the syscall (implying that the registers have been initialized to their syscall-
argument values) does the hypervisor allow the registers to leak.

40



4.11 Syscall Handler

A  syscall  handler is  a  function inside a  protected  process  that  implements  wrappers  around some 
syscalls.   For  instance,  it  implements  bounce  buffers  for  certain  syscalls.   The  syscall  handler  is 
registered with the hypervisor during process initialization; thereafter, all syscalls that occur inside the 
protected process (except those preceded with a “allow next syscall to proceed” hypercall) will get 
redirected to the syscall handler.

When the hypervisor forces the program into the syscall handler, it pushes an ordinary stack frame onto 
the stack; the arguments pushed in that frame are the various syscall arguments that were stored in 
registers.  The intent is that it  appear to be an ordinary function call into the syscall handler.  The 
syscall handler may thus perform its work, and then deliver a return code simply by returning from the 
function.

Note  that  when the hypervisor  drives  a  syscall  into  the  syscall  handler,  this  does  is  not count  as 
jumping out of the protected process.  Instead this is a jump within the protected process.  The syscall 
handler runs as protected code, and has full access to the private data of the process; also, registers are 
not saved or wiped during this call.  Likewise, there is no need to verify the registers when the syscall 
handler returns, since it is already running protected code.

4.12 Shim

We have implemented a shim, which is a shared library that may be linked into a legacy application. 
While  a  careful  port  of  a  process  is  preferable and more reliable,  this  shim is  able  to  implement 
(almost) complete protection of a legacy application.

The heart of the shim is the syscall handler, which functions as a wrapper around each Linux syscall.  
Most  syscalls  are  trivial;  many can  be  passed  through  directly  (because  they  do not  include  any 
pointers).  Others require only trivial bounce buffers.  A handful have difficult semantics or require 
multiple bounce buffers.  However, few stretch more than 20 lines of code.

NOTE:  Overshadow (see  Chapter  5)  also  uses  a  shim,  although  they implement  it  as  a  launcher 
program rather than a shared library.   Additionally,  their  shim is much more complex, as it has to 
perform many duties that are handled implicitly in our work.

4.12.1 Limitations

While the shim can implement most of the protection required, there are a few details that it simply is 
unable to automatically handle.   Despite  these limitations,  the shim is  still  useful;  if  the protected 
process is only slightly modified to handle these situations, then the shim can be used to automatically 
supply the balance of the code necessary.

Private IPC

We have mentioned private IPC previously in this document.  When two protected processes from the 
same entity  need  to  communicate  through an  IPC channel,  they need  to  implement  some sort  of 
mechanism (such as encryption) to ensure the privacy of the channel.  However, in order to use private 
IPC, the shim must be able to detect that the process at the other end is a protected process.  Without  
this  information, the shim will  be forced to send all  data through normal IPC mechanisms, which, 
depending on the application, might be a huge hole in the protection.

41



The shim includes functions that allow the program to designate certain IPC channels as private IPC 
channels.  Once the channels are so designated, the shim will automatically implement protection on 
this channel.

Shared memory issues

As described above, the protected process must explicitly tell the hypervisor about every virtual page 
that is a shared page.  With some forms of shared memory, it's easy to see what is shared.  For instance, 
the shim can automatically handle shmget() and shmat() calls, and make sure that the hypervisor 
is notified about the shared pages.  However, other types of shared memory are difficult to detect.  For 
instance, if two processes both map a set of pages from disk, or if the process maps the same disk page 
into two different virtual addresses, it may be quite difficult to realize that the pages are shared.

The shim includes functions that allow a process to declare that some pages are shared, and how.  Once 
declared, the shim will automatically update the shared page table and notify the hypervisor.

Verifying mmap()s

As discussed above, when new pages are created in the working set, the hypervisor trusts the initial  
contents of those pages to be correct.  The initial contents may be a private page (if the initial frame 
contains a signature) or a public page.  However, the contents of that page may not be what the process 
expects.   For  instance,  newly  allocated  pages  for  the  heap  (generally  allocated  with 
MAP_ANONYMOUS) should be all zeroes, but an attacker could fill them with garbage.  Likewise, 
newly mapped pages from a file should have the correct contents (signature or public data), but an 
attacker could corrupt this.

(Note that this problem is particularly bad when mmap()ing new executable pages.  Presumably, the 
program,  when it  mmap()s  an  executable  page,  intends for  that  page  to  be  part  of  the  protected 
application.  However, if the attacker maps invalid information, the page may be viewed as a public 
page, and thus not trusted code; if the attacker maps a signature, but the  wrong signature, then the 
attacker  can actually force the process to  execute the wrong code.   Thus,  mmap() verification is 
particularly critical for executable pages.)

To partially solve this, the shim automatically verifies that MAP_ANONYMOUS pages are filled with 
zeroes, but otherwise generally does not perform any verification.  However, in Future Work, we plan 
to add a capability wherein the protected application could inform the shim that a file was in a special 
format, which allows the shim to automatically verify checksums on all mmap()s of that file.  Likewise, 
we hope to add mechanisms that would allow the process to automatically write out such files, so that  
temporary files can be written and then later verified when they are read.

exec()

Generally, the shim assumes that when a protected process creates a child process with fork() and 
then calls  exec() in the child, it is executing another protected process, such as setting up an ssh 
tunnel.  However, a protected process might occasionally do things in the untrusted OS that involved 
non-trusted applications.  Thus, before a protected process calls  exec(),  it  must inform the shim 
whether the new process should be a protected process or just a normal untrusted one.

The protected process must also specify the initial working set of the newly-exec()ed process, as it 
does with the bootstrap process described below.

42



4.13 Entity Bootstrap

In the above sections, we have detailed how to fork() an existing protected process and then handle 
exec() to create a new process.  However, we also need a method for verifying the initial state of the 
first process of an entity.

The basic idea of the bootstrap process is to first modify the executable (and its linker, and also any 
shared libraries that it links to) such that the code & data use signatures instead of the private values. 
The client then calculates the starting image it expects for the process, including all of the code and 
data pages that the OS will automatically map.  Next, the client connects to the hypervisor, creates a  
new entity, uploads all of the signature pages (both the signature values, and the private code and data 
pages associated with them), and informs the hypervisor about the expected initial page layout.  Finally, 
the client connects to the untrusted OS, uploads the modified files, and runs the program.

The untrusted OS maps the program into a newly-created process, and attempts to run the code.  The 
hypervisor  recognizes  that  the  code  page  is  a  signature  from the  newly-created  entity;  thus,  the 
hypervisor views this as an attempt to jump into a protected process.  The hypervisor verifies the 
register state and the contents of this first code page, and then sets up the working state of the new 
process object to match the expected layout, which the client communicated previously.  From this 
point on, the process is treated just like any other protected process.

In the sections below, we will detail each step of this process.

4.13.1 Modifying an Executable File

When the client modifies an executable file (a program or shared library), it splits the file into two 
parts.  First, the header21 is left in cleartext.  This is the information that the untrusted OS must read in 
order to properly map all of the initial code and data pages.  Second, all of the code and data is moved 
out into other pages in the file, and all of those pages are replaced with signatures.  The result is a file 
that looks like a normal executable to the untrusted OS, but when the code and data pages are mapped 
into memory, each page mapped will  actually be a signature,  which the hypervisor will  be able to 
recognize as belonging to this entity22.  (See Figure 15: Modifying an Executable for Bootstrap.)

21 Depending on the file format, the header might be a single section or might be multiple sections.  We generally assume 
that all of these sections are at the head of the file, but they could be scattered throughout the file.  In the latter case, the 
client has the option of rewriting the layout of the file to make it more convenient, or of moving the code and data 
sections out past the last such section.

22 Note that if the client runs multiple copies of this same application, each must have its own modified version of each 
executable.  The reason for this is that the hypervisor detects which entity is running by inspecting the code page that 
runs; thus, if we have multiple entities, then we must have multiple copies of the same code page.  There will be multiple 

43

Original
File

Header

Shifted

Header
Page Boundaries

Replaced

Header

Code
and
Data

Signatures
Code
and
Data



Finally, the client must make sure that the dynamic linker that is loaded into the program is a dynamic 
linker  that  it  provides  and trusts23.   (This  linker,  of course,  must  also be modified by the process 
described in this section.)  The client can ensure that the correct linker runs in two ways.  First, it might  
run the protected application in a “chroot jail,” providing the trusted linker at the appropriate relative 
path.  Second, it might edit the program header to refer to the trusted linker directly, using relative 
paths24.  Either way, it ensures that a specific linker, uploaded along with the protected application, is 
loaded by the untrusted OS as the linker for the new process.

Note that the client expects that the untrusted OS will load all pages into their correct virtual addresses. 
It enforces this, as described below, by telling the hypervisor the expected starting working set for the 
process,  which the hypervisor enforces  as the various pages  are eventually accessed.   Thus,  if  the 
untrusted OS incorrectly loads the process, this  will  be detected whenever some corrupted page is 
accessed by the process.

4.13.2 Calculate the Starting Image

To calculate the starting image, the client must analyze the program to be run, and the custom dynamic 
linker  executable.   It  figures  out  where  the  first  few pages  will  get  mapped by the  untrusted  OS 
(provided, of course, that the untrusted OS behaves properly).  It also figures out the initial address 
where the code should run.

Together, these pieces of data will form the initial working set, and initial register state, of the process  
to be created.

4.13.3 Create the New Entity

To create the new entity, the client connects to the hypervisor using a trusted channel, such as ssh.  The  
client requests the creation of a new entity.  It communicates the initial working set and initial register 
state (as determined above) to the hypervisor.  It communicates to the hypervisor all of the signatures, 
which were created editing the various executables and shared libraries, along with the private data for 
each.

The channel then goes idle; there will be no more traffic on it (except perhaps for keepalive messages) 
until the entity is destroyed.

Note that the network connection between the client and the hypervisor must stay open throughout the 
life of the entity.  As mentioned above in Section 4.2.1: Destroying an Entity, the channel is used as an 
indication between the hypervisor and the client that the client believes that the entity is still doing 
useful work.  If the client believes that the entity has finished its work or crashed, or if something 

signatures (one per entity) that happen to represent the same private data.
23 In some operating systems (Linux being one example), the OS is expected to provide a dynamic linker, which is a small 

executable which handles the internals of the dynamic linking mechanism.  It keeps track of the symbol table, resolves 
symbols on demand, and may mmap() new pages.  For ELF executables on Linux, this is traditionally named 
/lib/ld-linux.so.2.

Obviously, the code in this dynamic linker must be part of the working set of the process, since it will call that code (or 
read data within it) whenever it calls a function in any shared library.  Thus, the dynamic linker must be trusted code, 
provided by the client, and protected during bootstrap.  Otherwise, an attacker could insert a malicious dynamic linker.

24 ELF executables include an “interpreter” field in their header, which normally points to /lib/ld-linux.so.2. 
However, the header can be edited to specify any file as the interpreter.

44



interrupts the network connection between the client and the hypervisor, then the connection will close 
and the hypervisor will destroy the entity.  This ensures that the hypervisor is not forced to save old 
saved private pages indefinitely.

4.13.4 Start the Program in the Untrusted OS

Once the entity is initialized within the hypervisor, the client connects to the untrusted OS and uploads 
the modified executables and libraries.   It  then asks the untrusted OS to run the application.   The 
untrusted OS will read the file header of the executable and use that to load the dynamic linker and the  
required pages of the executable.  It then jumps to the start address.

When it  jumps to the start  address,  the hypervisor notices an attempt to execute a code page that 
contains a known signature.   It  interprets  this  as an attempt to  execute a private  code page.   The 
hypervisor knows which entity is running because the signature is associated with a single entity; it will 
notice that the entity is waiting for its first process to run.

The hypervisor then verifies the state.  First, it verifies that the registers are correct (primarily, that the 
instruction pointer is at the correct start address).  Next, it verifies that the code page being executed is 
the correct one for that virtual address (as specified by the initial working set uploaded by the client 
through the secure connection).  If both of these are true, then it interprets this as a legal jump into a  
protected process.  It sets up the proper data structures within the hypervisor (particularly, the working 
set, virtual and logical pages), and allows the process to run.

From then on, the process is treated like any other protected process; once its initial state is correct, 
corruption and snooping are impossible.  Note that while the hypervisor is not able to immediately 
confirm that the untrusted OS mapped all of the right pages into the right locations, the working set 
knows exactly what those pages ought to be.  Thus, the hypervisor is able to confirm the proper maps 
as soon as each page is accessed the first time.

4.14 Detailed Examples

4.14.1 Read a Private Page, Inside the Protected Process

Imagine that a protected process attempts to read a certain private virtual page.  The page is already 
mmap()ed into the process, but has never been touched.  Therefore, the untrusted OS page table entry 
is not yet populated, and the hypervisor does not yet know about the page.  The access requires the  
following steps:

– The protected process attempts to read the page.  Since the page table entry does not exist, the  
untrusted OS kernel receives a page fault.  The hypervisor saves and then wipes the registers as 
the thread jumps out of protected code.

– The kernel checks and finds that the page has not yet been read from disk.  It reads the page 
from disk.  The contents it reads, however, is the signature of the page in question.

– Once the page (its signature, actually) has been loaded into a frame, the kernel defines the page 
table entry, and schedules the process to run again.

– The hypervisor detects whenever the code jumps back into the protected process, validates the 
registers, and then restores the values that were saved as the code jumped out.

45



– The protected process retries the access.  This time, although the kernel has defined a page table 
entry, the hypervisor intercepts the access in order to perform validation.

– The hypervisor checks to see if the virtual page exists in the process' working set.  It does not, 
so the hypervisor defines a new virtual page, links it to a new logical page, and places it in the 
working set.

– The hypervisor inspects the contents of the frame pointed to by the page table entry.  In this  
case, it contains a signature, so the logical page is initialized such that its saved contents are the 
old private data.

– Since the protected process is attempting to read the page, the hypervisor replaces the signature 
with the private data.

– The hypervisor now allows the access to proceed.

4.14.2 Write a COW Private Page, Inside the Protected Process

At some time after a fork(), a protected process tries to write a certain page.  This page has not yet 
been modified by either process, and as such they still share the same COW page.  The current process 
has a readonly page table entry for this page, and the frame contains the private data, which is currently 
being shared by two or more processes.

– The protected process attempts to write the page.  Since the page table entry is readonly, this 
results in a page fault to the untrusted OS kernel.  The hypervisor saves and wipes the registers 
as the thread jumps out of protected code.

– The guest OS kernel determines that this is a COW page.  It attempts to read the page so as to 
copy it to another guest physical page.   The hypervisor intercepts the read, and swaps in a 
signature (generating one, if needed).

– The kernel access may now proceed; it copies the signature to another frame.  It then updates 
the page table to point this virtual address to the new frame, and turns on write access in that 
entry only.

– The kernel  returns  to  the  protected  process.   The  hypervisor  detects  the  transition  back to 
protected  code,  validates  the  registers,  and  then  restored  the  saved  values.   The  protected 
process now retries the access.  Again, the hypervisor intercepts the access.

– In this case, the hypervisor notices that the frame being pointed to by the page table is different 
than the current location of this logical page.  (The hypervisor's logical page struct still points to 
the old frame.)  Since the old frame already contains a signature, the hypervisor simply unmaps  
this logical page from that frame, and remaps it in the new location.  Of course, the hypervisor 
confirms  that  the  new frame has  the  expected  contents  (the  signature)  before  mapping the 
logical page to the new frame.

– The hypervisor next replaces the signature in the new page with the private data, and finally 
allows the access to proceed.  Note that the old frame will continue to contain the signature until 
such a time as some protected process actually accesses that frame again.

46



4.14.3 Syscall

This scenario details how a syscall coming from the protected process is handled.

– The protected process is running.  It performs a syscall.

– The hypervisor intercepts the syscall.  It pushes a new frame onto the stack, as if the calling 
code had performed a function call instead of a syscall.  The instruction pointer is changed to 
point to the syscall handler.

– The syscall handler runs, and performs whatever emulation it must do.

– The syscall handler must now call the actual untrusted OS syscall.  To do this, it first uses a 
hypercall to tell the hypervisor that the next syscall should proceed to the untrusted OS, and 
then performs an ordinary syscall.

– As the code leaves the protected process, the hypervisor stores the register state and wipes any 
registers that are not syscall parameters.

– The syscall code in the kernel runs.  If appropriate, it may read or write pages in the protected 
process (presumably, bounce buffers were used).  It eventually returns; the hypervisor detects 
the transition back into protected code, and validates and restores the registers as appropriate. 
(Note that some of the registers will not be validated and will not be restored, because they hold 
the return value(s).)

– The syscall handler now does any post-processing for the emulation.  It finally returns to the  
caller using a normal function call return.  Note that the hypervisor is not involved in this return 
to the original code25.

– The code that originally performed the syscall runs.

4.14.4 Swap Out/Swap In

This section details how a page can be swapped out by the guest OS and then later swapped back in.

– While running kernel code, the guest OS may decide that it needs to swap out some pages.  The 
pages that it chooses may include a private page from some application.

– The guest OS deletes page table entries from the appropriate page table(s) and then flushes the 
TLB on all processor(s).

– The guest OS attempts to write the page to disk.  This, presumably, involves a DMA operation.  
DMA operations are treated as accesses by untrusted code, and so the private data is replaced by 
a signature before the DMA is allowed to proceed.  The signature is then written to disk.

– The guest OS allocates the frame for other purposes.  Once untrusted code (or code from other 
entities) starts writing to the frame, the hypervisor breaks any association between the logical 
page and the frame, and forgets that the frame used to contain a signature; it  is now just a 
generic frame, containing raw data.

25 This is the design intent.  However, if you read the Implementation chapter, you will find that one of the hacks is that we 
currently use a hypercall to unwrap the stack.  This is simply a temporary measure, because the author didn't have time 
to investigate the exact format of a correct stack frame.

47



– Later, the protected process page faults on the virtual address.  At this point, this becomes a 
normal read operation (see the example above); the untrusted OS reads the page from disk and 
sets up the page table.  The access is retried, intercepted by the hypervisor, and the private data 
restored.

4.14.5 Simple Corruption

This section gives an example of a straightforward corruption attempt; the attacker tries to write to a 
virtual page.

– A protected process is running.  The hypervisor knows the working set of the process.  There 
exists some particular virtual page, which the attacker will soon overwrite; currently, this page 
is loaded into some frame, and the private data is showing.

– An interrupt or syscall occurs.  The attacker, running inside the kernel, decides to write to the 
victim virtual page.  It uses the same virtual address as was used by the protected process. 
However, this access is intercepted because the current code is untrusted code.

– The hypervisor saves the contents of the frame, and then drops the signature into the frame. 
Then, because the current access is an attempt to write, all logical pages are unmapped from this 
frame.

– The attacker is allowed to write to the frame.  It then returns to the protected process.

– The  protected  process  runs  as  normal,  for  some  arbitrary  amount  of  time.   Eventually,  it  
attempts to access the virtual page again.  The hypervisor attempts to map the logical page back 
into the frame (since the page table still says that the virtual page resides in that frame), but the  
frame's contents to not match the signature of the logical page.

– The hypervisor destroys the entity, and forces the process to crash.

4.15 Summary

This chapter detailed our protection scheme.  It first described the key elements of Bodyguard's design: 
the hypervisor, entities, protected processes, the working set, virtual and logical pages, and physical 
frames.   It  next  detailed  signatures,  mapping  guest  page  tables  to  host  page  tables,  and  register 
protection.  It detailed the shim, including the syscall handler.  It detailed how the client and hypervisor 
initialize a new entity securely.  It closed with a set of step-by-step examples of Bodyguard in action.

48



Chapter 5: Overshadow
This chapter details the Overshadow design, described in their ASPLOS paper [25].  Overshadow is an 
existing design which has many similarities with Bodyguard.   Most  elements of Overshadow map 
relatively easily to concepts from our design26, but there exist a number of interesting tradeoffs that we 
will explore.

The chapter begins by detailing the Overshadow design.  It discusses the concept of “multi-shadowing” 
(their abstraction for presenting various versions of a page to various blocks of code), “applications” 
(entities), “address spaces” (processes), and their thread design.

Next, the chapter describes the concept of a “protected object,” which is central to how they track and 
enforce the working set of their address spaces.  It details their shim, which does all of the same work 
as our shim, but also is responsible for a number other things, including interacting with the VMM to 
protect the working set of the address space, and implementing a “trampoline” function for handling 
jumps from untrusted code back into a protected process.

Next, the chapter presents detailed examples of how all of this works in practice.

Finally,  the  chapter  discusses  the  similarities,  differences,  and  tradeoffs  between  Bodyguard  and 
Overshadow.

5.1 Shadows

Overshadow is  a  VMM (based on VMware  [26])  that  uses  multi-shadowing  [27],  a  virtualization 
strategy  where  the  same  guest  physical27 page  may  map  to  different  contents  at  different  times. 
Overshadow uses this to protect private data.  Each private page is “multi-shadowed:” in one shadow, 
the page contains the private data; in all other shadow(s) the page contains an encrypted version of that 
same data.

Modern VMMs such as VMware run applications natively whenever possible.  Thus, the host must be 
configured with a page table that maps virtual addresses (as perceived by guest code) to machine pages. 
To accomplish this, the VMM watches the guest page table (which is written by the guest OS).  Every 
time that it changes, the VMM updates the host page table to match.  Typically, each valid entry in the 
guest page table should map to a similar one in the host page table.  (See Figure 16.)

26 Note that in the descriptions below, Overshadow terminology is used in most cases.  In a few cases, where concepts are 
identical (such as the concept of a “protected process”), terminology from this thesis will be used.  However, the chapter 
is consistent throughout; a given concept will use either the Overshadow term, or the one from this thesis.

27 A guest physical page is a “physical” page from the perspective of the guest OS.  This is in contrast to a “machine” page, 
which is a page in the host machine.  In a traditional VMM, the mapping of guest physical pages to machine pages is 
typically one-to-one.

49



Shadowing adds a wrinkle to this process.  Now, if a given guest physical page contains private data, 
then  it  has  different  contents  in  different  shadows.   (See  Figure  17.)   Thus,  the  VMM maintains 
multiple copies of the page table, one for each shadow.

In theory, all shadows could have mappings for all guest physical pages at all times.  However, this 
would require that the VMM have two machine pages for each guest physical page (when the guest 
physical has private data).  More importantly, it requires that Overshadow continually re-encrypt the 
private data, so that the encrypted page stays in sync with the private contents.

Instead,  Overshadow  implements  a  single  machine  page  for  each  guest  physical  page,  and 
encrypts/decrypts it as access patterns require.  This requires that Overshadow mask out certain guest 
physical pages from certain shadows at certain times.  We say that a guest physical page is “mapped 
into” a shadow if the guest physical page is in a state where that shadow is entitled to read its contents.  
That is, when a guest physical page contains private data, it is mapped into only the application shadow 
that owns it; when a guest physical page contains encrypted data (or anything else that is not private 
data), then it is mapped into the “system shadow,” which represents external access28.  The page is 
never mapped into both shadows at the same time.29

When code attempts to access a page that is not mapped into its shadow, Overshadow automatically 
takes the actions necessary to change the page state, unmap it from its current shadow, and map it into  
this one.  That is, if a protected application attempts to touch one of its pages, but that page is currently  

28 The Overshadow paper doesn't directly discuss the possibility that a protected process might try to touch a private page 
owned by some different application.  This, of course, would not be a normal access pattern, but might occur as part of 
an attack.  This author presumes that Overshadow would handle this the same way that we do; it would allow the 
accessor to see the encrypted page, just like any other untrusted code.

29 The author believes that this is true only for pages which contain private data, but could not find an explicit statement of 
this in the Overshadow paper.

50

VGuest OS View GP

VVMM
View

GP M

VHost OS View M

Guest
Physical
Page

Virtual
Page

Machine 
Page

Figure 17: Various Views of the Virtual Space (private page)

VGuest OS View GP

VVMM
View

GP

M

VHost OS View M

Guest
Physical
Page

Virtual
Page

Machine 
Page

M



encrypted, the VMM will automatically decrypt it, unmapping that page from the system shadow and 
mapping it into the application shadow.  Similarly, if untrusted code attempts to touch the same page, 
the page will be re-encrypted and the mapping returned to the system shadow.

This shadowing system parallels our signature mechanism fairly closely; each system keeps track of 
whether a physical page has private data or its encrypted version; external code (primarily the kernel)  
can access each private page, but will see the encrypted version instead of the private version.  Pages 
automatically and invisibly move between the two states, based on accesses.

5.2 Shadowed vs. Unshadowed Pages

Overshadow handles both shadowed and unshadowed pages.  Unshadowed pages are the default; these 
are normal pages, handled with ordinary VMM mechanisms.  Shadowed pages are protected pages, 
containing private data; Overshadow ensures that both corruption and snooping are prevented.

One key difference between Overshadow and our work is that, in our design, all pages in a protected 
process  are  private  pages  by  default.   Pages  may  be  declared  to  be  public,  but  they  retain  that 
designation only until they are modified; once they are modified, they immediately become private 
again.  However, in Overshadow, each protected process contains a mix of shadowed and unshadowed 
(that is, private and public) pages.  These designations are persistent, meaning that if you write to a  
public page, it stays public (this is how Overshadow implements bounce buffers).  For the same reason, 
Overshadow does not need a mechanism to declare a private page to be public; all private pages are 
private, permanently.

5.3 Protected Objects

Overshadow manages protected memory through cloaked resources.  A cloaked resource is a linear (but 
perhaps sparse) object.  (Examples of resources include files and anonymous memory.)  The various 
pages in the resource are assigned RPNs (Resource Page Numbers).  Each cloaked resource is assigned 
an RID, which is a 64-bit unique Resource Identifier.

The VMM is responsible for keeping track of the state of all cloaked resources.  In particular, for each 
valid RPN in the resource, it stores the current guest physical page that stores this page (if any), and the 
encryption metadata (if any).

The VMM also has a table, indexed by guest physical page number, which gives the (RID,RPN), if any, 
for each guest physical page.  This makes it possible, when the untrusted code accesses a guest physical 
page, to determine whether or not a guest physical page contains any private data, and if so, where to 
store the encryption metadata once the page is encrypted.

5.3.1 Encryption

When the system shadow attempts to access a guest physical page but this page is not mapped into that  
shadow, the VMM will encrypt the guest physical page30.

All  pages  are  encrypted  with  a  single  private  key,  known  only  to  the  VMM.   However,  every 
encryption operation uses a randomly-generated initialization vector (IV); this ensures that dictionary 
attacks are impossible, since encrypting two identical pages will generate different ciphertext.  After 

30 Since we assume that guest physical pages containing public pages (and encrypted private pages) are always mapped 
into the system shadow, we the VMM knows that any missing page must contain private data.

51



encryption,  the  page  is  hashed.   The  metadata  pair  (IV,H)  is  stored  in  the  VMM  tables  for  the 
(RID,RPN) pair that was previously associated with this guest physical page.

Once the page is encrypted and the (IV,H) is saved, the page is “zapped” (unmapped from all shadows) 
and then mapped into the system shadow.  The access may now proceed.

5.3.2 Validation & Decryption

(Note  that  this  section  does  not  detail  how the  VMM looks  up  a  virtual  page  to  figure  out  what 
(RID,RPN) should  reside  there,  which  will  be  discussed  below.   This  only details  the  decryption 
protocol.)

When a protected application needs to decrypt a page, the VMM looks up the (IV,H) value for this 
(RID,RPN).  The VMM then first confirms that the hash of the physical page matches the saved H 
value.   (If  it  does  not,  then  this  constitutes  corruption,  and  the  protected  process  can  be  killed.) 
However, if the hash is valid, then the VMM will decrypt the page, using the VMM private key and the 
initialization vector IV.

Once the page is decrypted, the page is “zapped” and then mapped into the application shadow.

The (IV,H) pair are retained in the VMM's metadata so long as the page is readonly.  If it  is later  
necessary to encrypt the page again, it will be encrypted with the same IV, thus ensuring that the re-
encrypted version is exactly the same as before.  This is necessary for correctness.  (See Section 4.7.3: 
Signatures and Readonly Pages.)

The (IV,H) value for the (RID,RPN) is discarded when the page is modified; in that case, a new IV will  
be generated (and a new H calculated) the next time that it becomes necessary to encrypt the page.

5.3.3 Discarding Objects

Some objects may be automatically discarded when not in use.  For instance, objects that represent 
private non-serialized data of a process (stack, heap, anonymous memory, etc.) can be deleted when the 
process dies.

However, some other objects must persist.  For instance, files that are written to disk and that contain 
private data should be readable by other processes in the same application.

5.3.4 Serialization of Metadata

Resources that are actively in use have their metadata stored in VMM memory.  This metadata includes 
the list of valid pages within the object, and the metadata for each such page.  (The metadata states that 
the page currently resides, cleartext, in some guest physical page and/or indicates the saved (IV,H) pair 
for this private page.)

However, some resources may exist that the VMM knows about but are not actively in use.  The VMM 
flushes the metadata for these objects out to the guest OS disk.  Each resource is represented by a single 
file on the guest OS disk; this file contains all of the metadata for the protected object.  The contents of  
these files are encrypted, and include a SHA-256 hash, which ensures that the contents are correct 
when they are later read from disk.  (The details of exactly how this is handled are not entirely clear.)

The VMM writes out files to guest OS disk using a daemon process (osfd) running inside the guest OS; 

52



this daemon is not trusted, and so only handles encrypted pages coming from the VMM.  The VMM 
reads files back from disk (when a resource needs to be restored) via the shim.  After reading the file up 
from disk, the VMM validates the file using the hash and decrypts its contents31; it may then use the 
metadata to determine the valid RPNs and the stored (IV,H) values for each.

5.3.5 Serialization of Contents

The section above describes how the VMM may serialize the metadata of a protected resource to disk. 
However, this does not serialize the contents; it simply serializes the list of valid pages and the table of 
(IV,H) pairs.  This makes it possible for the VMM to validate the contents of the pages (preventing 
corruption), but it does not inform the guest OS that it is possible to write these pages to disk.

For pages that the guest OS can write to disk (that is, the actual contents of certain resources), the shim 
uses mmap()ed pages (always mmap()ed with MAP_SHARED so that different processes always see 
the same contents).  These pages map to actual files on the guest OS disk, and the guest OS may flush 
them to disk if desired.  The file contents include a header, the raw data, and some padding.  (See 
Section  5.4.3 below.)  Since these pages are private pages, with all of the normal protections, these 
pages will be encrypted before they are written to disk, and the VMM will be able to confirm their  
contents after they are read back.

Thus, opening a new file from the guest OS disk can involves as many as 3 basic operations.  First, it  
opens the file inside the guest OS and maps the contents of that file to the virtual memory of the  
process.  Then, it tells the VMM which protected resource represents this file32, and maps the RPN 
numbers to the virtual addresses.  Finally, (if necessary), the shim may need to load the metadata file 
from disk into VMM memory.  Once the shim has done both of these, the pages may be safely used; the 
VMM knows what contents to expect for these pages, and can validate their contents.

5.4 Shim

Overshadow uses a shim that, at a very high level, is similar to the shim in our design.  The purpose of  
the  shim  is  to  provide  a  wrapper  that  automatically  wraps  a  legacy  process  and  automatically 
implements the protections necessary.

Their implementation, though, is very different from our shim.  First, their shim is split into shadowed 
and unshadowed parts; the unshadowed part does not contain any private data, but it implements a 
trampoline mechanism, which allows Overshadow to detect when the guest OS is attempting to return 
us to a protected process.  (In our design, no trampoline is required, because the hypervisor can detect a 
return to the protected process automatically.)  The unshadowed part of the shim also contains the 
bounce buffers, which are used when the process needs to give a buffer to the kernel for writing or 
reading.

Second, their shim explicitly tracks the virtual space, which is not required in our design, because the 
VMM  can  implement  this  implicitly.   The  shim  must  eagerly  keep  track  of  every  mmap(), 
munmap(), brk(), and also all of the implicit map actions (such as stack growth).  It communicates 
the expected state of the virtual  space to  the VMM (as detailed later),  which gives the VMM the 
information necessary to prevent page corruption.

31 Or does it decrypt it, and then verify the hash?  This author is not certain.
32 This author is not clear how the shim determines this.  Perhaps the file header, which is tacked onto the front of the file, 

includes the RID???

53



Third, their shim implements bootstrap within the guest OS, while running unshadowed.  That is, their 
shim (running unprotected) runs as a normal process within the guest OS.  This reads the executable 
and loads it manually into the protected space.  This mechanism (as acknowledged in their paper) is 
obviously insecure if the attacker has compromised the machine before the shim runs.  (Our bootstrap 
process is secure even if the guest OS has been compromised long before the client starts our new 
entity.)

5.4.1 The Trampoline

The  shim  implements  a  “trampoline”  mechanism  to  handle  transitions  from  untrusted  code  to  a 
protected process.  The trampoline is a snippet of code in the unshadowed portion of the shim.  Since it 
is unshadowed, it may only contain public data, (no private secrets), and nothing it does can be trusted. 
However, it may perform hypercalls into the VMM and make requests.

When the trampoline runs, it hypercalls into the VMM, giving an ASID (address space ID) and a CTC 
address.  The ASID is a public value that uniquely identifies the address space; the CTC address is the 
virtual address of a private page that contains the CTC for the thread that the kernel has selected to run.

When the VMM receives the hypercall, it cannot trust that the call is valid; however, it will attempt to 
execute the thread specified.  To do this, it first looks up the ASID and validates it; it then attempts to 
read the virtual page.  Like any access to a private virtual page (which will be detailed later), this 
means that  the VMM looks up the  page table  entry for  this  virtual  address,  compares  it  with the 
expected contents that the VMM knows for this virtual address, validates the page, and decrypts it if 
necessary.  If this process fails (for instance, the page table entry doesn't exist, or is readonly), then the 
VMM will return an error to the trampoline, which will touch the page (causing a page fault) and then 
retry.  Once the page is writable, the VMM can read the contents of the CTC, stored in the virtual page.

The CTC first includes the ASID and the private address space identifier.  This validates that the page 
is actually a member of the desired application, and not something created by an attacker.  The rest of 
the CTC contains the saved thread state; the VMM reads this thread state into the registers, and then the 
thread may run.

The VMM keeps track of the current address space, and the CTC of this thread; when the CPU finally 
jumps out of the protected process for any reason (interrupt, exception, breakpoint, syscall, etc.), the 
VMM will write out the new thread state to the CTC.  Before actually allowing untrusted code to run, 
the VMM also wipes most registers, in order to prevent information leaks.  Finally, the VMM changes 
the IP and SP to new values, which point to the trampoline code.  Thus, when the code jumps into the 
kernel, the kernel believes that the process was still  executing the trampoline code; when it finally 
schedules the thread to run again, it will return the process to that code.  The trampoline code will then 
run once more, and go through the work of activating the thread again.

Note that the trampoline mechanism does not require the VMM to know how many threads exist. 
Instead, it provides a mechanism for validating attempts to restore thread state, where a trampoline 
action only works if it  points to a valid CTC.  By creating new CTCs (or deleting old ones),  the 
protected part of the shim makes it possible for new threads to be created, or to delete old ones.

5.4.2 Syscall Emulation

As stated above, in most transitions to kernel space, the thread state is automatically stored to the CTC, 
the registers wiped, and the IP/SP altered before the code jumps into untrusted code.  However, syscalls 

54



are handled specially.  As with our design, the Overshadow shim includes a syscall handler, which 
intercepts syscall attempts, redirecting them to the protected shim.  While the registers are all saved, 
they are not wiped in this case, and code does not jump to untrusted code.  Instead, the VMM forces the 
code into a specially designated function in the shim.

As with our code, the syscall handler generally will call the guest OS after performing some amount of 
emulation (sometimes a lot,  sometimes little); this second syscall will actually be passed on to the 
kernel (with some amount of the registers not wiped, since they carry arguments).  For this reason, the 
CTC actually contains enough buffer space for two copies of the registers; the first is used for the first 
syscall, which is redirected to the syscall handler; the second is used for the syscall handler's call into  
the  kernel.   These  are,  of  course,  used  in  reverse  order  when the  trampoline  code returns  to  the 
protected process.

The syscall handler in the Overshadow shim performs syscall emulation, similarly to how our shim 
does.  However, there are several noteworthy differences.

First, the Overshadow shim uses bounce buffers in the “uncloaked” portion of the shim.  These are 
permanently public pages.  (By contrast, our design temporarily designates pages as public in order to 
send data to the kernel, and removes them from the working set when receiving data from the kernel.)

Second, Overshadow's shim performs complex emulation of some operations.  In particular, all file 
operations, such as read() and write(), are converted into loads and stores on mmap()ed buffers, 
as will be detailed in the next section.

Third, the Overshadow paper claims that their shim provides complete emulation of all syscalls.  This 
author  believes  that  this  is  impossible,  at  least  for  some corner  cases.   For  instance,  if  a  process 
attempts to open a file for reading, does it expect the file to be a private file, with protected contents?  
Or is it a public file, to be read raw?  Likewise, if it opens a file for writing, should the contents be 
written cleartext  or  encrypted?   Similar  problems exist  with pipes  to other  processes  (is  the other 
process in this application or not?), shared memory, etc.

This author believes that “almost perfect” syscall emulation can be achieved, but that truly perfect 
emulation, correct in all use cases, is impossible.

5.4.3 File Emulation

All file operations on all files33 are emulated by the shim.  When a process holds a file open, the shim 
mmap()s certain pages into private memory.  The most important of these is the first page, which 
holds the file header.  This header gives the true file length34 and other necessary information.  The 
shim implements all operations, notably  read() and  write(), as loads and stores on  mmap()ed 
pages.

Since it is possible for multiple processes within the application to have the same file open at once, all 
pages  are  mmap()ed  as  MAP_SHARED,  so  that  each  process  will  see  the  same contents.   The 
processes must, of course, then work together to keep the file state consistent.  (The exact details of this 
are not given in the Overshadow paper.)

33 Since the Overshadow paper doesn't mention any ability to handle raw files, this author will assume that all files are 
handled as private files.

34 The file length, as seen by the guest OS, is always rounded up to a multiple of 1MB.  Overshadow does this so that they 
can always mmap() file contents in 1MB blocks, amortizing the cost of these operations.

55



Note that all such files are protected resources, as discussed above.  Thus, when the shim opens a file  
from the guest OS, it tells the VMM to load the resource metadata for that protected resource.  When it 
maps  any  page  (including  the  header),  records  the  (RID,RPN)  for  the  virtual  page.   Once  this 
association is defined, the VMM can verify the contents of the page.  Thus, as the shim mmap()s and 
munmap()s various pages from the file, the VMM can always ensure that the contents of what gets 
mmap()ed match the expected contents of that protected object.  This also allows it to make sure that 
the various processes all see consistent state; if two processes map the same (RID,RPN) for certain 
pages, the VMM can easily confirm that both see the same private contents.

5.5 Virtual Memory Protections

The previous sections have discussed, in part, how the VMM is able to ensure that each virtual page 
has the correct contents.  This section will discuss it in detail.

The shim is responsible for keeping track of what virtual pages exist in the process's working set, and 
the proper (RID,RPN) for each.  It tracks all  mmap(),  munmap(),  brk(), and similar syscalls; it 
also keeps track of stack pages and such.

The VMM stores a cache of the list of virtual pages known to the shim.  When there is a cache miss,  
the  VMM performs  an  upcall  into  the  shim,  asking it  to  deliver  the  correct  mapping.   The shim 
responds with a hypercall that gives the correct (RID,RPN) mapping (if any) for the virtual address.

The guest OS maps virtual addresses to guest physical pages.  If the guest OS is working correctly, the 
pages that it maps to will always contain either the correct private data for the virtual address, or else 
the encrypted version of the same.  Of course, the guest OS might have been compromised by an 
attacker, and thus might be giving invalid contents.

Mapping & Confirmation Process

In order to map a virtual address to a guest physical page, and to confirm the correct contents of that 
page,  the VMM first  looks up the page table  entry.   If  the access  is  not  allowed,  then the VMM 
immediately signals a page fault  to the guest OS, and no further validation is required.  However, 
assuming that the page table entry allows the access, the VMM must map the virtual address to an 
(RID,RPN), map that to expected contents and then compare that to the actual contents.  (See Figure
18.)

The first step is to see if the VMM knows about the virtual address.  If not, it upcalls into the shim in  
order to populate the tables (as discussed above).  Once it knows about the virtual page, then it knows 
the (RID,RPN) for this virtual page.

The VMM next indexes into the metadata for the protected object, looking for the metadata for this 
particular page.  It will find either that the page is associated with a current guest physical page or that 
the (IV,H) value is known.  (In the case of decrypted but readonly pages, the metadata will know both.)

Next, the VMM looks up the guest physical page defined in the page table entry.  There are several  
possibilities that can happen now:

– The private page is known to be associated with this guest physical page already.  In this case, 
the guest physical contains the private data, and the access can proceed without any trouble.

– The private page has only the (IV,H) value.   This means that the guest physical page must  
contain  the  encrypted  version.   The  page  is  validated  (using  the  hash  value  H)  and  then 

56



decrypted  (using  the  initialization 
vector IV).

– The  private  page  is  associated  with  a 
different guest physical page.  (This is 
rare, but can happen, for instance, with 
a recently copied COW page.)  In this 
case, the association with the old guest 
physical  page  is  broken  (encrypting 
first if required35), and then the value in 
the  new  page  is  confirmed  and 
decrypted,  exactly  as  in  the  previous 
case.

5.6 Applications

The  Overshadow  VMM  keeps  track  of  the 
various  “applications”  that  exist.   An 
application  represents  a  single  protection 
domain,  containing  one  or  more  protected 
processes.   The  various  processes  may share 
their  private  pages  with each other,  but  these  pages  will  be  protected  from outside  access.   Each 
application has a dedicated shadow, which represents the guest physical memory as viewed by these 
processes.

An Overshadow application is thus an almost perfect match for an “entity” from this thesis.

5.7 Address Spaces

Each application has one or more address spaces associated with it.  Each address space represents the 
virtual memory space of one process.

A shim inside a protected process maintains a table of all known virtual page mappings in that process. 
It is responsible for keeping the VMM aware of each of these mappings, updating the VMM as pages 
are mmap()ed, munmap()ed, or remapped.  The VMM uses these mappings to validate pages that the 
guest OS attempts to map into the address space of the protected process.

In addition, each address space has two assigned identifiers.  First, the ASID (Address Space ID) is a 
public value (shared with untrusted code)  that  uniquely identifies this  address space.   Second is  a 
randomly-generated private number that  is  stored in  the protected process'  private memory (in  the 
CTCs, see below) but that never should be shared with untrusted code.  The combination of these two 
elements are key to the “trampoline” code, which runs in untrusted code and informs the VMM when 
the kernel wants to run the protected process again.

5.7.1 fork()

When a protected process is fork()ed, the VMM must figure out the correct (RID,RPN) values for 

35 The VMM encrypts the page as it breaks the association in order to prevent lingering private data which might leak to 
other processes.

57

Figure 18: From Virtual Address to Page Validation

Protected Shim

Virtual Page Table

VMM

Virtual Page Table

Access 
Address

Guest OS Kernel

Page Table Entries

(RID, RPN)

Guest 
Physical 
Page

Page 
Validation & 
Decryption

Resource Metadata

(IV,H)



the  various  virtual  pages  in  both  processes.   Some pages  represent  shared  objects,  and thus  both 
processes simply need to keep the same (RID,RPN) value as before.  However, anonymous pages (or 
other MAP_PRIVATE pages, such as MAP_PRIVATE mmap()s of files) must be split.

Unlike our design, Overshadow does not immediately split these pages.  Instead, it keeps trees that 
represent the parentage of these pages.  That is, so long as two pages are still COW copies of each 
other,  they  will  share  a  single  (RID,RPN)  value.   However,  upon  the  first  write  to  either  page,  
Overshadow splits them into two pages with different RPN values.

While the concept of late copying of logical pages is fairly simple, the implementation described in the 
Overshadow is quite complex.  One of the key issues that they must face is that the protected shims (in  
several processes) must interact to properly implement this COW functionality.

5.8 Threads

Threads are not tracked by the VMM.  Instead, the shim maintains a CTC (Cloaked Thread Context)  
structure in process private memory for each thread.  Each CTC contains a secret to validate that this is 
a  CTC  (the  ASID  of  the  address  space,  plus  the  private  random number  of  this  ASID).   More 
importantly, it also contains space to save the contents of all of the registers.

When a process jumps out of protected code for any reason, the thread state is stored in the CTC, in 
virtual  memory!   The  VMM can trust  that  the  page  exists  because  the  CTC is  also  used  for  the 
“trampoline” code (see below); the VMM fails the trampoline if the virtual page containing the CTC is 
not present and writable.  Since the OS cannot flush any page entries until after the code leaves the 
protected  process36,  the  VMM  can  trust  that  a  page  that  is  writable  when  code  trampolines  into 
protected code will still be writable when it leaves.

The very first CTC in a process is initialized by the VMM during process initialization.  The VMM fills 
in the ASID and the address space's private number.  However, later threads (if any) will be initialized 
by the process itself.  It will create the new CTCs by copying the parent CTC and then editing a few 
fields (in particular, the instruction pointer and stack pointer).  Once the new CTC is initialized, the  
process may ask the untrusted OS to create the new thread.  Whenever the new thread runs, it will 
trampoline  into  the  new thread;  the  VMM knows that  the  trampoline  is  valid  because  the  virtual 
address pointed to has the right ASID and address space private number.  With those verified, the 
VMM will restore the thread state stored in that particular CTC.

Thus, the VMM has no need to know how many threads exist in each process; nor does it keep track of 
their state when they jump to the kernel.  Instead, the VMM has a mechanism to validate the CTC 
structure when a trampoline asks to validate a thread stored there.  While running, the VMM knows the 
active address space, and the virtual address of the CTC where thread state should be stored back to;  
once the code jumps back into the kernel and state has been saved to the CTC, the VMM can forget that 

36 This assertion is based on two assumptions.  First, that the architecture has a TLB; second, that the guest OS has no way 
to flush the thread's TLB without first jumping into kernel code.  If both of these are true, then the kernel must know that 
a page table entry, once defined, may sit in the TLB and could still be in use until we jump back to kernel code and flush 
the TLB.  If the kernel knows this, then it cannot expect any alteration or invalidation of the page table entry to take 
place until after the TLB flush from kernel code.  Thus, the hypervisor (acting on behalf of the protected process) may 
legitimately write through the virtual page to the guest physical page at the moment when we jump out of the protected 
process.  This write is no more or less valid than any other write which might happen through a cached TLB entry.

If an architecture violates either of these assumptions, then Overshadow does not mention a solution.  However, since 
they only run on VMware (which x86 only), it is not a major issue for them.

58



this thread ever existed.

Signals

Overshadow uses a  variant of the trampoline 
mechanism  to  handle  signals.   Each  signal 
registered  by  the  protected  process  is 
intercepted by the shim and stored in a private 
table.  The shim then registers a signal handler 
with the guest OS, which points to code in the 
uncloaked portion  of  the  shim.   (This  signal 
handler functions as an alternative trampoline.)

When  a  signal  occurs,  the  signal-handler-
trampoline hypercalls into the VMM, passing it 
the  address  space  ID  and  CTC address  (just 
like the normal  trampoline),  but also passing 
the signal metadata, such as signal number, IP 
when interrupted, etc.

The  VMM  uses  a  combination  of  CTC 
information  and  the  signal  metadata  to 
determine what  was running when the signal 
occurred.   If  the protected application was running, then the VMM forces the thread into a signal  
handler in the protected shim, which forwards the signal to the proper handler in the application.  If the 
protected shim was running, it chooses (based on a flag in the CTC, presumably set by the shim) to 
either roll the state back to the most recent syscall entry point, or defers signal handling until the shim 
returns to the protected application.37

5.9 Detailed Examples

5.9.1 Read a Private Page, Inside the Protected Process

Imagine that a protected process attempts to read a certain private virtual page.  The page is already 
mmap()ed into the process, and the shim's tables know about it, but this is the first use, so the page 
table entry is not yet populated, and the VMM does not yet know about the page.  The access would 
requires the following steps:

– The protected process attempts to read the page.  Since the page table entry does not exist, the  
VMM sends a page fault to the guest OS kernel.  The thread state is saved in the CTC.

– The guest OS kernel checks and finds that the page has not yet been read from disk.  It reads the 
page from disk.  The contents it reads, however, are the encrypted version of the private page.

– Once the page (its encrypted version) has been loaded into a guest physical page, the guest OS 
defines the page table entry, and schedules the process to run again.  Note that while the guest  
OS has defined a page table entry, the host page table does not yet have a mapping for this 
virtual address.

37 Note that the Overshadow paper does not discuss how to handle signals that hit when running uncloaked code.

59

Figure 19: From Virtual Address to Page Validation

Protected Shim

Virtual Page Table

VMM

Virtual Page Table

Access 
Address

Guest OS Kernel

Page Table Entries

(RID, RPN)

Guest 
Physical 
Page

Page 
Validation & 
Decryption

Resource Metadata

(IV,H)



– The trampoline code in the thread runs, and calls the hypervisor to re-activate the thread.  The 
hypervisor reads the CTC, verifies it, and then restores the thread state.

– The protected process retries the access.  Since the host page table doesn't know about this 
virtual address, a page fault to the VMM occurs.  However, it sees that the guest OS page table 
has a mapping, so it decides to handle this page fault inside the VMM.

– The VMM looks up the virtual address in its table for this address space, and finds that it does 
not have an entry for this virtual page.  It upcalls into the shim, asking for information.

– The  protected  shim runs,  and  looks  up  the  (RID,RPN)  value  for  this  virtual  address.   It 
hypercalls back to the VMM to provide this information, then returns from the upcall.

– The VMM, now having the (RID,RPN) value, looks up the metadata for this page.  It finds that 
the page is not presently in any guest physical page, but that it has a stored (IV,H) pair for the 
page.

– The VMM looks up the to see which guest physical page is indicated in the guest OS page 
table.

– The VMM hashes the guest physical page, and compares it to the hash value H.  The hash 
matches.

– The VMM decrypts the guest physical page (using the initialization vector IV) and associates it 
with this (RID,RPN) value.   It  zaps the guest physical page and maps it  to the application 
shadow of the current process.

– The VMM adds a host page table entry for this virtual address, pointing to the machine page 
that stores this guest physical page.

– The VMM returns to the protected process.  It retries the access, which now works.

5.9.2 Write a COW Private Page, Inside the Protected Process

Imagine that a protected process attempts to write a certain private virtual page.  We will assume that 
the page is a private COW page.  The guest OS knows that this, and other virtual pages, are COW 
copies of each other.  When this sequence begins, we assume that the guest OS page table and the host 
OS page table both have mappings for the virtual address, in readonly mode.  The guest page is mapped 
into the application shadow.

– The protected process attempts to write the page.  Since the page table entry is readonly, the 
VMM sends a page fault to the guest OS kernel.  The thread state is saved in the CTC.

– The guest OS kernel determines that this is a COW page.  It attempts to read the page so as to 
copy it to another guest physical page.  The read, however, is not allowed, because the guest 
physical page is currently mapped into the application shadow.  Thus, a page fault to the VMM 
occurs.

– The VMM detects that code outside the application shadow is attempting to access the page.  It 
encrypts the page, saving the (IV,H) value for this (RID,RPN).  It then zaps the guest physical 
page from the application shadow and maps it into the system shadow.

– The VMM returns to the kernel code, which retries the access.  Since the page is now mapped 

60



into the system shadow, this access succeeds.  The kernel copies the encrypted data to another 
guest physical page.

– The kernel updates the guest OS page tables such that the virtual address points to the new 
guest physical page; this new entry has write permissions.  The kernel then schedules the thread 
to run again.

– The trampoline code runs, and calls the hypervisor to return to the protected process.  The 
VMM validates the CTC and then restores the thread state.

– The protected process retries its access.  While the guest OS page table has an entry for this  
virtual address, the host page table does not, so another page fault to the VMM occurs.

– The  VMM  goes  through  the  same  validation  process  as  we  discussed  above,  in  the  read 
example.  It ends up decrypting the (new) guest physical page and mapping it into the system 
shadow.  Note that the old guest physical page is still encrypted.

– Before the VMM returns to the protected process, it notices that the access being attempted is a 
write.  It also notices that the (RID,RPN) in question is a COW copy (probably arising from a 
fork() that happened a while ago).  It realizes that it must now perform page duplication (see 
the section on fork() above), so it allocates a new (RID,RPN) for this virtual address.38

– The VMM returns to the protected process, which retries the write.  This write now succeeds, 
because the guest OS page table has a writable entry for this virtual address, and this entry has  
been validated and propagated into the host page table.

5.9.3 Syscall

This scenario details how a syscall coming from the protected process is handled.

– The protected process is running.  It performs a syscall.

– The VMM saves the current thread state to the CTC.  However, it does not wipe the registers. 
Instead, it changes the IP to point to the syscall handler in the protected shim.

– The syscall handler runs, interpreting the syscall.  It performs some amount of emulation work 
inside the protected process, perhaps copying buffers to bounce buffers, or anything else that is 
required.

– The syscall handler informs the VMM that the next syscall is coming from the syscall handler, 
and that it should go to the guest OS.  It also tells the VMM how many registers will contain  
parameters, and how many are expected to be overwritten by the guest OS kernel.

– The syscall handler performs a second syscall.  The thread state is saved in a second buffer in 
the CTC.  The VMM wipes all registers that do not contain arguments.  The VMM changes the 
IP and SP to be the appropriate values for the trampoline.

– The VMM allows the kernel to run, and handle the syscall.  The kernel may write to application 
pages (though, if things are working correctly, it will only write to unshadowed bounce buffers). 
It may also read data out of bounce buffers.

– The kernel, once it is finished with the syscall, returns to the protected process.  However, what 

38 It is not clear how this information is propagated from the VMM to the shim.

61



it returns to is the trampoline code rather than the protected code.  The trampoline runs, and 
asks  the  hypervisor  to  restore  the  thread  state;  the  hypervisor  validates  the  CTC and then 
restores thread state to the 2nd state saved (that which is inside the syscall handler).

– The syscall  handler does any post-call  cleanup, composes a return value, and then asks the 
VMM to return to the calling code.

– The code that originally performed the syscall runs.

5.9.4 Swap Out/Swap In

This section details how a page can be swapped out by the guest OS and then later swapped back in.

– While running kernel code, the guest OS may decide that it needs to swap out some pages.  The 
pages that it chooses may include a private page from some application.

– The guest OS deletes page table entries from the appropriate page table(s) and then flushes the 
TLB on all processor(s).  The VMM detects the page table modification, notices that a virtual 
page has been invalidated, and invalidates the related entries in the host page table.

– The guest OS attempts to write the page to disk.  This, presumably, involves a DMA operation.  
DMA operations are treated as accesses from the system shadow; since the guest physical page 
in question is not currently mapped into the system shadow, this DMA requires that the VMM 
step in.

– The VMM encrypts the guest physical page, recording the (IV,H) value for the (RID,RPN).  It 
then zaps the guest physical page and maps it into the system shadow.

– The DMA operation now proceeds, and the page is written to disk.

– The guest OS allocates the guest physical page for other purposes.  Since it is mapped into the 
system shadow, the guest OS may read the page, write the page, or do anything to it.

– Later, the protected process hits a page fault on the virtual address.  At this point, this becomes a 
normal read operation (see the example above); the guest OS reads the page from disk, the 
guest OS page table is set up, the access is retried and faults to the VMM, the VMM validates  
the guest physical page contents, and then sets up a host mapping.

– The  only  difference  here  is  that  the  VMM may still  have  an  old  cached  value  of  the 
(RID,RPN) for this virtual address.  Note that while the guest OS swapped the page out to  
disk, neither the shim nor the VMM noticed this.  Both of them keep, in their tables, an 
entry that defines the (RID,RPN) for this virtual address.

5.9.5 mmap()

This section details the steps to mmap() a new virtual page.

– The shim determines the RID of the resource.  If it is mapping a page from a file, then the RID 
is the RID of that file.  If it is mapping new anonymous memory, then the RID is the RID of the 
object that represents anonymous memory.

– If the page that the shim is mapping is new (as in a new anonymous page), it allocates a new 

62



RPN39.  Otherwise, it determines the correct RPN of the existing page.

– The shim calls the kernel to mmap() the page.  The kernel returns the virtual address allocated 
for this map.

– The shim adds a table entry, mapping this virtual address to the (RID,RPN).

At this point, the page is ready to use.  The VMM, of course, does not know about the page, but (as 
detailed in the read example above), it will ask the shim for this information when it needs it.

5.10 Similarities

The two designs are very similar.  Some noteworthy points include:

– Both designs include some mechanism, with higher authority than the guest OS kernel, which 
manages  and  enforces  the  various  protections.   Overshadow  call  this  the  “VMM,”  while 
Bodyguard calls it the “hypervisor.”

– Overshadow's concept of an application is nearly identical to Bodyguard's concept of an entity.

– Both designs replace private pages with some sort of obscured version when code outside the 
protection boundary attempts to access a private page, thus preventing snooping.

– Both designs keep track of the working set of each protected process, and validate accesses, 
thus preventing corruption.

– Both designs use a shim to wrap a legacy process in nearly automatic protection.

5.11 Differences

There are also many noteworthy differences between the two designs:

– Overshadow encrypts private pages, while Bodyguard replaces them with signatures

– Overshadow encrypts pages, and thus, once a page is encrypted, they need store only the (IV,H) 
pair.  Bodyguard instead replaces the page with a randomly-generated signature, and thus must 
store the entire private data buffer in hypervisor memory.

– Overshadow can discard old (IV,H) pairs when a page is modified.  Bodyguard keep copies of 
all signatures (and their associated private pages) for the entire life of the entity.

– Overshadow uses a trampoline to tell the hypervisor when a protected process needs to run; 
Bodyguard can automatically detect this.

– When a protected process has called out to untrusted code, Overshadow stores register state in 
CTCs in virtual memory; Bodyguard stores this in hypervisor memory.

– Overshadow keeps track of private data as objects; virtual pages map to individual pages within 
objects.  Bodyguard keeps track of each page individually, storing the contents as simple bytes.

– Overshadow's shim explicitly tracks all pages, and must eagerly keep the virtual page table up-
to-date. Bodyguard implicitly discovers pages as they are used.

39 It is not clear how the shim informs the hypervisor about new RPNs.

63



– Overshadow requires  that  the  shim know the  initial  contents  of  all  pages  mapped into  the 
process40.  Bodyguard instead allows any initial contents at the moment of first access; if the 
shim expects certain contents, it must explicitly check for them.

– Overshadow keeps track of the virtual page table in the shim, and must feed this information 
into the VMM before it can be used.  Bodyguard does this inside the hypervisor directly, with 
no shim interaction.

– Overshadow's  shim  includes  both  shadowed  and  unshadowed  portions.   Certain  virtual 
addresses, then, can always be used for bounce buffers (in both directions) because those pages 
are always public, even when the protected process writes to them.  Bodyguard, on the other  
hand, protects all pages in the process; any time that the process writes to any page, Bodyguard 
assumes that the data written is private data.  This requires that Bodyguard's shim explicitly 
mark certain pages public (for outgoing bounce buffers) or remove them from our working set 
(for inbound bounce buffers).

– When a protected process  fork()s, Overshadow marks the page as COW, and splits it into 
independent logical pages if/when it is written to.  Bodyguard explicitly splits all of the logical  
pages immediately, at the moment when fork() occurs.

– Overshadow does not have a safe bootstrap strategy.  Bodyguard does.

5.12 Tradeoffs

Encryption vs. Signatures

The largest difference between the two designs is the question of how to obscure private pages when 
they are touched by untrusted code.  Overshadow encrypts the pages, and saves only the initialization 
vector and the hash; Bodyguard replace them with a signature.

The most obvious tradeoff is, of course, CPU time vs. memory.  Bodyguard consumes memory, which 
cannot  be  recovered  until  the  entity  dies  (although,  of  course,  we  could  imagine  swapping  old 
signatures out to disk).  Overshadow, on the other hand, consumes a significant amount of CPU every 
time that the VMM must either encrypt or decrypt a page.

However, there is a more subtle tradeoff: that of explicit vs. implicit protection of the working set.  To 
understand the advantage that Bodyguard has, consider the process of opening a file stored on the guest 
OS disk.   The protected process  opens up the file,  and maps one or  more pages  into new virtual 
addresses.  For the moment, assume that this file was written to the disk by this entity at some earlier 
time, and that the guest OS is working correctly (loading the correct pages).

In Overshadow, the shim must explicitly track exactly what file this is, and map it to a protected object.  
The VMM must load up all of the metadata for this object, and each new page must be explicitly 
associated  with  an  (RID,RPN)  pair.   In  most  cases,  this  is  straightforward,  but  there  could  be 
complexities.  For instance, if a file was hardlinked or copied from one location to another, could the 
shim automatically detect the correct resource for this page?41  Moreover, the process of loading the 

40 This author is not sure if this requirement applies to unshadowed pages in the protected process.  But certainly, it applies 
to all shadowed pages.

41 One could imagine including the RID in the file header of each file.  However, in order for this to work, the first page of 
the file header would have to be public data, so that the process could map the page (into the unshadowed portion of the 
shim), read the RID, and then later map the other pages of the file with the correct (RID,RPN) values.

64



metadata from disk into the VMM seems an undesirable layer of complexity.

In Bodyguard, the shim doesn't need to know about exactly which file it is opening; it can simply open 
a  file  and  map  it.   The  newly-mapped  page  may  contain  a  signature,  and  the  hypervisor  will  
automatically detect this and give the process access to the private data.  In this design, a file can be  
self-validating; the file header can contain a magic value in the private contents of the first page, and 
then have a system of checksums to validate the size and contents of the rest of the file.

This system cannot, taken in isolation, validate that the contents of a file are up-to-date and correct (an 
attacker could present an out-of-date copy of the file, or the wrong file), but it can validate that the 
contents of the file are the correct and complete contents of some file written by this process at some 
time.  When it is necessary to make sure that the file contents are both correct and up-to-date, it can 
simply store a secret value in the file header, and validate this secret when you open up a new copy of 
the file.  (This is equivalent, however, to storing the known RID for some file and thus costs us some of 
our advantage.)

In either system, it is possible to map an arbitrary, unknown file, figure out how to map the rest of the 
file, and validate its contents.  However, this is difficult in Overshadow, as Overshadow requires that 
the VMM know the (RID,RPN) of every private virtual page, so that it can look up the proper (IV,H) 
values to validate the pages.  Our design doesn't need to know this ahead of time; a protected process 
can read a signature, map it to a private value, and thus implicitly determine the proper private value 
for this page.

The encryption/signature tradeoff, then, is actually two tradeoffs.  First, we can trade off CPU time vs.  
memory consumption.  Second, we can trade off explicit vs. implicit mapping of pages.

Explicit vs. Implicit Virtual Space Management

The  previous  section  has  already discussed  some of  the  explicit/implicit  tradeoff,  focusing  on its 
implications for loading files from disk.  However, the question of explicit vs. implicit virtual space 
management is more general.  The basic question is: “when the protected process  mmap()s a new 
virtual page in the guest OS, does it need to inform the VMM?”

Overshadow uses an explicit approach.  The shim must immediately record the (RID,RPN) for this 
virtual address; the VMM will not know about it immediately, but it will draw this new entry into the  
cache as soon as it is necessary.  This design means that the shim defines the required contents of all  
such new pages, before it is able to touch them.

Bodyguard  uses  an  implicit  approach.   The  shim simply  mmap()s  the  page,  and  the  hypervisor 
automatically adds a new virtual page to the working set the first time that it gets used.  The hypervisor  
does not know the contents of the page until the first access, and the untrusted OS is free to fill the page 
with any values, whether they be OS-generated values, zeroes, or a signature of a private page from 
long ago.

At first glance, the implicit design seems more simple, and thus attractive; the shim doesn't need to  
perform as much manual bookkeeping when pages are mapped.  However, in practice, this is not truly 
the case; many newly-mmap()ed pages are required to have precisely the values the protected process 
expects, whether it be all zeroes for new MAP_ANONYMOUS pages, or the correct signature for 

It is worthwhile to note, however, that the Overshadow paper does not discuss anything like this possible design.  It 
seems that Overshadow, as described in the paper, is unable to deduce the RID of a newly-opened file; the shim must 
simply know this beforehand.

65



newly mapped private pages.  This means that the shim still has to some bookkeeping to do; in this  
case, it has to read the contents of most pages immediately after they are mmap()ed, and validate that 
they are correct.  That is, the shim  mmap()s the page, and then immediately begins to read it; the 
hypervisor imports the current contents, and assumes that they are correct, but the shim must validate 
the page before returning.  Thus, the apparent simplicity of implicit mappings vanishes in many cases.

Thus, we see that, for many pages, the explicit and implicit mechanisms are equivalent; we need to 
perform some sort of bookkeeping, right at the moment of mmap() – and before any other use of the 
page – which allows us to ensure that the contents that the guest OS gives us are correct.

As discussed in the previous section, we have two different types of maps that a protected process 
might need to perform.  In one case, the maps are expected to have very precise contents (the contents  
of a file containing private data, for instance); in this scenario, the explicit methodology makes the 
most sense.  In another case, the maps are data imported from the guest OS, which have contents that 
the protected process may not be able to predict; in this scenario the implicit methodology makes the 
most sense.  We can implement either type of operation in either an explicit or implicit system, but each 
is easier in one system and harder in the other.

An alternate  solution,  which  we hope  to  explore  in  our  Future  Work,  is  to  augment  the  implicit  
methodology with the ability to  register  hashes  for  newly  mmap()ed pages.   That  is,  if  the shim 
happens to know that a newly mmap()ed page must have a certain contents, it can communicate the 
hash of those contents to the hypervisor before it actually touches the page.  The hypervisor will create 
a new virtual page object for that address, associate it with a new logical page object, and save the hash 
value as the “current contents.”  When the page is first used, the hash will be verified; the hash will  
then be discarded, and the normal verification process will be used from then on.  We believe that this 
hybrid methodology might combine the best aspects of both designs.

Object vs. Page Protection

Both Overshadow and our work protect the contents of pages.  However, while Bodyguard views pages 
as independent of each other, Overshadow views each page as a member of some object.

The tradeoff between the two designs is hypervisor complexity vs. shim complexity.  Their design has 
more inherent complexity, since the hypervisor must manage objects, whether or not the shim needs 
this  feature.   However,  in  our  design,  when  object-based  protection  is  required,  the  shim  must 
implement this inside the protected process, which adds complexity to the shim and consumes memory 
inside the (often limited) virtual address space.

We believe that Bodyguard's design is superior; we prefer to have our complexity in the shim, rather 
than in the hypervisor.  One of our design points was to make the hypervisor as simple as possible, so 
as to minimize the likelihood of vulnerabilities within it.

CTCs vs. Hypervisor Protection of Registers vs. Incoming Handler

Overshadow protects registers from corruption using CTCs.  CTCs are buffers in the virtual address 
space of a protected process  that  store the saved register  contents when a thread is  interrupted or 
otherwise jumps into the kernel.  The job of the hypervisor is simply to verify that an address, given by 
the trampoline, contains a valid CTC, and then to restore the register state.

In our design, the hypervisor keeps the register state in private hypervisor memory.  This allows us to 
detect when the code returns to a protected process, and to verify the registers, without needing CTCs 
stored in virtual memory.

66



The Overshadow design is simpler, and requires less hypervisor memory.  However, it lacks the ability 
to automatically detect when code returns to a protected process, which is a desirable feature.

We suggest that the ideal solution would be a hybrid.  In Future Work, we discuss the possibility of an 
“incoming handler.”  This is a handler, analogous to the syscall handler, which is called any time that 
the untrusted OS attempts to return to a protected process.  The hypervisor automatically detects the 
jump into protected code, and forces the code to the incoming handler instead.  The shim then verifies 
the registers, without any need for further hypervisor action.   In this  design,  the the hypervisor is  
responsible for writing thread state to the CTC when the process jumps out of protected code, but does 
not perform any validation when code jumps back.  Instead, this is handled entirely within the shim.

67



Chapter 6: Prototype Implementation
This chapter details the implementation of a Bodyguard prototype.

It starts with a general overview, and then discusses the codebase we modified.  It describes how the 
code intercept TLB fill operations in order to implement Bodyguard's protections.

It then discusses each of the major structures used by the code, explaining how the major fields are 
used.  It also details the design of the major functions that run inside the hypervisor.

Next, it describes how the current implementation of the shim operates.

It closes with a TODO list (points that need to be fixed in the current implementation in order for it to 
match the design defined in Chapter 4 above), and a list of points of interest that we believe would be 
interesting to other implementers.

6.1 Overview

Our implementation is based on the Bochs x86 emulator [28].  Inside that, we run an unmodified copy 
of Linux (RedHat 6.2).  We are able to protect unmodified versions of most common Linux tools.

We have implemented a shim that automatically provides memory protection and that emulates most 
syscalls.  Protected applications have complete memory protection, once the shim is initialized; the 
hypervisor uses signatures, as described in Chapter 4, to protect private data from both corruption and 
snooping.

The  internal  hypervisor  logic  is  implemented  in  a  well-isolated  module  that  interacts  with  Bochs 
through a well-defined interface.  The intent of this implementation is to make it possible to quickly 
port this to other VMMs or emulators.

Much work remains to be done, however.  The hypervisor currently can only handle one entity at a 
time.   It  currently  only  implements  memory  protection;  register  protection  has  not  yet  been 
implemented.  Even its memory protection is limited; it does not protect against device accesses, and 
cannot  protect  against  attacks  while  the  processor  is  in  real  mode.   While  the  hypervisor  already 
implements  the  virtual  page/logical  page  distinction,  shared  logical  pages  have  not  yet  been 
implemented.  fork() has not been implemented.  Moreover, the shim is currently implemented as a 
shared  library,  which  is  loaded  into  the  protected  process  using  the  LD_PRELOAD  environment 
variable; the secure initialization process has not yet been implemented.  In addition, there are a variety 
of small hacks and assumptions scattered throughout the code that must be fixed and generalized.

Additionally, in places where it is impossible for the shim to perfectly automatically protect (such as 
knowing whether a file should be written to the untrusted OS as private or as private pages), the shim 
makes the practical assumption to write out the private data.  This works well for now, since we are 
generally  wrapping  existing  Linux  tools,  which  must  interact  with  the  outside  world,  writing  out 
buffers  that  do  not  need  protection.   However,  future  versions  of  the  shim  may  reverse  these 
assumptions.  The shim does not yet have the ability for the protected process to call into it and define 
which files should be private and which should be public.

Finally,  because  of  the  inherent  limitations  of  Bochs  (slow  speed,  missing  features),  the  current 
implementation is not really ready for use as an ordinary operating environment.  Our hope is that, once 
we port this to Xen, the performance will be good enough that we can deploy and use these features in  

68



a general-purpose, interactive Linux box.

6.2 Modifications Made to Bochs

Our prototype is based on Bochs (a recent version checked out from CVS).  It was configured using the 
following command:

./configure --enable-clgd54xx

In addition, we turn on Bochs assertions by editing config.h and setting BX_ASSERT_ENABLE to 
1.

We have made the following modifications files to Bochs files:

– Makefile: build the hypervisor/ directory (see details of our code below)

– memory/misc_mem.cc:  report  physical  memory  size  to  the  hypervisor  in 
init_memory().

– cpu/cpu.h:  add  (perhaps  redundant???)  execOK and  writeOK flags  to  the 
bx_TLB_entry struct, so that we can mask off certain types of access in TLB entries.

– cpu/exception.cc: notify the hypervisor in interrupt().  The hypervisor may tell 
Bochs to flush the TLB (which happens if we were running a protected process).

– cpu/paging.cc: add code to treat a TLB entry as invalid if the access is masked off (see 
above).  Then add code to call the hypervisor to validate all types of access (see details of 
the hypervisor code below).  The hypervisor may tell Bochs to flush all old TLB entries  
before putting this entry into the TLB.  It may also tell Bochs to mask off certain types of 
access in this entry.

– cpu/soft_int.cc:  add code to intercept system call 400 (int 0x80, EAX=400) 
and send it to the hypervisor as a hypercall.  Add code to notify the hypervisor on all other 
system calls (int 0x80), allowing the hypervisor to redirect the system call to the syscall 
handler if appropriate.  (The hypervisor decides whether to redirect or not; code in this file 
actually performs the redirect, if necessary.)  Implement in this file (without notifying the 
hypervisor) hypercall 14, which returns from the syscall handler to the calling program.42

New Files for Added to Bochs

We added four new files to the Bochs source:

– hypervisor.h: declares the interface between Bochs and the hypervisor

– hypervisor/Makefile:  copied  from  some  other  Bochs  directory,  this  just  builds  the 
hypervisor code in the format that the main Makefile expects.

– hypervisor/core.cc: implements the hypervisor logic

42 Hypercall 14 is a hack, and we hope to remove it in Future Work.  It exists only because the author did not have time to 
investigate exactly how to create a correct stack frame.  Instead, the syscall intercept code in this file will push many 
registers on to the stack in a non-standard format, and hypercall 14 will pop those registers from the stack again.

69



– hypervisor/bit_key_tree.h: declares a custom data structure, used by the working set 
code.  This will be detailed later.

6.3 TLB Intercept

As described in previous chapters, Bodyguard needs to mask off certain page table entries (or, certain 
types of permissions from certain pages) in order to implement its protections.  For instance, when 
running untrusted code, the CPU should never be able to access frames that contain private data, and 
should never be able to write to pages that have logical pages mapped.

To implement this, our code intercepts all TLB fill operations within Bochs.  In Bochs, all accesses to 
virtual memory are funneled through a TLB mechanism, which is an array of entries (analogous to a 
hardware TLB) that represent a cache of page table entries.  When code attempts to execute, read, or 
write a certain virtual page, Bochs checks the TLB for an appropriate entry; if the entry does not exist, 
or if it does not have the correct protection bits, it parses the page tables, looking for an appropriate 
entry.  If it finds such an entry, it updates the TLB; if it does not, a page fault occurs.

We added two flags, execOK and writeOK, to the TLB entry struct.  These flags allowed us to create 
a  TLB entry  that  explicitly  masked  off  those  types  of  access  (there  are  no  circumstances  where 
Bodyguard needs to mask off read access while allowing other types of access, so we didn't define a 
flag for that)43.  We modified Bochs to check these flags on all accesses.  For instance, if code was 
attempting  to  execute  a  given  virtual  page,  but  execOK was  FALSE,  Bochs  rejected  the  access 
(causing a new page table lookup).

When Bochs has to look up a virtual page in the page table and finds an appropriate entry (that is, a  
valid entry with access bits that match the access being attempted), we intercept the code before it  
actually  adds  the  TLB  entry  to  the  table.   Bochs  calls  execPage(),  readPage(),  or 
writePage(), depending on the type of access.  Our code in the hypervisor takes this opportunity to 
update the frame state (if required), to do logical page bookkeeping, and to detect jumps into or out of 
the protected process.

In situations where  execPage() detects  that the processor is jumping into or out of a protected 
process,  execPage() will return  FALSE to Bochs.  In this case, Bochs will clear the TLB before 
adding in the new entry.  We thus maintain an invariant: at all times, the TLB contains only entries that 
are valid for the current running entity.  If we are running a protected process, all of the TLB entries 
reflect page accesses that are valid for this protected process.  Pages that have signatures showing are 
not present in the TLB at all; pages that contain public data might be present in the TLB, but execute 
permission is masked off.

Thus, any time that the CPU jumps into or out of a protected process, there is a period of time where 
the hypervisor is called for each access, as the TLB is filled.  However, once the TLB is filled, the 
hypervisor is not called any more.  We considered using a “tagged” TLB, where entries would include 
markers to indicate whether they were valid from protected code, or from untrusted code, but have not 
yet implemented that enhancement.

43 It is possible that these flags are redundant; we suspect that we could accomplish the same with existing fields in the 
Bochs TLB entry struct.  However, the Bochs implementation, as it models the x86 hardware rather closely, was difficult 
to understand.  We chose the expedient hack of adding new flags.

70



6.4 Structures

6.4.1 Entity

This represents an entity.  It contains linked list of processes44, and one pointer to a “pendingProc,” 
which is a pointer to a Process object that was created in a recent fork(), but which has not yet run. 
The pendingProc is added to the entity's process list as soon as the hypervisor can determine its process 
ID.45

The entity also has a hash table of saved pages.  To look up a saved page, the hypervisor slices out 32 
bits of the signature from a certain location, then uses it to index into a BitKeyTree (defined below). 
The result is a (perhaps empty) linked list of pages with that hash.

The entity also has a list of Shared pages (currently unused, will probably change to a BitKeyTree 
when we implement shared logical pages).

Finally, the struct has a flag that indicates whether or not the entity is fully initialized.  This is necessary 
because  the  current  shim is  a  shared  library,  rather  than  our  more  correct  bootstrap  mechanism; 
complexities  arise  if  you  have  private  and  public  pages  calling  each  other  inside  the  same  shim 
initialization routines.

6.4.2 Process

This represents a single process in an entity.  It contains all of the expected fields, including its ID, a 
BitKeyTree for the working set, and information about the syscall handler.

In  addition,  it  includes  fields  that  support  the  current  shared-library  based  shim  implementation. 
pendingAdd and pendingAddLen give the virtual address and size of the next range of memory 
that the shim intends to add to the process.  implicitWorkingSetExpansionEnabled is a flag 
that indicates whether the hypervisor should automatically add new pages to the working set or not.  
The operation of all three of these fields will be detailed in Section 6.6 below.

6.4.3 VirtualPage

This represents a single virtual page in the working set of a protected process.  It gives the virtual 
address, and a pointer to the LogicalPage.

6.4.4 LogicalPage

This represents a single logical page in an entity.  It includes fields that indicate whether or not it is  
shared,  and if  so,  how many virtual pages map it.   It  contains a  flag that indicates if  the page is 
currently public or private.

Most importantly, it contains a pointer to a Frame and a SavedPage struct.  At all times, at least one 
of these fields must be non-NULL.  If both are non-NULL, then this means that the frame contains the 
current contents of this page (or its signature), and that the contents are read-only (that is, they have not 

44 Our current implementation only supports one process per entity, since fork() has not yet been implemented.  But 
adding support for multiple processes is on the TODO list.

45 We have started implementing fork(), but it doesn't work yet.  This is part of the current prototype implementation.

71



been modified since the last signature was taken).  If only frame is non-NULL, then this means that 
the frame contains the contents of the page (definitely not a signature).  If only savedPage is non-
NULL, then this means that the page is not known to be currently present in any frame, and thus the 
contents are saved in the SavedPage struct.

6.4.5 SavedPage

This represents the saved contents of a public or private page.

The primary fields are front, back, and contents.  contents is a pointer to a page-sized buffer 
of data that is a duplicate of the public contents of this page (what the hypervisor expect the OS to put 
into a frame).  If the page is public, then this will be the contents of the page.  If the page is public, then 
this will point to the signature.  This simplifies the code when the hypervisor is doing page content 
validations, as we can simply compare the frame contents to the buffer pointed to by the contents  
pointer.

front and back are offsets into a temporary file written by the hypervisor to its private disk.  Each 
time  that  the  hypervisor  creates  a  new  signature,  the  current  private  contents  and  the  signature 
generated are both written to the file, and the offsets to those pages are stored in the  SavedPage 
struct that is created to represent them.  This has two purposes.  First, it reduces memory consumption, 
since the hypervisor doesn't need to address two pages worth of data for each signature generated 46. 
Second, it allows the hypervisor to indicate when two frames happen to contain the same contents, and 
potentially to share them.  That is, when the hypervisor finds that the OS has written a signature to 
some page and that it must show the private data (or vice-versa), it doesn't actually read the page up 
from disk; it mmap()s the correct file offset to the correct buffer location.  This makes it possible for  
multiple frames to share the same backing file, if necessary.47

SavedPage also includes a pointer to another SavedPage called alias.  When valid, this means 
that this struct is an alias of another; this happens when the hypervisor finds that it must merge two 
SavedPage structs into a single struct, but it is unable (at the time of merge) to determine all of the 
LogicalPage structs that would need to be edited.  Later, when some  LogicalPage uses this 
struct, it will find the alias; it will edit the  LogicalPage to point to the other  SavedPage, and 
(once all such references are cleaned up) this SavedPage will be freed.

(Note that when alias is non-NULL, all other fields in this struct are invalid.)

6.4.6 Frame

The hypervisor has an array of Frame structures, initialized when Bochs calls us to tell us how many 
physical pages it will use.  Each struct represents one frame.  It includes a pointer to the physical 
memory (inside Bochs) that  stores this  frame.   It  also includes  a  pointer  to  the  LogicalPage48 

46 Of course, we still consume one page of virtual memory, because we always have a mapped copy which is pointed to by 
contents.  In the future, we might choose to discard even that copy, so as to save memory.

47 This is another thing we need to think out more clearly in the future.  Are there compelling cases where pages might 
have identical contents but the untrusted OS wouldn't know that?  If two pages are COW copies of each other, we expect 
the untrusted OS to have them share a frame...and if the guest OS splits them, then we expect that one is about to get 
modified anyhow.  Perhaps this is working too hard to solve a simple problem?

48 Our design calls for the ability to map multiple logical pages into the same frame, but the current implementation hasn't 
implemented this.  If multiple logical pages use the same frame, then we will swap the mappings back and forth based 

72



mapped into this Frame, if any.

This struct includes two flags that indicate the signature state.  sigShowing applies only when a 
private logical page is mapped into the frame; it  tells us whether the frame currently contains the 
private data for this logical page, or its signature.  sigScanNeeded is set any time that any process 
modifies the frame, except when a LogicalPage is mapped to it.  It is cleared when the hypervisor scans 
the page to figure out whether or not the recent modifications have written a signature to the frame 49. 
The idea of this latter flag is to eliminate useless scans for signatures, particularly in execPage().

6.4.7 SharedPage

This structure is currently unused, because shared logical page is not yet implemented.  Currently, it 
functions as a list node in our list of shared pages for each entity; in the future, we will probably change 
this to use a BitKeyTree instead, meaning that we can delete this struct.

6.4.8 BitKeyTree

BitKeyTree (BKT) is a new data structure we developed for this project.  It is, essentially, an n-ary tree, 
with the special property that, given a fixed-size key, it can index to any entry in the tree (or, find that a 
key does not exist)  without any conditional branches.  In this code,  the BKT is implemented as a 
template.

Each node in the BKT tree has a fixed power-of-2 number of child nodes.  Each node represents some 
subset of the space of possible keys, and each child represents equal portions of that space.  Thus, we 
don't have to compare our key to a key stored in each node; instead, we slice bits out of our key, and  
use them to give us an index into the array of child pointers.  That is, if we have 16 children in each 
node, then at each level of the tree, we slice the next 4 bits out of our key, and use it to choose which 
child to go into.

Of course, a key might not exist in the tree.  Rather than using NULL pointers to represent empty 
subtrees, as might be common, the BKT represents an empty subtree with a “dead” node where all of  
its child pointers loop back to itself.  Thus, we are guaranteed, for any key, to be able to follow the 
fixed number of pointers through the tree...although we might get into a loop.

Once you have followed a fixed number of pointers, you then inspect the node to see if it is alive (and  
thus the thing you are looking for) or dead.

The point of a BKT is that it should be much faster than an ordinary binary tree, since failed branch 
prediction is so costly in modern processors.  This code never makes a branch (until we are checking to 
see if the node is dead or alive) and never has to read values from the tree (other than child pointers).  
Since each BKT has a fixed key width, the lookup algorithm needs to make a fixed number of steps; we 
thus expect the compiler to unroll the loop.  The result should be very dense code, with the entire 
lookup being accomplished (in some architectures) with as few as two instructions per step.50

on usage.
49 Note that we don't have any way to store that a frame matches a saved page, except to associate it with a logical page. 

Thus, we only perform this scan, and potentially clear the flag, when we are performing some sort of access where we 
might be able to associate a logical page with the frame.  If the signature that we find which matches is not from the 
right entity, then we will not make the association, and we will not clear this flag.

50 Note that we have not yet had the opportunity to verify that this new data structure is actually faster.  However, this 
paragraph describes the design intent.

73



6.5 Functions

6.5.1 untrustedOS_execPage()

Summary

This function is called by Bochs when Bochs needs to add a TLB entry for “execute” access.  That is, 
the code is attempting to run code at a certain virtual address, and the TLB does not yet have an entry 
for this page (or, the entry has exec permissions masked off).  However, Bochs searched the page tables 
and found a page table entry with execute permissions for this virtual address.  Before it adds this entry 
to the TLB, Bochs calls this function in the hypervisor.

The purpose of this function is to detect jumps to and from protected processes.  It must determine 
whether or not the frame pointed to by this virtual address contains a private page.  Also, if it contains a 
private page, then this function will make sure that the private data is showing (not the signature).  
(Note that if the frame contains a page that is in the working set of some process, but it is public in that 
working set, then we treat this as running untrusted code.  Only private pages are treated as running 
trusted code.)

Flushing the TLB

The hypervisor must determine whether this call jumped into or out of any protected process.  To do 
this, it keeps track of a curProc variable, which points to the process that is currently executing.  (If 
untrusted code is running, then this is NULL.)  The last task of execPage(), just before it returns, is 
to update this pointer.

The return value from this execPage() is true if the hypervisor wants Bochs to flush the old TLB 
entries before putting this new one in; it returns false if the TLB entries may remain.  Effectively, 
this means that execPage() returns true iff curProc was altered by this call.

Mask

execPage() is responsible for delivering a mask value to Bochs, which indicates which types of 
permissions the TLB is allowed to have.  Currently,  it  either returns  READ|EXEC (mask off write 
access) or EXCEPTION (described below, means that Bochs should force a page fault).

First Page in the Working Set

execPage() also has the responsibility, with the current design of the shim, of adding the very first 
page to the working set of the first process.  (See Section 6.6: Shim Implementation below.)

Validation

Finally, if the code page being executed is private, then  execPage() figures out which process is 
running and performs validation of the code page against the expected value in the working set.  If  
there is any problem with that process, then execPage() will kill the entity and then tell Bochs that 
corruption has occurred.  Bochs will then cause a page fault to happen, rather than let the code execute.

Note that,  while we have not  yet  implemented register  protections,  the register verify/restore code 
would go in execPage() (as the CPU jumps back in).  The register save/wipe code, however, will 
have to go in startInterrupt() (see below).

74



6.5.2 untrustedOS_readPage()

This function is called by Bochs when code is reading a value from memory, but the TLB doesn't have 
an entry for this page.

If curProc is NULL, then the hypervisor knows that untrusted code is running.  In this case, things  
are fairly simple; it just checks to see if the frame has a logical page mapped, if the page is private, and 
if the private contents are showing.  If so, then it generates a signature (if the page didn't already have 
one) and the replaces the private contents with the signature.

When  curProc is  not  NULL, things  are  more  complex.   First,  if  the  page already exists  in  the 
working set, then readPage() will validate the contents of the frame.  Otherwise, it may import the 
page into the working set of the process.

Also,  when  curProc is  not  NULL,  the  hypervisor  has  to  check  to  see  if  the  frame  contains  a 
signature, and restore it to its private data.

As  with  execPage(),  readPage() returns  a  boolean,  telling  Bochs  whether  a  TLB  flush  is 
required or not.  (This is only because of a very strange case in FindInWorkingSet, a function called by 
readPage().  This case will go away when we implement the secure bootstrap methodology.)

Finally, like execPage(),  readPage() returns a mask.  In this case, the only possible masks are 
READ (mask off execute and write) and EXCEPTION (corruption detected, force a page fault).  Note 
that it is possible that the page might be executable, or writable...but if so, then Bochs will run those 
appropriate functions if and when the program tries that type of access.

6.5.3 untrustedOS_writePage()

This function is called by Bochs when code is writing a value to memory, but the TLB doesn't have an 
entry for this page, or write access is masked off in that entry.

The  first  step  in  writePage() is  to  call  readPage().   This  performs  all  of  the  normal 
readPage() work, including adding the page to the working set (if required) and content validation 
(if required).  If  readPage() returns a mask of  EXCEPTION, then  writePage() immediately 
returns that to Bochs.  However, if readPage() returns a mask of READ, then writePage() will 
do some work to make sure that the page is ready for writing.  It will eventually update the mask to 
READ|WRITE, and then return to Bochs.

writePage() has to following tasks, in addition to what readPage() did:

– If the CPU is running untrusted code but the frame has a logical page associated, unmap the 
logical page from the frame, making sure that it has a SavedPage struct first.

– If the CPU is running untrusted code but no logical page is associated, set sigScanNeeded 
on the frame.

– (Later, when we implement the ability to map multiple logical pages to a single frame): If the 
CPU is running trusted code but the frame has two or more logical pages associated, unmap all  
of the logical pages except for the one which is involved in the write.

– If  the CPU is running a protected process, discard any  SavedPage from the logical page 
associated with the frame.

75



– If the CPU is running a protected process, and the logical page is currently marked public, then 
mark it as a private page.

6.5.4 FindInWorkingSet()

FindInWorkingSet() is a major helper function, called by several other functions.  Its primary 
purpose is to search the working set of the current process for a given virtual page.  However, it also 
performs implicit  adding of  pages  to the working set.   It  returns  the virtual  page that  it  finds  (or 
creates)51.

In addition, it has a boolean (inout parameter) that it returns, which indicates whether this function 
needs Bochs to flush the TLB.

6.5.5 untrustedOS_interrupt_400_handler()

This function is called by Bochs any time that any code executes  int 0x80 with EAX=400.  It is 
used  to  implement  hypercalls.   Bochs  passes  the  registers  EBX,  ECX,  EDX,  ESI,  and  EDI  as  5 
parameters.  (These are the same registers that Linux uses for its syscall parameters, making it easy to 
write a shim that implements hypercalls.)

Note that while we expect most hypercalls to be performed from inside protected processes, some of 
them (such as “create entity”) can be called from outside one.  Each hypercall implements whatever 
assertions are appropriate for it.

There are currently 15 hypercalls; each one is fairly straightforward, and documented in comments in 
the code.

Like execPage(), this function returns a bool.  If it is true, then Bochs will flush the TLB.

NOTE: Hypercall 14 (return from syscall handler) is implemented in the Bochs code, and does not call 
this function.  See Section 6.2: Modifications Made to Bochs above.

6.5.6 untrustedOS_syscallAlert()

This function is called by Bochs any time that any code executes int 0x80 with EAX!=400.  This 
notifies the hypervisor that someone is attempting a syscall.

If  curProc is  NULL,  it  returns  0  immediately.   Bochs  then  handles  the  syscall  using  normal 
mechanisms (sending it to the untrusted OS).

If the syscall handler is defined, and if the protected process has not requested that the next syscall be 
allowed to go through to the kernel, then  syscallAlert() will return the address of the syscall 
handler to Bochs.  Bochs will push a non-standard52 frame onto the stack (saving stack variables, and 
pushing arguments), and then force code to jump to the syscall handler.

51 During initialization of the shim, it can return NULL, if the page does not exist and does not match the correct 
conditions for adding it to the working set.  This case will vanish, however, when we implement the secure bootstrap 
process.

52 Our intent is to pass a standard stack frame at this point, so that the syscall handler can simply perform a function return 
later, when the handler is complete.  However, the author did not have time to investigate the exact format for a stack 
frame, so instead Bochs pushes a non-standard frame, and hypercall 14 is used return from the syscall handler.

76



If no syscall handler is defined, or if the protected process requested that the next syscall be allowed to 
proceed,  then  syscallAlert() will  return  0,  and  Bochs  will  handle  the  syscall  in  its  normal 
mechanism (sending it to the kernel).

Note that this function also has prototype code for fork(), although it is not yet operational.

6.5.7 untrustedOS_startInterrupt()

This function is called by Bochs any time that any sort of interrupt or exception occurs.  Its primary 
purpose is to set curProc to NULL.  It also tells Bochs whether it is necessary to flush the TLB or 
not.

Later, when register protections are implemented, this is where the hypervisor will save and then wipe 
the registers.

6.6 Shim Implementation

6.6.1 Loading the Shim

The current shim is implemented as a shared library, which is linked into an existing application using 
the LD_PRELOAD environment variable.  We run a process with a command such as:

LD_PRELOAD=shim2.so53 ls -al

LD_PRELOAD instructs the loader to load the library even if it is not in the dependency list of the 
application;  its  init  function  runs  after  all  of  the  various  pages  are  mapped,  but  before  any other 
initializers.

This process, obviously, is not secure, since an attacker could corrupt the shim before it initializes 
itself.  We plan to change to the secure bootstrap process in the future.  However, this chapter will  
describe the shim as it currently functions.

6.6.2 Shim Initialization

The shim init function is called automatically, by the dynamic linker, before any other initializers.  Its  
job is to get all of the pages into the correct state so that it can protect the application, which will run  
later.

To do this, the shim first opens up /proc/self/maps, and parses it to get a list of all of the maps in 
the process.  It also opens up a temporary file, and immediately unlinks it (so that it will get cleaned up 
when the process dies).

For each range of pages in the process (except stack54), it writes the entire range out to the temporary 
file, and then remaps it55.  It then calls the hypervisor, asking it to add the range of pages to the process. 

53 For legacy reasons, our shim is called shim2.so.  A previous version of the shim actually used two libraries; now, only 
one is required.  But we haven't gotten around to changing all the references to shim2.

54 The process we're about to perform would corrupt the current stack frame, since it would effectively take that one page 
back in time a few milliseconds.  Instead, we'll let the process just discover the stack pages implicitly, as they get 
touched.

55 It calls  mmap() with the flag MAP_FIXED.

77



(This sets the pendingAdd and pendingAddLen fields in the Process struct.)  Next, it touches 
each  page  in  the  range.   Each  touch  results  in  Bochs  calling  readPage(),  which  calls 
FindInWorkingSet().   FindInWorkingSet() will  notice  that  the  page  address  matches 
pendingAdd, and will add the page to the working set.  (This will be detailed just below.)

Once all of the pages are added to the shim, it calls two hypercalls, “mark entity initialized” and “turn 
on implicit working set expansion”, which tell the hypervisor is ready for normal running.  At this  
point, the normal protection mechanisms kick in.

Finally, the shim registers the syscall handler, and then returns.  The normal code of the process then 
runs, performing init on other libraries (if required) and then eventually calling main().

6.6.3 Adding Pages to the Working Set

When  FindInWorkingSet() adds a page to the working set because of  pendingAdd, it  will 
mark this page as a private page even though the contents are created by the OS.  (Normally, with 
implicit page adds, such a page would be viewed as a public page.  This hack is necessary because the 
hypervisor must be able to detect that the CPU is running private code, even though the current reality 
is that the untrusted OS loaded the page contents.)

However, there is an added complexity, in that the contents of these pages are known to the untrusted 
OS, and it  believes that  the pages  are  clean.   Thus,  he might  legitimately discard the pages  from 
memory (to free up space for others) and then later read them back from disk.  He expects that this will  
work just fine.  Thus, we have two options: either notify the untrusted OS that the pages are dirty (so 
that it will read them again, and see the signature, and flush that to disk before discarding them), or else 
tolerate that it might later move a virtual page to a new frame, and initialize that frame with the private  
data.  We chose the latter.  When FindInWorkingSet() adds a page because of pendingAdd, it 
immediately sets up a SavedPage for it.  However, this SavedPage is unlike any other: although it 
is theoretically a SavedPage for a private page, the front and back (that is, the private data, and 
the signature) are identical!  Thus, if the untrusted OS discards the page, and later reads it from disk 
again, the contents that it reads will match the false “signature” that FindInWorkingSet() created. 
The hypervisor then show the private data (which will have no effect).

6.6.4 Syscall Handler

For convenience, the syscall handler is actually divided into two parts.  The function that is registered 
with the hypervisor is called syscall_handler().  This function does a little bit of logging, and 
then calls into the second part, syscall_handler2().  When syscall_handler2() returns, 
syscall_handler() does more logging, and then uses the hypercall to return to the regular code. 
The point of this division is to make it easier to write handlers; they can say “return X;” rather than 
deal with the complexities of logging and hypercalls.

syscall_handler2() is implemented as a massive switch() statement.  (The default: case 
prints out a warning about an unimplemented syscall, and then crashes the application.)

Many syscalls are trivial to handle.  If the syscall does not have any pointer arguments, then the call can 
usually be  passed directly to  the  kernel  with  no emulation.   A few,  such as  close,  will  require 
emulation when we implement private file support inside the shim, but are trivial for now.  A few 

78



others, such as fork, also require some amount of emulation.

The majority of the code in syscall_handler2(), however, deals with bounce buffers.  Bounce 
buffers are required for any pointer that is sent to the kernel.  To handle this, the function declares two 
buffers, each page-aligned and of size BOUNCE_BUF_LEN (currently 64 pages, that is, 256 K).  These 
buffers are declared as stack variables, meaning that they eat up a large amount of stack space, but this 
doesn't effect performance much unless the shim has to wipe them.

The function also declares 3 macros that are used by the various syscall implementations:

– BUF1_OUT(): Marks all of buf1 to be public pages, so that the kernel can read the contents.

– BUF2_IN(): Discards all of buf2 from the working set, so that the kernel can overwrite them. 
However, the hypervisor will make sure that all of the pages are showing their signatures before 
they are deleted, so that no private memory will leak.

– BUF2_INOUT():  Marks  all  of  buf1  to  be  public  pages,  and  then  deletes  them from the 
working set.  Used when the same pointer sends data to the kernel but then also will be used to 
read data back.  The kernel will see the private contents, but can also overwrite the buffer.

6.6.4.1 Example syscall wrapper: read

Note: arg1, arg2, arg3 are the syscall arguments.

arg1=file descriptor

arg2=buffer pointer

arg3=length

  case 3: /* read */

    assert(arg3 < BOUNCE_BUF_LEN);

    BUF2_IN();

    {

      int rc;

      AllowNextSyscall();

      rc = syscall(3, arg1, buf2, arg3);

      if(rc > 0)

      {

        assert(rc <= arg3);

        memcpy((void*)arg2, buf2, rc);

      }

79



      return rc;

    }

6.6.4.2 Example syscall wrapper: write

  case 4: /* write */

    assert(arg3 < BOUNCE_BUF_LEN);

    memcpy(buf1, (void*)arg2, arg3);

    BUF1_OUT();

    AllowNextSyscall();

    return syscall(4, arg1, buf1, arg3);

6.7 TODO List

This section is a list of items that must be fixed in order for the implementation to match Chapter 4: 
Bodyguard Design.  Features that are listed in Section 8.1 (Future Work) will not be discussed here.

– Implement secure bootstrap

– Implement register protection

– Implement fork()

– Implement shared memory

– Allow more than one logical page to be mapped into the same frame at the same time

– Implement support for the rest of the syscalls in the shim

– Implement private IPC

– Implement private files (with content validation)

– Implement functions, which can be called by a modified application, to specify what sort of 
protections are required for files, IPC, etc.

– Implement support for multiple entities

– Remove debugging code in hypervisor & shim

– Remove asserts in the hypervisor that depend on the shim working correctly.  Crash a badly-
behaving entity, rather than crashing Bochs.

6.8 Difficulties and Lessons Learned

This  section  contains  discussion  of  various  difficult  problems,  discoveries,  and  random points  of 
interest that were encountered during implementation of this work.

80



Accesses During an Interrupt

Our initial design said that we would catch transitions to the kernel by watching  execPage() for 
attempts to execute untrusted code.  We would set curProc to NULL when that happened.  However, 
what we found instead was that Bochs was accessing56 a few pages after an interrupt or exception 
happened, but before any kernel code ran.  We didn't dig deeply into the problem, but we guess that  
was reading the exception vectors to find out where the code should jump.

We  solved  this  by  dropping  a  special  call  into  the  interrupt() function  in  Bochs;  it  calls 
untrustedOS_startInterrupt().   The hypervisor sets  curProc to NULL, tells  Bochs to 
flush the TLB if curProc had been non-NULL, and (will in the future) save and wipe registers.

Finding Syscall Specifications

It's difficult to find specifications for Linux syscalls.  The man pages are often helpful, but sometimes 
information  is  sketchy.   We  found  an  excellent  page  at  http://bluemaster.iu.hio.no/edu/ca/lin-
asm/syscalls.html, but this page is offline at the moment.  For that reason, we have downloaded the 
page from the Google cache, and have attached it to this thesis as Appendix B.

socketcall (syscall 102)

socketcall is a multiplexed syscall; most or all of the socket operations are funneled through a single 
syscall number.  The Linux man pages generally have documentation for the individual operations, but 
not how they are sent via socketcall.  http://isoamerica.net/~dpn/socketcall1.pdf is an excellent resource 
for understanding socketcall.

[new]stat, [new]lstat, [new]fstat (syscalls 106,107,108)

The man pages define the *stat functions like this:

       #include <sys/types.h>
       #include <sys/stat.h>
       #include <unistd.h>

       int stat(const char *path, struct stat *buf);
       int fstat(int fd, struct stat *buf);
       int lstat(const char *path, struct stat *buf);

Usually, the C library functions are simple wrappers of the syscalls.  So, our original implementation of 
the syscall handler for these three syscalls copied sizeof(struct stat) bytes from the kernel to 
the user buffer.  However, this caused segfaults every time that we called these functions through the C 
library.

It turns out that the internal kernel interface is different than what we see in the man pages.  While  
struct stat is 88 bytes, it appears that the syscall only transfers 64 bytes.  Thus, when we copied 
88 bytes, we were overwriting 24 bytes in the C library function's stack.  Apparently, the C library does 
some sort of translation, expanding the 64 bytes it gets from the kernel into the 88 bytes expected by 
users.

Our current implementation of these syscalls is hard-coded to only copy 64 bytes from the bounce 
buffer to the user buffer, and now it seems to work fine.  However, we had to arrive at this number by  
experimentation; we did not find any documentation about it.  (Thus, it might be different on other 

56 This author doesn't remember if it was reads or writes.

81

http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html
http://isoamerica.net/~dpn/socketcall1.pdf


levels of Linux.)

MAP_FIXED

This was a useful feature that we overlooked early in the development of our shim.  mmap() has a flag 
called MAP_FIXED.  If you set this flag, and provide a recommended address for your map, Linux will 
atomically unmap any existing ranges and replace them with this one.

This was invaluable when we wanted to, in shim initialization, remap a page of code while we were 
running that very code.  (Of course, we won't need this anymore, once the secure bootstrap method has 
been implemented.)

6.9 Summary

This chapter detailed our current implementation.  It  overviewed the basics of the implementation, 
including  the  Bochs  base,  and  how  the  hypervisor  hooks  into  Bochs  to  perform  the  necessary 
protections.  It discussed the major structures and functions used in the current C code.  It detailed how 
the shim is implemented.  It closed with a TODO list, and a set of points of interest that we wanted to 
share with future implementers of similar systems.

82



Chapter 7: Results
Our current implementation implements effective runtime page protection.   We are able to wrap a 
legacy binary application with our shim and protect its data from access by untrusted code.  We have 
implemented wrappers for many system calls, and can run many of standard Linux tools in this mode.  
The protected processes are protected from both memory corruption and snooping, and yet are able to 
read input buffers from the kernel, perform processing on them, and output the results back to the 
public space.  All of this is accomplished inside an entirely unmodified RedHat Linux 6.2 installation.

We cannot, at this time, report any meaningful performance numbers.  Since it is a software emulator of 
the  x86 architecture,  Bochs is  already quite  slow,  and therefore  we cannot  report  any meaningful 
comparison between the time spent in the hypervisor (which runs at the full speed of the host machine) 
and time spent inside other code (which is emulated).  We hope, in Future Work, to port our hypervisor 
to Xen or a similar VMM, at which point performance numbers will become meaningful.

7.1 Legacy Applications Run Correctly

Legacy applications still run correctly when they are wrapped with our shim.  For example, we present  
the command ls -al /, running with and without the shim:

RUNNING NORMALLY
# ls -al /
total 89
drwxr-xr-x  16 root     root         1024 Sep 29 15:28 .
drwxr-xr-x  16 root     root         1024 Sep 29 15:28 ..
-rw-------   1 root     root           16 Sep 29 15:28 .bash_history
drwxr-xr-x   2 root     root         2048 Jun  1  2001 bin
drwxr-xr-x   3 root     root         1024 Jun  1  2001 boot
drwxr-xr-x   5 root     root        34816 Jan 21 12:07 dev
drwxr-xr-x  23 root     root         2048 Jan 21 12:07 etc
drwxr-xr-x   2 root     root         1024 Feb  6  1996 home
drwxr-xr-x   4 root     root         3072 Apr  8  2009 lib
drwxr-xr-x   2 root     root        12288 Jun  1  2001 lost+found
drwxr-xr-x   6 root     root         1024 Nov  6 04:33 mnt
dr-xr-xr-x  35 root     root            0 Jan 21 04:07 proc
drwxr-x---   9 root     root         1024 Jan 21 12:07 root
drwxr-xr-x   3 root     root         2048 Jun  1  2001 sbin
drwxrwxrwt   6 root     root        23552 Jan 21 12:12 tmp
drwxr-xr-x  19 root     root         1024 Apr  8  2009 usr
drwxr-xr-x  14 root     root         1024 Jun  1  2001 var
# 

RUNNING UNDER SHIM
# LD_LIBRARY_PATH=$(pwd) LD_PRELOAD=shim2.so ls -al /
total 89
drwxr-xr-x  16 root     root         1024 Sep 29 15:28 .
drwxr-xr-x  16 root     root         1024 Sep 29 15:28 ..

83



-rw-------   1 root     root           16 Sep 29 15:28 .bash_history
drwxr-xr-x   2 root     root         2048 Jun  1  2001 bin
drwxr-xr-x   3 root     root         1024 Jun  1  2001 boot
drwxr-xr-x   5 root     root        34816 Jan 21 12:07 dev
drwxr-xr-x  23 root     root         2048 Jan 21 12:07 etc
drwxr-xr-x   2 root     root         1024 Feb  6  1996 home
drwxr-xr-x   4 root     root         3072 Apr  8  2009 lib
drwxr-xr-x   2 root     root        12288 Jun  1  2001 lost+found
drwxr-xr-x   6 root     root         1024 Nov  6 04:33 mnt
dr-xr-xr-x  36 root     root            0 Jan 21 04:07 proc
drwxr-x---   9 root     root         1024 Jan 21 12:07 root
drwxr-xr-x   3 root     root         2048 Jun  1  2001 sbin
drwxrwxrwt   6 root     root        23552 Jan 21 12:12 tmp
drwxr-xr-x  19 root     root         1024 Apr  8  2009 usr
drwxr-xr-x  14 root     root         1024 Jun  1  2001 var
# 

We see that the command gives the exact same output, running with or without the shim.

7.2 Corruption Prevented

In order to test that our memory corruption code is working correctly, we must somehow simulate a 
corruption attack.  We chose to do so by intentionally breaking the implementation of the  read() 
syscall.   We wrote code such that, on the third attempt to  read(),  we would “forget” to tell the 
hypervisor to discard the input buffer from out working set.  Thus, when the kernel modifies those 
virtual pages and we later read them back, the hypervisor will detect corruption of the working set.

To test this, we ran the command dd if=shim2.c bs=100 under our broken shim.  This command 
will open the file shim2.c and then read 100 bytes at a time, writing it out to stdout.  Below, you will  
see the result.  Note that the read() count=x are debugging statements we added to the shim to 
help us understand where the read() syscalls are happening.

COMMAND OUTPUT

First, you see the command that we ran...

# LD_LIBRARY_PATH=$(pwd) LD_PRELOAD=shim2.so dd if=shim2.c bs=100

Next, we see the debug output for the first read()...

read() count=1

Then, the process writes that information out to stdout with the write() syscall...

#define _GNU_SOURCE

#include <unistd.h>

#include <sys/syscall.h>

#include <sys/mman.h>

84



#include <std

Then, the second read() and write()...

read() count=2

io.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <string.h>

#include <

Now, we see the third read(), which we intentionally fail...

read() count=3

Segmentation fault (core dumped)

# 

The process segfaulted because the hypervisor detected corruption, destroyed the entity, and then sent a 
page fault to untrusted OS.

STRACE OUTPUT

We ran this test under strace, which gives us another perspective.  Note that strace was NOT part of the 
protected entity; thus, when it looks at pages, it sees the same contents as does the kernel.

The output starts with a write() syscall for the debug printf() that we added.

write(1, "\nread() count=1\n", 16)      = 16

Next, you see that the read() syscall is actually performed.  Note that the string that strace prints out 
as the 2nd argument is actually the contents of the buffer AFTER the read.  We notice that it matches 
what is written out immediately afterward:

read(3, "#define _GNU_SOURCE\n#include <u"..., 100) = 100

write(1, "#define _GNU_SOURCE\n#include <u"..., 100) = 100

Another syscall, along with its debugging printf():

write(1, "\nread() count=2\n", 16)      = 16

read(3, "io.h>\n#include <sys/types.h>\n#"..., 100) = 100

write(1, "io.h>\n#include <sys/types.h>\n#"..., 100) = 100

Notice what happens on the 3rd read().  We first get the debugging printf().  Then we get the 

85



read() syscall.  Notice that strace, which is an unprotected process, reads the value of the buffer 57 
after the syscall is performed, and sees the expected data – the data that the kernel read.  However, the 
process hits SEGV right after the read() syscall returns:

write(1, "\nread() count=3\n", 16)      = 16

read(3, "sys/time.h>\n#include <sys/resou"..., 100) = 100

--- SIGSEGV (Segmentation fault) ---

HYPERVISOR LOGS

Finally, we look at our hypervisor logs.  We see first hypercall 7, which tells the hypervisor that the  
next syscall should go through to the kernel, rather than getting redirected to the syscall handler...

07041078231i[CPU0 ] untrustedOS_interrupt_400_handler: RUSS: args: 7 
(0x00000000,0x00000000,0x00000000,0x00000000) procID=0x00000000

Next, we see the read() syscall going to the kernel...

07041078264i[CPU0 ] syscall: 3 (read): 0x00000003, 0xbfeff000, 
0x00000064

07041078264i[CPU0 ] untrustedOS_startInterrupt: Changing curProc to 
0x00000000

07041078264i[CPU0 ] interrupt: Flushing the TLB

We notice that the kernel attempts to write a frame that currently has a logical page mapped.  This is 
when the kernel actually “corrupts” that page.  (Take note of the virtual address, 0xbfef_f000.)

07041082975i[CPU0 ] untrustedOS_writePage: Unmapping a logical page 
because of an OS write (NOTE: readPage left it there, which means 
that it must be public, or a hidden signature!)  vaddr=0xbfeff000 
frame=0xb78de498

Next, the kernel jumps back to the address 0x08cb_d0b0, which is trusted code.  We figure out that we 
are jumping back into the process, and change the curProc variable inside the hypervisor...

07041091572i[CPU0 ] FindInWorkingSet: proc=0x08cbd0b0 
vaddr=0x400c8b9d add=0 frame=0xb78bfa88

07041091572i[CPU0 ] FindInWorkingSet: FOUND!!! Returning 0x08cc0dd0

07041091572i[CPU0 ] execPage_SetMask: CHANGING curProc TO 0x08cbd0b0 
(old curProc=0x00000000)

…

Before long, the process attempts to read the virtual address 0xbfef_f000 (the page corrupted above), 
and we detect corruption...

07041091635i[CPU0 ] FindInWorkingSet: FOUND!!! Returning 0x08dd3998

57 Technically, what strace is doing is using ptrace() to peek into the buffers of the protected process; the kernel will 
read the data out on strace's behalf, and copy it to strace's own buffers.  So, what strace prints out is actually what the 
kernel perceives the contents of the page to be.

86



07041091635i[CPU0 ] untrustedOS_readPage: MISCOMPARE: 
vaddr=0xbfeff000

SUMMARY

We see that if the kernel attempts to modify a virtual page of some protected process, and this process 
has not told the hypervisor to allow it, that the process will be killed as soon as it attempts to use that 
page.

7.3 Snooping Prevented

In order to confirm that snooping is prevented, we made a similar modification to our shim.  This time, 
we chose that every 3rd write() syscall will “forget” to mark the buffer public.  Thus, every 3 rd 

write(), we expect that the kernel will see a signature page rather than the real data.

For easy comparison, we will wrap the shim around the same command as we used in the corruption  
example,  dd if=shim2.c bs=100.  We'll only print the first several lines of output, however. 
(Snooping does not cause the process to crash, so in this example, the command runs all the way to 
completion.)

COMMAND OUTPUT

# LD_LIBRARY_PATH=$(pwd) LD_PRELOAD=shim2.so dd if=shim2.c bs=100

First, we notice the debugging  printf()s for the read, and then the write.  Then we see the data 
printed to stdout:

read() count=1

write() count=1

#define _GNU_SOURCE

#include <unistd.h>

#include <sys/syscall.h>

#include <sys/mman.h>

#include <std

Then, it happens a second time, for the next block of data:

read() count=2

write() count=2

io.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

87



#include <string.h>

#include <

However, when we get to the 3rd write, the shim “forgets” to mark the page public.  Thus, the data that 
actually  gets  written  to  stdout is  a  signature.   Notice  the  magic  string  “untrusted  OS 
signature page”, and then random bytes:

read() count=3

write() count=3

untrusted OS signature page[begin random unprintable characters]

On the 4th iteration, the shim acts properly again, and again the kernel sees the correct data:

read() count=4

write() count=4

h>

#include <signal.h>

#include <sys/utsname.h>

#include <sys/vfs.h>

SUMMARY

We see that if the kernel attempts to access a virtual page of some protected process, and this process  
has not told the hypervisor that the page is public, then the kernel will see a signature instead of the real 
data.

7.4 Custom Test App

We coded a custom application to further demonstrate protection in action.  It reads in a 4K buffer from 
stdin into a page-aligned buffer, ensures that it is a private page, and then writes the buffer out twice. 
In one case, it writes the buffer out to a file, using hypercall 7 to bypass the syscall handler.  In the  
other case, it writes the buffer out with fwrite() to stdout, which uses the normal syscall intercept 
mechanism.  This latter write is intercepted by the syscall  handler,  put on a public page,  and then 
written to  stdout.   Since the bounce buffer  a public  page,  the correct  (private)  values  are  written. 
Finally,  it  mmap()s  the  page  it  just  wrote  to  the  temporary file,  and writes  that  buffer  out  with 
fwrite() as well.  This third write also shows the correct, non-signature data, even though the file 
contents are the signature, rather than the private data.

What this illustrates is both implicit working set expansion and automatic restoration of signatures.  As 
we will discover at the end of this experiment, the temporary file contains a signature, NOT the private 
data.  However, when we mmap() a page of the temporary file to the protected process, it sees the 
private data (as evidenced by the last fwrite() output).

SOURCE CODE

88



#include <stdio.h>

#include <sys/mman.h>

int main()

{

  /* set up a page-aligned buffer to hold data */

  char  buf[2*4096];

  char *ptr = (char*)((((unsigned int)&buf[0])+4095) & ~4095);

  int len;

  char *mmap_ptr;

  /* set up a dump file */

  FILE *dump = fopen("dump", "w+");

  /* read up to one page from stdin */

  len = fread(ptr, 1,4096, stdin);

    ptr[len] = 0; /* null terminator */

  printf("len=%d\n", len);

  /* note that the buffer is already private data, because the

   * shim wrote to the buffer, copying the data from the bounce

   * buffer.

   */

  printf("BUFFER CONTENTS:\n");

  fwrite(ptr, len,1, stdout);

  /* write the buffer to the dump file.  However, send hypercall 7 to tell

   * the hypervisor to bypass the syscall handler.  Thus, the page will get

   * written as a private page (thus, a signature).

   */

  printf("WRITING RAW BUFFER TO FILE dump\n"); fflush(NULL);

  syscall(400,7);

  syscall(4, fileno(dump), ptr, 4096);

89



  /* next, write this same page to stdout, using the shim, which will use

   * a public bounce buffer page, so that the kernel will see the correct

   * data.

   */

  printf("WRITING BUFFER TO stdout USING SHIM, SO IT WILL SEE PRIVATE DATA\n"); 
fflush(NULL);

  fwrite(ptr, len,1, stdout);

  /* finally, we mmap() the page we just wrote to 'dump', and fwrite that.

   * What you will find written to stdout is actually the cleartext, even

   * though the page stored in 'dump' is a signature.

   */

  printf("MMAP()ing SIGNATURE PAGE\n"); fflush(NULL);

  mmap_ptr = mmap(NULL, 4096, PROT_READ, MAP_PRIVATE, fileno(dump), 0);

  printf("PRINTING RECENT mmap() TO stdout\n"); fflush(NULL);

  fwrite(mmap_ptr, len,1, stdout);

  return 0;

}

OUTPUT

Notice that the application reads data in from an input file.  There are 46 characters in the file, spread 
across two lines.  The application prints out what it saw.

len=46

BUFFER CONTENTS:

<this is the test file>

<there are two lines>

The application writes the raw buffer to the file 'dump', without using the shim.  Note that under the 
covers, Bodyguard converts the private page to a signature before the OS is allowed to read it.

WRITING RAW BUFFER TO FILE dump

WRITING BUFFER TO stdout USING SHIM, SO IT WILL SEE PRIVATE DATA

The application writes the buffer to stdout again, again using the shim.  Note that the shim copies data 
to a public bounce buffer before it actually performs the write.  Observe that Bodyguard automatically 
converted the page back to the private data before the shim was allowed to perform the copy.

<this is the test file>

<there are two lines>

90



The application mmap()s the page which it just wrote to file 'dump'.  As we see below, 'dump' contains 
the signature (not the private data), but when the application writes out that new buffer (again, using 
the shim), we see that it has the private data that we expect.  What this means is that the hypervisor  
automatically signature (completely without any help from the application), and showed the private 
data to the application.

MMAP()ing SIGNATURE PAGE

PRINTING RECENT mmap() TO stdout

<this is the test file>

<there are two lines>

THE 'dump' FILE

We confirm that the contents of the dump are a signature:

untrusted OS signature pageK^_~X^?~D„]~QUEŠ$E~V^]@Iƒ^F=~OŒ 
^PgqAI]rú"~QO(^U3~Eþ^

...<random unprintable characters>...

HYPERVISOR LOGS

We'll start looking at the logs at the point where the application opens up the 'dump' file.  The syscall is  
intercepted by the syscall handler, sending it to the shim.

53405325691i[CPU0 ] untrustedOS_syscallAlert: syscallHandler=0x400172e4 allowNext=0

53405325691i[CPU0 ] syscall: 5 (open): 0x08048783, 0x00000242, 0x000001b6

53405325691i[CPU0 ] INT_Ib: The hypervisor told us to redirect this syscall to the 
handler at address 0x400172e4

…

The shim sets up a bounce buffer for the file name, and calls hypercall 10 (“Make Range Public”) to 
make the buffer at 0xbfdfd000 , length 0x00100000 into a public buffer.

53405329863i[CPU0  ]  untrustedOS_interrupt_400_handler:  RUSS:  args:  10 
(0xbfdfd000,0x00100000,0x00000000,0x00000000) procID=0x00000000

…

The shim calls hypercall 7 (“Allow Next Syscall”) and then performs the open syscall:

53405329923i[CPU0  ]  untrustedOS_interrupt_400_handler:  RUSS:  args:  7 
(0x00000000,0x00000000,0x00000000,0x00000000) procID=0x00000000

…

53405329957i[CPU0 ] syscall: 5 (open): 0xbfdfd000, 0x00000242, 0x000001b6

53405329957i[CPU0 ] untrustedOS_startInterrupt: Changing curProc to 0x00000000

53405329957i[CPU0 ] interrupt: Flushing the TLB

…

Hypercall 14 is the hypercall which the syscall handler uses to unwrap the non-standard stack frame. 
The second argument to that hypercall is the return value, which Bochs needs to place in register EAX. 

91



In this case, you see that the retval is 3.  So, the file descriptor for the 'dump' file is 3.

53405346031i[CPU0  ]  INT_Ib:  Handling  this  without  having  to  call 
untrustedOS_interrupt_400_handler: args: 14 (0xbfffdc94, 0x00000003, …)

…

This is where the application uses syscall 7 to bypass the syscall handler, and then calls the write  
syscall to write the raw buffer out to the dump file.  Notice that the first argument is the file descriptor  
(3); the second is the buffer address (note that it's on the stack and page aligned); the third is the length 
(0x1000, exactly one page).

53405480134i[CPU0  ]  untrustedOS_interrupt_400_handler:  RUSS:  args:  7 
(0x401081b4,0x080499a0,0xbfffe000,0x00000000) procID=0x00000000

…

53405480957i[CPU0 ] untrustedOS_syscallAlert: syscallHandler=0x400172e4 allowNext=1

53405480957i[CPU0 ] syscall: 4 (write): 0x00000003, 0xbfffe000, 0x00001000

53405480957i[CPU0 ] untrustedOS_startInterrupt: Changing curProc to 0x00000000

53405480957i[CPU0 ] interrupt: Flushing the TLB

…

When the kernel tries to read the private page, Bodyguard drops in a signature.  Notice several things 
here.  First, the kernel uses a different virtual address than the application, but the ppf (physical page 
address) matches the physical page address of the application's page 0xbfffe000.  Notice the key which 
is  generated  for  the  signature;  this  is  used  to  index  a  hash  table  of  signatures,  and  will  become 
important  later.   Finally,  notice the state  of  the virtual  page when we DUMP STATE after  saving 
contents: you will see that the virtual page maps to a single logical page; the logical page is mapped 
into the same frame which the kernel was reading; the frame has its signature showing; the frame also 
has a SavedPage attached.

53405484187i[CPU0 ] untrustedOS_readPage: vaddr=0xc31c7000 ppf=0x031c7000

53405484187i[CPU0  ]  SaveContents:  RUSS:  frame=0xb7970c78  logicalPage=0x08ed3e38 
vaddr=0xbfffe000

53405484187i[CPU0 ] SaveContents: RUSS: sPage=0x08ed4ef8 key=0x456dae8f

…

53405484187i[CPU0 ] HidePrivateData: RUSS: frame=0xb7970c78 logicalPage=0x08ed3e38 
vaddr=0xbfffe000

53405484187i[CPU0 ]

53405484187i[CPU0  ]  DUMP  STATE:  (HidePrivateData  0xbfffe000) 
------------------------------------------------------------------------------

53405484187i[CPU0 ]   curProc = 0x00000000

…

53405484187i[CPU0 ]       VPAGE: 0x08ed38c0

53405484187i[CPU0 ]         vaddr = 0xbfffe000

53405484187i[CPU0 ]         logicalPage = 0x08ed3e38

53405484187i[CPU0 ]           LPAGE: 0x08ed3e38

53405484187i[CPU0 ]             shared/priv = 0/1

92



53405484187i[CPU0 ]             frame = 0xb7970c78

53405484187i[CPU0 ]               ppf = 0x031c7000

53405484187i[CPU0 ]               buf = 0xb4a64000

53405484187i[CPU0 ]               logicalPage = 0x08ed3e38

53405484187i[CPU0 ]               sigShowing/sigScanNeeded = 1/0

53405484187i[CPU0 ]             savedPage = 0x08ed4ef8

53405484187i[CPU0 ]               alias = 0x00000000

53405484187i[CPU0 ]               owner = 0x08dbe020

53405484187i[CPU0 ]               useCount = 2

53405484187i[CPU0 ]               contents = 0xb35e8000

53405484187i[CPU0 ]               front = 0x00000000

53405484187i[CPU0 ]               back = 0x00001000

…

Now, we jump ahead to  the  point  where we try to  mmap() the  page  from the  'dump'  file.   The 
arguments to  mmap() don't tell us much, since (as you can see from the syscall documentation in 
Appendix B)  mmap() only has one argument;  it  points to a struct,  which carries the various sub-
arguments.  In this case, the struct is on the stack, and the hypervisor logs don't give us details about its  
contents.   However,  we see it  get redirected to the syscall  handler,  which puts the arguments in a 
bounce buffer, and then calls the kernel.

53406844121i[CPU0 ] untrustedOS_syscallAlert: syscallHandler=0x400172e4 allowNext=0

53406844121i[CPU0 ] syscall: 90 (old_mmap): 0xbfffdd14, 0x4001b000, 0xbfffe000

53406844121i[CPU0 ] INT_Ib: The hypervisor told us to redirect this syscall to the 
handler at address 0x400172e4

…

53406847034i[CPU0  ]  untrustedOS_interrupt_400_handler:  RUSS:  args:  10 
(0xbfdfd000,0x00100000,0x00000000,0x00000000) procID=0x00000000

…

53406847094i[CPU0  ]  untrustedOS_interrupt_400_handler:  RUSS:  args:  7 
(0x00000000,0x00000000,0x00000000,0x00000000) procID=0x00000000

…

53406847123i[CPU0 ] untrustedOS_syscallAlert: syscallHandler=0x400172e4 allowNext=1

53406847123i[CPU0 ] syscall: 90 (old_mmap): 0xbfdfd000, 0x00000000, 0x00000000

53406847123i[CPU0 ] untrustedOS_startInterrupt: Changing curProc to 0x00000000

53406847123i[CPU0 ] interrupt: Flushing the TLB

…

When we perform hypercall 14 to return from the syscall, we see that the return value from mmap() 
was 0x4001c000.

53406864796i[CPU0  ]  INT_Ib:  Handling  this  without  having  to  call 
untrustedOS_interrupt_400_handler: args: 14 (0xbfffdcdc, 0x4001c000, …)

93



…

Now, the first time that we touch page 0x4001c000, FindInWorkingSet implicitly adds the page to the 
working set.  It compares the contents to our list of signatures, and find a match to the page we saved 
before.  (The key for the signature, read from the frame, matches the key for the signature we generated 
above, which allows us to find the old signature in the hash table.)  Then, we DUMP STATE again, and 
we can see that the two virtual pages (0x4001c000 and 0xbfffe000) both point to the same SavedPage.

53406891017i[CPU0 ] untrustedOS_readPage: vaddr=0x4001c000 ppf=0x01d12000

53406891017i[CPU0  ]  FindInWorkingSet:  proc=0x08dbe088  vaddr=0x4001c000  add=1 
frame=0xb795c128

53406891017i[CPU0 ] FindInWorkingSet: ADDING virt addr 0x4001c000 to the working 
set!

53406891017i[CPU0 ] ScanForSignatures: RUSS: ppf=0x01d12000 key=0x456dae8f

53406891017i[CPU0 ] ScanForSignatures: RUSS: memcmp sPage=0x08ed4ef8 key=0x456dae8f

53406891017i[CPU0 ] ScanForSignatures: RUSS: FOUND!!! sPage=0x08ed4ef8

53406891017i[CPU0 ] FindInWorkingSet: ---> Found that the new page matches a saved 
signature

53406891017i[CPU0 ] ShowPrivateData: RUSS: frame=0xb795c128 logicalPage=0x08ee47d8 
vaddr=0x4001c000

53406891017i[CPU0 ]

53406891017i[CPU0  ]  DUMP  STATE:  (ShowPrivateData  0x4001c000) 
------------------------------------------------------------------------------

…

53406891017i[CPU0 ]       VPAGE: 0x08ee4260

53406891017i[CPU0 ]         vaddr = 0x4001c000

53406891017i[CPU0 ]         logicalPage = 0x08ee47d8

53406891017i[CPU0 ]           LPAGE: 0x08ee47d8

53406891017i[CPU0 ]             shared/priv = 0/1

53406891017i[CPU0 ]             frame = 0xb795c128

53406891017i[CPU0 ]               ppf = 0x01d12000

53406891017i[CPU0 ]               buf = 0xb5daf000

53406891017i[CPU0 ]               logicalPage = 0x08ee47d8

53406891017i[CPU0 ]               sigShowing/sigScanNeeded = 0/0

53406891017i[CPU0 ]             savedPage = 0x08ed4ef8

53406891017i[CPU0 ]               alias = 0x00000000

53406891017i[CPU0 ]               owner = 0x08dbe020

53406891017i[CPU0 ]               useCount = 3

53406891017i[CPU0 ]               contents = 0xb35e8000

53406891017i[CPU0 ]               front = 0x00000000

53406891017i[CPU0 ]               back = 0x00001000

…

94



53406891017i[CPU0 ]       VPAGE: 0x08ed38c0

53406891017i[CPU0 ]         vaddr = 0xbfffe000

53406891017i[CPU0 ]         logicalPage = 0x08ed3e38

53406891017i[CPU0 ]           LPAGE: 0x08ed3e38

53406891017i[CPU0 ]             shared/priv = 0/1

53406891017i[CPU0 ]             frame = 0xb7970c78

53406891017i[CPU0 ]               ppf = 0x031c7000

53406891017i[CPU0 ]               buf = 0xb4a64000

53406891017i[CPU0 ]               logicalPage = 0x08ed3e38

53406891017i[CPU0 ]               sigShowing/sigScanNeeded = 0/0

53406891017i[CPU0 ]             savedPage = 0x08ed4ef8

53406891017i[CPU0 ]               alias = 0x00000000

53406891017i[CPU0 ]               owner = 0x08dbe020

53406891017i[CPU0 ]               useCount = 3

53406891017i[CPU0 ]               contents = 0xb35e8000

53406891017i[CPU0 ]               front = 0x00000000

53406891017i[CPU0 ]               back = 0x00001000

…

SUMMARY

We have seen that, if we write a private page to disk without using a bounce buffer, the untrusted OS 
will actually write the signature instead of the private data.  Moreover, if we later mmap() that page 
into a new virtual page, the hypervisor automatically detects that the page is a duplicate of an old 
signature and shows the private data to the application.

7.5 Chapter Summary

We have run several testcases which demonstrate that the page protection mechanisms are functioning 
properly.   The  signature  mechanism prevents  snooping;  the  page  verification  mechanism prevents 
corruption; the signature recognition mechanism automatically recognizes signatures in newly-mapped 
pages, and converts them to private data.

95



Chapter 8: Conclusion

8.1 Future Work

Chapter  4 (Bodyguard Design) detailed our current design for this system.  Although it is not fully 
implemented yet (see Section 6.7: TODO List), we believe that the design offers efficient and complete 
protection for almost all applications.

This section goes further, and details changes to the design that we may pursue in the future.

Xen

We hope to port our hypervisor to Xen or a similar VMM.  While Bochs was easy to modify for our  
initial implementation,  its  performance is far  from adequate.  By porting the hypervisor to a more 
practical VMM, we hope to be able to eventually deploy the hypervisor within ordinary environments, 
and make it available as a standard feature on some machines.

To that end, the hypervisor was written with porting in mind; we have a fairly clean interface between 
the hypervisor and the rest of the code.

Generalization

We expect that this design will work well, with minor modifications, on Windows and other operating 
systems.   For  instance,  the  hypercall  mechanism may need  to  be  changed.   Likewise,  the  list  of 
registers that are protected across interrupts and syscalls may vary from OS to OS.

We expect to add configuration parameters in the client/hypervisor communication that would allow a 
single hypervisor to be dynamically configured to support the conventions of any guest OS.

Better Automatic Protection

As noted in Section 4.12.1: Limitations, there are some fundamental limitations to how much a shim 
can do automatically.  For instance, the shim cannot know, with absolute certainty, whether file output 
contains private data, which should be protected, or public data, which should be written for untrusted 
entities to read.

Future investigators may develop better heuristics for choosing default values and/or may be able to 
find some way overcome these obstacles altogether.

Automatic Private Files

The shim needs to automate the process of writing, and then later verifying, the contents of private 
files.   While  the hypervisor  automatically protects  the current  working set,  it  cannot  automatically 
verify the contents of newly-mmap()ed pages.  Thus, when a process  mmap()s or  read()s a file 
containing private data, it needs to verify that the data read is actually the data that ought to exist in that 
file.

We imagine  that  this  could  be  accomplished with  a  system of  checksums.   Our  proposed design 
assumes that the first page of a private file would contain a header with a secret magic value (so that 
the untrusted OS would not be able to falsify such a page).  It would also include a field describing the 
real length of the file, and then hold the checksums of the next N pages.  If the size of the underlying 
file (not counting checksum overhead) exceeded N-1 pages, then the last page of the N pages would 

96



contain another checksum table, for the next many pages.58  Thus, if the header page can be verified, 
and all of the chains of checksums are valid, then the entire file contents are valid.

We  did  not  add  this  to  our  current  design,  however,  because  there  are  a  number  of  unresolved 
questions.   First,  how do we prevent stale files from being presented?  We could add a sequence 
number to the file header in order to keep track of the latest version of each file, but then how do we 
map file descriptors to the expected sequence numbers?  Also, can this system be adapted to work with 
executable files, where the header needs to be untrusted-OS-readable?

Hash-Based Protection

When a process needs to verify the contents of a recent  mmap(), the current design requires that it 
read the page immediately.  However, this is inelegant and also may be undesirable for performance 
(for instance, we may not want to read the page up from disk until it is needed).  A simple improvement 
would be a “register expected checksum” hypercall.   This would give the expected checksum of a 
recently-mapped page (one which was not yet in the working set).  The hypervisor would retain this 
checksum until the page is actually accessed at some point in the future, and would use the checksum 
to verify the initial contents.  (After the initial verification, normal hypervisor mechanisms, with saved 
pages and signatures, would be used.)

Hybrid Register Protection Scheme

Both Overshadow and Bodyguard expect that the hypervisor needs to play a role in register verification 
and restoration when untrusted code returns into a protected process.  They implement this with a 
trampoline and CTCs in virtual memory, where as we implement this with implicit jump detection and 
registers stored in hypervisor memory.

A more attractive option would be to move all of this verification into the shim.  In this proposed 
design, we use CTCs like in Overshadow, but the hypervisor does not verify calls into the protected 
process.  Instead, when the hypervisor detects a jump into the protected process, it forces the code to a 
handler inside that  process (analogous to  the syscall  handler).   This handler  would verify that  the 
register values, as set up by the kernel, match what is expected.  This handler would also be responsible 
for restoring thread state.  Finally, the handler would be responsible for informing the hypervisor where 
to store the thread state whenever this process calls out to untrusted code again.

We like this idea because it simplifies the hypervisor; however, we know that this handler will be quite 
difficult to write.  For instance, it must be able to survive page faults inside the handler.

Signal Handling

The current design does not account for signals.  In order to support all programs, we must add this 
support.  However, if we implement the hybrid register protection scheme (see above), then it may be 
possible to implement this entirely in the shim, with no hypervisor support at all.

Better Process Identification

One advantage of Overshadow's trampoline-based system is that each process (and each thread within 
the process) has a clear value, saved in virtual memory, which uniquely identifies which process and 
thread this is.  Of course, an attacker could corrupt this value, but this would simply resolve to a DOS 

58 Perhaps the 2nd table should be a two-layer table, and so on, for faster indexing?  The system, as described above, takes 
linear time to look up the expected hash for a page; with layered tables, we could make that O  log n .  I suggest 
that we have each progressive table be deeper than the last so that the front end of a very long file would have the same 
format (one-layer table) as the contents of a short file.  That makes appending and cropping much easier.

97



attack when the trampoline is unable to re-activate a thread.

The fundamental advantage is that a well-meaning OS is not going to change this value (since it resides 
in virtual space).  Our design, on the other hand, uses the page table pointer as a process ID; while we 
haven't seen it change, it certainly might, under unknown circumstances.

Future investigators should look for a more reliable process ID.  Ideally, we want a process ID that is  
still  compatible  with  our  design  that  implicitly  detects  when  we  jump  into  a  protected  process. 
However, it is also possible for us to adopt an Overshadow-style trampoline.

Discard Old Signatures

Our current design requires that we store all signatures, for all saved pages, for the entire life of the 
entity.  This is because the hypervisor doesn't have any way to know which pages might have been 
written to disk, and might later be restored.

Future investigators could pursue methods for determining when old signatures can be discarded.

Shared Memory for IPC

When  two  processes  in  the  same  entity  communicate  using  IPC,  there  is  the  potential  for  both 
corruption and snooping.  One option would be to encrypt all data, using checksums and sequence 
numbers to validate the decrypted data.

We prefer, however, the idea of using shared memory for IPC.  In this idea, all of the communicating 
processes would map a set of shared private pages, which would hold buffers to exchange.  The IPC 
mechanisms in the untrusted OS would then be used only for signaling when buffers are ready.  The 
untrusted OS's only possible attack, then, would be to fail to deliver the wakeup signals.

8.2 Close

Even the most carefully coded and well tested application is vulnerable to attacks through the operating 
system.  An attacker that has control of the operating system has the ability to snoop on private data, 
corrupt results, or simply deny resources to the application.

In this thesis we have presented a system that makes it impossible for an attacker, even with complete 
control  of  the  kernel,  to  either  snoop on private  data  or  corrupt  the  results.   Moreover,  we have 
discussed how, given these protections, the client may reliably monitor the status of the application and 
detect  DOS attacks.   All  of this  is  accomplished with a very simple hypervisor,  provided that  the 
application is modified to take advantage of the hypervisor features.  Finally, we presented a shim that 
can automatically modify a legacy application to take advantage of the hypervisor features.

We believe that this  system is  a practical method for ensuring application correctness and privacy 
against arbitrary attacks.  It forms an important extra layer of security for critical applications.

98



Bibliography
[1]  T. Ball, S. Rajamani. The SLAM Project: Debugging System Software via Static Analysis. POPL 

'02.
[2]  D. Engler, M. Musuvathi. Static analysis versus software model checking for bug finding. Stanford 

University.
[3]  T. Ball, R. Majumdar, T. Millstein, S. Rajamani. Automatic Predicate Abstraction of C Programs. 

PLDI 2001.
[4]  D. Hovemeyer, J. Spacco, W. Pugh. Evaluating and Tuning a Static Analysis to Find Null Pointer 

Bugs. PASTE '05.
[5]  S. Hallem, B. Chelf, Y. Xie, D. Engler. A System and Language for Building System Specific 

Static Analyses. PLDI '02.
[6]  D. Kienzle, M. Elder. Recent Worms: A Survey and Trends. WORM '03.
[7]  C. Landwehr, A. Bull, J. McDermott, W. Choi. A Taxonomy of Computer Program Security Flaws, 

with Examples. ACM Computing Surveys 26, 3 (Sept 1994).
[8]  A. Burdonov, A. Kosachev, P. Iakovenko. Virtualization-based separation of privilege: working 

with sensitive data in untrusted environment. VTDS 2009.
[9]  S. Kamara, S. Fahmy, E. Schultz, F. Kerschbaum, M. Frantzen. Analysis of Vulnerabilities in 

Internet Firewalls. Center for Education and Research in Information Assurance and Security 
(CERIAS) Purdue University.

[10]  T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, D. Boneh. Terra: A Virtual Machine-Based 
Platform for Trusted Computing. SOSP '03.

[11]  P. Loscocco, S. Smalley, P. Muckelbauer, R. Taylor, S. Turner, J. Farrell. The Inevitability 
of Failure: The Flawed Assumption of Security in Modern Computing Environments. NSA.

[12]  V. Haldar, D. Chandra, M. Franz. Semantic Remote Attestation —A Virtual Machine 
directed approach to Trusted Computing. Department of Computer Science, University of 
California.

[13]  N. Zeldovich, H. Kannan, M. Dalton, C. Kozyrakis. Hardware Enforcement of Application 
Security Policies Using Tagged Memory. 8th USENIX Symposium on Operating Systems Design 
and Implementation.

[14]  R. Lee, P. Kwan, J. McGregor, J. Dwoskin, Z. Wang. Architecture for Protecting Critical 
Secrets in Microprocessors. ISCA '05.

[15]  J. Dwoskin, R. Lee. Hardware-rooted Trust for Secure Key Management and Transient 
Trust. CCS '07.

[16]  Y. Chen, R. Lee. Hardware-Assisted Application-Level Access Control. Information 
Security Conference, Sep 7-9, 2009.

[17]  J. Dyer, M. Lindermann, R. Perez, R. Sailer, L. van Doorn, S. Smith, S. Weingart. Building 
the IBM 4758 Secure Coprocessor. "Computer" Magazine, October 2001, pp. 57-66.

[18]  A. Seshadri, M. Luk, N. Qu, A. Perrig. SecVisor: A Tiny Hypervisor to Provide Lifetime 
Kernel Code Integrity for Commodity OSes. SOSP '07.

[19]  J. Franklin, A. Seshadri, N. Qu, S. Chaki, A. Datta. Attacking, Repairing, and Verifying 
SecVisor: A Retrospective on the Security of a Hypervisor. Carnegie Mellon University.

[20]  E. Bugnion, S. Devine, K. Govil, M. Rosenblum. Disco: Running Commodity Operating 
Systems on Scalable Multiprocessors. SOSP-16.

[21]  J. Li, M. Krohn, D. Mazi`eres, D. Sasha. Secure Untrusted Data Repository (SUNDR). 
OSDI '04: 6th Symposium on Operating Systems Design and Implementation.

99



[22]  T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote, S. Hagegawa, T. Horie, M. Hirano, K. 
Kourai, Y. Oyama, E. Kawai, K. Kono. BitVisor: A Thin Hypervisor for Enforcing I/O Device 
Security. VEE '09.

[23]  P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,R. Neugebauer, I. Pratt, and 
A. Warfield. Xen and the Art of Virtualization. SOSP '03.

[24]  D. Murray, S. Hand. Privilege separation made easy: Trusting small libraries not big 
processes. EuroSec '08.

[25]  X. Chen, T. Garfinkel, E. Lewis, P. Subrahmanyam, C. Waldspurger, D. Boneh, J. Dwoskin, 
D. Ports. Overshadow: A Virtualization-Based Approach to Retrofitting Protection in Commodity 
Operating Systems. ASPLOS '08.

[26] http://www.vmware.com/
[27]  R. Riley, X. Jiang, D. Xu. Guest-Transparent Prevention of Kernel Rootkits with VMM-

Based Memory Shadowing. RAID 2008.
[28] http://bochs.sourceforge.net, http://en.wikipedia.org/wiki/Bochs

100



Appendix A: Glossary

Attacker – a malicious agent, who may have complete knowledge of the untrusted OS, the trusted 
application, and any protection mechanisms implemented by the hypervisor, and that may have 
compromised the untrusted OS long before the client attempts to run the trusted application.

Client – an external computer (either a trusted guest OS running under the same hypervisor as the 
untrusted OS, or a remote computer) that is assumed to be not under the control of an attacker. 
When the client wants to run a new instance of a trusted application, it contacts the hypervisor 
through  a  secure  channel  and  asks  it  to  create  a  new entity;  it  then  uses  that  channel  to 
communicate the expected initial state of that entity to the hypervisor.  Later, it contacts the 
untrusted  OS  and  runs  the  application;  the  hypervisor  ensures  that  the  initial  state  of  the 
application, as loaded by the OS, matches what the client told it to expect.

Corruption – an attack class where an attacker attempts to change the state of the process without 
causing an obvious DOS event, such as a segfault.  This paper attempts to detect all such attacks 
and convert them to program crashes.

DOS (Denial of Service) – an attack class where an attacker denies a critical resource to the protected 
application.   This  could  involve  rejecting  allocation  requests,  failing  to  provide  promised 
resources, or taking away promised resources.  This paper assumes that the client uses timeouts 
or heartbeating to ensure that the protected process is at least getting time on the processor (and 
network resources to communicate with the outside world), and expects that other forms of 
DOS can be detected, and reported, by the protected process itself.

Entity – an instance of a protected application,  comprising one or more processes running under a 
certain untrusted OS.  Other entities, even other instances of the same trusted application, may 
never view the private data of any process in this entity, nor corrupt the state of any of them. 
Likewise, code running outside of any known entity may never view the private data of any 
process that is part of any entity.

Frame – see Physical Page.

Hypercall –  a  call  from a  protected  process  into  the  hypervisor,  bypassing  any operating  system 
mechanisms.  Depending on the implementation, the operating system may or may not be aware 
of the hypercall and its arguments; in all implementations, the operating system is unable to 
prevent, alter, or falsify a hypercall.

Hypervisor – a hardware or software entity that has the primary responsibility of implementing the 
protections described in this paper.  It keeps track of the list of entities, their processes, and their 
working sets, and prevents both corruption and snooping by any potential attacker.  Typically, 
this is a VMM (Virtual Machine Monitor), but one might imagine a hardware implementation 
as well.  In our work, we modify Bochs (a software emulator of the x86 architecture) to provide 
an emulated hardware platform that implements the hypervisor functionality.

Kernel/Kernel Code – A loose term for untrusted code running inside a protected process.  (See also 
Untrusted  Code.)   When the  application makes a  system call  (or  an  interrupt  or  exception 
occurs),  we  expect  to  be  running  kernel  code  inside  our  protected  process.   Taken  more 
generally, though, we sometimes use the term “kernel code” to refer to any untrusted code that 
the  kernel  happens  to  map  into  our  protected  process.   (The  hypervisor  has  no  way  to 
distinguish between true “kernel” code that is appropriately mapped into our process and some 

101



other “bad” code that was maliciously mapped in.)

Logical  Page –  the  logical  contents  of  some particular  page.   The  hypervisor  keeps  track  of  the 
expected contents of each logical page, as well as which physical page it may be mapped into. 
Typically, each logical page stores the contents of a single virtual page, but if the logical page 
represents a shared page, many virtual pages may map to it.

Physical Page/Physical Frame – a physical page (or frame) is a guest physical page.  Sometimes, a 
physical page may be associated with one or more logical pages, meaning that there exist one or 
more virtual pages (within protected processes) that map to this physical page.  In that context, 
the physical page may contain the private data (cleartext), or it may contain a signature (the 
obscured, public version of the page).  In this thesis, the relationship between a frame and its 
various logical page(s) is updated lazily.

Private Page – any page that is part of a process's working set but the process has not yet declared 
public.

Process – a process, as it is known to the untrusted OS.  If the process is a protected process, meaning 
that it is part of an entity, then the hypervisor also knows about this process, and keeps track of 
its working set.

Protected Application – see Trusted Application.

Protected Process – a process that is part of an entity.  The protected process has the capability to run 
both private code pages and public code pages (that is, code pages authored by the untrusted OS 
or other applications).  When we say that “the protected process does X,” we are explicitly 
stating  that  it  was  running  private  code  pages  belonging  to  the  entity.   When  the  process 
happens to be running other code pages (such as kernel pages mapped into the address space), 
then we say that the “kernel is running” or “untrusted code is running,” not that the protected 
process is doing so.  (In this context, “kernel” is a loose term referring to any code not authored 
by that protected process, whether or not it happens to actually have supervisor privileges.) 
Untrusted code running inside a protected process gets no special privileges; it is subject to the 
same limitations as kernel code in any other untrusted process.  In particular, when it attempts 
to access private pages that happen to be mapped into the process, it will not see the private 
data; it will see signatures instead.  Likewise, writes by such code to private pages will not 
counted as valid changes to the process's working set.  If such changes are later exposed to 
private code, this will be detected as a form of corruption, and will result in a program crash.

Public Page – a page in the working set of some protected process that the process has declared is safe 
to expose to untrusted code.

Signature – a page-sized block of data, comprising a magic string followed by random data, which 
uniquely identifies the private contents of some private page, at some point in time.  When any 
code outside a given entity attempts to access any private page of that entity, the hypervisor 
steps in and replaces the page with a signature before allowing access.  Later, when the entity 
attempts  to  access  its  own private  data,  the  hypervisor  will  restore  the  private  data.   The 
hypervisor stores a list of all signatures created over the lifetime of a given entity, and allows 
new virtual  pages  to  be  initialized  with  an  old  signature.   In  such  a  case,  the  hypervisor 
automatically recognizes the signature, treats the page as a COW copy of the older private page, 
and restores the private data upon its first use by the entity.

Snooping –  an  attack  class  where  the  attacker  attempts  to  read  the  private  data  of  a  protected 

102



application.  This paper prevents all such attacks by replacing the page with a signature before 
the read may be attempted.  Also includes attacks where the attacker may modify one or more 
bytes in the page and then attempt to read the contents; again, the hypervisor replaces the page 
with a signature before the write is allowed, meaning that the attacker will see the signature 
page, plus his modifications, as the contents.

Trusted Application – an application that has been debugged and further has been modified to fit the 
requirements of this thesis.  It is presumed that this application, if its state is not corrupted, will 
always produce a correct result given arbitrary input.  (In this definition, input includes OS 
action,  including  providing,  failing  to  provide,  or  even  corrupting,  requested  resources. 
“Correct result,” in the face of operating system attack or failure, would constitute a report of 
the error to the client, or a heartbeat failure detected by the client.  See also Client.)  An instance 
of  the  application,  running  on  a  certain  hypervisor,  is  known as  an  entity,  and  includes  a 
plurality of interacting processes.

Untrusted Code – Code that is attempting to access the private data of some entity, but does not belong 
to the entity that owns it.  This could be code that is not part of any entity, or that is part of a 
different entity.  The code will see the signature for the page, rather than the private data.

Untrusted OS – a commodity OS, entirely unmodified, that we presume has some unknown number of 
vulnerabilities, which make it possible for the attacker to gain control59 of the OS.  We desire to 
run an instance of a trusted application under this OS, but we assume that unknown attackers 
may have complete control over the untrusted OS before we can even start this new application. 
See also Attacker.

Virtual Page – a single page in the context of some process.  Specifically, a page in the working set of a 
protected process.  There is a many-to-one relationship between virtual pages and logical pages. 
By default, each virtual page maps to a unique logical page.  However, when the virtual pages 
represent shared pages, there will be a single logical page that represents the shared page, and 
many virtual pages, from many processes, will map to it.  In rare circumstances, there may be a 
logical page that has no virtual pages that map to it; this represents a shared page that currently 
is not mapped into any virtual page, but whose contents the hypervisor is tracking so that it may 
validate the contents if the page is reused in the future.

Working Set – a list of virtual pages known by the hypervisor to be in the virtual address space of a 
protected process.   This list  is lazily updated,  meaning that newly mmap()ed pages are not 
known by the hypervisor until the first time that the protected process accesses them.  Note that 
this list also does not account for which pages are currently in main memory; any portion of the 
working set might be swapped out at any time.

59 Either kernel control, or root access, which amounts to the same thing

103



Appendix B: Linux Syscall Table

This file was originally located at  http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html.  At time of 
writing, it  now appears to be offline, so we downloaded this file from the Google cache and have 
included it for future reference.

BEGIN INCLUDED FILE

Linux System Call Table

The following table lists the system calls for the Linux 2.2 kernel. It could also be thought of as an API 
for the interface between user space and kernel space. My motivation for making this table was to make 
programming in assembly language easier when using only system calls and not the C library (for more 
information on this  topic,  go to  http://www.linuxassembly.org). On the left  are the numbers of the 
system calls. This number will be put in register %eax. On the right of the table are the types of values 
to be put into the remaining registers before calling the software interrupt 'int 0x80'. After each syscall, 
an integer is returned in %eax. 

For convenience, the kernel source file where each system call is located is linked to in the column 
labeled "Source". In order to use the hyperlinks, you must first copy this page to your own machine 
because the links take you directly to the source code on your system. You must have the kernel source 
installed (or linked from) under '/usr/src/linux' for this to work. 

%eax Name Source %ebx %ecx %edx %esx %edi

1 sys_exit kernel/exit.c int - - - -

2 sys_fork
arch/i386/kern
el/process.c

struct 
pt_regs

- - - -

3 sys_read fs/read_write.c
unsigned 
int

char * size_t - -

4 sys_write fs/read_write.c
unsigned 
int

const char * size_t - -

5 sys_open fs/open.c
const char 
*

int int - -

6 sys_close fs/open.c
unsigned 
int

- - - -

7 sys_waitpid kernel/exit.c pid_t unsigned int * int - -

8 sys_creat fs/open.c
const char 
*

int - - -

9 sys_link fs/namei.c
const char 
*

const char * - - -

10 sys_unlink fs/namei.c const char - - - -

104

file:///home/usr/src/linux/fs/namei.c
file:///home/usr/src/linux/fs/namei.c
file:///home/usr/src/linux/fs/open.c
file:///home/usr/src/linux/kernel/exit.c
file:///home/usr/src/linux/fs/open.c
file:///home/usr/src/linux/fs/open.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#size_t
file:///home/usr/src/linux/fs/read_write.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#size_t
file:///home/usr/src/linux/fs/read_write.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#pt_regs
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#pt_regs
file:///home/usr/src/linux/arch/i386/kernel/process.c
file:///home/usr/src/linux/arch/i386/kernel/process.c
file:///home/usr/src/linux/kernel/exit.c
http://www.linuxassembly.org/
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html.asdf


*

11 sys_execve
arch/i386/kern
el/process.c

struct 
pt_regs

- - - -

12 sys_chdir fs/open.c
const char 
*

- - - -

13 sys_time kernel/time.c int * - - - -

14 sys_mknod fs/namei.c
const char 
*

int dev_t - -

15 sys_chmod fs/open.c
const char 
*

mode_t - - -

16 sys_lchown fs/open.c
const char 
*

uid_t gid_t - -

18 sys_stat fs/stat.c char *
struct 
__old_kernel_s
tat *

- - -

19 sys_lseek fs/read_write.c
unsigned 
int

off_t
unsigned 
int

- -

20 sys_getpid kernel/sched.c - - - - -

21 sys_mount fs/super.c char * char * char * - -

22 sys_oldumount fs/super.c char * - - - -

23 sys_setuid kernel/sys.c uid_t - - - -

24 sys_getuid kernel/sched.c - - - - -

25 sys_stime kernel/time.c int * - - - -

26 sys_ptrace
arch/i386/kern
el/ptrace.c

long long long long -

27 sys_alarm kernel/sched.c
unsigned 
int

- - - -

28 sys_fstat fs/stat.c
unsigned 
int

struct 
__old_kernel_s
tat *

- - -

29 sys_pause
arch/i386/kern
el/sys_i386.c

- - - - -

30 sys_utime fs/open.c char * struct utimbuf * - - -

33 sys_access fs/open.c
const char 
*

int - - -

34 sys_nice kernel/sched.c int - - - -

36 sys_sync fs/buffer.c - - - - -

105

file:///home/usr/src/linux/fs/buffer.c
file:///home/usr/src/linux/kernel/sched.c
file:///home/usr/src/linux/fs/open.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#utimbuf
file:///home/usr/src/linux/fs/open.c
file:///home/usr/src/linux/arch/i386/kernel/sys_i386.c
file:///home/usr/src/linux/arch/i386/kernel/sys_i386.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#__old_kernel_stat
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#__old_kernel_stat
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#__old_kernel_stat
file:///home/usr/src/linux/fs/stat.c
file:///home/usr/src/linux/kernel/sched.c
file:///home/usr/src/linux/arch/i386/kernel/ptrace.c
file:///home/usr/src/linux/arch/i386/kernel/ptrace.c
file:///home/usr/src/linux/kernel/time.c
file:///home/usr/src/linux/kernel/sched.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#uid_t
file:///home/usr/src/linux/kernel/sys.c
file:///home/usr/src/linux/fs/super.c
file:///home/usr/src/linux/fs/super.c
file:///home/usr/src/linux/kernel/sched.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#off_t
file:///home/usr/src/linux/fs/read_write.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#__old_kernel_stat
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#__old_kernel_stat
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#__old_kernel_stat
file:///home/usr/src/linux/fs/stat.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#gid_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#uid_t
file:///home/usr/src/linux/fs/open.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#mode_t
file:///home/usr/src/linux/fs/open.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#dev_t
file:///home/usr/src/linux/fs/namei.c
file:///home/usr/src/linux/kernel/time.c
file:///home/usr/src/linux/fs/open.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#pt_regs
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#pt_regs
file:///home/usr/src/linux/arch/i386/kernel/process.c
file:///home/usr/src/linux/arch/i386/kernel/process.c


37 sys_kill kernel/signal.c int int - - -

38 sys_rename fs/namei.c
const char 
*

const char * - - -

39 sys_mkdir fs/namei.c
const char 
*

int - - -

40 sys_rmdir fs/namei.c
const char 
*

- - - -

41 sys_dup fs/fcntl.c
unsigned 
int

- - - -

42 sys_pipe
arch/i386/kern
el/sys_i386.c

unsigned 
long *

- - - -

43 sys_times kernel/sys.c
struct tms 
*

- - - -

45 sys_brk mm/mmap.c
unsigned 
long

- - - -

46 sys_setgid kernel/sys.c gid_t - - - -

47 sys_getgid kernel/sched.c - - - - -

48 sys_signal kernel/signal.c int __sighandler_t - - -

49 sys_geteuid kernel/sched.c - - - - -

50 sys_getegid kernel/sched.c - - - - -

51 sys_acct kernel/acct.c
const char 
*

- - - -

52 sys_umount fs/super.c char * int - - -

54 sys_ioctl fs/ioctl.c
unsigned 
int

unsigned int
unsigned 
long

- -

55 sys_fcntl fs/fcntl.c
unsigned 
int

unsigned int
unsigned 
long

- -

57 sys_setpgid kernel/sys.c pid_t pid_t - - -

59 sys_olduname
arch/i386/kern
el/sys_i386.c

struct 
oldold_uts
name *

- - - -

60 sys_umask kernel/sys.c int - - - -

61 sys_chroot fs/open.c
const char 
*

- - - -

62 sys_ustat fs/super.c dev_t struct ustat * - - -

63 sys_dup2 fs/fcntl.c
unsigned 
int

unsigned int - - -

106

file:///home/usr/src/linux/fs/fcntl.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#ustat
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#dev_t
file:///home/usr/src/linux/fs/super.c
file:///home/usr/src/linux/fs/open.c
file:///home/usr/src/linux/kernel/sys.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#oldold_utsname
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#oldold_utsname
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#oldold_utsname
file:///home/usr/src/linux/arch/i386/kernel/sys_i386.c
file:///home/usr/src/linux/arch/i386/kernel/sys_i386.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#pid_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#pid_t
file:///home/usr/src/linux/kernel/sys.c
file:///home/usr/src/linux/fs/fcntl.c
file:///home/usr/src/linux/fs/ioctl.c
file:///home/usr/src/linux/fs/super.c
file:///home/usr/src/linux/kernel/acct.c
file:///home/usr/src/linux/kernel/sched.c
file:///home/usr/src/linux/kernel/sched.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#__sighandler_t
file:///home/usr/src/linux/kernel/signal.c
file:///home/usr/src/linux/kernel/sched.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#gid_t
file:///home/usr/src/linux/kernel/sys.c
file:///home/usr/src/linux/mm/mmap.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#tms
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#tms
file:///home/usr/src/linux/kernel/sys.c
file:///home/usr/src/linux/arch/i386/kernel/sys_i386.c
file:///home/usr/src/linux/arch/i386/kernel/sys_i386.c
file:///home/usr/src/linux/fs/fcntl.c
file:///home/usr/src/linux/fs/namei.c
file:///home/usr/src/linux/fs/namei.c
file:///home/usr/src/linux/fs/namei.c
file:///home/usr/src/linux/kernel/signal.c


64 sys_getppid kernel/sched.c - - - - -

65 sys_getpgrp kernel/sys.c - - - - -

66 sys_setsid kernel/sys.c - - - - -

67 sys_sigaction
arch/i386/kern
el/signal.c

int
const struct 
old_sigaction *

struct 
old_sigacti
on *

- -

68 sys_sgetmask kernel/signal.c - - - - -

69 sys_ssetmask kernel/signal.c int - - - -

70 sys_setreuid kernel/sys.c uid_t uid_t - - -

71 sys_setregid kernel/sys.c gid_t gid_t - - -

72 sys_sigsuspend
arch/i386/kern
el/signal.c

int int
old_sigset
_t

- -

73 sys_sigpending kernel/signal.c
old_sigset_
t *

- - - -

74 sys_sethostname kernel/sys.c char * int - - -

75 sys_setrlimit kernel/sys.c
unsigned 
int

struct rlimit * - - -

76 sys_getrlimit kernel/sys.c
unsigned 
int

struct rlimit * - - -

77 sys_getrusage kernel/sys.c int struct rusage * - - -

78
sys_gettimeofda
y

kernel/time.c
struct 
timeval *

struct timezone 
*

- - -

79 sys_settimeofday kernel/time.c
struct 
timeval *

struct timezone 
*

- - -

80 sys_getgroups kernel/sys.c int gid_t * - - -

81 sys_setgroups kernel/sys.c int gid_t * - - -

82 old_select
arch/i386/kern
el/sys_i386.c

struct 
sel_arg_str
uct *

- - - -

83 sys_symlink fs/namei.c
const char 
*

const char * - - -

84 sys_lstat fs/stat.c char *
struct 
__old_kernel_s
tat *

- - -

85 sys_readlink fs/stat.c
const char 
*

char * int - -

86 sys_uselib fs/exec.c const char - - - -

107

file:///home/usr/src/linux/fs/exec.c
file:///home/usr/src/linux/fs/stat.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#__old_kernel_stat
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#__old_kernel_stat
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#__old_kernel_stat
file:///home/usr/src/linux/fs/stat.c
file:///home/usr/src/linux/fs/namei.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#sel_arg_struct
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#sel_arg_struct
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#sel_arg_struct
file:///home/usr/src/linux/arch/i386/kernel/sys_i386.c
file:///home/usr/src/linux/arch/i386/kernel/sys_i386.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#gid_t
file:///home/usr/src/linux/kernel/sys.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#gid_t
file:///home/usr/src/linux/kernel/sys.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#timezone
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#timezone
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#timeval
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#timeval
file:///home/usr/src/linux/kernel/time.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#timezone
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#timezone
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#timeval
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#timeval
file:///home/usr/src/linux/kernel/time.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#rusage
file:///home/usr/src/linux/kernel/sys.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#rlimit
file:///home/usr/src/linux/kernel/sys.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#rlimit
file:///home/usr/src/linux/kernel/sys.c
file:///home/usr/src/linux/kernel/sys.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#old_sigset_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#old_sigset_t
file:///home/usr/src/linux/kernel/signal.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#old_sigset_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#old_sigset_t
file:///home/usr/src/linux/arch/i386/kernel/signal.c
file:///home/usr/src/linux/arch/i386/kernel/signal.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#gid_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#gid_t
file:///home/usr/src/linux/kernel/sys.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#uid_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#uid_t
file:///home/usr/src/linux/kernel/sys.c
file:///home/usr/src/linux/kernel/signal.c
file:///home/usr/src/linux/kernel/signal.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#old_sigaction
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#old_sigaction
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#old_sigaction
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#old_sigaction
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#old_sigaction
file:///home/usr/src/linux/arch/i386/kernel/signal.c
file:///home/usr/src/linux/arch/i386/kernel/signal.c
file:///home/usr/src/linux/kernel/sys.c
file:///home/usr/src/linux/kernel/sys.c
file:///home/usr/src/linux/kernel/sched.c


*

87 sys_swapon mm/swapfile.c
const char 
*

int - - -

88 sys_reboot kernel/sys.c int int int void * -

89 old_readdir fs/readdir.c
unsigned 
int

void *
unsigned 
int

- -

90 old_mmap
arch/i386/kern
el/sys_i386.c

struct 
mmap_arg
_struct *

- - - -

91 sys_munmap mm/mmap.c
unsigned 
long

size_t - - -

92 sys_truncate fs/open.c
const char 
*

unsigned long - - -

93 sys_ftruncate fs/open.c
unsigned 
int

unsigned long - - -

94 sys_fchmod fs/open.c
unsigned 
int

mode_t - - -

95 sys_fchown fs/open.c
unsigned 
int

uid_t gid_t - -

96 sys_getpriority kernel/sys.c int int - - -

97 sys_setpriority kernel/sys.c int int int - -

99 sys_statfs fs/open.c
const char 
*

struct statfs * - - -

100 sys_fstatfs fs/open.c
unsigned 
int

struct statfs * - - -

101 sys_ioperm
arch/i386/kern
el/ioport.c

unsigned 
long

unsigned long int - -

102 sys_socketcall net/socket.c int unsigned long * - - -

103 sys_syslog kernel/printk.c int char * int - -

104 sys_setitimer kernel/itimer.c int
struct itimerval 
*

struct 
itimerval *

- -

105 sys_getitimer kernel/itimer.c int
struct itimerval 
*

- - -

106 sys_newstat fs/stat.c char * struct stat * - - -

107 sys_newlstat fs/stat.c char * struct stat * - - -

108 sys_newfstat fs/stat.c
unsigned 
int

struct stat * - - -

108

http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#stat
file:///home/usr/src/linux/fs/stat.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#stat
file:///home/usr/src/linux/fs/stat.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#stat
file:///home/usr/src/linux/fs/stat.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#itimerval
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#itimerval
file:///home/usr/src/linux/kernel/itimer.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#itimerval
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#itimerval
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#itimerval
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#itimerval
file:///home/usr/src/linux/kernel/itimer.c
file:///home/usr/src/linux/kernel/printk.c
file:///home/usr/src/linux/net/socket.c
file:///home/usr/src/linux/arch/i386/kernel/ioport.c
file:///home/usr/src/linux/arch/i386/kernel/ioport.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#statfs
file:///home/usr/src/linux/fs/open.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#statfs
file:///home/usr/src/linux/fs/open.c
file:///home/usr/src/linux/kernel/sys.c
file:///home/usr/src/linux/kernel/sys.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#gid_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#uid_t
file:///home/usr/src/linux/fs/open.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#mode_t
file:///home/usr/src/linux/fs/open.c
file:///home/usr/src/linux/fs/open.c
file:///home/usr/src/linux/fs/open.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#size_t
file:///home/usr/src/linux/mm/mmap.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#mmap_arg_struct
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#mmap_arg_struct
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#mmap_arg_struct
file:///home/usr/src/linux/arch/i386/kernel/sys_i386.c
file:///home/usr/src/linux/arch/i386/kernel/sys_i386.c
file:///home/usr/src/linux/fs/readdir.c
file:///home/usr/src/linux/kernel/sys.c
file:///home/usr/src/linux/mm/swapfile.c


109 sys_uname
arch/i386/kern
el/sys_i386.c

struct 
old_utsna
me *

- - - -

110 sys_iopl
arch/i386/kern
el/ioport.c

unsigned 
long

- - - -

111 sys_vhangup fs/open.c - - - - -

112 sys_idle
arch/i386/kern
el/process.c

- - - - -

113 sys_vm86old
arch/i386/kern
el/vm86.c

unsigned 
long

struct 
vm86plus_struc
t *

- - -

114 sys_wait4 kernel/exit.c pid_t unsigned long * int options
struct 
rusage *

-

115 sys_swapoff mm/swapfile.c
const char 
*

- - - -

116 sys_sysinfo kernel/info.c
struct 
sysinfo *

- - - -

117 sys_ipc (*Note)
arch/i386/kern
el/sys_i386.c

uint int int int void *

118 sys_fsync fs/buffer.c
unsigned 
int

- - - -

119 sys_sigreturn
arch/i386/kern
el/signal.c

unsigned 
long

- - - -

120 sys_clone
arch/i386/kern
el/process.c

struct 
pt_regs

- - - -

121
sys_setdomainna
me

kernel/sys.c char * int - - -

122 sys_newuname kernel/sys.c
struct 
new_utsna
me *

- - - -

123 sys_modify_ldt
arch/i386/kern
el/ldt.c

int void *
unsigned 
long

- -

124 sys_adjtimex kernel/time.c
struct 
timex *

- - - -

125 sys_mprotect
mm/mprotect.
c

unsigned 
long

size_t
unsigned 
long

- -

126 sys_sigprocmask kernel/signal.c int old_sigset_t *
old_sigset
_t *

- -

127 sys_create_modu kernel/module const char size_t - - -

109

http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#size_t
file:///home/usr/src/linux/kernel/module.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#old_sigset_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#old_sigset_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#old_sigset_t
file:///home/usr/src/linux/kernel/signal.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#size_t
file:///home/usr/src/linux/mm/mprotect.c
file:///home/usr/src/linux/mm/mprotect.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#timex
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#timex
file:///home/usr/src/linux/kernel/time.c
file:///home/usr/src/linux/arch/i386/kernel/ldt.c
file:///home/usr/src/linux/arch/i386/kernel/ldt.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#new_utsname
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#new_utsname
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#new_utsname
file:///home/usr/src/linux/kernel/sys.c
file:///home/usr/src/linux/kernel/sys.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#pt_regs
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#pt_regs
file:///home/usr/src/linux/arch/i386/kernel/process.c
file:///home/usr/src/linux/arch/i386/kernel/process.c
file:///home/usr/src/linux/arch/i386/kernel/signal.c
file:///home/usr/src/linux/arch/i386/kernel/signal.c
file:///home/usr/src/linux/fs/buffer.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#uint
file:///home/usr/src/linux/arch/i386/kernel/sys_i386.c
file:///home/usr/src/linux/arch/i386/kernel/sys_i386.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#note117
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#sysinfo
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#sysinfo
file:///home/usr/src/linux/kernel/info.c
file:///home/usr/src/linux/mm/swapfile.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#rusage
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#rusage
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#pid_t
file:///home/usr/src/linux/kernel/exit.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#vm86plus_struct
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#vm86plus_struct
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#vm86plus_struct
file:///home/usr/src/linux/arch/i386/kernel/vm86.c
file:///home/usr/src/linux/arch/i386/kernel/vm86.c
file:///home/usr/src/linux/arch/i386/kernel/process.c
file:///home/usr/src/linux/arch/i386/kernel/process.c
file:///home/usr/src/linux/fs/open.c
file:///home/usr/src/linux/arch/i386/kernel/ioport.c
file:///home/usr/src/linux/arch/i386/kernel/ioport.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#old_utsname
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#old_utsname
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#old_utsname
file:///home/usr/src/linux/arch/i386/kernel/sys_i386.c
file:///home/usr/src/linux/arch/i386/kernel/sys_i386.c


le .c *

128 sys_init_module
kernel/module
.c

const char 
*

struct module * - - -

129
sys_delete_modu
le

kernel/module
.c

const char 
*

- - - -

130
sys_get_kernel_s
yms

kernel/module
.c

struct 
kernel_sy
m *

- - - -

131 sys_quotactl fs/dquot.c int const char * int caddr_t -

132 sys_getpgid kernel/sys.c pid_t - - - -

133 sys_fchdir fs/open.c
unsigned 
int

- - - -

134 sys_bdflush fs/buffer.c int long - - -

135 sys_sysfs fs/super.c int unsigned long
unsigned 
long

- -

136 sys_personality
kernel/exec_d
omain.c

unsigned 
long

- - - -

138 sys_setfsuid kernel/sys.c uid_t - - - -

139 sys_setfsgid kernel/sys.c gid_t - - - -

140 sys_llseek fs/read_write.c
unsigned 
int

unsigned long
unsigned 
long

loff_t *
unsigned 
int

141 sys_getdents fs/readdir.c
unsigned 
int

void *
unsigned 
int

- -

142 sys_select fs/select.c int fd_set * fd_set * fd_set *
struct 
timeval *

143 sys_flock fs/locks.c
unsigned 
int

unsigned int - - -

144 sys_msync mm/filemap.c
unsigned 
long

size_t int - -

145 sys_readv fs/read_write.c
unsigned 
long

const struct 
iovec *

unsigned 
long

- -

146 sys_writev fs/read_write.c
unsigned 
long

const struct 
iovec *

unsigned 
long

- -

147 sys_getsid kernel/sys.c pid_t - - - -

148 sys_fdatasync fs/buffer.c
unsigned 
int

- - - -

149 sys_sysctl kernel/sysctl.c
struct 
__sysctl_ar

- - - -

110

http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#__sysctl_args
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#__sysctl_args
file:///home/usr/src/linux/kernel/sysctl.c
file:///home/usr/src/linux/fs/buffer.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#pid_t
file:///home/usr/src/linux/kernel/sys.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#iovec
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#iovec
file:///home/usr/src/linux/fs/read_write.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#iovec
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#iovec
file:///home/usr/src/linux/fs/read_write.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#size_t
file:///home/usr/src/linux/mm/filemap.c
file:///home/usr/src/linux/fs/locks.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#timeval
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#timeval
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#fd_set
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#fd_set
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#fd_set
file:///home/usr/src/linux/fs/select.c
file:///home/usr/src/linux/fs/readdir.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#loff_t
file:///home/usr/src/linux/fs/read_write.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#gid_t
file:///home/usr/src/linux/kernel/sys.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#uid_t
file:///home/usr/src/linux/kernel/sys.c
file:///home/usr/src/linux/kernel/exec_domain.c
file:///home/usr/src/linux/kernel/exec_domain.c
file:///home/usr/src/linux/fs/super.c
file:///home/usr/src/linux/fs/buffer.c
file:///home/usr/src/linux/fs/open.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#pid_t
file:///home/usr/src/linux/kernel/sys.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#caddr_t
file:///home/usr/src/linux/fs/dquot.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#kernel_sym
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#kernel_sym
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#kernel_sym
file:///home/usr/src/linux/kernel/module.c
file:///home/usr/src/linux/kernel/module.c
file:///home/usr/src/linux/kernel/module.c
file:///home/usr/src/linux/kernel/module.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#module
file:///home/usr/src/linux/kernel/module.c
file:///home/usr/src/linux/kernel/module.c
file:///home/usr/src/linux/kernel/module.c


gs *

150 sys_mlock mm/mlock.c
unsigned 
long

size_t - - -

151 sys_munlock mm/mlock.c
unsigned 
long

size_t - - -

152 sys_mlockall mm/mlock.c int - - - -

153 sys_munlockall mm/mlock.c - - - - -

154
sys_sched_setpar
am

kernel/sched.c pid_t
struct 
sched_param *

- - -

155
sys_sched_getpa
ram

kernel/sched.c pid_t
struct 
sched_param *

- - -

156
sys_sched_setsch
eduler

kernel/sched.c pid_t int
struct 
sched_par
am *

- -

157
sys_sched_getsc
heduler

kernel/sched.c pid_t - - - -

158 sys_sched_yield kernel/sched.c - - - - -

159
sys_sched_get_p
riority_max

kernel/sched.c int - - - -

160
sys_sched_get_p
riority_min

kernel/sched.c int - - - -

161
sys_sched_rr_get
_interval

kernel/sched.c pid_t
struct timespec 
*

- - -

162 sys_nanosleep kernel/sched.c
struct 
timespec *

struct timespec 
*

- - -

163 sys_mremap mm/mremap.c
unsigned 
long

unsigned long
unsigned 
long

unsigned 
long

-

164 sys_setresuid kernel/sys.c uid_t uid_t uid_t - -

165 sys_getresuid kernel/sys.c uid_t * uid_t * uid_t * - -

166 sys_vm86
arch/i386/kern
el/vm86.c

struct 
vm86_stru
ct *

- - - -

167
sys_query_modu
le

kernel/module
.c

const char 
*

int char * size_t size_t *

168 sys_poll fs/select.c
struct 
pollfd *

unsigned int long - -

169 sys_nfsservctl
fs/filesystems.
c

int void * void * - -

111

file:///home/usr/src/linux/fs/filesystems.c
file:///home/usr/src/linux/fs/filesystems.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#pollfd
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#pollfd
file:///home/usr/src/linux/fs/select.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#size_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#size_t
file:///home/usr/src/linux/kernel/module.c
file:///home/usr/src/linux/kernel/module.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#vm86_struct
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#vm86_struct
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#vm86_struct
file:///home/usr/src/linux/arch/i386/kernel/vm86.c
file:///home/usr/src/linux/arch/i386/kernel/vm86.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#uid_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#uid_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#uid_t
file:///home/usr/src/linux/kernel/sys.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#uid_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#uid_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#uid_t
file:///home/usr/src/linux/kernel/sys.c
file:///home/usr/src/linux/mm/mremap.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#timespec
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#timespec
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#timespec
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#timespec
file:///home/usr/src/linux/kernel/sched.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#timespec
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#timespec
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#pid_t
file:///home/usr/src/linux/kernel/sched.c
file:///home/usr/src/linux/kernel/sched.c
file:///home/usr/src/linux/kernel/sched.c
file:///home/usr/src/linux/kernel/sched.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#pid_t
file:///home/usr/src/linux/kernel/sched.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#sched_param
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#sched_param
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#sched_param
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#pid_t
file:///home/usr/src/linux/kernel/sched.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#sched_param
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#sched_param
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#pid_t
file:///home/usr/src/linux/kernel/sched.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#sched_param
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#sched_param
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#pid_t
file:///home/usr/src/linux/kernel/sched.c
file:///home/usr/src/linux/mm/mlock.c
file:///home/usr/src/linux/mm/mlock.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#size_t
file:///home/usr/src/linux/mm/mlock.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#size_t
file:///home/usr/src/linux/mm/mlock.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#__sysctl_args


170 sys_setresgid kernel/sys.c gid_t gid_t gid_t - -

171 sys_getresgid kernel/sys.c gid_t * gid_t * gid_t * - -

172 sys_prctl kernel/sys.c int unsigned long
unsigned 
long

unsigned 
long

unsigned 
long

173 sys_rt_sigreturn
arch/i386/kern
el/signal.c

unsigned 
long

- - - -

174 sys_rt_sigaction kernel/signal.c int
const struct 
sigaction *

struct 
sigaction *

size_t -

175
sys_rt_sigprocm
ask

kernel/signal.c int sigset_t * sigset_t * size_t -

176
sys_rt_sigpendin
g

kernel/signal.c sigset_t * size_t - - -

177
sys_rt_sigtimed
wait

kernel/signal.c
const 
sigset_t *

siginfo_t *
const 
struct 
timespec *

size_t -

178
sys_rt_sigqueuei
nfo

kernel/signal.c int int siginfo_t * - -

179
sys_rt_sigsuspen
d

arch/i386/kern
el/signal.c

sigset_t * size_t - - -

180 sys_pread fs/read_write.c
unsigned 
int

char * size_t loff_t -

181 sys_pwrite fs/read_write.c
unsigned 
int

const char * size_t loff_t -

182 sys_chown fs/open.c
const char 
*

uid_t gid_t - -

183 sys_getcwd fs/dcache.c char * unsigned long - - -

184 sys_capget
kernel/capabili
ty.c

cap_user_h
eader_t

cap_user_data_
t

- - -

185 sys_capset
kernel/capabili
ty.c

cap_user_h
eader_t

const 
cap_user_data_
t

- - -

186 sys_sigaltstack
arch/i386/kern
el/signal.c

const 
stack_t *

stack_t * - - -

187 sys_sendfile mm/filemap.c int int off_t * size_t -

190 sys_vfork
arch/i386/kern
el/process.c

struct 
pt_regs

- - - -

Note for sys_ipc (117): this  syscall takes six arguments, so it can't fit into the five registers %ebx - 
%edi; the last parameter (not shown) is of type 'long'. This syscall requires a special call method where 
a pointer is put in %ebx which points to an array containing the six arguments. 

112

http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#pt_regs
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#pt_regs
file:///home/usr/src/linux/arch/i386/kernel/process.c
file:///home/usr/src/linux/arch/i386/kernel/process.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#size_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#off_t
file:///home/usr/src/linux/mm/filemap.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#stack_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#stack_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#stack_t
file:///home/usr/src/linux/arch/i386/kernel/signal.c
file:///home/usr/src/linux/arch/i386/kernel/signal.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#cap_user_data_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#cap_user_data_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#cap_user_data_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#cap_user_header_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#cap_user_header_t
file:///home/usr/src/linux/kernel/capability.c
file:///home/usr/src/linux/kernel/capability.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#cap_user_data_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#cap_user_data_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#cap_user_header_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#cap_user_header_t
file:///home/usr/src/linux/kernel/capability.c
file:///home/usr/src/linux/kernel/capability.c
file:///home/usr/src/linux/fs/dcache.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#gid_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#uid_t
file:///home/usr/src/linux/fs/open.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#loff_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#size_t
file:///home/usr/src/linux/fs/read_write.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#loff_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#size_t
file:///home/usr/src/linux/fs/read_write.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#size_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#sigset_t
file:///home/usr/src/linux/arch/i386/kernel/signal.c
file:///home/usr/src/linux/arch/i386/kernel/signal.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#siginfo_t
file:///home/usr/src/linux/kernel/signal.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#size_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#timespec
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#timespec
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#timespec
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#siginfo_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#sigset_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#sigset_t
file:///home/usr/src/linux/kernel/signal.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#size_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#sigset_t
file:///home/usr/src/linux/kernel/signal.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#size_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#sigset_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#sigset_t
file:///home/usr/src/linux/kernel/signal.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#size_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#sigaction
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#sigaction
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#sigaction
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#sigaction
file:///home/usr/src/linux/kernel/signal.c
file:///home/usr/src/linux/arch/i386/kernel/signal.c
file:///home/usr/src/linux/arch/i386/kernel/signal.c
file:///home/usr/src/linux/kernel/sys.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#gid_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#gid_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#gid_t
file:///home/usr/src/linux/kernel/sys.c
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#gid_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#gid_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#gid_t
file:///home/usr/src/linux/kernel/sys.c


I will now explain exactly where in the kernel source that I got the information in the table above. I do 
this because 1) changes in the source are bound to happen, 2) you might be curious, or 3) I might've 
made an error. 

System Call Numbers

For  the  numbers  of  the  syscalls,  look  in  arch/i386/kernel/entry.S for  sys_call_table.  The  syscall 
numbers are offsets into that table. Several spots in the table are occupied by the syscall sys_ni_syscall. 
This is a placeholder that either replaces an obsolete syscall or reserves a spot for future syscalls. 

Incidentally, the system calls are called from the function  system_call in the same file; in particular, 
they are called with the assembly instruction 'call *SYMBOL_NAME(sys_call_table)(,%eax,4)'. The 
part  '*SYMBOL_NAME(sys_call_table)'  just  gets  replaced  by  a  symbol  name  in  sys_call_table. 
SYMBOL_NAME is  a macro defined in  include/  linux  /linkage.h  ,  and it just replaces itself with its 
argument. 

Typedefs

Here are the typedef declarations in the prototypes above:

atomic_t include/asm/atomic.h:
#ifdef __SMP__
typedef struct { volatile int counter; } atomic_t;
#else
typedef struct { int counter; } atomic_t;
#endif 

caddr_t include/asm/posix_types.h:typedef char * __kernel_caddr_t;
include/  linux  /types.h  :typedef __kernel_caddr_t caddr_t; 

cap_user_header_t include/  linux  /capability.h  :
typedef struct __user_cap_header_struct {
     __u32 version;
     int pid;
} *cap_user_header_t; 

cap_user_data_t include/  linux  /capability.h  :
typedef struct __user_cap_data_struct {
     __u32 effective;
     __u32 permitted;
     __u32 inheritable;
} *cap_user_data_t; 

clock_t include/asm/posix_types.h:typedef long __kernel_clock_t;
include/  linux  /types.h  :typedef __kernel_clock_t clock_t; 

dev_t include/asm/posix_types.h:typedef unsigned short __kernel_dev_t;
include/  linux  /types.h  :typedef __kernel_dev_t dev_t; 

fdset include/linux/posix_types.h
#define __FD_SETSIZE 1024
#define __NFDBITS (8 * sizeof(unsigned long))
#define __FDSET_LONGS (__FD_SETSIZE/__NFDBITS)
(==> __FDSET_LONGS == 32)

typedef struct {
     unsigned long fds_bits [__FDSET_LONGS];
} __kernel_fd_set;
include/  linux  /types.h  :typedef __kernel_fd_set fd_set;

gid_t include/asm/posix_types.h:typedef unsigned short __kernel_gid_t;
include/  linux  /types.h  :typedef __kernel_gid_t gid_t; 

__kernel_daddr_t include/asm/posix_types.h:typedef int __kernel_daddr_t;

113

file:///home/usr/src/linux/include/asm/posix_types.h
file:///home/usr/src/linux/include/linux/types.h
file:///home/usr/src/linux/include/linux/types.h
file:///home/usr/src/linux/include/linux/types.h
file:///home/usr/src/linux/include/asm/posix_types.h
file:///home/usr/src/linux/include/linux/types.h
file:///home/usr/src/linux/include/linux/types.h
file:///home/usr/src/linux/include/linux/types.h
file:///home/usr/src/linux/include/linux/types.h
file:///home/usr/src/linux/include/linux/types.h
file:///home/usr/src/linux/include/linux/types.h
file:///home/usr/src/linux/include/asm/posix_types.h
file:///home/usr/src/linux/include/linux/types.h
file:///home/usr/src/linux/include/linux/types.h
file:///home/usr/src/linux/include/linux/types.h
file:///home/usr/src/linux/include/asm/posix_types.h
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#__u32
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#__u32
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#__u32
file:///home/usr/src/linux/include/linux/capability.h
file:///home/usr/src/linux/include/linux/capability.h
file:///home/usr/src/linux/include/linux/capability.h
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#__u32
file:///home/usr/src/linux/include/linux/capability.h
file:///home/usr/src/linux/include/linux/capability.h
file:///home/usr/src/linux/include/linux/capability.h
file:///home/usr/src/linux/include/linux/types.h
file:///home/usr/src/linux/include/linux/types.h
file:///home/usr/src/linux/include/linux/types.h
file:///home/usr/src/linux/include/asm/posix_types.h
file:///home/usr/src/linux/include/asm/atomic.h
http://world.std.com/usr/src/linux/include/linux/linkage.h
http://world.std.com/usr/src/linux/include/linux/linkage.h
http://world.std.com/usr/src/linux/include/linux/linkage.h
file:///home/usr/src/linux/arch/i386/kernel/entry.S


__kernel_fsid_t include/asm/posix_types.h:
typedef struct {
     int __val[2];
} __kernel_fsid_t;

__kernel_ino_t include/asm/posix_types.h:typedef unsigned long __kernel_ino_t;

__kernel_size_t include/asm/posix_types.h:typedef unsigned int __kernel_size_t; 

loff_t include/asm/posix_types.h:typedef long long __kernel_loff_t;
include/  linux  /types.h  :typedef __kernel_loff_t loff_t; 

mode_t include/asm/posix_types.h:typedef unsigned short __kernel_mode_t;
include/  linux  /types.h  :typedef __kernel_mode_t mode_t; 

off_t include/asm/posix_types.h:typedef long __kernel_off_t; 
include/  linux  /types.h  :typedef __kernel_off_t off_t; 

old_sigset_t include/asm/signal.h:typedef unsigned long old_sigset_t; 

pid_t include/asm/posix_types.h:typedef int __kernel_pid_t;
include/  linux  /types.h  :typedef __kernel_pid_t pid_t; 

__sighandler_t include/asm/signal.h:typedef void (*__sighandler_t)(int); 

siginfo_t include/asm/siginfo.h:
#define SI_MAX_SIZE 128
#define SI_PAD_SIZE ((SI_MAX_SIZE/sizeof(int)) - 3)
(==> SI_PAD_SIZE == 29)

typedef struct siginfo {
     int si_signo;
     int si_errno;
     int si_code;

     union {
          int _pad[SI_PAD_SIZE];

          /* kill() */
          struct {
               pid_t _pid; /* sender's pid */
               uid_t _uid; /* sender's uid */
          } _kill;

          /* POSIX.1b timers */
          struct {
               unsigned int _timer1;
               unsigned int _timer2;
          } _timer;

          /* POSIX.1b signals */
          struct {
               pid_t _pid; /* sender's pid */
               uid_t _uid; /* sender's uid */
               sigval_t _sigval;
          } _rt;

          /* SIGCHLD */
          struct {
               pid_t _pid; /* which child */
               uid_t _uid; /* sender's uid */
               int _status; /* exit code */
               clock_t _utime;
               clock_t _stime;
          } _sigchld;

          /* SIGILL, SIGFPE, SIGSEGV, SIGBUS */

114

http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#clock_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#clock_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#uid_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#pid_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#uid_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#pid_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#uid_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#pid_t
file:///home/usr/src/linux/include/asm/siginfo.h
file:///home/usr/src/linux/include/asm/signal.h
file:///home/usr/src/linux/include/linux/types.h
file:///home/usr/src/linux/include/linux/types.h
file:///home/usr/src/linux/include/linux/types.h
file:///home/usr/src/linux/include/asm/posix_types.h
file:///home/usr/src/linux/include/asm/signal.h
file:///home/usr/src/linux/include/linux/types.h
file:///home/usr/src/linux/include/linux/types.h
file:///home/usr/src/linux/include/linux/types.h
file:///home/usr/src/linux/include/asm/posix_types.h
file:///home/usr/src/linux/include/linux/types.h
file:///home/usr/src/linux/include/linux/types.h
file:///home/usr/src/linux/include/linux/types.h
file:///home/usr/src/linux/include/asm/posix_types.h
file:///home/usr/src/linux/include/linux/types.h
file:///home/usr/src/linux/include/linux/types.h
file:///home/usr/src/linux/include/linux/types.h
file:///home/usr/src/linux/include/asm/posix_types.h
file:///home/usr/src/linux/include/asm/posix_types.h
file:///home/usr/src/linux/include/asm/posix_types.h
file:///home/usr/src/linux/include/asm/posix_types.h


          struct {
               void *_addr; /* faulting insn/memory ref. */
          } _sigfault;

          /* SIGPOLL */
          struct {
               int _band; /* POLL_IN, POLL_OUT, POLL_MSG */
               int _fd;
          } _sigpoll;
     } _sifields;
} siginfo_t; 

sigset_t include/asm/signal.h:typedef unsigned long sigset_t; 

size_t include/asm/posix_types.h:typedef unsigned int __kernel_size_t;
include/  linux  /types.h  :typedef __kernel_size_t size_t; 

ssize_t include/asm/posix_types.h:typedef int __kernel_ssize_t;
include/  linux  /types.h  :typedef __kernel_ssize_t ssize_t; 

stack_t include/asm/signal.h:
typedef struct sigaltstack {
     void *ss_sp;
     int ss_flags;
     size_t ss_size;
} stack_t; 

suseconds_t include/asm/posix_types.h:typedef long __kernel_suseconds_t;
include/  linux  /types.h  :typedef __kernel_suseconds_t suseconds_t;

time_t include/asm/posix_types.h:typedef long __kernel_time_t; 
include/  linux  /types.h  :typedef __kernel_time_t time_t;

uid_t include/asm/posix_types.h:typedef unsigned short __kernel_uid_t;
include/  linux  /types.h  :typedef __kernel_uid_t uid_t; 

uint include/  linux  /types.h  :typedef unsigned int uint; 

__u32 include/asm/types.h:typedef unsigned int __u32; 

 

Struct Declarations

Here are the struct declarations for the table at the top:

exception_table_entry include/  linux  /module.h  :
struct exception_table_entry {
     unsigned long insn, fixup;
}; 

iovec include/  linux  /uio.h  :
struct iovec {
     void *iov_base;
     __kernel_size_t iov_len; }; 

itimerval include/  linux  /time.h  :
struct itimerval {
     struct timeval it_interval; /* timer interval */
     struct timeval it_value; /* current value */
}; 

kernel_sym include/  linux  /module.h  :
struct kernel_sym {
     unsigned long value;
     char name[60];
}; 

mmap_arg_struct arch/i386/kernel/sys_i386.c:

115

file:///home/usr/src/linux/arch/i386/kernel/sys_i386.c
file:///home/usr/src/linux/include/linux/module.h
file:///home/usr/src/linux/include/linux/module.h
file:///home/usr/src/linux/include/linux/module.h
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#timeval
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#timeval
file:///home/usr/src/linux/include/linux/time.h
file:///home/usr/src/linux/include/linux/time.h
file:///home/usr/src/linux/include/linux/time.h
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#__kernel_size_t
file:///home/usr/src/linux/include/linux/uio.h
file:///home/usr/src/linux/include/linux/uio.h
file:///home/usr/src/linux/include/linux/uio.h
file:///home/usr/src/linux/include/linux/module.h
file:///home/usr/src/linux/include/linux/module.h
file:///home/usr/src/linux/include/linux/module.h
file:///home/usr/src/linux/include/asm/types.h
file:///home/usr/src/linux/include/linux/types.h
file:///home/usr/src/linux/include/linux/types.h
file:///home/usr/src/linux/include/linux/types.h
file:///home/usr/src/linux/include/linux/types.h
file:///home/usr/src/linux/include/linux/types.h
file:///home/usr/src/linux/include/linux/types.h
file:///home/usr/src/linux/include/asm/posix_types.h
file:///home/usr/src/linux/include/linux/types.h
file:///home/usr/src/linux/include/linux/types.h
file:///home/usr/src/linux/include/linux/types.h
file:///home/usr/src/linux/include/asm/posix_types.h
file:///home/usr/src/linux/include/linux/types.h
file:///home/usr/src/linux/include/linux/types.h
file:///home/usr/src/linux/include/linux/types.h
file:///home/usr/src/linux/include/asm/posix_types.h
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#size_t
file:///home/usr/src/linux/include/asm/signal.h
file:///home/usr/src/linux/include/linux/types.h
file:///home/usr/src/linux/include/linux/types.h
file:///home/usr/src/linux/include/linux/types.h
file:///home/usr/src/linux/include/asm/posix_types.h
file:///home/usr/src/linux/include/linux/types.h
file:///home/usr/src/linux/include/linux/types.h
file:///home/usr/src/linux/include/linux/types.h
file:///home/usr/src/linux/include/asm/posix_types.h
file:///home/usr/src/linux/include/asm/signal.h


struct mmap_arg_struct {
     unsigned long addr;
     unsigned long len;
     unsigned long prot;
     unsigned long flags;
     unsigned long fd;
     unsigned long offset;
}; 

module include/  linux  /module.h  :
struct module {
     unsigned long size_of_struct; /* sizeof(module) */
     struct module *next;
     const char *name;
     unsigned long size;
     union {
          atomic_t usecount;
          long pad;
     } uc;
     unsigned long flags; /* AUTOCLEAN et al */
     unsigned nsyms;
     unsigned ndeps;

     struct module_symbol *syms;
     struct module_ref *deps;
     struct module_ref *refs;
     int (*init)(void);
     void (*cleanup)(void);
     const struct exception_table_entry *ex_table_start;
     const struct exception_table_entry *ex_table_end;
/* Members past this point are extensions to the basic
module support and are optional. Use mod_opt_member()
to examine them. */
     const struct module_persist *persist_start;
     const struct module_persist *persist_end;
     int (*can_unload)(void);
}; 

module_persist include/  linux  /module.h  :
struct module_persist; /* yes, it's empty */ 

module_ref include/  linux  /module.h  :
struct module_ref {
     struct module *dep; /* "parent" pointer */
     struct module *ref; /* "child" pointer */
     struct module_ref *next_ref;
}; 

module_symbol include/  linux  /module.h  :
struct module_symbol {
     unsigned long value;
     const char *name;
}; 

new_utsname include/  linux  /utsname.h  :
struct new_utsname {
     char sysname[65];
     char nodename[65];
     char release[65];
     char version[65];
     char machine[65];
     char domainname[65];
}; 

116

file:///home/usr/src/linux/include/linux/utsname.h
file:///home/usr/src/linux/include/linux/utsname.h
file:///home/usr/src/linux/include/linux/utsname.h
file:///home/usr/src/linux/include/linux/module.h
file:///home/usr/src/linux/include/linux/module.h
file:///home/usr/src/linux/include/linux/module.h
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#module_ref
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#module
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#module
file:///home/usr/src/linux/include/linux/module.h
file:///home/usr/src/linux/include/linux/module.h
file:///home/usr/src/linux/include/linux/module.h
file:///home/usr/src/linux/include/linux/module.h
file:///home/usr/src/linux/include/linux/module.h
file:///home/usr/src/linux/include/linux/module.h
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#module_persist
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#module_persist
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#exception_table_entry
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#exception_table_entry
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#module_ref
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#module_ref
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#module_symbol
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#atomic_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#module
file:///home/usr/src/linux/include/linux/module.h
file:///home/usr/src/linux/include/linux/module.h
file:///home/usr/src/linux/include/linux/module.h


__old_kernel_stat include/asm/stat.h:
struct __old_kernel_stat {
     unsigned short st_dev;
     unsigned short st_ino;
     unsigned short st_mode;
     unsigned short st_nlink;
     unsigned short st_uid;
     unsigned short st_gid;
     unsigned short st_rdev;
     unsigned long st_size;
     unsigned long st_atime;
     unsigned long st_mtime;
     unsigned long st_ctime;
}; 

oldold_utsname include/  linux  /utsname.h  :
struct oldold_utsname {
     char sysname[9];
     char nodename[9];
     char release[9];
     char version[9];
     char machine[9];
}; 

old_sigaction include/asm/signal.h:
struct old_sigaction {
     __sighandler_t sa_handler;
     old_sigset_t sa_mask;
     unsigned long sa_flags;
     void (*sa_restorer)(void);
}; 

old_utsname include/  linux  /utsname.h  :
struct old_utsname {
     char sysname[65];
     char nodename[65];
     char release[65];
     char version[65];
     char machine[65];
}; 

pollfd include/asm/poll.h:
struct pollfd {
     int fd;
     short events;
     short revents;
}; 

pt_regs include/asm/ptrace.h:
struct pt_regs {
     long ebx;
     long ecx;
     long edx;
     long esi;
     long edi;
     long ebp;
     long eax;
     int xds;
     int xes;
     long orig_eax;
     long eip;
     int xcs;
     long eflags;
     long esp;

117

file:///home/usr/src/linux/include/asm/ptrace.h
file:///home/usr/src/linux/include/asm/poll.h
file:///home/usr/src/linux/include/linux/utsname.h
file:///home/usr/src/linux/include/linux/utsname.h
file:///home/usr/src/linux/include/linux/utsname.h
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#old_sigset_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#__sighandler_t
file:///home/usr/src/linux/include/asm/signal.h
file:///home/usr/src/linux/include/linux/utsname.h
file:///home/usr/src/linux/include/linux/utsname.h
file:///home/usr/src/linux/include/linux/utsname.h
file:///home/usr/src/linux/include/asm/stat.h


     int xss;
}; 

revectored_struct include/asm/vm86.h:
struct revectored_struct {
     unsigned long __map[8];
};

rlimit include/  linux  /resource.h  :
struct rlimit {
     long rlim_cur;
     long rlim_max;
}; 

rusage include/  linux  /resource.h  :
struct rusage {
     struct timeval ru_utime; /* user time used */
     struct timeval ru_stime; /* system time used */
     long ru_maxrss; /* maximum resident set size */
     long ru_ixrss; /* integral shared memory size */
     long ru_idrss; /* integral unshared data size */
     long ru_isrss; /* integral unshared stack size */
     long ru_minflt; /* page reclaims */
     long ru_majflt; /* page faults */
     long ru_nswap; /* swaps */
     long ru_inblock; /* block input operations */
     long ru_oublock; /* block output operations */
     long ru_msgsnd; /* messages sent */
     long ru_msgrcv; /* messages received */
     long ru_nsignals; /* signals received */
     long ru_nvcsw; /* voluntary context switches */
     long ru_nivcsw; /* involuntary '' */
}; 

sched_param include/  linux  /sched.h  :
struct sched_param {
     int sched_priority;
}; 

sel_arg_struct arch/i386/kernel/sys_i386.c:
struct sel_arg_struct {
     unsigned long n;
     fd_set *inp, *outp, *exp;
     struct timeval *tvp;
}; 

sigaction include/asm/signal.h:
struct sigaction {
     __sighandler_t sa_handler;
     unsigned long sa_flags;
     void (*sa_restorer)(void);
     sigset_t sa_mask; /* mask last for extensibility */
}; 

stat include/asm/stat.h:
struct stat {
     unsigned short st_dev;
     unsigned short __pad1;
     unsigned long st_ino;
     unsigned short st_mode;
     unsigned short st_nlink;
     unsigned short st_uid;
     unsigned short st_gid;
     unsigned short st_rdev;
     unsigned short __pad2;

118

file:///home/usr/src/linux/include/asm/stat.h
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#sigset_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#__sighandler_t
file:///home/usr/src/linux/include/asm/signal.h
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#timeval
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#fd_set
file:///home/usr/src/linux/arch/i386/kernel/sys_i386.c
file:///home/usr/src/linux/include/linux/sched.h
file:///home/usr/src/linux/include/linux/sched.h
file:///home/usr/src/linux/include/linux/sched.h
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#timeval
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#timeval
file:///home/usr/src/linux/include/linux/resource.h
file:///home/usr/src/linux/include/linux/resource.h
file:///home/usr/src/linux/include/linux/resource.h
file:///home/usr/src/linux/include/linux/resource.h
file:///home/usr/src/linux/include/linux/resource.h
file:///home/usr/src/linux/include/linux/resource.h
file:///home/usr/src/linux/include/asm/vm86.h


     unsigned long st_size;
     unsigned long st_blksize;
     unsigned long st_blocks;
     unsigned long st_atime;
     unsigned long __unused1;
     unsigned long st_mtime;
     unsigned long __unused2;
     unsigned long st_ctime;
     unsigned long __unused3;
     unsigned long __unused4;
     unsigned long __unused5;

statfs include/asm/statfs.h:
struct statfs {
     long f_type;
     long f_bsize;
     long f_blocks;
     long f_bfree;
     long f_bavail;
     long f_files;
     long f_ffree;
     __kernel_fsid_t f_fsid;
     long f_namelen;
     long f_spare[6];
}; 

__sysctl_args include/linux/sysctl.h
struct __sysctl_args {
     int *name;
     int nlen;
     void *oldval;
     size_t *oldlenp;
     void *newval;
     size_t newlen;
     unsigned long __unused[4];
}; 

sysinfo include/  linux  /kernel.h  :
struct sysinfo {
     long uptime; /* Seconds since boot */
     unsigned long loads[3]; /* 1, 5, and 15 minute load averages */
     unsigned long totalram; /* Total usable main memory size */
     unsigned long freeram; /* Available memory size */
     unsigned long sharedram; /* Amount of shared memory */
     unsigned long bufferram; /* Memory used by buffers */
     unsigned long totalswap; /* Total swap space size */
     unsigned long freeswap; /* swap space still available */
     unsigned short procs; /* Number of current processes */
     char _f[22]; /* Pads structure to 64 bytes */
}; 

timex include/  linux  /timex.h  :
struct timex {
     unsigned int modes; /* mode selector */
     long offset; /* time offset (usec) */
     long freq; /* frequency offset (scaled ppm) */
     long maxerror; /* maximum error (usec) */
     long esterror; /* estimated error (usec) */
     int status; /* clock command/status */
     long constant; /* pll time constant */
     long precision; /* clock precision (usec) (read only) */
     long tolerance; /* clock frequency tolerance (ppm)
      * (read only)
      */

119

file:///home/usr/src/linux/include/linux/timex.h
file:///home/usr/src/linux/include/linux/timex.h
file:///home/usr/src/linux/include/linux/timex.h
file:///home/usr/src/linux/include/linux/kernel.h
file:///home/usr/src/linux/include/linux/kernel.h
file:///home/usr/src/linux/include/linux/kernel.h
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#size_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#size_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#__kernel_fsid_t
file:///home/usr/src/linux/include/asm/statfs.h


     struct timeval time; /* (read only) */
     long tick; /* (modified) usecs between clock ticks */
     long ppsfreq; /* pps frequency (scaled ppm) (ro) */
     long jitter; /* pps jitter (us) (ro) */
     int shift; /* interval duration (s) (shift) (ro) */
     long stabil; /* pps stability (scaled ppm) (ro) */
     long jitcnt; /* jitter limit exceeded (ro) */
     long calcnt; /* calibration intervals (ro) */
     long errcnt; /* calibration errors (ro) */
     long stbcnt; /* stability limit exceeded (ro) */

     int :32; int :32; int :32; int :32;
     int :32; int :32; int :32; int :32;
     int :32; int :32; int :32; int :32;
}; 

timespec include/  linux  /time.h  :
struct timespec {
     time_t tv_sec; /* seconds */
     long tv_nsec; /* nanoseconds */
}; 

timeval include/  linux  /time.h  :
struct timeval {
     time_t tv_sec; /* seconds */
     suseconds_t tv_usec; /* microseconds */
}; 

timezone include/  linux  /time.h  :
struct timezone {
     int tz_minuteswest; /* minutes west of Greenwich */
     int tz_dsttime; /* type of dst correction */
}; 

tms include/linux/times.h
struct tms {
     clock_t tms_utime;
     clock_t tms_stime;
     clock_t tms_cutime;
     clock_t tms_cstime;
}; 

ustat include/  linux  /types.h  :
struct ustat {
     __kernel_daddr_t f_tfree;
     __kernel_ino_t f_tinode;
     char f_fname[6];
     char f_fpack[6];
}; 

utimbuf include/  linux  /utime.h  :
struct utimbuf {
     time_t actime;
     time_t modtime;
}; 

vm86plus_info_struct include/asm/vm86.h:
struct vm86plus_info_struct {
     unsigned long force_return_for_pic:1;
     unsigned long vm86dbg_active:1;
     unsigned long vm86dbg_TFpendig:1;
     unsigned long unused:28;
     unsigned long is_vm86pus:1;
     unsigned char vm86dbg_intxxtab[32];
}; 

120

file:///home/usr/src/linux/include/asm/vm86.h
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#time_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#time_t
file:///home/usr/src/linux/include/linux/utime.h
file:///home/usr/src/linux/include/linux/utime.h
file:///home/usr/src/linux/include/linux/utime.h
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#__kernel_ino_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#__kernel_daddr_t
file:///home/usr/src/linux/include/linux/types.h
file:///home/usr/src/linux/include/linux/types.h
file:///home/usr/src/linux/include/linux/types.h
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#clock_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#clock_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#clock_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#clock_t
file:///home/usr/src/linux/include/linux/time.h
file:///home/usr/src/linux/include/linux/time.h
file:///home/usr/src/linux/include/linux/time.h
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#suseconds_t
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#time_t
file:///home/usr/src/linux/include/linux/time.h
file:///home/usr/src/linux/include/linux/time.h
file:///home/usr/src/linux/include/linux/time.h
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#time_t
file:///home/usr/src/linux/include/linux/time.h
file:///home/usr/src/linux/include/linux/time.h
file:///home/usr/src/linux/include/linux/time.h
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#timeval


vm86plus_struct include/asm/vm86.h:
struct vm86plus_struct {
     struct vm86_regs regs;
     unsigned long flags;
     unsigned long screen_bitmap;
     unsigned long cpu_type;
     struct revectored_struct int_revectored;
     struct revectored_struct int21_revectored;
     struct vm86plus_info_struct vm86plus;
}; 

vm86_regs include/asm/vm86.h:
struct vm86_regs {
/* normal regs, with special meaning for the segment descriptors.. */
     long ebx;
     long ecx;
     long edx;
     long esi;
     long edi;
     long ebp;
     long eax;
     long __null_ds;
     long __null_es;
     long __null_fs;
     long __null_gs;
     long orig_eax;
     long eip;
     unsigned short cs, __csh;
     long eflags;
     long esp;
     unsigned short ss, __ssh;
/* these are specific to v86 mode: */
     unsigned short es, __esh;
     unsigned short ds, __dsh;
     unsigned short fs, __fsh;
     unsigned short gs, __gsh;
}; 

vm86_struct include/asm/vm86.h:
struct vm86_struct {
     struct vm86_regs regs;
     unsigned long flags;
     unsigned long screen_bitmap;
     unsigned long cpu_type;
     struct revectored_struct int_revectored;
     struct revectored_struct int21_revectored;
}; 

©2004, Gary L. Burt

END INCLUDED FILE

121

http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#revectored_struct
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#revectored_struct
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#vm86_regs
file:///home/usr/src/linux/include/asm/vm86.h
file:///home/usr/src/linux/include/asm/vm86.h
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#vm86plus_info_struct
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#revectored_struct
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#revectored_struct
http://bluemaster.iu.hio.no/edu/ca/lin-asm/syscalls.html#vm86_regs
file:///home/usr/src/linux/include/asm/vm86.h

	Chapter 1:  Introduction
	1.1 Signatures
	1.2 Why not just fix corruption?
	1.3 Why not isolate resources?
	1.4 Thesis Organization

	Chapter 2:  Vulnerabilities in Operating Systems
	2.1 Motivation
	2.2 Design Principle: Thin Emulation
	2.3 The Players
	2.4 Attack Classes
	2.5 Attack Vectors
	2.6 Memory Model
	2.7 Limitations
	2.8 Summary

	Chapter 3:  Security Risks and Protection
	3.1 Corruption Attacks
	3.1.1 Basic Corruption (memory, registers)
	3.1.2 Other Miscellaneous Corruption Attacks
	3.1.3 Shared Memory Attacks

	3.2 Snooping Attacks
	3.3 Valid OS Page Accesses
	3.3.1 mmap()/munmap()
	3.3.2 write() and Similar Syscalls
	3.3.3 read() and Similar Syscalls
	3.3.4 COW
	3.3.5 Swap
	3.3.6 Signals

	3.4 Summary

	Chapter 4:  Bodyguard Design
	4.1 Hypervisor
	4.2 Entities
	4.2.1 Destroying an Entity

	4.3 Processes
	4.3.1 The First Process
	4.3.2 fork()
	4.3.3 Lingering Processes
	4.3.4 Jumping Into a Process
	4.3.5 Jumping Out of a Process
	4.3.6 Example: Syscall
	4.3.7 Threads

	4.4 Working Set
	4.5 Virtual and Logical Pages
	4.5.1 Public vs. Private
	4.5.2 Shared Pages
	4.5.3 Initialization
	4.5.4 Saved Contents
	4.5.5 Destruction
	4.5.6 State Machine

	4.6 Physical Pages (a.k.a. Frames)
	4.7 Signatures and Saved Pages
	4.7.1 Signature Persistence
	4.7.2 Signatures and COW Pages
	4.7.3 Signatures and Readonly Pages

	4.8 Masking Page Table Entries
	4.9 Detecting Memory Corruption
	4.10 Register Protections
	4.11 Syscall Handler
	4.12 Shim
	4.12.1 Limitations

	4.13 Entity Bootstrap
	4.13.1 Modifying an Executable File
	4.13.2 Calculate the Starting Image
	4.13.3 Create the New Entity
	4.13.4 Start the Program in the Untrusted OS

	4.14 Detailed Examples
	4.14.1 Read a Private Page, Inside the Protected Process
	4.14.2 Write a COW Private Page, Inside the Protected Process
	4.14.3 Syscall
	4.14.4 Swap Out/Swap In
	4.14.5 Simple Corruption

	4.15 Summary

	Chapter 5:  Overshadow
	5.1 Shadows
	5.2 Shadowed vs. Unshadowed Pages
	5.3 Protected Objects
	5.3.1 Encryption
	5.3.2 Validation & Decryption
	5.3.3 Discarding Objects
	5.3.4 Serialization of Metadata
	5.3.5 Serialization of Contents

	5.4 Shim
	5.4.1 The Trampoline
	5.4.2 Syscall Emulation
	5.4.3 File Emulation

	5.5 Virtual Memory Protections
	5.6 Applications
	5.7 Address Spaces
	5.7.1 fork()

	5.8 Threads
	5.9 Detailed Examples
	5.9.1 Read a Private Page, Inside the Protected Process
	5.9.2 Write a COW Private Page, Inside the Protected Process
	5.9.3 Syscall
	5.9.4 Swap Out/Swap In
	5.9.5 mmap()

	5.10 Similarities
	5.11 Differences
	5.12 Tradeoffs

	Chapter 6:  Prototype Implementation
	6.1 Overview
	6.2 Modifications Made to Bochs
	6.3 TLB Intercept
	6.4 Structures
	6.4.1 Entity
	6.4.2 Process
	6.4.3 VirtualPage
	6.4.4 LogicalPage
	6.4.5 SavedPage
	6.4.6 Frame
	6.4.7 SharedPage
	6.4.8 BitKeyTree

	6.5 Functions
	6.5.1 untrustedOS_execPage()
	6.5.2 untrustedOS_readPage()
	6.5.3 untrustedOS_writePage()
	6.5.4 FindInWorkingSet()
	6.5.5 untrustedOS_interrupt_400_handler()
	6.5.6 untrustedOS_syscallAlert()
	6.5.7 untrustedOS_startInterrupt()

	6.6 Shim Implementation
	6.6.1 Loading the Shim
	6.6.2 Shim Initialization
	6.6.3 Adding Pages to the Working Set
	6.6.4 Syscall Handler
	6.6.4.1 Example syscall wrapper: read
	6.6.4.2 Example syscall wrapper: write


	6.7 TODO List
	6.8 Difficulties and Lessons Learned
	6.9 Summary

	Chapter 7:  Results
	7.1 Legacy Applications Run Correctly
	7.2 Corruption Prevented
	7.3 Snooping Prevented
	7.4 Custom Test App
	7.5 Chapter Summary

	Chapter 8:  Conclusion
	8.1 Future Work
	8.2 Close


