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Abstract
We study the problem of computing semantic-preserving word clouds in which semantically related

words are close to each other. We implement three earlier algorithms for creating word clouds and three
new ones. We define several metrics for quantitative evaluation of the resulting layouts such as realized ad-
jacencies, layout distortion, compactness, and uniform area use. We then compare all algorithms according
to these metrics, using two different data sets of word documents from Wikipedia and ALENEX papers. We
show that two of our new algorithms, based on extracting heavy subgraphs from a weighted graph, outper-
form all the others by placing many more pairs of related words so that their bounding boxes are adjacent.
Moreover, this improvement is not achieved at the expense of significantly worsened measurements for the
other metrics (distortion, compaction, uniform area use). The online system implementing the algorithms,
all source code, and data sets are available at http://wordcloud.cs.arizona.edu.
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Figure 1: Word clouds for the Wikipedia page “Portland” (top 50 words).

1 Introduction

Word clouds and tag clouds are often used to visually summarize text. The practical tool, Wordle [25], with
its high quality design, graphics, style and functionality popularized word cloud visualizations as an appealing
way to summarize the content of a webpage, a research paper, or a political speech. While tools like this are
popular [14, 21, 26], most of them, including Wordle itself, have a potential shortcoming: They do not visualize
the relationships between the words in any way, as the placement of the words is completely independent of
their context. At the same time, someone looking at a word cloud can not help but perceive two words that
are placed next to each other as being related in some way; see Fig. 1(a). While some of the more recent word
cloud visualization tools aim to incorporate semantics in the layout [4, 13, 18, 27], none provide any guarantees
about the quality of the layout in terms of semantics. The semantic-preserving word cloud problem is related to
classic graph layout problems [12, 23], where the goal is to draw graphs so that vertex labels are readable and
Euclidean distances between pairs of vertices are proportional to the underlying graph distance between them.
Typically, vertices are treated as points and label overlap removal is a post-processing step [5, 10, 11].

A more formal model of the problem, using a vertex-weighted and edge-weighted graph [1], asks to explic-
itly measure how many related words are placed next to each other. The vertices in the graph are the words in
the document, with weights corresponding to some measure of importance (e.g., word frequency). The edges
in the graph capture the semantic relatedness between pairs of words (e.g., co-occurrence), with weights cor-
responding to the strength of the relation. Each vertex must be drawn as a rectangle with fixed dimensions
and with area determined by its weight. A contact between two rectangles is a common boundary, and if two
rectangles are in contact, we say that these rectangles touch. The edge weight between two vertices corresponds
to the value of making the corresponding rectangles touch. The realized adjacencies value is the sum of the
edge weights for all pairs of touching rectangles. The goal is to find a representation of the given rectangles,
which maximizes the realized adjacencies.

This model is related to work in rectangle representations of graphs, vertices are axis-aligned rectangles
with non-intersecting interiors and edges correspond rectangles with non-zero length common boundary. Every
graph that can be represented this way is planar and every triangle in such a graph is a facial triangle. These
two conditions are also sufficient to guarantee a rectangle representation [2, 9, 20, 22, 24]. In a recent survey
Felsner [8] reviews many rectangulation variants, including squarings.
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Figure 2: Overview of creating a semantic word cloud visualization.

In this paper we define metrics that aim to quantitatively measure the more abstract goal of “semantic
preservation”: realized adjacencies, distortion, compactness, and uniform area utilization. Then we implement
and extensively test six algorithms for generating word clouds: three earlier methods and three new ones. Two
of the new algorithms outperform the rest in terms of realized adjacencies, while not negatively impacting any
of the remaining metrics. An online system implementing all the algorithms, and which also provides all source
code and all data sets is at http://wordcloud.cs.arizona.edu.

2 Experimental Setup

All the algorithms for producing word clouds take as input an edge-weighted graph and rectangles of fixed
dimensions associated with every vertex. There are several parameters to consider in a preprocessing step
needed to extract this information from input texts. Our preprocessing pipeline is illustrated in Fig. 2.

Term Extraction: We first split the input text into sentences, which are then tokenized into a collection of
words using the open-source toolkit [28]. Common stop-words such as “a”, “the”, “is” are removed from the
collection. The remaining words are grouped by their stems using the Porter Stemming Algorithm [19], so that
related words such as “dance”, “dancer”, and “dancing” are reduced to their root, “danc”. The most common
variation of the word is used in the final word cloud.

Ranking: In the next step we rank the words in order of relative importance. We use three different
ranking functions, depending on word usage in the input text. Each ranking function orders words by their
assigned weight (rank), and the top n of them are selected, where n is the number of words visualized in the
final word cloud. Term Frequency (tf), is the most basic ranking function and one used in most traditional
word cloud visualizations. Even after removing common stop-words, term frequency tends to rank highly
many semantically meaningless words. Term Frequency-Inverse Document Frequency (tf-idf) addressed this
problem by normalizing the frequency of a word by its frequency in a larger text collection. In our case
tf − idf(w, d,D) = tf(w, d) × idf(w,D), where w is the word, d is the current input text and D is the
collection of all our text documents. Our third ranking function is based on the LexRank algorithm [7], which
was already used for creating semantic-preserving word clouds by Wu et al. [27]. The algorithm is a graph-
based method for computing relative importance of textual units using eigenvector centrality. In the graph
G = (V,E), vertices represent words and edges represent co-occurrence of the words in the same sentences. A
weight wij of an edge (i, j) is the number of times word i appears in the same sentence as word j. From the
graph it is possible to determine rank values of the words as described in [7].

Similarity Computation: Given the ranked list of words, we calculate an n × n matrix of pairwise sim-
ilarities so that related words receive high similarity values. We use two similarity functions depending on
the input text. The Cosine Similarity between words i and j can be computed as simij =

wi·wj

||wi||·||wj || , where
wi = {wi1, . . . , win} and wj = {wj1, . . . , wjn} are the vectors representing co-occurrence of the words with
other words in the input text. The Jaccard Similarity coefficient is an alternative measure for calculating pair-
wise word similarity. Let Si be a set of sentences in which the word i appears. Jaccard coefficient is the
number of sentences two words appeared together in divided by the number of sentences either word appeared
in: simij =

|Si∩Sj |
|Si∪Sj | . In both cases for all pairs of words, the similarity function produces a value between 0,
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indicating that a pair of words is not related, and 1, indicating that words are very similar.

3 Word Cloud Layout Algorithms

Here we briefly describe three early and three new word cloud layout algorithms, all of which we implemented
and tested extensively. The input for all algorithms is a collection of n rectangles, each with a fixed height and
width proportional to the rank of the word, together with n×nmatrix with entries 0 ≤ simij ≤ 1. The output is
a set of non-overlapping positions for the rectangles. The first algorithm, RANDOM, is used in the Wordle tool.
The CPWCV and SEAM CARVING are the semantics-preserving word clouds algorithms recently considered
in the literature. The INFLATE is our new heuristic, which is naturally extends CPWCV. The remaining two
heuristics, STAR FOREST and CYCLE COVER, are the novel approaches based on approximation algorithms
proposed in [1].

3.1 Wordle (Random)

The Wordle algorithm places one word at a time [25]. The algorithm uses greedy strategy, aiming to
use space as efficiently as possible. First the words are sorted by weight (proportional to the height of the
corresponding rectangle in our setting) in decreasing order. Then for each word in the order, a position is
picked at random. If the word intersects one of the previously placed words then it is moved along a spiral
of increasing radius radiating from its starting position. Although the original Wordle has many variants (e.g.,
words can be horizontal, vertical, or at arbitrary orientation), we always place words horizontally.

3.2 Context-Preserving Word Cloud Visualization (CPWCV)

The algorithm of Cui et al. [4] attempts to capture semantics building a word cloud in two steps. First
a dissimilarity matrix ∆ is computed, where ∆ij = 1 − simij for every pair of words i, j represents ideal
distances between words in n-dimensional space. Multidimensional scaling (MDS) is performed to obtain two-
dimensional positions for the words so that the given distances are (approximately) preserved. Since the step
usually creates a very sparse layout, in the second step compaction is achieved via a modified force-directed
algorithm. Attractive forces between pairs of words reduce empty space, while repulsive ensure that words
do not overlap. An additional force attempts to preserver semantic relations between words. To this end, a
triangular mesh (Delaunay triangulation in the implementation) is computed from the initial word positions,
and the additional force attempts to keep the mesh planar.

3.3 Seam Carving

The algorithm of Wu et al. [27] uses seam carving, a content-aware image resizing technique, to keep
semantically similar words close to each other. Here a preliminary overlap-free word layout is computed,
using a force-directed algorithm adapted from CPWCV [4]. Then the screen space is divided into regions,
and for each region an energy function is computed. A connected left-to-right or top-to-bottom path of low
energy regions is called a seam. The major step of the algorithm is iteratively carving out seams of low energy
to remove empty space between words. Since the order of removing seams greatly affects the final result, a
dynamic programming approach is used to find an optimal order. This gives us a word cloud in which no further
seam can be removed.

3.4 Inflate-and-Push (INFLATE)

We designed and implemented an alternative simple heuristic method for word layout, which aims to pre-
serve semantic relations between pairs of words. The heuristic starts with scaling down all word rectangles by
some constant S > 0 (in our implementation S = 100) and computing MDS on dissimilarity matrix ∆ in which
∆ij =

1−simij

S . At this point, the positions of the words respect their semantic relations; that is, semantically
similar words are located close to each other. We then iteratively increase dimensions of all rectangles by 5%
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(“inflate” words). After each iteration some words may overlap. We resolve the overlaps using the repulsive
forces from the force-directed model of the CPWCV algorithm (“push” words). Since the dimensions of each
rectangle grows by only 5%, the forces generally preserve relative positions of the words. In practice, 50 itera-
tions of the “inflate-push” procedure is sufficient for constructing a compact layout of words with their original
dimensions.

3.5 Star Forest

A star is a tree of depth at most 1, and a star forest is a forest whose connected components are all stars.
Our algorithm has three steps. First we partition the given graph, obtained from the dissimilarity matrix ∆, into
disjoint stars (extracting a star forest). Then we build a word cloud for every star (realizing a star). Finally, the
individual solutions are packed together to produce the final word cloud. Each step is described in details next.

We extract stars from the given graph greedily. We find a vertex v with the maximum adjacent weight, that
is, the one for which

∑
u∈V sim(v, u) is maximized. We then treat the vertex as a star center and the vertices

V \{v} as leaves. A set of words that will be adjacent to star center v is computed, and these words are removed
from the graph. This processes is repeated with the smaller graph, until the graph is empty.

The problem of computing the best set of words to be adjacent to a star center v is similar to the Knapsack
problem defined as follows: Given a set of items, each with a size and a value, pack a maximum-valued subset
of items into a knapsack of given capacity. Let B0 denote the box corresponding to the center of the star; see
Fig. 3(a). In any optimal solution there are four boxes B1, B2, B3, B4 whose sides contain one corner of the
center box B0 each. Given B1, B2, B3, B4, the problem reduces to assigning each remaining box Bi to at most
one of the four sides of B0, which completely contains the contact between Bi and B0. The task of assigning
boxes to a side of B0 is naturally converted to an instance of Knapsack: The size of a box Bi is its width for
the horizontal sides and its height for the vertical sides of B0, the value is the edge weight between Bi and B0.
Now we run the algorithm for the Knapsack problem for the top side of B0, remove the realized boxes, and
proceed with the bottom, left, and then right sides of the central box. In order to solve Knapsack, we use the
polynomial-time approximation scheme described in [15].

B0

B1

B2

B3
B4

(a) Solving a star (b) Packing star solutions

Figure 3: Star Forest algorithm.

Finally, the computed solutions for individual stars are packed together aiming for a compact drawing,
which preserves the semantic relations between words in different stars. We begin by placing the stars on the
plane so that no pair of words overlap; see Fig. 3(b). For every pair of stars s1, s2, we compute its similarity

as the average similarity between the words comprising s1 and s2, that is, sim(s1, s2) =

∑
v∈s1

∑
u∈s2

sim(u,v)

|s1||s2| .
MDS is utilized to find the initial layout with k(1 − sim(s1, s2)) being the ideal distance between the pair
of stars. In our implementation, we set the scaling factor k = 10 to ensure an overlap-free result. Then a
force-directed algorithm is employed to obtain a compact layout. Note that the algorithm adjusts the positions
of whole stars rather than individual words; thus, the already realized adjacencies between words are preserved.
The algorithm utilizes attractive forces aiming at removing empty space and placing semantically similar words
close to each other. The force between the stars is defined as fa(s1, s2) = ka(1 − sim(s1, s2))∆l, where ∆l
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represents the minimum distance between two central rectangles of the stars. The repulsive force is used to
prevent overlaps between words. The force only exists if two words occlude each other. It is defined as
fr(s1, s2) = krmin(∆x,∆y), where ∆x (∆y) is the width (height) of the overlapping region. In experiments,
we found that the priorities of the forces ka = 15, kr = 500 work well. As in a classical force-directed scheme,
the algorithm iteratively adjust positions of the stars. We impose a limit of 500 iterations, although the process
converges very quickly.

3.6 Cycle Cover

This algorithm is also based on extracting a heavy planar subgraph from the graph G = (V,E) defined by
the similarity matrix. In particular, finding a cycle cover (vertex-disjoint set of cycles) with maximum weight,
and realizing all cycles in the cover by touching boxes is a 2

dmax+1 approximation algorithm for total realized
adjacencies, for G with maximum degree dmax.

Although the heaviest cycle cover can be found in polynomial time in the size of the graph (see Chapter 10
in [16]), the algorithm is too slow in practice as it requires computation of a maximum weighted matching in
a not necessarily bipartite graph. We use the following simpler algorithm instead, which transforms G into a
related bipartite graph H . We create V (H) by first copying all vertices of G. Then for each vertex v ∈ V (G),
we add a new vertex v′ ∈ V (H), and for each edge (u, v) ∈ E(G), we create two edges (u′, v) ∈ E(H) and
(u, v′) ∈ E(H) with weights sim(u, v). The resulting graphH is bipartite by construction, thus making it easy
to compute a maximum weight matching in H . The matching induces a set of vertex-disjoint paths and cycles
in G since every vertex u is matched with one v′ and every u′ is matched with one v.

Once cycles and paths are extracted, we place the corresponding boxes so that all edges are realized as
follows. For a given cycle (v1, v2, . . . , vn), let t be maximum index such that

∑
i≤twi <

∑
i≤nwi/2, where

wi is the width of the i-th word. Vertices v1, v2, . . . , vt are placed side by side in order from left to right with
their bottom sides aligned on a shared horizontal line, while vertices vn, vn−1, . . . , vt+2 are placed from left to
right with their top sides aligned on the same line; see Fig. 4(a). It remains to place vt+1 in contact with vt and
vt+2, which can be done by adding vt+1 to the side of minimum width, or straddling the line in case of a tie.
It is possible that the resulting layout has poor aspect ratio (as cycles can be long), so we convert cycles with
more than 10 vertices into paths by removing the lightest edge. When realizing the edges of a path, we start
with words v1 and v2 placed next to each other. The i-th word is added to the layout so that it touches vi−1
using its first available side in clockwise order radiating from the side of the contact between vi−2 and vi−1.
This strategy tends to create more compact, spiral-like layouts; see Fig. 4(b).

v1
v2

v3 v4 v5
v6

v7v8v9
v10

(a) Realizing a cycle

v1
v2

v3v4
v5

v6

v7

v8
v9

v10

(b) Realizing a path

Figure 4: CYCLE COVER algorithm.

In the final step, the computed solutions for individual cycles and paths are packed together, aiming for a
compact drawing which preserves the semantic relations between words in different groups. We use the same
force-directed algorithm (described in the previous section for STAR FOREST) for that task.
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4 Metrics for Evaluating Word Cloud Layouts

While a great deal of the world cloud appeal is qualitative and depends on good graphic design, visual appeal,
etc., we concentrate of quantitaive metrics that capture several desirable properties. We use these metrics to
evaluate the quality of the six algorithms under consideration. The metrics are defined so that the measurement
is a real number in the range [0, 1] with 1 indicating the best value and 0 indicating the worst one.

Realized Adjacencies: Our primary quality criterion for semantics-preserving algorithms is the total realized
adjacency weight. In practice, proper contacts are not strictly necessary; even if two words do not share a non-
trivial boundary, they can be considered as “adjacent” if they are located very close to each other. We assume
that two rectangles touch each other if the distance between their boundaries is less than 1% of the width of
the smaller rectangle. For each pair of touching rectangles, the weight of the edge is added to the sum. We
normalize the sum by dividing it by the sum of all edge weights, thus measuring the fraction of the adjacency

weight that was realized. Hence, the metric Realized Adjacencies is defined by α =

∑
(u,v)∈Erealized

sim(u,v)∑
(u,v)∈E sim(u,v) .

Note that this value is always less than 1 as the input graph (as described in Section 2) is a complete graph and
thus highly non-planar. On the other hand, the contact graph of rectangles is always planar, which means that
in most cases it is impossible to realize contacts between all pairs of words.

Distortion: This metric is used to measure another aspect of how well the desired similarities are realized.
Instead of just looking at the weights of the adjacencies that are realized by touching rectangles, as in the
metric Realized Adjacencies, Distortion measures whether the distances between all pairs of rectangles are
proportional to the desired dissimilarities of the words. In order to compute the metric for a given layout, we
construct a matrix of ideal distances between the words with entry ∆uv = 1 − sim(u, v) for words u and v,
and a matrix of actual distances between words in which an entry duv denotes the distance between the words
u and v. Unlike in traditional measurements for a distortion of a graph embedding, we modify the definition
of distance to reflect the use of non-zero area boxes for vertices, instead of points. Note that even for touching
rectangles (and thus, naturally considered as close to each other as possible), the distance between their centers
may be quite large. Hence, we measure the distance between two words as the minimal distance between any
pair of points on the corresponding two rectangles. We then consider the matrices as two random variables and
compute the correlation coefficient between them:

r = 1−
∑

(u,v)∈E(∆uv −∆)(duv − d)√∑
(u,v)∈E(∆uv −∆)2

∑
(u,v)∈E(duv − d)2

,

where ∆ and d are the average values of the corresponding distances. Since the correlation coefficient takes
values between −1 and 1, Distortion is defined by β = (r + 1)/2. The value β = 1 indicates a perfect
correspondence between dissimilarities and distances, while β = 0.5 means that the values are independent.

Compactness: This metric measures the compactness of the produced word cloud. Ideally, one wants to
minimize the total used area and to avoid wasted space. Starting with the rectangles, we first compute the used
area as the area covered by words, by adding up the areas of all the rectangles. Clearly, any layout needs at least
that much space as overlaps are not allowed in our setting. We then compute the total area of the layout. To this
end, we consider two approaches. In the first one the total area is the area of the bounding box containing all
rectangles, while in the second approach, the area of the convex hull of all rectangles constitutes the total area.
The Compactness metric is therefore γ = 1− used area

total area , with value 1 corresponding to the best possible packing.

Uniform Area Utilization: Arguably, a desired property of a word cloud is the randomness of the distribution
of the words in the layout. In highly non-random distributions some parts of the cloud are densely populated
while others are sparse. The metric captures the uniformity of the word distribution. In order to compute the
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Figure 5: Realized adjacencies for word clouds of various size.

metric for a word cloud with n words, we divide the drawing into
√
n ×
√
n cells. Then for each rectangle,

find indices (x, y) of the cell containing the center of the rectangle. We may now consider the words as a
discrete random variable, and measure its information entropy, or the amount of uncertainty. To this end, we
compute the relative entropy of the variable (induced by a given layout of words) with respect to the uniform
distribution [3]: H =

∑
i,j p(i, j) log p(i,j)

q(i,j) , where the sum is taken over the created cells, p(i, j) is the actual
number of words in the cell (i, j), and q(i, j) = 1 is the number of words in the cell in the uniformly distributed
word cloud. Since the entropy is maximized as log n, Uniform Area Utilization is defined by δ = 1 − H

logn ,
where the value of 1 corresponds to an “ideal” word cloud.

Aspect Ratio and Running Time: While not formal evaluation metric for word cloud visualization, we
also measure the aspect ratio of the final layouts and the running times of the algorithms. We use a standard
measurement for the Aspect Ratio of the word clouds: W/H , where W and H are the width and height of the
bounding box. The running time of word cloud algorithms is an important parameter as many such tools are
expected to work in real-time and delays of more than a few seconds would negatively impact their utility. We
measure Running Time for the execution of the layout phase of the evaluated algorithms, excluding the time
needed to parse text, compute similarities between words, and draw the result on the display.

5 Results and Discussion

We evaluate all algorithms on two datasets: (1) WIKI, a set of 112 plain-text articles extracted from the English
Wikipedia, each consisting of at least 200 words, and (2) ALENEX, a set of 45 research papers published in
ALENEX in 2010-2012. The texts are preprocessed using the pipeline described in Section 2. Every algorithm
is executed 5 times on each text; hence, the results present average values of metrics over the runs. Our
implementation is written in Java, and the experiments were performed on a machine with an Intel i5 3.2GHz
processor with 8GB RAM.

Realized Adjacencies: The CYCLE COVER algorithm outperforms all other algorithms on all tested in-
stances; see Fig. 5 (and Fig. 11 and Fig. 12 in the Appendix). Depending on the method for extracting pairwise
word similarities, the algorithm realizes 30-50% of the total edge weights for small graphs (up to 50 words) and
15− 30% for larger graphs. It is worth noting here that CYCLE COVER improves upon the best existing heuris-
tic by a factor of nearly 2. The STAR FOREST also realizes more adjacencies than the existing semantics-aware
methods. However, for large word clouds (with over 100 words) the difference between STAR FOREST and the
existing algorithms drops to 2− 5%.

It is noticeable that the CPWCV algorithm and our INFLATE algorithm perform similarly in all settings.
This is the expected behavior, as both methods are based on similar force-directed models. For instances with
up to 80 − 100 words, these techniques are better than the SEAM CARVING algorithm. On the other hand,
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the more sophisticated SEAM CARVING algorithm is preferable for larger word clouds, which confirms earlier
results [27]. Not surprisingly, the RANDOM algorithm realizes only a small fraction of the total weight as it is
not designed for preserving semantics between words.

Compactness: We measure compactness in terms of both bounding box and convex hull of the drawing; see
Fig. 6(a). We first observe that the results in general do not depend on the used dataset, the ranking algorithm,
and the way similarities are computed. The word clouds constructed by the INFLATE algorithm are the most
compact, while the remaining algorithms perform very similar. In practice, such “overcompacted” drawings
are not very desirable since adjacent words are difficult to read; see Fig. 14(a). In order to alleviate this, when
generating actual word clouds we increase the dimensions of each rectangle by 10 − 20% and run the layout
algorithm for the new instance. In the new drawings, the words are easy to read, and the area is still used
efficiently; see Fig. 14(b).

Uniform Area Utilization: As expected, the RANDOM algorithm generates word clouds with the most uni-
form word placement; see Fig. 6(b). SEAM CARVING also utilizes area uniformly. The remaining methods are
all mostly comparable, with CYCLE COVER being the worst. The standard deviation for these 4 algorithms
is relatively high, which means that some of the created word clouds may be rather non-uniform. Similar to
the Compactness metric, we do not observe any significant difference of area utilization for different setting
(dataset, ranking and similarity algorithms).
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Figure 6: (a) Mean and standard deviation of Compactness for texts with 100 words. (b) Mean and standard deviation of
Uniform Area Utilization for word clouds of various size.

Distortion: The SEAM CARVING algorithm steadily produces the most undistorted layouts (note as usual,
although a bit counterintuitive here, high values are good); Fig. 7(a). Not surprisingly, the correlation coefficient
between the dissimilarity matrix and the actual distance matrix produced by RANDOM is very close to 0 (hence,
the value of Distortion is 0.5). For the remaining algorithms the results are slightly worse, but comparable.
Note that all considered algorithms (except RANDOM) have a common feature: they start with an initial layout
for the words (or for clusters of words) constructed by multidimensional scaling. At that point, the Distortion
measurements are generally very good, but the layout is sparse. Next the algorithms try to compact the drawing,
and the compaction step worsens Distortion significantly; see Fig. 15. Hence, there is an inherent tradeoff
between compactness of a drawing and its distortion.

Aspect Ratio and Running Time: RANDOM and SEAM CARVING produce word clouds with aspect ratio
close to the golden ratio (1+

√
5

2 ), which is commonly believed to be aesthetically pleasing; see Fig. 7(b). The
CPWCV and the STAR FOREST algorithms generate drawings with the aspect ratio from 5 : 2 to 7 : 2, and the
measurements are mostly independent of the number of words in a word cloud. The results of CYCLE COVER

are sometimes wider due to the nature of the algorithm. We emphasize here that none of the considered al-
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Figure 7: (a) Measurements of Distortion. Note that the y-axis starts at value 0.5. (b) Aspect Ratio

gorithms is designed to preserve a specific aspect ratio. If this turns out to be a major aesthetic parameter,
optimizing the layout algorithms, while maintaining the desired aspect ratio might be a meaningful direction
for future work.

The running times of all but one algorithm are reasonable, dealing with 100− 150 words within 2 seconds;
see Fig. 8. The exception here is the SEAM CARVING algorithm which requires 15− 25 seconds per graph on
the ALENEX dataset and 30− 50 on the WIKI dataset.
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Figure 8: Running time of the algorithms for word clouds of various size.

Discussion: The CYCLE COVER and the STAR FOREST algorithms are better at realizing adjacencies, and
they are comparable to the other algorithms in compactness, area utilization, and distortion. A likely explanation
is that the distribution of edge weights is highly non-uniform for real-world texts and articles; see Fig. 9(a). The
weights follow a Zipf distribution with many light edges and few heavy ones. Further, a small fraction of
the edges (about 8% for WIKI and about 5% for ALENEX datasets) carry half of the total edge weight. It is
known that words in text documents follow this distribution (Chapter 5 in [17]) and that might explain why
pairs of co-related words behave similarly. Both CYCLE COVER and STAR FOREST are based on the same
principle: first extract “heavy” subgraphs and then realize contacts within each subgraph independently. On
the other hand, the existing semantics-preserving approaches try to optimize all contacts simultaneously by
considering the complete graph. Our new strategy is more effective as it realize most of the heavy edges; see
Fig. 9(a). It is possible that in a different scenario (where edge weights are not similarities between words) the
distribution may be close to uniform; even in such a scenario CYCLE COVER and STAR FOREST outperform
existing methods, but the fraction of the realized edge weights is much smaller; see Fig. 9(b) and Fig. 13.

None of the existing semantics-preserving algorithms make any guarantees (or approximation guarantees)
about the optimality of realized edge weights when the input graph is complete (as in real-world examples).
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Figure 9: Distribution of weights (similarities between pairs of words) among edges (red line), and the fraction of realized
edges with a given weight (closed regions) for a new and an existing algorithms. (a) A graph constructed for a real-world
text (ALENEX dataset). (b) A complete graph in which edge weights are randomly chosen between 0 and 1.

However, it is still interesting to analyze how well these two algorithms realize adjacencies. Note that the sum
of all edge weights in a graph is not a good upper bound for an optimal solution since the realized subgraph is
necessarily planar and thus contains at most 3n−6 edges. Instead, we compute a maximum weight spanning tree
of the graph. Since the weight w of the tree is a 1/3-approximation for the maximum planar subgraph of G [6],
the value of 3w is also an upper bound for the maximum realized edge weights. On average CYCLE COVER

produces results which are at most 3 times less than the optimum for graphs with 150 vertices; see Fig. 10.
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Figure 10: Comparing the realized weight to the upper bound for maximum realized edge weights. Dots represent single
instances, solid lines represent average values over 5 runs. (a) Similarities constructed for a real-world text. (b) A graph
with random weights between words.

6 Conclusions and Future Work

We quantitatively evaluated six algorithms for computing word cloud layouts. The RANDOM algorithm uses
available area in the most uniform way and creates the most compact drawings, but does not place semantically
related words close to each other. The SEAM CARVING algorithm produces layouts with low distortion and
good aspect ratio, but they are not compact and the algorithm is very time-consuming. CPWCV and the new
INFLATE algorithms perform very similarly in our experiments, even though INFLATE is much simpler. The
two new algorithms STAR FOREST and CYCLE COVER, based on extracting heavy subgraphs, outperform all
other methods in terms of realized adjacencies and running time, and they are competitive in the other metrics.
We hope to find an algorithm with guaranteed approximation factor for extracting heavy planar subgraphs from
general graphs, which would lead to a guaranteed fraction of realized adjacencies. We also want to consider
more relaxed versions of adjacency (two words might not have rectangles which share a border, but there is no
other word between them), and other usability issues.
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Appendix
Here we include more examples of word clouds generated by the six algorithms discussed in the paper. We also
include several additional plots, showing the effect of different term ranking and similarity matrix computations
on the realized adjacencies metric.

0.5

0.4

0.3

0.2

0.1

0.0

R
ea

liz
ed

 A
dj

ac
en

ci
es

140120100806040200

number of words

 Random
 CPWCV
 Seam Carving
 Inflate
 Star Forest
 Cycle Cover

Term Frequency, Cosine Similarity

0.5

0.4

0.3

0.2

0.1

0.0

140120100806040200

TF-IDF, Cosine Similarity

0.4

0.3

0.2

0.1

0.0

14012010080604020

Lex Ranking, Cosine Similarity
0.5

0.4

0.3

0.2

0.1

0.0

R
ea

liz
ed

 A
dj

ac
en

ci
es

140120100806040200

number of words

 Random
 CPWCV
 Seam Carving
 Inflate
 Star Forest
 Cycle Cover

Term Frequency, Jaccard Similarity

0.5

0.4

0.3

0.2

0.1

0.0

14012010080604020

TF-IDF, Jaccard Similarity

0.5

0.4

0.3

0.2

0.1

0.0

14012010080604020

Lex Ranking, Jaccard Similarity
Figure 11: Realized adjacencies for the WIKI dataset.

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

R
ea

liz
ed

 A
dj

ac
en

ci
es

140120100806040200

number of words

 Random
 CPWCV
 Seam Carving
 Inflate
 Star Forest
 Cycle Cover

Term Frequency, Cosine Similarity

0.8

0.6

0.4

0.2

0.0

140120100806040200

TF-IDF, Cosine Similarity

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

140120100806040200

Lex Ranking, Cosine Similarity
0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

R
ea

liz
ed

 A
dj

ac
en

ci
es

140120100806040200

number of words

 Random
 CPWCV
 Seam Carving
 Inflate
 Star Forest
 Cycle Cover

Term Frequency, Jaccard Similarity

0.8

0.6

0.4

0.2

0.0

140120100806040200

TF-IDF, Jaccard Similarity

0.6

0.5

0.4

0.3

0.2

0.1

0.0

140120100806040200

Lex Ranking, Jaccard Similarity
Figure 12: Realized adjacencies for the ALENEX dataset.
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Figure 13: Realized adjacencies for a complete graph in which edge weights are randomly chosen between 0 and 1.

(a) (b)

Figure 14: Wikipedia article “Albert Einstein”. (a) Overcompacted word cloud constructed with the INFLATE algorithm.
(b) Result after increasing rectangles by 20%.

(a) (b)

Figure 15: ALENEX paper “Experiments on Density-Constrained Graph Clustering” by Görke et al. (a) Initial layout
found by MDS with Distortion β = 0.68. (b) Final result constructed by CPWCV with worsened value of β = 0.57.
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(a) RANDOM: α = 0.01, β = 0.5, γ = 0.58, δ = 0.82 (b) SEAM CARVING: α = 0.12, β = 0.59, γ = 0.47, δ = 0.79

(c) CPWCV: α = 0.15, β = 0.55, γ = 0.63, δ = 0.76

(d) INFLATE: α = 0.15, β = 0.54, γ = 0.75, δ = 0.72

(e) STAR FOREST: α = 0.23, β = 0.53, γ = 0.56, δ = 0.7

(f) CYCLE COVER: α = 0.35, β = 0.56, γ = 0.61, δ = 0.61

Figure 16: “Computing Machinery and Intelligence” by A. M. Turing (top 75 words).

15


