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Abstract. Graph and cartographic visualization have the common objective to
provide intuitive understanding of some underlying data. We consider a problem
that combines aspects of both by studying the problem of fitting planar graphs
on planar maps. After providing an NP-hardness result for the general decision
problem, we identify sufficient conditions so that a fit is possible. We general-
ize our techniques to nonconvex rectilinear polygons, where we also address the
problem of effective distribution of the vertices inside the map regions.

1 Introduction
Geographic maps often contain relational information between entities in the map, such
as roads connecting cities in a country; see Fig. 1. Recently, there has been increased
interest in visualizing non-geographic data with the help of the map metaphor. In this
setting, fitting the data and showing various connections between the data points be-
comes a non-trivial problem. With this in mind, we study the problem offitting planar
graphs on planar maps, subject to natural requirements, such as avoiding edge crossings
and guaranteeing that edges between points in the same region remain in that region.

Fitting planar graphs on planar maps is related to cluster planarity [6]. In cluster-
planar drawing we are given the graph along with a clusteringand the goal is to find
disjoint regions in the plane for the clusters for a valid plane realization of the given
graph. The realization is valid if all the vertices in a givencluster are placed in their
corresponding region, and there are no edge-crossings or edge-region crossings (i.e.,
edges that cross a region more than once).

In our setting (fitting graphs on maps), we are given both the graph and the regions
in the plane, and must draw the clusters in their corresponding regions. The regions
form a proper partition of the plane, such that the adjacencybetween two clusters is
represented by a common border between their regions.

Fenget al. define c-planarity as planarity for clustered graphs [7]. For clustered
graphs in which every cluster induces a connected subgraph,c-planarity can be tested
in quadratic time. Algorithms for creating regions in the plane in which to draw c-planar
graphs have also been studied. Eadeset al. [5] present an algorithm for constructing c-
planar straight-line drawings of c-planar clustered graphs in which each cluster is drawn
as a convex region, while Angeliniet al. [1] show that every such graph has a c-planar
straight-line drawing where each cluster is drawn inside anaxis-aligned rectangle.

Many visualizations take advantage of our familiarity withmaps by producing
map-like representations that show relations among abstract concepts. For example,
treemaps [12] represent hierarchical information by meansof space-filling tilings, allo-
cating area in proportion to some metric. GMap [9] uses the geographic map metaphor



Fig. 1. (a) A map of Germany; (b) a state-based clustering of cities; (c) a rectangular map of the
cluster-graph; (d) a straight-line plane fitting of the graph on the map.

to visualize relational data by combining graph layout and graph clustering, together
with the creation and coloring of regions/countries.

Also related is work on contact graphs, where vertices are represented by simple
polygons and adjacencies are represented by a shared boundary between the corre-
sponding polygons. For example, every maximally planar graph has a contact represen-
tation with convex polygons with at most six sides, and six sides are also necessary [4].
Of particular interest arerectilinear duals, where the vertices are represented by simple
(axis-aligned) rectilinear polygons. It is known that8 sides are sometimes necessary and
always sufficient [8]. If the rectilinear polygons are restricted to rectangles, the class of
planar graphs that allows suchrectangular dualsis completely characterized [2].

Our Contributions: We first consider the question of testing whether a given planar
clustered graph fits in a given planar map and show that the decision problem is NP-
hard, even in the case where the map is made of only rectangular regions and each region
contains only one vertex. Then we provide sufficient conditions that ensure such a fit is
always possible, and show how to generalize to rectilinear (not just rectangular) maps.
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In particular, we describe an efficient algorithm for distributing vertices appropriately
in the case of maps with non-convex polygons.

2 Preliminaries

Let G = (V,E) be a planar clustered graph, with vertex setV partitioned into disjoint
setsV = {V1, . . . , Vk}. LetEi, for eachi, 1 ≤ i ≤ k be the set of edges ofG between
two vertices ofVi and letEinter be the set of all the remaining edges ofE. We call
Gi = (Vi, Ei), 1 ≤ i ≤ k, aclusterof G, the edges ofEi, 1 ≤ i ≤ k, theintra-cluster
edgesand the edges ofEinter theinter-cluster edges. A cluster-graphof G is the graph
GC = (VC , EC) whereVC contains a vertexvi for each clusterGi of G, 1 ≤ i ≤ k
and the edge(vi, vj) ∈ EC , 1 ≤ i, j ≤ k if there exists an edge(u,w) in G, so that
vertexu belongs to clusterGi and vertexw belongs to clusterGj . SetV is referred to as
clusteringof G, which is said to beconnectedif each ofGi, 1 ≤ i ≤ k, is a connected
graph. Adrawing of a clustered graphC = (G,V) is a planar straight-line drawing
of G where each clusterGi is represented by a simply-connected closed regionRi that
contains only the vertices ofGi and such that if there is an edgee between two vertices
of Gi then the drawing ofe is completely contained inRi. An edgee and a regionR
have anedge-region crossingif the drawing ofe crosses the boundary ofR more than
once. A drawing of a clustered graph isc-planar if there are no edge crossings or edge-
region crossings. If a clustered graphC has a c-planar drawing then we say that it is
c-planar.

A polygonal mapM is a set of interior-disjoint polygons on a plane. Adual graph
GM of M is a graph that contains one vertex for each polygon ofM . Two vertices of
GM are connected by an edge if its corresponding polygons have anon-trivial common
boundary. Given a planar graphGM , a polygonal mapM , such thatGM represents
the dual graph ofM , is called acontact mapof GM . Assume that we are given a map
M , a planar clustered graphC = (G,V) so thatM represents a contact map of the
cluster-graphGC . In this paper we are interested in determining whether eachcluster
Gi of C can be drawn inside its corresponding polygon inM , so that there are no
edge crossings and there are no edge-region crossings. In case such a drawing exists we
say that clustered graphC has aplanar fitting on mapM . If the resulting drawing is
straight-line we talk aboutstraight-line planar fitting.

(c) (d)(a) (b)

Fig. 2. (a) A graph with disconnected clusters that has no straight-line planar fitting; (b) a non
c-planar graph; (c) a clustered graph and a rectangular map with incompatible embeddings, and
without straight-line planar fitting.
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Necessary Conditions:It is natural to consider all planar graphs, regardless of the
clustering they come with, but there are several necessary conditions, in addition to
planarity, without which there can be no planar fitting. The first necessary condition
is the connectivity of the clusters. This necessity can be illustrated with the graphK5

minus an edge partitioned into two clusters so that one of them is disconnected. It is easy
to see that this graph does not have a straight-line planar fitting on any map representing
the cluster-graph (e.g., two adjacent rectangles); see Fig. 2(a).

The second necessary condition is c-planarity. Even if the graph is planar and its
clusters are connected, the resulting cluster graph need not be c-planar; see Fig. 2(b).
Fortunately, there is a simple characterization of c-planarity for the case when the clus-
ters are connected which can be tested in quadratic time [7].The characterization states
that a graphG = (V,E) with a connected clusteringV = {V1, . . . , Vk} is c-planar if
and only ifG is planar and there exists a planar drawing ofG, such that for eachVi, all
the vertices and edges ofG \G(Vi) are in the outerface of the drawing ofG(Vi).

The third necessary condition is compatibility of the graphand map embeddings.
Specifically, the embedding ofG and hence the embedding of the cluster-graphGC are
given, and they arecompatiblewith the given planar mapM , that is, the dual ofM
must represent the same graph asGC and it must have the same embedding asGC .
Otherwise there is no straight-line planar fitting; see Fig.2(c).

Given these necessary conditions, in the rest of the paper weconsider only con-
nected c-planar graphs that have an embedding compatible with the given map.

3 Fitting on a Rectangular Map

(b) (c)(a)

Fig. 3. Wheel maps cw (a) and ccw (b). A clustered graph and map with no fit (c).

In this section we address the problem of deciding whether a connected c-planar
graphG has a straight-line planar fitting on a given rectangular mapM , assuming
compatible embeddings ofG andM . We first show that this is not always possible. To
construct the example we use awheel map, which contains a rectangle surrounded by
four “thin rectangles” (with aspect ratio of at least 4); seeFig. 3(a)–(b). A thin rectangle
is horizontalif its smaller dimension is its height and it isverticalotherwise.

Let {V1, . . ., Vk} be the set of clusters ofG and let(vi, vj) be an edge ofG such
thatvi ∈ Vi, vj ∈ Vj , 1 ≤ i, j ≤ k. Call the common boundary between the polygons
representingVi andVj in M , the door for the edge(vi, vj). In wheel maps for each
thin rectangle, we can distinguish anentry door(one that contains a complete side of
the rectangle) and anexit door(one that contains a complete side of a neighboring thin
rectangle). We call a wheel mapclockwise (cw) wheelwhen going from the entry door
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to the exit door in each rectangle requires a clockwise walk through the wheel; see
Fig. 3(a). Acounterclockwise (ccw) wheelis defined analogously; see Fig. 3(b). Let
vi ∈ Vi be a vertex ofG and letRi be the rectangle representingVi in M . In a straight-
line planar fitting ofG, we say thatvi is placednear a doorof Ri when the distance
betweenvi and its closest point on the door is less than the smaller sideof Ri.

Lemma 1. LetW be a wheel map andG its dual graph. In a straight-line planar fitting
of G, all vertices in the thin rectangles lie near the entry doors, or all lie near the exit
doors. There exists a straight-line planar fitting in each case.

Proof: Consider first an arbitrary straight-line planar fittingΓ of G on W . We first
show that each vertex inside a thin rectangle must be placed near one of the two doors.
Consider the rightmost vertical rectangleR of W . The vertex inside it has two edges
incident to the vertices in the two horizontal rectangles. Thus if the vertex inside it is
not near neither of its doors, then the vertices in both the horizontal rectangles must be
placed near the door adjacent toR. In this case, there is no feasible placement of the
vertex in the leftmost vertical rectangle from where both the vertices in the two hori-
zontal rectangles are visible. Similar arguments show thatin each of the thin rectangles,
the vertex must be placed near one of the two doors. If in one ofthe thin rectangles,
the vertex is placed near the entry door (resp. exit door), then the previous argument
confirms that this placement will force the placement of all the vertices inside the thin
rectangles near the corresponding entry doors (resp. exit doors).

Fig. 4.Straight-line planar fittings on wheel maps.

On the other hand, it is easy to find a valid fit where the vertices inside thin rectan-
gles are all near entry doors (or all near exit doors); see Fig. 4. ⊓⊔

The next lemma shows that fitting a planar clustered graph on acompatible map is
not always possible.

Lemma 2. There exist planar clustered graphG and compatible rectangular mapM ,
so that there is no straight-line planar fitting ofG onM .

Proof: Consider a rectangular mapM made of two wheel maps joined together by a
thin horizontal rectangle, called abridge; see Fig. 3(c). LetG be the dual ofM : two
4-wheels connected by a path of length two. We show thatG does not have a straight-
line planar fitting onM . Let us assume that there exists a straight-line planar fittingΓ
of G on M . Then by Lemma 1, all the vertices inside the thin rectanglesof both the
wheels must be placed near the doors. But then, there is no feasible position for the
vertex that represents the bridge. In particular, if placednear one of the doors of the
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bridge it cannot “see” its neighbors in the other wheel and vice versa. As the bridge is
thin by construction, there is no place for the vertex representing the bridge so that it
sees its neighbors in both wheels. ⊓⊔

3.1 Fitting is NP-Hard

We show that deciding if a given planar graph fits inside a given map is NP-hard, even
for rectangular maps, with a reduction from Planar-3-SAT which is known to be NP-
complete [11].Planar-3-SATis defined analogously to 3-SAT with the additional re-
striction that the vertex-clause bipartite graphGF for a given formulaF (there is an
edge(xi, Cj) in GF if and only if xi or xi appears inCj) is planar. Knuth and Raghu-
natan [10] showed that one can always find a crossing-free drawing of the graphGF for
a Planar 3-SAT instance, where the variables and clauses arerepresented by rectangles,
with all the variable-rectangles on a horizontal line, and with vertical edge segments
representing the edges connecting the variables to the clauses. The problem remains
NP-complete when such a drawing is given.

Theorem 1. LetG be a planar clustered graph and letM be a rectangular map, com-
patible withG. Deciding ifG admits a straight-line planar fitting onM is NP-hard.

Proof: We reduce an instance of Planar 3-SAT to an instance(G,M) of our problem.
Let F := C1 . . . Cm be an instance of a planar 3-SAT where each literal in each clause
is a variable (possibly negated) fromU = {x1, . . . , xn}. Let ΓF be the given planar
rectilinear drawing for this instance, as defined in [10]. FromΓF we first construct the
rectangular mapM , then takeG as the dual ofM , where each vertex constitutes a
separate cluster. We represent each literal by a wheel map inM : a positive (negative)
literal is a cw (ccw) wheel. From the two possible vertex configurations inside each
wheel we take the one in which the corresponding literal assumes a true value when
the vertices inside the thin rectangles of the wheel lie nearthe exit doors and the literal
assumes a false value when they lie near the entry doors. Unlike inΓF , we use a distinct
wheel for each literal in each clause. For each variablex, we draw the wheels for all
the (positive and negative) literals forx appearing in different clauses in a left-to-right
order, according to the ordering of the edges incident to thecorresponding vertices in
ΓF . In order to maintain consistency, we ensure that a true (false) value to an instance
of each literalx would imply a true (false) value for each other instance ofx and a false
(true) value for each instance ofx. This is done by means of thin rectangular bridges
between two consecutive literals; see Fig. 5.

x x
x

x

(b)

x
x

x x

(a) (c) (d)

Fig. 5.Representation of variables.
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For each clauseC = (x+y+z) of F with the corresponding vertex lying above the
variables inΓF we draw vertical rectangleslCx , lCy andlCz from the topmost rectangles
of the wheels forx, y andz, respectively, attached near the exit door. (The case when

x y z

Fig. 6. Clause representation.

the vertex lies below the variables inΓF is analogous.) Then we draw a rectangleR for
the clause and attach these three thin rectangleslCx , lCy and lCz to R. For z we attach
the vertical rectanglelCz to the bottom ofR, while for each ofx and y, we attach
horizontal rectangles toR that also touch the vertical rectangleslCx andlCy coming from
x or y, respectively. We attach these thin rectangles toR in such a way that the three
visibility regions do not have a common intersection, whileeach two of them have a
common intersection; see Fig 6. Specifically, we adjust the width of lCz and attach it in
a position ofR such that its visibility region is only in the left half ofR. We also adjust
the heights of the horizontal rectangles adjacent tolCx and lCy and adjust the vertical
distance between them, so that their visibility regions do not intersect in the left half of
R and they do intersect in the right half. Finally we fill up all the unused regions in the
map with the appropriate number of rectangles.

Lemma 3. F is satisfiable if and only ifG has a straight-line planar fitting onM .

Proof: Assume first that there exists a straight-line planar fittingΓ of G onM . We now
show thatF is satisfiable, i.e., there exists a truth assignment for allthe variables of
F such that for each clauseC = (x, y, z) of F , at least one ofx, y andz is true. Let
Wx be the wheel forx. If the vertices inWx are placed near the entry doors, then by
the arguments in Lemma 1, we can show that the vertex inlCx is placed far from the
door adjacent to the rectangleR for C. Thus this vertex can see only the highlighted
visibility region insideR in Fig. 6. On the other hand, if the vertices inWx are placed
near the exit doors, then the vertex inlCx can be placed near the door adjacent to the
rectangleR for C and can see the entire interior ofR. This is true for each of the three
literals. Since the visibility regions of the three literals have no common intersection, it
must be the case that the vertices in the wheel for at lease oneof x, y andz are placed
near the exit door. We make each such literal true. Note that this assignment will not
have conflicts, because of the way all the wheels for a particular variable are attached
with each other during the construction. Furthermore, thisassignment will satisfyF .
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Conversely ifF is satisfiable, then for each clauseC = (x, y, z) of F , at least one
of x, y andz is true. Without loss of generality, assume thatx is true. Then we place
the vertices in the wheel ofx near the corresponding exit doors. With this placement,
the vertex inlCx can be placed near its door adjacent to the rectangleR for C so that it
can see the entire interior ofR. Then we place the vertex forR in the intersection of the
visibility regions ofy andz. This placement will ensure that we can place the vertices in
the wheel fory andz either near entry doors or exit doors and will still be able toplace
all the vertices in all the rectangles from this wheel toR without violating linearity of
the edges. This yields the desired straight-line planar fitting ofG onM . ⊓⊔

The proof of Lemma 3 completes the NP-hardness proof. Fig. 7 illustrates a 3-
SAT formula, its planar 3-SAT realization using the additional conditions of Knuth
and Raghunatan [10] and the corresponding instance for the map fitting problem (the
rectangles to fill up the holes are not shown).

Fig. 7.Planar 3-SAT instance and corresponding map fitting instance.

⊓⊔

3.2 Sufficient Conditions for Fitting

The counterexample of Lemma 2 relies on two facts:1. there exists a vertex in some
cluster (the bridge) that is connected to vertices in two different clusters (the wheels),
2. its cluster-graph contains two cycles. In contrast to this we show the following:

Lemma 4. LetG be a planar clustered graph whereV1, V2, . . ., Vk induce the clusters
ofG. Suppose each cluster ofG is biconnected. LetM be a rectangular map compatible
with G. If (a) for each vertexv of G, all the vertices adjacent tov through an inter-
cluster edge lie on the same cluster, or(b) each connected component of cluster-graph
GC contains at most one cycle, thenG has a straight-line planar fitting onM .

Proof:
(a) We first assume that for each vertexv of G, all the vertices adjacent tov through an

inter-cluster edge lie on the same cluster. LetRi andRj be two incident rectangles
of M and letGi andGj be the clusters corresponding to them,1 ≤ i, j ≤ k. Let
vi1 , . . . , vik ∈ Vi andvj1 , . . . , vjk ∈ Vj be the incident to each other vertices of
Vi andVj , respectively, taken in the order they appear in the outer boundary of
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Gi andGj , respectively. For eachRi, 1 ≤ i ≤ k, we defineOi to be the oval
inscribed inRi. We definepi, p′i andpj , p′j to be points ofOi andOj , respectively,

such that the straight-line segmentspipj andp′ip
′

j cross the common border ofRi

andRj , without crossing each other. Next we place verticesvi1 , . . . , vik of Vi and
vj1 , . . . , vjk of Vj onOi andOj , between pointspi, p′i andpj , p′j , respectively, so
that all the inter-cluster edges induced by these vertices,cross the common border
of Ri andRj . As a result of the above procedure we have placed some of the
vertices of the outer boundary ofGi on the ovalOi, 1 ≤ i ≤ k. Since each placed
vertex is adjacent to a unique cluster, its position is uniquely defined. We distribute
the rest vertices of the boundary ofGi on Oi, so that the order of the vertices in
total is the same as in the boundary ofGi. Since the resulting drawing of the outer
boundary ofGi, 1 ≤ i ≤ k is convex, we can apply the algorithm of “drawing
graph with a prescribed outer face” [3] to complete the drawing of each cluster.

(b) We now assume that each connected component ofGC contains at most one cycle.
Let v1, . . . , vk be the vertices ofGC , that represent clustersG1, . . . , Gk respec-
tively.
Intuitively the proof is based on the achievement of the following goals:
(1) We show thatGC has a planar fitting onM .
(2) We blow up the drawing ofGC , so that the edges ofGC are represented by

strips of widthε > 0 without creating edge-region crossings; see Fig. 8(a).
For each vertexvi of GC , we draw a small circlecirc(Gi) centered at it in the
intersection of the strip-edges that are adjacent tovi.

(3) We draw the boundary ofGi on the circlecirc(Gi), i = 1, . . . , k, so that the
inter-cluster edges, when drawn straight-line, do not cross neither the bound-
aries of the clusters, nor each other; see Fig. 8(b).

(4) Since the boundary of eachGi is a convex polygon we can apply the algorithm
for “drawing graph with a prescribed convex outer face” [3] to complete the
drawings of the clusters; see Fig. 8(c).

vi

circ(Gi)

+

(a) (b) (c)

Fig. 8. (a) Drawing ofGC where each edge is represented by a strip of widthε > 0. (b) Place-
ment of the boundary vertices of the clusters on corresponding circles. (c) Step 4 of the proof of
Lemma 4.
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For the first step of the proof, we show thatGC = (VC , EC) has a planar fitting on
M . Consider first the case whenGC is a tree and letv1 ∈ VC be the root ofGC . We
prove that even if the position ofv1 is fixed in its corresponding rectangleR1, we
can place the remaining vertices ofGC in their corresponding rectangles so that the
resulting straight-line drawing is a planar fitting ofGC onM . Letv2, . . . , vf be the
children ofv1 and letR2, . . . , Rf be the corresponding rectangles ofM . We place
v2, . . . , vf insideR2, . . . , Rf , respectively so that the straight-line edges(v1, vi),
2 ≤ i ≤ f cross the common boundary ofR1 andRi. We continue with children
of v2, . . . , vf , recursively.
Assume now that each connected component ofGC = (VC , EC) contains at most
one cycle. We show how to draw a single connected components of GC . Letv0, . . . , vm ∈
VC induce the unique cycle ofGC and letR0, . . . , Rm denote the corresponding
to them rectangles, so thatR0 andRm are adjacent. We placevi, 0 ≤ i ≤ m in-
sideRi such that for any pointp ∈ R(i+1)modm, segmentpvi crosses the common
boundary ofRi andR(i+1)modm. Since this was the unique cycle ofGC , the re-
moval of verticesv0, . . . , vm give several trees. We root these trees at the vertices
v0, . . . , vm, to which they are adjacent and apply the procedure descriedin the first
part of the proof. This completes the construction of planarfitting of GC onM .
In the rest of the proof we show how to accomplish step(3). Since the graphG is
c-planar, by [6], there exists a drawingΓ (G) of G, where all the vertices of clusters
G1, . . . , Gi−1, Gi+1, . . . , Gk appear on the outer face ofGi. Let v be a vertex of
Gi that lie onGi’s boundary; see Fig. 9(a). Letvi1, . . . , v

i
pi

be all the neighbors of

u1
i = v

Gi

. . .

vi1

vi2

vipi

vipi+1

vipi+2

vipi+ai

ui
2

ui
3

ui
ki

. . .

v
i
1

v
i
2

v
i
pi

v
i
pi+1

v
i
pi+2

v
i
pi+ai

arc(v)

vi

arc(ui
2)

arc(ui
3)

arc(ui
4)

(a) (b)

Fig. 9. Illustration for the proof of Lemma 4.

vi that represent the clusters to which vertexv is adjacent. As, we have mentioned,
vi1, . . . , v

i
pi

appear on the outer face ofGi. Assume thatvi1, . . . , v
i
pi

are given in
the clockwise order they appear inΓ (GC). We denote byarc(v) a circular arc of
circ(Gi) that is included between the straight-line segmentsvi, vi1 andvi, vipi

, as
one travels fromvi1 to vipi

in the clockwise direction; see Fig. 9(b). SinceΓ (GC) is
a straight-line planar drawing, we have the following observation.
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Observation 1. Letvi be a vertex ofGC andGi be a cluster ofG that corresponds
to vi. Letui

1,. . .,ui
ki

be the vertices of the boundary ofGi traversed in the clockwise
direction. The circular arcsarc(ui

1), . . ., arc(u
i
ki
) appear clockwise around the

circ(Gi) in this specific order and are internally disjoint; see Fig. 9(b).

Let nowGi andGj be two clusters ofG. Assume that they are connected by mul-
tiple inter-cluster edges. Letui

fi
, . . . , ui

li
(resp.uj

fj
, . . . , uj

lj
) be the vertices of the

boundaryGi (resp.Gj) in the clockwise direction that are involved in the inter-
cluster edges betweenGi andGj ; see Fig. 10(a). The edges(ui

fi
, uj

lj
), (ui

li
, uj

fj
)

ui
fi

ui
li

u
j
fj

u
j
lj

Gi

Gj

G1

G2

G3

G1

G2

G3

(a) (b) (c)

Fig. 10. (a) The bounding edges between clustersGi andGj are drawn with fat blue ink. (b)
A clustered graphG with clusters identified by gray curves. (c) A skeletonS(G) of graphG
depicted in figure (b).

are called theboundingintra-cluster edges. In order to accomplish a drawing ofG
we first construct a drawing of itsskeleton. TheskeletonS(G) of G is a graph that
is constructed as following:(1) take the boundaries of each clusterGi and connect
them by all the bounding inter-cluster edges,(2) substitute the paths of the bound-
aries by edges; see Fig. 10(b)–(c). We assume thatS(G) is an embedded graph,
with the embedding which preserves the embedding ofG. Consider a planar draw-
ing Γ (S(G)) so that the vertices of each clusterGi ∩ S(G) are drawn on the circle
circ(Gi) in the order they appear on the boundary ofGi. Such a drawing exists,
sinceG is c-planar. But for an arbitrary placement of the vertices,it is not true that
the edges ofS(G) can be drawn straight-line without creating crossings. Next we
show how to place the vertices ofS(G)∩Gi on the circlecirc(Gi) so that the edges
of S(G) do not cross each other, when drawn straight-line. For eachv of S(G)∩Gi,
we placev in the middle of circular arcarc(v). We next show that this results in
no crossings between the inter-cluster edges. Letu ∈ Ga, v ∈ Gb, w ∈ Gc and
s ∈ Gd, so that(u, v) and(w, s) are two inter-cluster edges; see Fig. 11(a). Next
we consider several cases based on whether the clustersGa, Gb, Gc andGd are
distinct or not.
Case 1:The clustersGa, Gb, Gc, Gd are pairwise distinct. A crossing between the

edges(u, v) and(w, s) is impossible, since each of theGa, Gb, Gc, Gd lie in a
distinct rectangle of mapM .
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Ga

Gb
Gd

v
s

w

u

Gc

Ga = Gc

Gb

Gd

arc(u) arc(w)

v

s

w
u

Ga

Gb

v

s

w

u

Ga = Gc

Gb = Gd

arc(u) arc(w)

v

s

wu

arc(v)

arc(s)

va

vb

(a) (b) (c) (d)

Fig. 11.(a) Two edges ofG, with the end vertices belonging to distinct clustersGa, Gb, Gc, Gd.
(b) Case2 of the proof,Ga = Gc. (c-d) Case3 of the proof,Ga = Gc andGb = Gd.

Case 2:Two of the non adjacent clustersGa, Gb, Gc, Gd coincide. Assume that
Ga = Gc. Recall thatw is placed on the middle of circular segmentarc(w)
andu in the middle of circular segmentarc(u). By Observation 1, the circular
segmentsarc(u) andarc(v) are internally disjoint; see Fig. 11(b). Therefore
the edges(u, v) and(w, s) do not cross each other.

Case 3:Ga = Gc andGb = Gd. Let va andvb be the vertices ofGC that corre-
spond toGa andGb, respectively. First, note that(u, v) and(w, s) are bounding
edges ofG and form a cycleu,w, s, v in Γ (S(G)). Without lost of generality
assume that if we traverse this cycle in this specific order thenu appear before
w ands beforev on the boundary ofGa andGb, respectively. By Observa-
tion 1, the circular segmentarc(u) appears beforearc(w) in the clockwise
order aroundcirc(Ga). Since bothu andw are adjacent toGb, arc(u) and
arc(w) meet at a point lying on the line throughva andvb. Similarly, arc(s)
appears beforearc(v) in the clockwise order aroundcirc(Gb) and meet at the
line throughva andvb. Thus, any edges(u, v) and(w, s) are separated by the
horizontal line throughva andvb and therefore do not cross.

We have constructed a planar straight-line drawing ofS(G). We complete the proof
explaining how to draw the rest vertices of the boundaries ofthe clusters ofG and
the inter-cluster edges ofG. For each clusterGi, i = 1, . . . , k, connect straight-line
the already placed vertices ofGi ∩ S(G) in the order they appear on the boundary
of Gi. They form a convex polygon. Place the rest vertices of the boundary ofGi

on the respective sides of this convex polygon. Draw the restinter-cluster edges
straight-line. It is easy to see that they do not create crossings, since they lie either
in triangles or convex quadrilaterals created by the bounding edges ofG.

⊓⊔

4 Fitting Graphs on Rectilinear Maps
It is known that only a restricted class of planar graphs can be realized by rectangular
maps. For general maximal planar graphs, 8-sided polygons (T-shapes) are necessary
and sufficient for contact maps [8]. In this section, we assume that the input is a recti-
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linear map, together with a c-planar graphG with planar embedding and cluster-graph
GC . The first condition that we require is that the subgraph induced by the inter-cluster
edges is a matching. From Lemma 4 it follows that this condition is sufficient for rect-
angular maps. Now, we will extend this to L-shapes and T-shapes. We cannot directly
apply the strategy of Section 3 because now we have to deal with concave corners of
the regions in the map. We therefore impose our second condition: none of the clusters
contains aboundary chord, i.e. a non-boundary edge between two boundary vertices.

To be able to apply the algorithms for drawing graph with a prescribed convex outer
face [3], we partition the polygons into convex pieces. Since the polygons form a contact
map, for each common boundary of adjacent polygons there is at least one edge between
the two corresponding clusters. We now impose our last condition: there are at least
two inter-cluster edges between adjacent clusters. We callthesedoubly-interconnected
clusters. Note that the common boundary of two adjacent polygons consists of at most
two concave corners. We place the vertices next to the commonboundary on both sides
of the concave corners. This ensures that the cycle spanned by the boundary vertices of
the cluster is completely within the corresponding polygonand there are at most two
concave corners along the cycle. Leta andb be the vertices at these corners; see Fig. 12.
We choose a third boundary vertexc lying oppositea andb. Straight-line cuts between
a, c and b, c define 3 convex regions. Now we compute ana, c-path and ab, c-path
without any shortcut4 so that we can place the vertices on these two paths on the two
cuts betweena, c andb, c. Note that such a path should not contain any other boundary
vertex, already placed elsewhere. We therefore find these paths in such a way that they
do not contain any boundary vertex.

Consider the shortest pathl in the dual graph of a cluster between the two inner faces
containingb andc. We will now find an ordered set of verticesb = v0, v1, . . . , vf = c in
the input graph “following” this dual pathl. Starting fromb, we find the next vertices on
this set one after another such that all the internal vertices lie on the common boundary
between two consecutive faces onl. On such a common boundary there are at least two
vertices and both of them cannot be a boundary vertex since otherwise that would induce
a chord edge. We will then choose a non-boundary vertex on thecommon boundary.
Note that consecutive vertices on this set might be non-adjacent in the input graph.
However, we may assume that all consecutive pairs of vertices on this set are adjacent
by means of an original or a dummy edge since from the construction the assumption
of such a dummy edge would not violate planarity. Thus they can be thought of forming
a b, c-path. Furthermore note that this path contains no shortcutor transitive edge. The
reason is that with the successive choice of vertices we are making a jump of one face
at a time alongl and a shortcut edge would also induce a shortcut face onl, which is
a contradiction sincel is a shortest path on the dual graph. In the same way we can
find another such path betweena andc. Together with these two paths we now have
three cycles that describe convex areas, assuming that theyare disjoint. (In case they
are not, they have a common subpath towardsc, say ac, d-path. We then draw thea, d-
path,b, d-path andc, d-path on three segments 120 degree apart from each other with
a common endpoint atd, again forming three convex polygons). Hence we are able
to apply the algorithm in [3] directly. The same idea can be applied for an L-shaped

4 Shortcutof pathP is an edge between vertices nonadjacent inP .
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polygon where the straight-line segment splitting this polygon into two convex parts
are between the concave corner and its opposite corner of thepolygon. This yields the
following theorem.

a

e

g

c f

d
b

Fig. 12. Illustrating how vertices on the boundary of aT -shape are placed and how the cluster
is partitioned by two paths such that it fits into three adjacent convex polygons with the paths as
common boundaries.

Theorem 2. For doubly-interconnected clustered c-planar graphs withmatching inter-
cluster edges, such that there is no boundary chord in any cluster, there exists a straight-
line planar fitting on any compatible map with rectangular, L- or T-shaped polygons.

Fitting a planar graphG on a rectilinear map with L- or T-shaped polygons may
force a very irregular distribution of the vertices and faces of the graph, which in turn,
may affect the resolution. Next we want to find a balanced distribution of vertices and
faces inside the L-shaped polygons of a map. First, we consider the distribution inside
only one polygon partitioned in two pieces by a straight-line cut; then we use this result
to find a balanced distribution inside all the L-shaped polygons of a map.

Shortest Path SeparatorsWe first consider the balanced distribution for a particular
L-shaped polygon (the local problem). Given an L-shaped polygon with a straight-line
cut partitioning it into parts of areaA1 andA2, and the corresponding clusterC, we
first compute an extended graph placing a dummy vertex in eachface. LetP be a path
in the extended graph and denote byL(P ) andR(P ) the two parts induced byP in the
extended graph. Then the sizes ofL(P ) andR(P ) give the summations of the numbers
of vertices and faces in the two parts of the original graph induced byP . We want to
find a shortest pathP between two given verticess andt of P containing no boundary
vertex that minimizes the imbalance|A1/A2 − |L(P )|/|R(P )||.

Lemma 5. The values of|L(P )| for all shortest pathsP between fixed boundary ver-
ticess andt of a plane graphG can be enumerated inO(n2) time.

Proof: We prove this lemma constructively. We first remove all the boundary vertices
from the graph. We then start by computing the shortest pathsfrom s to t by a standard
method like Dijkstra’s algorithm, that can slightly be extended to compute all shortest
paths betweens andt. The output of this algorithm is a subgraphGs of G consisting of
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vertices and edges that lie on at least one of the paths. The shortest paths on this graph
imply an orientation for the edges ofGs, where each path betweens andt is oriented
towardst; see Fig. 13(a). SinceGs consists of directed shortest paths froms to t, Gs

is a directed acyclic graph (In fact it is anst-digraph withs as the unique source andt
as the unique sink). Furthermore, any directed path inGs is a shortest path between its
two end-points since it is a subpath of a shortest path. We consider an embedding ofG
whereGs is drawnupward, i.e. each edge ofGs is drawn upward. In such an embedding
for a vertexv of Gs, we can define a leftmost shortest path fromv to t in Gs, denoted
by left(v), where each edge(u,w) of the path is the leftmost outgoing edge incident to
u. We now give a dynamic programming algorithm that finds and enumerates, for each
vertexv of Gs, the value of|L(P )| for possible pathsP formed by any shortest path
from s to v, followed by the pathleft(v), where one of these subpaths might be empty
if v is one ofs or t. We call each such path afeasible pathfor v. We keep these values
for a vertexv in a list denoted byV ALUES(v). Fig. 13(a) shows a feasible pathP for
a vertexv and the highlighted region definesL(P ).

Fig. 13. (a) The directed acyclic graphGs, (b)–(c) illustration for the algorithm for finding a
suitable shortest path separator.

We consider the vertices ofGs in a topological order. Initially, we setV ALUES(s)
to be a singleton set, consisting of the value of|L(left(s))|. Consider now the case
when we address a vertexw of Gs, other thans. We constructV ALUES(w) by start-
ing with an empty set and for each incoming edge(v, w) of w, inserting an integer
corresponding to each integer inV ALUES(v). For each incoming edge(v, w) of w,
we compute these entries toV ALUES(w) in one of the following two cases.
Case 1:w is on left(v). In this case each feasible path forv is also a feasible path for
w. Furthermore each feasible path forw passing throughv is also a feasible path forv;
see Fig. 13(b). For each integerx ∈ V ALUES(v), we thus insertx to V ALUES(w).
Case 2:w is not on left(v). In this case, the edge(v, w) is to the right ofleft(v).
We find a feasible path forw from a feasible path forv, followed by the edge(v, w),
followed by the pathleft(w). Moreover, each feasible path forw passing throughv can
be found in this way; see Fig. 13(c). Lety be the number of vertices between the paths
left(v) and(v, w).left(w), including those onleft(v), but not onleft(w). For each
integerx ∈ V ALUES(v), we thus insertx+ y to V ALUES(w).
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We thus compute the setsV ALUES(v) for each vertexv of Gs. We now have the
following lemma.

Statement 1 For each vertexw ofGs, V ALUES(w) enumerates the values of|L(P )|
for all feasible pathsP for w.

Proof: The claim is true fors since the only feasible path fors is left(s) and|L(left(s))| ∈
V ALUES(s). For a vertexw other thans, each feasible path forw is formed by a path
from s to v, followed by the edge(v, w), followed by left(w) for a vertexv with an
outgoing edge tow. All such paths are addressed in the dynamic programming algo-
rithm that computesV ALUES(w) for each vertexw of Gs. ⊓⊔

Since each shortest path inG is a directed path inGs and by definition, is a feasible
path fort, V ALUES(t) enumerates the value of|L(P )| for each shortest pathP in
G. The implementation can be done in timeO(n2), maintaining for each vertex the
V ALUES(v) in the range between 1 andn. ⊓⊔

Distributing Vertices Nicely in More General Maps Next, we address the global
problem: finding cuts in all the clusters simultaneously, sothat we minimize the max-
imum imbalance over all clusters. Here for a given pairs andt in a cluster, we define
w(s, t) = ‖A1/A2 − |L(P )|/|R(P )|‖ to be the smallest imbalance imposed by short-
est paths froms to t. Clearly, the choice ofs andt in one polygon may influence the
choice ofs andt in others, but we show next that this influence is limited. Theshared
boundary between a particular polygonQ and its adjacent polygons in a map induces
a set of intervals as we circularly walk across the boundary of Q. Since the dual of M
preserves the embedding of the input graph, these intervalson the boundary ofQ nat-
urally define a set of intervals on the outer vertices of the cluster corresponding toQ.
Each inter-cluster edge incident to an outer vertex of the cluster must pass through the
corresponding interval of the boundary ofQ avoiding edge-region crossings. We now
have the following lemma.

Lemma 6. LetL andL′ be two adjacent L-shaped polygons in the map and letC and
C ′ be the two corresponding clusters. Then the choice of the right end-point of a cut in
C and the choice of the left end-point of a cut inC ′ depend on each other if and only if
thet-corner ofL and thes-corner ofL′ are internal points of the same interval in the
boundary ofL andL′.

Proof: Supposes andt denote the two end-points of a cut ofC such thats lies near the
s-corner ofL andt lies near thet-corner ofL. Similarly defines′ andt′ for L′. Assume
without loss of generality that the concave corner ofL is its t-corner. Then one can see
that the only polygon that can influence the choice oft is the one that shares an interval
of the boundary withL containing the concave corner (t-corner) ofL. Thus in order for
s′ to influence the choice oft, it is necessary thatL′ shares an interval of its boundary
that contains thet-corner ofL. Now, depending on whether the concave corner ofL′ is
its s-corner oft-corner, the choice ofs’ can be influenced by the choice oft in one of
the following two ways.

(a) The concave corner ofL′ is its t-corner and thes-corner ofL′ coincides with thet-
corner ofL. In this case, thes-corner ofL′ and thet-corner ofL is a common point,
which is an internal point of the common boundary ofL andL′; see Fig. 14(a).
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(b) The concave corner ofL′ is its s-corner and the common boundary betweenL and
L′ contains this point. Thus thet-corner ofL and thes-corner ofL′ are internal
points of this common boundary in this case too; see Fig. 14(b).

L

L
′

s

t

s
′ t

′

L

L
′

s

t

t
′

s
′

Fig. 14. The two cases for the dependency between the choice of end-points of acuts in two
L-shaped polygons.

Thus in both the case, for the choice oft in C and the choice ofs in C ′ depends
on each other only if thet-corner ofL and thes-corner ofL′ are internal points of the
same interval in the boundary ofL andL′. We will now show that if this is indeed the
case, the choices of the two end-points of the cuts inC andC ′ are in fact dependent.
We again assume that the concave corner ofL is its t-corner. In case it is thes-corner
of L, we can show the dependency between the choices in a similar way.
Case 1: The concave corner ofL′ is its t-corner. In this case, the choices oft ands′

must be such that eithert ands′ are adjacent or if there is no such edge, one can insert
(t, s′) without introducing any crossings.
Case 2: The concave corner ofL′ is its s-corner. In this case, the choice oft ands′

must be such thats′ lies to the right of all the neighbors oft in C ′ andt lies to the left
of all the neighbors ofs′ in C. ⊓⊔

Lemma 6 gives a necessary and sufficient condition for two L-shaped polygons to
influence the choice of the end-points of the cuts of each other. This dependency can
be expressed in the directeddependency graphD = (P,EP ), whereP is the set of
all L-shaped polygons and forL,L′ ∈ P , there is a directed edge fromL to L′ in EP

when the choice of the right end-point of a cut inL influences the choice of the left
end-point of a cut inL′. We can represent each edge(L,L′) of graphD by drawing a
directed line from thet-corner ofL to thes-corner ofL′, with all edges pointing to the
right; henceD is acyclic. Since the choice ofs-corner andt-corner of a polygon may
affect the choice in at most one polygon each, the maximum degree of a vertex inD is
two and each component ofD is either a single vertex or a path. The following theorem
shows that we can minimize the cluster imbalance.

Theorem 3. LetG be a connected c-planar graph,GC be the cluster-graph ofG and
M be a rectilinear map ofGc with six-sided polygons such thatM represents the con-
tact map ofGC . Then one can split the regions inO(n4) time into convex shapes and
distribute the vertices and faces of the clusters within theregions such that the maximum
imbalance is as small as possible.
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Proof: We use the dependency graph to find cuts in all the clusters simultaneously such
that the maximum smallest imbalance for the clusters is minimized. For this purpose,
we refine this dependency graphD to capture all possible cuts. Before that we need to
define the notion of compatible pairs of vertices in two adjacent clusters. Informally,
compatible pair of vertices are those that influence dependency on two clusters. More
formally, letC andC ′ be two clusters with some inter-cluster edge between them such
that the choice of one end-point of the cut inC depends on the choice of one end-point
of a cut inC ′ and vice versa. LetL andL′ be the two L-shaped polygons corresponding
toC andC ′ respectively. Without loss of generality, assume that the concave corner ofL
is its t-corner. Then the compatible parts betweenC andC ′ are defined in the following
two cases.

Case 1: The concave corner ofL′ is its t-corner. In this case, the compatible pairs of
vertices betweenC andC ′ are all pairs(t, s′) such thatt is a vertex inC, s′ is a vertex
in C ′ and eithert ands′ are adjacent or if there is no such edge, one can insert(t, s′)
without introducing any crossings.

Case 2: The concave corner ofL′ is its s-corner. In this case, the compatible pairs of
vertices betweenC andC ′ are all pairs(t, s′) such thatt is a vertex inC, s′ is a vertex
in C ′, s′ lies to the right of all the neighbors oft in C ′ andt lies to the left of all the
neighbors ofs′ in C.

We will refine the dependency graph as follows. We consider each component of
D independently and find an optimum path for that component. Westart with the case,
where the component is a single vertexL. In that case,L is partitioned into two convex
pieces and we have to choose the best pair(s, t). We create an artificial sourceS and
sink T , and add an edge fromS to each possible candidates, and an edge from each
possible candidatet to T . The choice of possible candidates for s and t is done as
described in the previous section. Then we insert edges(s, t) for the different pairss
andt with weightsw(s, t) which has been defined above. A bottleneck shortest path
computation looking for the path with the smallest maximal weight (imbalance) on it
gives the best cut for this single component.

In the case, where the component consists of a path of length one or more, the
direction of edges of the path gives an order of the vertices (representing L-shaped
polygons) on this path. Specifically, there is exactly one vertexL0 in the path with no
incoming edge and exactly one vertexLf with no outgoing edge. Once again we create
an artificial sourceS and sinkT , and add an edge fromS to each possible candidates
of the cluster forL0, and analogously from the each possible candidatet of the cluster
for Lf to T . For each edge(L,L′) of the path, we also insert an edge between each
compatible pair(t, s′) wheret is a vertex inL ands′ is a vertex inL′. Set the weight
of each such edge(t, s′) to be zero. Finally for each vertexL on the path, letC be the
corresponding cluster. We insert edges(s, t) with weightw(s, t) between all possible
candidates fors andt found in a similar way as described in the previous section. The
bottleneck shortest path computation fromS toT once again delivers the desired result,
namely the path with the minimal largest weight on an edge.

The bottleneck shortest path computation in both the cases takesO(n log n) time
using a variant of Dijkstra algorithm. Thus, determining the imbalance for each pairs,
t in each cluster dominates the running time. Since there can be at mostO(n2) possible
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s, t pairs and computingw(s, t) for each of them takeO(n2) time, the total running
time isO(n4). ⊓⊔

5 Conclusions and Future Work
We showed that fitting planar graphs on planar maps is NP-hard. The proof involves
skinny regions; it is natural to ask whether the problem becomes easier if all regions are
“fat”. We presented necessary and sufficient conditions forthe construction of planar
straight-line fitting on rectangular map, for a c-planar graphs with biconnected clusters.
The presented sufficient conditions are tight, meaning thatviolating them makes it pos-
sible to construct counterexamples. It is natural to study the case where the clusters are
not necessarily biconnected. Finally, we gave a rather restricted set of sufficient condi-
tions for fitting planar graphs on maps with non-convex regions. It would be interesting
to investigate whether these conditions can be relaxed. Oneof the most interesting ques-
tions is to study the vertex resolution of the constructed fittings. To find a bound on the
vertex resolution remains open.
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