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ABSTRACT
Matching sets of trajectories obtained by two different resources is
a challenging and well motivated spatio-temporal problem. It arises
when the motion of the same set of moving objects is obtained by
two sensing devices (e.g. camera or radars) or when data is anno-
tated by different users. The ultimate goal is to pair the trajectories
so that each object is associated with two trajectories. Within this
context, two main questions arise: (1) how to measure similarities
between trajectories, and (2) how to use the similarity measure be-
tween trajectories to arrive to a reliable matching. Here we describe
computationally efficient methods for several variants of the prob-
lem. The proposed methods have been implemented and used in
experiments with real-world trajectory data. The results indicate
that they are not only theoretically sound, but also work well in
practice.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Algorithms
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1. INTRODUCTION
Due to the availability of location enabled devices, data with spa-
tial attributes become more and more widespread, increasing the
demand for analysis tools. Numerous technologies provide loca-
tions (e.g., GPS, HI-FI, Cellolar, cameras) and many applications
that make use of the location data have been developed and are
available for mobile phones, navigation systems, etc.

Trajectories are arguably the most interesting pieces of informa-
tion created by location services. Many applications may need the
trajectory data as historical resources (e.g., statistics about outdoor
activities, common route analysis and traffic congestion analysis),

while others need the data on the fly (current route statistics, analy-
sis of current relationships with other trajectories). Trajectories for
ships, airplanes, animals, people have been collected and are used
in academic and industrial research.

The availability of trajectory data offer great opportunities. For
example, analyzing complicated relationships among trajectories
can help alleviate traffic congestion and thus save time and money,
while also decreasing pollution. Trajectory data can be used for
understanding human mobility and social patterns [16]. Such un-
derstanding can, in turn, inform solutions to large-scale societal
problems in fields as varied as telecommunications, ecology, epi-
demiology, and urban planning. As an example, knowing how large
populations of people move about would help determine their car-
bon footprint and in turn help guide policies intended to reduce that
footprint.

Trajectory data, together with growing demand to analyze such
data, pose many challenges. For example, real-time travel route
calculation is a difficult problem. Another challenge is related to
location and time inaccuracies associated with input trajectories.
Inevitably, location signals are noisy, contain outliers, and have un-
expected behavior.

There are many scenarios where the trajectory of the same mov-
ing object is measured by different devices. In such cases it is
sometimes crucial to merge the data to obtain better localization.
For example, while GPS reaches impressive precession in optimal
conditions, it might still provide only limited precision or no data
within dense forests, indoor environment or underwater. Another
limitation of this technology is that sometimes too few satellites
are accessible to the receiver, providing poor localization. Other
technologies, such as HIFI and Cellolar, have their own limitations
that result in unreliable data. Hence, overlaying data from several
sources is one natural way to increase the accuracy and reliability
of the data.

In some scenarios, objects do not share identities. This could be due
to privacy, security, or other reasons. Then the task of merging data
from several source becomes more challenging as the the trajecto-
ries cannot be matched by merely checking their identities. There
are applications that make good use of trajectory matching, such as
calibrating two video cameras (direction, focal length, etc.) whose
goal is to track the same object. The problem of matching pairs of
trajectories naturally arises in the context of extracting accurate tra-
jectories of ants from many (possibly inaccurate) input trajectories
annotated by volunteers (citizen scientists) [8]. In this setting, the
volunteers play an online game showing a video of an ant colony



and indicate the trajectory of specified ants via mouse clicks (a task
that is commonly challenging for computer vision techniques). To
increase the reliability of such annotation, each ant’s trajectory is
annotated by two or more scientists. Hence, a robust algorithm for
determining which trajectories (annotated by different citizen sci-
entists) refer to the same ant is needed.

In this paper we propose novel methods for computing a good
matching between two sets of trajectories. On a high level, the task
is divided into two parts: computing a similarity measure between
a pair of trajectories and partitioning the trajectories into pairs in
a way that optimizes some criteria. We define a distance for a
pair of trajectories and propose a measure with which we glob-
ally minimize the total cost of the matching. Specifically, we focus
on the Fréchet distance for computing the distance between trajec-
tories and use a matching algorithm that minimizes the maximum
distance between any pair of matched trajectories. As the naive
implementation of the algorithm is computationally expensive, we
describe two techniques for speeding up the computation. The first
technique is based on the idea of locality-sensitive hashing, which
filters out pairs of trajectories that are “far” from each other. From
the remaining pairs, we construct a weighted bipartite graph and
find a bottleneck matching — a perfect matching that minimizes
the maximum weight of a matched edge [12]. To this end, we sug-
gest an algorithm in which computation of the Fréchet distance is
optimized.

The rest of this paper is organized as follows. In the next section we
discuss related work. In Section 3 we provide background informa-
tion for this work. In Sections 4 and 5 we describe our algorithms.
In Section 6 we provide experimental results and present several
applications. We conclude and discuss directions for future work
in Section 7.

2. RELATED WORK
The problem of clustering trajectories is closely related to our prob-
lem. Several methods for dealing with this problem have been pro-
posed, depending on the distance function [14, 18]. Unlike the
traditional setting, in our case all clusters must have exactly two
trajectories. Several techniques for computing distances between
curves have been studied in the literature. Methods based on the
feature space take into account the location of knots, loops, points
exceeding specific curvatures, and other features when computing
distances. These methods are often used in signature verification
and other computer vision applications and are difficult to apply in
our case. In the setting where accurate timestamps are available,
Trajcevski et al. [22] use the maximum distance at corresponding
times as a measure of similarity between pairs of trajectories, and
they describe algorithms for optimal matching under rotations and
translations.

In this paper we use a more generic approach that does not re-
quire specific prior assumptions about the shape of the curves. Our
method is related to Dynamic Time Wrapping (DTW), which can
be discrete [11] or continuous [14] . The DTW method is often
used for clustering data [7, 23]. We do not use the method directly
as it is computationally expensive and we are not aware of any fast
approximation algorithm.

The Fréchet distance as a measure of similarity for trajectories was
introduced to the algorithm community by Alt and Godau [3]. It
found its place in trajectory clustering, reconstructing road map
from GPS trajectories [4], aligning networks [2], and protein match-

ing [17]. Recently, the Fréchet distance is studied by Buchin et
al. [6], who show how to incorporate time-correspondence and di-
rectional constraints. One of the drawbacks is its relative high com-
putational complexity, with last year’s first sub-quadratic algorithm
for computing the Fréchet distance between a pair of curves [1].
Faster algorithms are known for curves that satisfy some “reason-
able” properties of realistic input models [10].

The problem of finding the most likely “consensus” trajectory, given
a set of trajectories is also related to our problem, and it has been
considered in many different contexts. Morris and Barnard [19] use
a statistical learning approach for finding hiking and biking trails
from aerial images and GPS traces. A geometric distance measure
to find similar subtrajectories is considered by Buchin et al. [5].
Some of the most recent methods include general approaches for
tracking cells undergoing collisions by Nguyen et al. [20] and spe-
cific approaches for tracking insects by Fletcher et al. [13].

3. PRELIMINARIES
Define a trajectory to be a polyline in IR2, represented by a se-
quence p1, . . . , pT of T points. In addition to the spatial coordi-
nates, temporal information might also be available. Specifically,
each point pi is associated with a normalized timestamp 0≤ ti ≤ 1
and we assume that the trajectory is monotone in time: for each
1 < i < j < T , it holds t1 = 0 < ti < t j < tT = 1. Hence, a trajec-
tory can be viewed as a monotone (with respect to time) polyline
in 3D. We use the term parameterization to refer to the location
of the timestamp along the interval [0,1]. A distance between a
pair of trajectories is defined as the maximum distance between the
corresponding polylines at any timestamp. Let u,v be a pair of tra-
jectories, and D(u(t),v(t)) denote the distance between u and v at
the timestamp t. Then the distance between u and v is

D(u,v) = max
t∈[0,1]

D(u(t),v(t)).

The input of our problem is two collections of trajectories S1 and S2
of size n obtained with different resources. Our goal is to match the
trajectories from both sets based on their similarity. Formally, we
want to find a matching M = {m1, . . . ,mn}, where mk =(ui,v j),1≤
k ≤ n with ui ∈ S1,v j ∈ S2 and each trajectory is matched exactly
once. Ideally, a good matching identifies pairs of trajectories that
belong to the same entity. To this end, we are looking for a match-
ing minimizing the maximum distance between matched trajecto-
ries. Our problem, which we denote by TMATCH, is defined as
follows.

TMATCH: Given two sets of trajectories, S1 = {u1, . . . ,un} and
S2 = {v1, . . . ,vn}, find a matching M = {m1, . . . ,mn}, where mk =
(ui,v j) with ui ∈ S1,v j ∈ S2 that minimizes

max
i, j

D(ui,v j).

We solve the problem in two steps. First, we compute distances be-
tween pairs of trajectories and construct a weighted bipartite graph
using the distances. Second, we find a perfect matching on the
graph minimizing the maximum weight of matched edges. In the
next section, we describe how to perform the first step, that is, how
to find a distance between a pair of trajectories; we consider three
scenarios depending on the type of input trajectories. In Section 5,
we show how to compute the optimal matching efficiently.



4. COMPUTING DISTANCES
The input trajectories may contain timestamps, only partial times-
tamps, or no timestamps altogether. We consider three scenarios for
computing the distance between a pair of curves. In the first one, all
points are associated with a timestamp. In the second one, times-
tamps are missing. The third scenario is a generalization, where
some of the timestamps are known and some are not. We consider
algorithms for computing distances in all three cases.

4.1 Time Associated Setting (TAS)
This is the simplest setting. Since the timestamps are given, trajec-
tories can be represented as polylines in IR3 (x,y, t coordinates). To
compute the distance, we sweep the t =C plane for some constant
C from the normalized parameterizations t = 0 to t = 1, process-
ing segments intersected simultaneously by the sweeping plane.
For each such pair, we compute the maximum distance when in-
tersected with the plane. The maximum value obtained over all
pairs of segments is the similarity distance of the trajectories. It
is easy to verify that the processing time is linear on the trajectory
sizes as we traverse both trajectories simultaneously once.

4.2 No Time Associated Setting (NTAS)
In this scenario, the timestamps are unknown and we rely on the
Fréchet distance between two curves. A common way to illustrate
the Fréchet distance is with the man walking a dog analogy, where
the trajectories for man and dog are fixed in advance and both can
only move forward along their trajectories. The Fréchet distance
is the length of the shortest leash between the man and the dog,
which would allow them to get from the beginning to the end of
their respective trajectories. The Fréchet distance can be obtained
by parameterizing the trajectories optimally. Mathematically, the
Fréchet distance is defined as

DF (u,v) = inf
α,β

max
t∈[0,1]

d(u(α(t)),v(β (t))),

where u and v are the trajectories, d denotes a distance function and
α and β range over all monotone parameterizations.

For a given constant γ , checking whether the Fréchet distance be-
tween two trajectories u and v is smaller than γ can be done as fol-
lows. Define a two dimensional grid H = [0,1]× [0,1]. The value
in each point in the grid, H(t1, t2), 0 ≤ t1, t2 ≤ 1 is either valid if
the distance between u(t1) and v(t2) (the points on u and v corre-
sponding to the parameterizations t1, t2) is smaller than γ or invalid,
otherwise. The grid defines a free space diagram that indicates the
validity of the locations. It follows that DF (u,v) ≤ γ if and only
if there exists a monotone path from [0,0] to [1,1] in H passing
through valid grid points; see Fig. 1.

In order to find DF (u,v), one may perform a binary search on the
value of γ , finding the maximum value for which a valid path exists.
Unfortunately, the free space diagram is defined with conic arcs and
thus requires supporting range queries on arrangements of conic
arcs, which is not easy to implement and costly to use.

The discrete Fréchet distance is a variant in which only discrete
points (or stations) along the trajectories are considered. Then the
Fréchet distance corresponds to a sequence of steps done on the
two trajectories: in each we advance from a station to its subse-
quent on at least one trajectory. The discrete Fréchet distance is the

Figure 1: The free space diagram for some trajectories A and B
and some fixed constant γ . The valid regions are in white. The
blue monotone path shows one way to parameterize the curves
so that the distance between any two matched points is always
less than γ .

maximum distance between any pair of stations considered in this
parameterization. Note that the discrete Fréchet distance gives an
upper bound on the continuous variant and in general is relatively
close to it. Additionally, the discrete version is faster to compute
and easier to implement comparing to the continues one. Therefore,
we focus on the discrete Fréchet distance in this work.

The discrete version of Fréchet is defined analogously to the con-
tinuous one; instead of considering all points in the range [0,1], we
are concerned with discrete points of each trajectory. We check for
each pair of points from both trajectories whether the distance be-
tween the locations is smaller then γ . Denote by Θ the set of IR2

parameterizations valid for γ . We connect α ∈ Θ to β ∈ Θ if they
correspond to a valid motion. Note that the discrete solution does
not require special geometric computations making it much more
practical.

The algorithm for computing the discrete Fréchet distance is as
follows. We use a binary search, and each iteration is performed
as follows. Let u and v be two trajectories. We build a two-
dimensional matrix M such that M(i, j)= 1 if and only if d(ui,v j)<
γ , where d is the Euclidean distance, γ is the current distance tested
with the binary search, and ui,v j are the i-th and j-th points of u
and v, respectively. Then we test if there is a monotone path from
the lower bottom part of the matrix to its top right, by traversing
the matrix as we explain next. The path may consists of horizon-
tal, vertical or diagonal moves for a step on u, a step on v and a
simultaneous step on both trajectories. The path is found by itera-
tively spreading from the lower bottom corner, detecting reachable
locations, while maintaining monotonicity. The algorithm takes
O(T 2 logDmax) time, where T is the length of a trajectory and
Dmax = maxu∈S1,v∈S2 D(u,v) is the largest distance between any
two points in the input.

4.3 Mixed Time Associated Setting (MTAS)
This case is a generalization of TAS and NTAS. Here a point along
an input trajectory may or may not be associated with a times-
tamp. To solve the continuous version, we modify the algorithm



for NTAS, by restricting the free space diagram with blocking rect-
angles. Let T1 and T2 be the sequences of timestamps of both trajec-
tories sorted by time. Consider two timestamps t1 ∈ T1 and t2 ∈ T2
so that t1 < t2. It follows that the second trajectory cannot pass
the location parameterized by t2 before the first trajectory passes
the location parameterized by t1. This constraint defines a forbid-
den rectangle in the free space diagram; see Fig. 2. Given T1 and
T2, we process them by increasing values. For each value visited
on one of the trajectories v, we take the recent one on the other
trajectory and find the corresponding rectangle. Then we subtract
those rectangles from the free space diagram to get an instance in
which we search for a monotone path. It is important to observe
that each trajectory point is associated with at most two rectangles
that can exist due to its interaction with locations of the other tra-
jectory that were reported right before or right after it. Thus, the
number of constraining rectangles is linear and does not affect the
complexity of the free space diagram. The discrete variant is de-
fined analogously. The rectangle definition remains the same, in-
validating pairs of points from both trajectories whose distance is
smaller than γ . Invalidating pairs can be done in O(T 3) time, since
one needs to check O(T 2) pairs against O(T ) rectangles. However,
by using arrangements of segments in IR2, we can improve the time
complexity to O(T 2 logT ), relying on the fact that testing the lo-
cation of a point within the constraining rectangles takes O(logT )
time. Note that based on the characteristics of the forbidden rect-
angles, they form two staircase structure in the free space, touching
the bottom-right and the top-left of the free space respectively; see
Fig. 2.

Figure 2: The free space diagram for a pair of trajectories a and
b overlayed with forbidden rectangles (in green) that contribute
to the invalid parameterization (the red areas). The parameter-
ization of the trajectories are below.

5. MATCHING ALGORITHM
Let S1 = {u1, . . . ,un} and S1 = {v1, . . . ,vn} be two sets of trajec-
tories. A straightforward approach (referred to as brute-force) for
solving the TMATCH problem consists of two steps. First, we
build a complete bipartite graph G with 2n vertices corresponding
to the trajectories. For an edge (ui,v j) in G, we compute its weight
as the distance between the trajectories ui and v j as discussed in the
previous section. The next step is to compute a perfect matching in
G. It is easy to see that the problem of finding a perfect matching
minimizing the maximum weight can be solved in polynomial time
using the classical Hopcroft-Karp algorithm [15] or by finding a
maximum flow in G [9].

Let us discuss complexity of the approach. Suppose computing a
distance for a pair of trajectories requires R steps. As discussed
earlier, R = O(T ) for TAS, R = O(T 2 logDmax) for NTAS, and
R = O(T 2 logT ) for MTAS, where T is the length of trajectories
and Dmax is the largest distance between input trajectories. Hence,
computing all pairwise distances requires O(n2R) time. A standard
algorithm for finding a perfect matching minimizing the maximum
weight uses a binary search on the maximum distance between tra-
jectories, and hence, requires O(n2.5 logDmax) time. Therefore, the
total time complexity of the algorithm is O(n2.5 logDmax + n2R).
As the length T of trajectories may be large, this is often ineffi-
cient in practice. Fortunately, in most cases we expect most of the
trajectories to be far enough (location-wise or time-wise) to be can-
didates for pairing. We next present two approaches to improve the
running time of the algorithm, depending on the availability of time
information.

5.1 Locality-Sensitive Hashing
Let us consider the scenario in which timestamps are available. We
improve the running time of the brute-force algorithm by limiting
the number of trajectory pairs that can be potentially matched. On a
high level, the idea is based on locality-sensitive hashing. For each
trajectory u ∈ S1 ∪ S2, we compute a hash h(u) so that “similar”
trajectories (those that can be potentially matched) get close values.
To this end, we consider a trajectory u as a point in RT , and choose a
random line in RT with origin p∈RT and direction q∈RT . Given a
trajectory u∈ RT , let h(u)∈ R be so that p+h(u)q is the projection
of u onto the line; that is, the nearest point on the line to u. The
projection can be found using the expression u ·(u−q−h(u)u) = 0,
where · denotes a dot product. It is easy to see that such a hash
is easy to compute in linear time for each trajectory. Note that
similar trajectories correspond to close points in RT , and therefore,
get similar hashes. However, it is also sometimes possible that for
the points lying far apart, the computed hashes are close.

Now, instead of considering all pairwise distances, we fix a con-
stant k and for each trajectory u ∈ S1, find k trajectories v ∈ S2 with
the closest hashes, that is, having the smallest values |h(u)−h(v)|.
It is easy to see that this results in computing kn� n2 distances and,
hence, a graph G with kn edges. Thus, the complexity of comput-
ing pairwise distances is reduced from O(n2R) to O(nR), and the
complexity of finding a matching is reduced from O(n2.5 logDmax)
to O(n1.5 logDmax).

5.2 Bottleneck Matching
Here we describe how to solve TMATCH when timestamps are
not available or are incomplete (NTAS, MTAS). We start by pre-
senting a geometric data structure called Sequential Bounding Box
Balanced Tree (SBBBT), which is similar to the well-known R−



tree [21]. We use it to bound each trajectory in a hierarchical fash-
ion. In the following, we assume that a bounding box is always
axis-aligned.

(a)

(b)

Figure 3: (a) Four levels of bounding boxes for a trajectory.
(b) The SBBBT of the trajectory. The vertices of the tree are
marked according to the boxes in (a) that they correspond to.
Green arrows connect vertices of the same level.

DEFINITION 5.1. A Sequential Bounding Box Balanced Tree
is a binary tree associated with a trajectory constructed as follows.
The root contains the bounding box of the trajectory. The left and
right children of the root correspond to the first and the second
part of the trajectory. Each child contains the bounding box of
the corresponding trajectory part. The rest of the tree is defined
recursively in the same manner; see Fig. 3.

We use SBBBT to speed up the computation of a matching. Our
algorithm has the following high-level steps; see Algorithm 1. First
we construct the SBBBT with logT levels for every trajectory.
Then we use binary search to find the minimum value of γ for
which there exists a perfect matching with all distances between
matched trajectories less than γ . It is easy to see that the matching
corresponding to the smallest such γ is a bottleneck matching.

The main idea of the algorithm is to avoid time-consuming com-
putation of the Fréchet distance between trajectories. Consider a
SBBBT tree constructed for a trajectory u. For any level l ≥ 0, let
SBBBT (u, l) be a set of bounding boxes (rectangles) on level l of
the tree. For a pair of trajectories u ∈ S1,v ∈ S2 and for l ≥ 0, we

Input : Trajectories S1 and S2
Output: The optimal bottleneck matching

/* computing SBBBT */
foreach trajectory u ∈ S1∪S2 do create SBBBT (u)

/* binary search on γ */
γl ← 0, γr← Dmax
while γl < γr do

γ ← (γl + γr)/2
/* computing candidate pairs */
foreach pair u ∈ S1,v ∈ S2 do

if DF (SBBBT (u),SBBBT (v))≤ γ then add (u,v) to G
end
/* matching */
if a perfect matching with DF ≤ γ exists in G then

γl ← γ

else
γr← γ

end
end

Algorithm 1: Bottleneck Matching

define the Fréchet distance between SBBBT (u, l) and SBBBT (v, l)
in a similar way as the discrete Fréchet distance between trajecto-
ries. Given two sets of rectangles Z1 and Z2 and four points s1 ∈
Z1,s2 ∈ Z2 (sources) and t1 ∈ Z1, t2 ∈ Z2 (destinations), the Fréchet
distance between Z1 and Z2 is the length of the shortest leash that
allows two entities from different zones to walk from the sources
to the destinations, while connected to each other with the leash.
Notice that bounding boxes of the tree on some level completely
cover the corresponding trajectory. Hence, if the Fréchet distance
between SBBBT (u, l) and SBBBT (v, l) for any level l ≥ 0 exceeds
γ , then the Fréchet distance between u and v also exceeds γ . Using
the observation, we may check whether DF (u,v)≤ γ by traversing
the trees as follows. If DF (SBBBT (u,0),SBBBT (v,0)) > γ then
the distance between u and v also exceeds γ; otherwise, proceed
with the next level; see Fig. 4. Only if the distance is less than γ

at all levels, we compute the actual Fréchet distance for the pair
of trajectories. Note that the computation cost increases as we de-
scend in the tree. Hence, disqualifying the trajectories early results
in significant savings in the running time.

Let us now describe how we check for the existence of a perfect
matching for a giving value γ in Algorithm 1. First, we compute
a bipartite graph G with 2n vertices in which an edge between two
trajectories is present if and only if the trajectories can be poten-
tially matched. To this end, we compute the Fréchet distance be-
tween SBBBT (u, l) and SBBBT (v, l) for levels 0 ≤ l ≤ 3, and add
an edge (u,v) to G if the distance is less than γ . Clearly, this op-
eration can be done efficiently since the number of boxes at the
levels is relatively small. We expect to filter out most of the pairs
of trajectories at this step, and construct a sparse G. Second, we
check whether there exists a perfect matching in G. For this pur-
pose, we use the maximum flow algorithm [9] by adding source and
sink vertices to G, and then iteratively finding augmenting paths
in the graph. During the search for an augmenting path, we use
the corresponding edge (u,v) if the Fréchet distance between u
and v is less than γ . Here, we again use the trees SBBBT (u) and
SBBBT (v) to speed up the running time. We check up to logT lev-
els of the trees, where T is the length of trajectories. We stress that
the actual computation of the Fréchet distance is performed only
if DF (SBBBT (u, l),SBBBT (v, l)) ≤ γ for all 0 ≤ l ≤ logT . If the



Figure 4: Computing the Fréchet distance with SBBBT. De-
creasing levels (from top-left clockwise) of SBBBT are depicted
on the parameterization diagram for a pair of trajectories. Red
cells represent forbidden parameterization values. In the ex-
ample, there exists a blue monotone path from bottom-left to
top-right in all levels.

maximum flow in G is equal to n, then we conclude that there exists
a perfect matching for the current value γ .

Let us mention an important aspect of our implementation of the
algorithm. For each pair of trajectories, we store the following in-
formation to improve performance. (1) If the Fréchet distance is
computed at an iteration, we use the value to prevent considera-
tion of the same pair of trajectories at the subsequent iterations.
(2) If the pair is filtered out for some γ (that is, the Fréchet dis-
tance is greater than γ), then we do not check it again for larger
values of γ . Overall, in the worst case the algorithm for computing
a bottleneck matching has the same complexity as the brute-force
algorithm. However, we found significant speedup in practice, as
discussed in Section 6.

6. EXPERIMENTS
We evaluate our algorithms on four datasets. We start with a real-
world collection of ant trajectories generated by citizen scientists.
We then consider two datasets constructed from route data of vehi-
cle trajectories. The last one is an artificial dataset that is designed
to highlight some features and insights about our methods.

6.1 Citizen Science Trajectories
The problem of matching pairs of trajectories naturally arises in
the context of extracting accurate average trajectories of ants from
many (possibly inaccurate) input trajectories contributed by citizen
scientists [8]. In this setting, a citizen scientist plays an online game
showing a video of an ant colony; the goal is to generate a trajectory
of a specified ant via mouse clicks. Citizen scientists track ants
during short video segments. In order to reconstruct a complete ant
trajectory, one needs to stitch together short pieces of overlapping
trajectories. Equivalently, given partially overlapping trajectories,

the problem is to identify trajectories corresponding to the same
ant; see Fig. 5.

Figure 5: 4 citizen science trajectories corresponding to two
different ants. Although the trajectories of the blue ant and
the red ants are partially overlap, the matching algorithm is
capable to identify 2 pairs of trajectories.

To evaluate our algorithms, we work with a video of a Temnotho-
rax rugatulus ant colony containing 10,000 frames, recorded at 30
frames per second. Our dataset consists of 252 citizen-scientist-
generated trajectories for 50 ants, with between 2 and 8 trajectories
per ant. From the data, we construct 150 inputs for our matching
algorithm. Every input consists of 50 pairs of trajectories with dif-
ferent length of overlapping segments varying from 300 seconds
(corresponding to 100 timestamps) to 5 seconds (corresponding to
1 common timestamp). Since the trajectories contain associated
time information, we compute distances as in TA setting and use the
matching algorithm described in Section 5.1. The bipartite graph
G is constructed by applying locality-sensitive hashing and using k
closest trajectories for k = 50, k = 20, and k = 10. Note that the
case with k = 50 is equivalent to the brute-force algorithm.

We compare the results by measuring the precision of the result
and the running time of the algorithm; see Fig. 6(a) and Fig. 6(b).
The precision is the percentage of correctly identified pairs of tra-
jectories, which we know from ground-truth data. As expected,
precision is higher for the inputs in which pairs of trajectories have
longer overlap. The brute-force algorithm correctly matches over
95% pairs of trajectories having 5-minute overlap. As expected,
using locality-sensitive hashing significantly improves the running
time, whie only slightly reducing the accuracy. Specifically, in
the setting where input trajectories have 1-minute overlap and for
k = 20 (which corresponds to 60% fewer considred possible tra-
jectories) we achive 85% precision (which corresponds to only 5%
reduction in accuracy).

6.2 Vehicle Trajectories
We work with two datasets constructed from real-world vehicle tra-
jectories. The first one contains public transportation trajectories
(busses and trams) on a specific day in Helsinki. The second one
contains ship trajectories at the port of Rotterdam; see Fig. 7. In
both cases the trajectories are represented by geographic coordi-
nates (longitude and latitude), and no time information is available.
The Helsinki dataset contains 4 collections with 20, 110, 282, and
496 trajectories; the Rotterdam dataset contains 5 collections with
36, 52, 92, 124, and 184 trajectories. The length of trajectories
varies from 11 to 2800 points with 1400 on average. Given a tra-
jectory, we create its paired trajectory by randomly moving every
point within a disk of radius r. We call the radius a perturbation and
use r ∈ {0.001,0.005,0.01,0.1} in our experiments. Note that the
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Figure 6: The results on the Citizen Science Trajecto-
ries dataset. k is the number of “close” trajectories
used in the locality-sensitive hashing approach. (a) Preci-
sion ( correctly identified pairs

all pairs ) is higher for trajectories with
longer overlap. (b) The running time of our algorithm.

value r = 0.01 corresponds approximately to 10 kilometers. Us-
ing the data, we constructed ≈ 106 inputs with 40− 992 pairs of
trajectories per input.

The results of our experiments are given in Fig. 8. Here we com-
pare the bottleneck matching algorithm designed for NTA setting
computing the discrete Fréchet distance between trajectories. We
observe that for the perturbation value r ≤ 0.01 the algorithm cor-
rectly identifies all pairs of trajectories, that is, achieves 100% pre-
cision. On the other hand, for r ≥ 1 none of the algorithms has a
chance to recover correct pairs of trajectories. Hence, in this section
we primarily focus on measuring the running time for smaller val-
ues of perturbation. We compare the basic brute-force algorithm
against our new bottleneck matching algorithm described in Sec-
tion 5.2. We first note that the running time depends on the size of
the input; see Fig. 8. The running time also depends on the noise
(perturbation value); larger noise results in longer running time.
This can be explained by the fact that larger noise results in more
pairs of trajectories that can be potentially matched to each other.

As the most time-consuming step in the matching algorithms is cal-
culation of the Fréchet distance, we also report on how well our
heuristic filters Fréchet computation calls. We define a saving ratio
as the number of the pairs of trajectories for which we computed
the Fréchet distance divided by the total number of pairs of trajec-
tories. The lower value corresponds to a better filtering, and the
brute-force algorithm has the saving ratio 1. The results are pre-
sented in Fig. 9. We note that for a dataset with ≥ 100 trajectories,
our heuristic using SBBBT filters out most of the pairs of trajecto-
ries. The actual computation of the Fréchet distance is done only
for≤ 2−5% of all pairs. This corresponds to the 20−50x speedup
compared to the brute-force algorithm.

Figure 7: The trajectories we experimented with: Helsinki
public transportation (top) and Ships near and at the port of
Rotterdam (bottom).
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Figure 8: The running time of the bottleneck matching algo-
rithm on the (a) Helsinki and (b) Rotterdam datasets for differ-
ent values of perturbation.



0.12

0.10

0.08

0.06

0.04

0.02

0.00

sa
vi

ng
 r

at
io

6005004003002001000

#trajectories

 r=0.01
 r=0.005
 r=0.001

(a)

0.12

0.10

0.08

0.06

0.04

0.02

0.00

sa
vi

ng
 r

at
io

200150100500

#trajectories

 r=0.1
 r=0.01
 r=0.001

(b)

Figure 9: The saving ratio of the bottleneck matching algo-
rithm on the (a) Helsinki and (b) Rotterdam datasets for dif-
ferent values of perturbation.

6.3 Artificial Trajectories
We generated an artificial dataset to further analyze the improve-
ment of running time and the effect on the quality of the output.
The sets S1 and S2 of trajectories are constructed as follows. Each
trajectory u ∈ S1 is constructed inside a square of size 10. Its start-
ing position and direction d are chosen randomly. Then u grows
along d with steps of unit length until it hits the boundary of the
square. When it happens, d is reflected with slight perturbation to
prevent trajectory repetitions. We then generate a paired trajectory
v ∈ S2 by duplicating u and perturbing each of its points inside a
disc centered at the point with radius r; see Fig. 10.

Figure 10: An example of two pairs of generated trajectories
inside a square. Each pair is colored with a specific color.

The motivation of experimenting with this dataset is as follows.
Any point along a trajectory u ∈ S1 may have many other trajecto-
ries close to it at any given timestamp. However, in the long run,
as we move along u, we expect that only its paired trajectory v will

be close to u. Consider a square of edge length 4. On average,
25% of the trajectories are close to any point of u. On the other
hand, the number of trajectories that are close to it after moving
from any point decreases exponentially. Thus, we expect that non-
paired trajectories are filtered relatively fast using SBBBT. Hence,
the Fréchet distance is computed rarely compared to the brute-force
algorithm. With this in mind, we analyze the bottleneck matching
algorithm using SBBBT in the NTA setting.

Running Time. First, we evaluate the running time. In the ex-
periments, we varied the number of trajectories and the length of a
trajectory; see Fig. 11. We use perturbation radius r = for which
our algorithm correctly matches all pairs of trajectories, that is, it
has 100% precision. We observed that the number of pairs for
which the algorithm computes the Fréchet distance linearly de-
pends on the input size (the number of trajectories). This explains
the linear growth of the running time in Fig. 11.
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Figure 11: Results of the Artificial Trajectories experiment.
The running time is shown as a function of the number of tra-
jectories for different trajectory lengths.

Precision. In this experiment we set the trajectory length T =
100, while varying the input size n ∈ {800,900,1000,1100,1200}
and the perturbation radius r ∈ {1,2,3,5,6}. We analyze how the
perturbation affects precision, that is, the number of correctly iden-
tified pairs divided by the total number of pairs. The results are
shown in Fig. 12. Not surprisingly, the precision is lower for inputs
with larger noise, and it decreases faster for inputs with more tra-
jectories. Note, however, that the precision remains steadily over
95% for the entire dataset if r ≤ 2.
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Figure 12: Precision of the results for the Artificial Trajectories
dataset.



7. CONCLUSION AND DISCUSSION
We presented a novel approach for matching trajectories gener-
ated by two independent resources. We considered three scenar-
ios: (1) timestamps are associated with the points of the trajecto-
ries, (2) timestamps are missing, and (3) some of the points include
timestamps. In every scenario, we presented an efficient algorithm
by solving two subproblems. The first one is to measure similarities
of two trajectories, and the second one is to match the trajectories
based on the computed similarities. When timestamps are avail-
able, we used locality-sensitive hashing to find a solution with high
accuracy. When no timestamps are known, we measured the simi-
larity using the Fréchet distance. In order to match the trajectories,
we use bottleneck matching (minimizing the maximum distance)
and a sequential bounding box balanced tree. To support partial
timestamp data, we modified the solution by introducing additional
constraints. We demonstrated experimentally that our algorithms
yield good results.

An important application of the presented algorithms is tracking
ants (or other insects) in long videos. For long videos (e.g., hun-
dreds or even thousands of hours), automated tracking methods are
not reliable. Whenever such algorithms loose tracking, the error
quickly accumulates and a trajectory cannot be recovered. Trajec-
tory matching can be used to resolve this problem. We ask citizen
scientists to solve the “hard ants” or “hard trajectory segments”,
while tracking “easy ants” and/or “easy trajectory segments” auto-
matically. Then we apply the matching algorithm for trajectories
and stitch together many short pieces of overlapping trajectories.

A great deal of challenging problems remain. In this work we de-
scribed how to match two sets of trajectories. In general, we may
have more than two sets. Already for three sets of trajectories the
problem changes dramatically. First, it is interesting to compute
the Fréchet distance in IR3. Second, for matching the trajectories
we would need to solve a tripartite matching problem (a matching
in hypergraphs in which vertices contain three elements), which is
known to be NP-hard. Also, our use of augmenting paths will not
fit so nicely with more than two sets. Another direction for future
research is to wisely select the number of levels in the SBBBT. In
this paper, we obtained good results with four levels in the tree. It
would be interesting to establish a good criteria for the determining
the number of levels so as to further improve performance.
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