
Improved Approximation Algorithms1

for Semantic Word Clouds2

Michael A. Bekos∗ Thomas C. van Dijk† Martin Fink† Philipp Kindermann†
3

Stephen Kobourov‡ Sergey Pupyrev‡ Joachim Spoerhase† Alexander Wolff†
4

December 3, 20135

Abstract6

We study the following geometric representation problem: Given a graph whose vertices corre-7

spond to axis-aligned rectangles with fixed dimensions, arrange the rectangles without overlaps in8

the plane such that two rectangles touch if the graph contains an edge between them. This problem9

is called CONTACT REPRESENTATION OF WORD NETWORKS (CROWN) since it formalizes the10

geometric problem behind drawing word clouds in which semantically related words are close to each11

other. CROWN is known to be NP-hard, and there are approximation algorithms for certain graph12

classes for the optimization version, MAX-CROWN, in which realizing each desired adjacency yields13

a certain profit.14

We present the first O(1)-approximation algorithm for the general case, when the input is a15

complete weighted graph, and for the bipartite case. Since the subgraph of realized adjacencies is16

necessarily planar, we also consider several planar graph classes (namely stars, trees, outerplanar,17

and planar graphs), improving upon the known results. For some graph classes, we also describe18

improvements in the unweighted case, where each adjacency yields the same profit. Finally, we show19

that the problem is APX-hard on bipartite graphs of bounded maximum degree.20
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1 Introduction21

In the last few years, word clouds have become a standard tool for abstracting, visualizing, and comparing22

text documents. For example, word clouds were used in 2008 to contrast the speeches of the US23

presidential candidates Obama and McCain. More recently, the German media used them to visualize24

the newly signed coalition agreement and to compare it to a similar agreement from 2009 [23]. A word25

cloud of a given document consists of the most important (or most frequent) words in that document.26

Each word is printed in a given font and scaled by a factor roughly proportional to its importance (the27

same is done with the names of towns and cities on geographic maps, for example). The printed words28

are arranged without overlap and tightly packed into some shape (usually a rectangle). Tag clouds look29

similar; they consist of keyword metadata (tags) that have been attributed to resources in some collection30

such as web pages or photos.31

Wordle [22] is a popular tool for drawing word or tag clouds. The Wordle website allows users to32

upload a list of words and, for each word, its relative importance. The user can further select font, color33

scheme, and decide whether all words must be placed horizontally or whether words can also be placed34

vertically. The tool then computes a placement of the words, each scaled according to its importance,35

such that no two words overlap. Generally, the drawings are very compact and aesthetically appealing.36

In the automated analysis of text one is usually not just interested in the most important words and37

their frequencies, but also in the connections between these words. For example, if a pair of words38

often appears together in a sentence, then this is often seen as evidence that this pair of words is linked39

semantically [16]. In this case, it makes sense to place the two words close to each other in the word40

cloud that visualizes the given text. This leads to the problem CONTACT REPRESENTATION OF WORD41

NETWORKS (CROWN) that we study in this paper.42

In CROWN, the input is a graph G = (V,E) of desired contacts. We are also given, for each vertex43

v ∈V , the dimensions (but not the position) of a box Bv, that is, an axis-aligned rectangle. We denote the44

height and width of Bv by h(Bv) and w(Bv), respectively, or, more briefly, by h(v) and w(v). For each45

edge e = (u,v) of G, we are given a positive number p(e) = p(u,v), that corresponds to the profit of e.46

For ease of notation, we set p(u,v) = 0 for any non-edge (u,v) ∈V 2 \E.47

Given a box B and a point p = (x,y) in the plane, let B(p) be a placement of B with lower left48

corner p. A representation of G is a map λ : V → R2 such that for any two vertices u 6= v, it holds49

that Bu(λ (u)) and Bv(λ (v)) are interior-disjoint. Boxes may touch, that is, their boundaries may intersect.50

If the intersection is non-degenerate, that is, a line segment of positive length, we say that the boxes are in51

contact. We say that a representation λ realizes an edge (u,v) of G if boxes Bu(λ (u)) and Bv(λ (Bv)) are52

in contact. This yields the following problem.53

Contact Representation of Word Networks (MAX-CROWN): Given an edge-weighted graph G54

whose vertices correspond to boxes, find a representation of G with the vertex boxes that maximizes the55

total profit (that is, the weight) of the realized edges. We also consider the unweighted version of the56

problem, where all desired contacts yield a profit of 1.57

Figure 1: Semantics-preserving word cloud for the 35 most “important” words in this paper. Following the text
processing pipeline of Barth et al. [3], these are the words ranked highest by LexRank [9], after removal of stop
words such as “the”. The edge profits are proportional to the relative frequency with which the words occur in the
same sentences. The layout algorithm of Barth et al. [3] first extracts a heavy star forest from the weighted input
graph as in Theorem 5 and then applies a force-directed post-processing.
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Weighted Unweighted

Graph class Ratio [2] Ratio [new] Ref. Ratio Ref.

cycle, path 1
star α 1+ ε Thm. 1
tree 2α 2+ ε Thm. 1 2 Thm. 6
max-degree ∆ b(∆+1)/2c
planar max-deg. ∆ 1+ ε Thm. 7
outerplanar 3+ ε Thm. 2
planar 5α 5+ ε Thm. 1
bipartite 16α/3 (≈ 8.4) Thm. 3

APX-hard Thm. 9
general 32α/3 (≈ 16.9; rand.) Thm. 4 5+16α/3 Thm. 8

40α/3 (≈ 21.1; det.) Thm. 5

Table 1: Previously known and new results for the unweighted and weighted versions of MAX-CROWN (for
α ≈ 1.58 and any ε > 0). Note that Barth et al. [2] counted point contacts of boxes, while we count only proper
contacts. To overcome this, the postprocessing presented in the proof of Theorem 3 can be applied to their results.
In this case, α has to be replaced by 4α/3 in the results in column 1.

Previous Work. Barth et al. [2] recently introduced MAX-CROWN and showed that the problem is58

strongly NP-hard even for trees and weakly NP-hard even for stars. They presented an exact algorithm59

for cycles and approximation algorithms for stars, trees, planar graphs, and graphs of constant maximum60

degree; see the first column of Table 1. Some of their solutions use an approximation algorithm with ratio61

α = e/(e−1)≈ 1.58 [11] for the GENERALIZED ASSIGNMENT PROBLEM (GAP), defined as follows:62

Given a set of bins with capacity constraints and a set of items that possibly have different sizes and63

values for each bin, pack a maximum-valued subset of items into the bins. The problem is APX-hard [5].64

MAX-CROWN is related to finding rectangle representations of graphs, where vertices are represented65

by axis-aligned rectangles with non-intersecting interiors and edges correspond to rectangles with a66

common boundary of non-zero length. Every graph that can be represented this way is planar and67

every triangle in such a graph is a facial triangle. These two conditions are also sufficient to guarantee a68

rectangle representation [4]. Rectangle representations play an important role in VLSI layout, cartography,69

and architecture (floor planning). In a recent survey, Felsner [10] reviews many rectangulation variants.70

Several interesting problems arise when the rectangles in the representation are restricted. Eppstein et71

al. [8] consider rectangle representations which can realize any given area-requirement on the rectangles,72

so-called area-preserving rectangular cartograms, which were introduced by Raisz [21] already in73

the 1930s. Unlike cartograms, in our setting there is no inherent geography, and hence, words can be74

positioned anywhere. Moreover, each word has fixed dimensions enforced by its importance in the input75

text, rather than just fixed area. Nöllenburg et al. [19] recently considered a variant where the edge76

weights prescribe the length of the desired contacts.77

Finally, the problem of computing semantics-aware word clouds is related to classic graph layout78

problems, where the goal is to draw graphs so that vertex labels are readable and Euclidean distances79

between pairs of vertices are proportional to the underlying graph distance between them. Typically,80

however, vertices are treated as points and label overlap removal is a post-processing step [7, 13]. Most81

tag cloud and word cloud tools such as Wordle [22] do not show the semantic relationships between words,82

but force-directed graph layout heuristics are sometimes used to add such functionality [3, 6, 15, 20, 24].83

Our Contribution. Known results and our contributions to MAX-CROWN are shown in Table 1. Our84

results rely on two main tools; (i) a PTAS for a special case of GAP and (ii) a lemma for combining85

results for subgraphs of the given input graph; see Section 2. The PTAS is based on rounding fractional86

LP solutions; it is one of our main results. The combination lemma is quite simple but very useful when a87
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graph can be covered by few subgraphs that belong to graph classes that admit good approximations for88

MAX-CROWN. For stars, trees and planar graphs, it suffices to plug the GAP PTAS into the algorithms89

of Barth et al. [2] to improve their results. Our algorithm for outerplanar graphs, which have not been90

studied before, also relies on the GAP PTAS.91

Our other main result is the use of the combination lemma, which, among others, yielded the first92

approximation algorithms for bipartite and for general graphs; see Section 3. For general graphs, we93

present a simple randomized solution (based on the solution for bipartite graphs) and a more involved94

deterministic algorithm. For trees, planar graphs of constant maximum degree, and general graphs, we95

have improved results in the unweighted case; see Section 4. Finally, we show APX-hardness for bipartite96

graphs of maximum degree 9 (see Section 5) and list some open problems (see Section 6).97

Model. As in most work on rectangle contact representations, we do not count point contacts of boxes.98

In other words, we consider two boxes in contact only if their intersection is a line segment of positive99

length. This type of contact is called proper contact. In this model, the contact graph of the boxes is clearly100

planar. With small modifications, our algorithms do, however, guarantee constant-factor approximations101

also in the model that allows and rewards point contacts. We discuss the differences in Appendix A.102

Runtimes. Most of our algorithms involve approximating a number of GAP instances as a subroutine,103

using either the PTAS presented in Section 2.2 or the approximation algorithm of Fleischer et al. [11].104

Because of this, the runtime of our algorithms consists mostly of approximating GAP instances. Both the105

PTAS and the existing algorithm solve linear programs, so we refrain from explicitly stating the runtime106

of these algorithms.107

2 Preliminaries108

In this section, we present two technical lemmas that will help us to prove our main results in the following109

two sections where we treat the weighted and unweighted cases of MAX-CROWN. The second lemma110

immediately improves the results of Barth et al. [2] concerning stars, trees, and planar graphs.111

2.1 A Combination Lemma112

Several of our algorithms cover the input graph with subgraphs that belong to graph classes for which113

the MAX-CROWN problem is known to admit good approximations. The following lemma allows114

us to combine the solutions for the subgraphs. We say that a graph G = (V,E) is covered by graphs115

G1 = (V,E1), . . . ,Gk = (V,Ek) if E = E1∪·· ·∪Ek.116

Lemma 1. Let graph G = (V,E) be covered by graphs G1,G2, . . . ,Gk. If, for i = 1,2, . . . ,k, weighted117

MAX-CROWN on graph Gi admits an αi-approximation, then weighted MAX-CROWN on G admits a118 (
∑

k
i=1 αi

)
-approximation.119

Proof. Our algorithm works as follows. For i = 1, . . . ,k, we apply the αi-approximation algorithm120

to Gi and report the result with the largest profit as the result for G. We show that this algorithm121

has the claimed performance guarantee. For the graphs G,G1, . . . ,Gk, let OPT,OPT1, . . . ,OPTk be the122

optimum profits and let ALG,ALG1, . . . ,ALGk be the profits of the approximate solutions. By definition,123

ALGi ≥ OPTi /αi for i = 1, . . . ,k. Moreover, OPT≤ ∑
k
i=1 OPTi because the edges of G are covered by124

the edges of G1, . . . ,Gk. Assume, w.l.o.g., that OPT1 /α1 = maxi(OPTi /αi). Then125

ALG ≥ ALG1 ≥
OPT1

α1
≥ ∑

k
i=1 OPTi

∑
k
i=1 αi

≥ OPT

∑
k
i=1 αi

.
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2.2 A PTAS for GAP with a Constant Number of Bins126

Consider an instance of GAP with items i = 1, . . . ,n and bins j = 1, . . . ,m. Bin j has capacity s j and, for127

this bin, item i has size si j and profit pi j. Note that the problem is NP-hard even for m = 2; PARTITION is128

a special case of GAP. We provide a PTAS for constant m. We use the following LP relaxation.129

max
n

∑
i=1

m

∑
j=1

pi jxi j

s. t.
m

∑
j=1

xi j ≤ 1 i = 1, . . . ,n (1)

n

∑
i=1

si jxi j ≤ s j j = 1, . . . ,m (2)

xi j ≥ 0 i = 1, . . . ,n, j = 1, . . . ,m (3)

We select a positive integer k, the parameter that corresponds to the accuracy of the algorithm. The130

algorithm works as follows. We iterate over all possible assignments of at most k items to bins. (The131

idea is to guess the assignment of the k items giving the highest profit.) For each such assignment we132

restrict the solution space to extensions of the given partial assignment. This is achieved by the following133

pruning operation. Let I be the set of fixed items. Remove the items in I from the item set. Reduce the134

size of each bin by the size already occupied by the fixed items (as given by the partial assignment). If135

the profit pi j of some remaining item i for some bin j is larger than the minimum profit of the items in136

the partial assignment then this profit it set to 0 (because the fixed items were assumed to be the ones137

with the highest profit). For the residual GAP instance, we solve the above LP relaxation. In fact, we138

compute an optimum extreme point solution x. All fractional values in x are set to 0. We assign the items139

of the residual instance as given by the (now integral) solution x.140

We claim that the above algorithm is a PTAS if m is constant and the parameter k is chosen sufficiently141

large. First note that the exhaustive search in the above algorithm takes O
((n

k

)
mk

)
= O(nk) steps (when142

m is treated as a constant), and solving the LP can be done in polynomial time.143

We now analyze the approximation performance of the algorithm. Consider an optimum solution to144

the GAP instance and let I∗ be the k items in this solution achieving the highest profit. If the optimum145

solution assigns less than k items then the solution will already be found by the exhaustive search phase.146

Otherwise, the exhaustive search phase of the algorithm will consider the set I∗ and an assignment of147

it as in the optimum solution. Let P∗ be the profit achieved by the items in I∗ in the optimum solution.148

Note that the optimum solution also provides a feasible assignment of the remaining items for the pruned149

instance generated by the algorithm. The profit P̄ achieved by this solution is the same as the profit of the150

items in the optimum solution that are not in I∗. Here, note that the items in I∗ have the highest profits151

in the optimum solution. Therefore, the profits of the remaining items in the optimum solution are not152

affected by the modification of the profits in the pruning operation. Thus OPT = P∗+ P̄. The profit P153

achieved by the fractional optimum solution x can only be higher than P̄ and, hence, OPT≤ P∗+P.154

We now analyze the effect of the rounding step. The crucial insight is that at most m fractional155

variables are set to 0 by this step and, hence, the loss is small in comparison to P∗.156

The above LP has mn variables and n+m+mn constraints (1), (2), (3). By standard polyhedral157

theory, an extreme point solution x satisfies at least mn of these constraints with equality. Let ` be the158

number of positive variables xi j in x. For these variables, constraint (3) is not tight. Hence at least ` of the159

constraints (1), (2) must be tight. This implies that at least `−m of the constraints (1) are tight. Let `′160

be the number of items i where constraint (1) is tight and all variables xi j are integral. This means that161

exactly one of these variables is 1 while the remaining ones are 0. There are at least `−m− `′ items i162

where constraint (1) is tight but where there are non-integral variables xi j. For these items at least two of163

their variables are positive. Since there are ` positive variables in total, we have that `′+2(`−m−`′)≤ `,164

which implies `′ ≥ `−m. Consequently x has at most m fractional entries. Note that in the residual165
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instance no profit pi j is larger than P∗/k. Hence, the loss in profit when rounding the fractional variables166

in x down to 0 is bounded by mP∗/k. This yields a total profit of at least167

P∗+P− mP∗

k
≥

(
1− m

k

)
(P∗+P) ≥

(
1− m

k

)
OPT .

Thus, for any ε > 0, we achieve a (1+ ε)-approximation by setting k = d(1+1/ε)me= Θ(m/ε). This168

yields the following lemma.169

Lemma 2. For any ε > 0, there is a (1+ ε)-approximation algorithm for GAP with a constant number170

of bins. The algorithm requires solving nO(1/ε) many LPs with O(n) many variables and constraints each.171

Using the two above lemmas, we improve the approximation algorithms of Barth et al. [2].172

Theorem 1. Weighted MAX-CROWN admits a (1+ ε)-approximation algorithm on stars, a (2+ ε)-173

approximation algorithm on trees, and a (5+ ε)-approximation algorithm on planar graphs.174

Proof. By Lemma 1, the claim for stars implies the other two claims since a tree can be covered by two175

star forests and a planar graph can be covered by five star forests in polynomial time [14].176

u

uc
1 uc

2

uc
3uc

4

uh
1

uh
2

uv
1 uv

2

Figure 2: PTAS for stars

We now show that we can use Lemma 2 to get a PTAS for stars. We first177

give the PTAS for the model with point contacts and then argue how to tackle178

the model without point contacts. Let u be the center vertex of the star. We179

create eight bins: four corner bins uc
1,u

c
2,u

c
3, and uc

4 modeling adjacencies180

on the four corners of the box u, two horizontal bins uh
1 and uh

2 modeling181

adjacencies on the top and bottom side of u, and two vertical bins uv
1 and uv

2182

modeling adjacencies on the left and right side of u; see Fig. 2. The capacity183

of the corner bins is 1, the capacity of the horizontal bins is the width w(u)184

of u, and the capacity of the vertical bins is the height h(u) of u. Next, we185

introduce an item i(v) for any leaf vertex v of the star. The size of i(v) is 1 in186

any corner bin, w(v) in any horizontal bin, and h(v) in any vertical bin. The profit of i(v) in any bin is the187

profit p(u,v) of the edge (u,v).188

Note that any feasible solution to the MAX-CROWN instance can be normalized so that any box189

that touches a corner of u has a point contact with u. Hence, the above is an approximation-preserving190

reduction from weighted MAX-CROWN on stars (with point contacts) to GAP. By Lemma 2, we obtain a191

PTAS.192

Now we show how we can reduce the case without point contacts to the model with point contacts.193

We first assume that all boxes have integral edge lengths, which can be accomplished by scaling. Consider194

a feasible solution without point contacts. We now modify the solution as follows. Each box that195

touches a corner of u is moved so that it has a point contact with this corner. Afterwards, we move196

some of the remaining boxes until all corners of u have point contacts or until we run out of boxes. This197

yields a solution with point contacts in which there are two opposite sides of u—say the two horizontal198

sides—which either do not touch any box or from which we removed one box during the modification.199

Now observe that, if we shrink the two horizontal sides by an amount of 1/2, then all contacts can be200

preserved since there was a slack of at least 1 at both horizontal sides. Conversely, observe that any201

feasible solution with point contacts to the modified instance with shrunken horizontal sides can be202

transformed into a solution without point contacts since we always have a slack of at least 1/2 on both203

horizontal sides. This shows that there is a correspondence between feasible solutions without point204

contacts and feasible solutions with point contacts to a modified instance where we either shrink the205

horizontal or the vertical sides by 1/2. The PTAS for MAX-CROWN on stars consists in applying a PTAS206

to two instances of MAX-CROWN with point contacts where we shrink the horizontal or vertical sides,207

respectively, and in outputting the better of the two solutions.208
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3 The Weighted Case209

In this section, we consider the weighted MAX-CROWN problem. First, we give a (3+ ε)-approximation210

for outerplanar graphs. Then, we present a 16α/3-approximation for bipartite graphs. For general graphs,211

we provide a simple randomized 32α/3-approximation and a deterministic 40α/3-approximation.212

Theorem 2. Weighted MAX-CROWN on outerplanar graphs admits a (3+ ε)-approximation.213

Proof. It is known that the star arboricity of an outerplanar graph is 3, that is, it can be partitioned into at214

most three star forests [14]. Here we give a simple algorithm for finding such a partitioning.215

Any outerplanar graph has degeneracy at most 2, that is, it has a vertex of degree at most 2. We216

prove that any outerplanar graph G can be partitioned into three star forests such that every vertex of G217

is the center of only one star. Clearly, it is sufficient to prove the claim for maximal outerplanar graphs218

in which all vertices have degree at least 2. We use induction on the number of vertices of G. The base219

of the induction corresponds to a 3-cycle for which the claim clearly holds. For the induction step, let220

v be a degree-2 vertex of G and let (v,u) and (v,w) be its incident edges. The graph G− v is maximal221

outerplanar and thus, by induction hypothesis, it can be partitioned into star forests F1, F2, and F3 such222

that u is the center of a star in F1 and w is the center of a star in F2. Now we can cover G with three star223

forests: we add (v,u) to F1, we add (v,w) to F2, and we create a new star centered at v in F3.224

Applying Lemmas 1 and 2 to these three star forests completes the proof.225

Theorem 3. Weighted MAX-CROWN on bipartite graphs admits a 16α/3-approximation.226

Proof. Let G = (V,E) be a bipartite input graph with V =V1 ∪̇V2 and E ⊆V1×V2. Using G, we build227

an instance of GAP as follows. For each vertex u ∈V1, we create eight bins uc
1,u

c
2,u

c
3,u

c
4,u

h
1,u

h
2,u

v
1,u

v
2 and228

set the capacities exactly as we did for the star center in Theorem 1. Next, we add an item i(v) for every229

vertex v ∈V2. The size of i(v) is, again, 1 in any corner bin, w(v) in any horizontal bin, and h(v) in any230

vertical bin. For u ∈V1, the profit of i(v) is p(u,v) in any bin of u.231

It is easy to see that solutions to the GAP instance are equivalent to word cloud solutions (with point232

contacts) in which the realized edges correspond to a forest of stars with all star centers being vertices233

of V1. Hence, we can find an approximate solution of profit ALG′1 ≥ OPT′1 /α where OPT′1 is the profit234

of an optimum solution (with point contacts) consisting of a star forest with centers in V1.235

We now show how to get a solution without point contacts. If the three bins on the top side of a236

vertex u (two corner bins and one horizontal bin) are not completely full, we can move the boxes in the237

corners a bit so that we have proper contacts. Otherwise, we remove the lightest item from one of these238

bins. We treat the three bottommost bins analogously. Note that in both cases we only remove an item if239

all three bins are completely full. The resulting solution can be realized without point contacts. We do the240

same for the three left and three right bins and finally choose the heavier of the two solutions. It is easy to241

see that we lose at most 1/4 of the profit for the star center u. If we do this for all star centers, we get242

a solution with profit ALG1 ≥ 3/4 ·ALG′1 ≥ 3OPT′1 /(4α)≥ 3OPT1 /(4α) where OPT1 is the profit of243

an optimum solution (without point contacts) consisting of a star forest with centers in V1.244

Analogously, we can find a solution of profit ALG2≥ 3OPT2 /(4α) with star centers in V2, where OPT2245

is the maximum profit that a star forest with centers in V2 can realize. Among the two solutions, we pick246

the one whose profit ALG = max{ALG1,ALG2} is larger.247

Let G? = (V,E?) be the contact graph realized by a fixed the optimum solution, and let OPT = p(E?)248

be its total profit. We now show that ALG ≥ 3OPT/(16α). As G? is a planar bipartite graph, |E?| ≤249

2n−4. Hence, we can decompose E? into two forests H1 and H2 using a result of Nash-Williams [17];250

see Fig. 4 in Appendix B. We can further decompose H1 into two star forests S1 and S′1 in such a way that251

the star centers of S1 are in V1 and the star centers of S′1 are in V2. Similarly, we decompose H2 into a252

forest S2 of stars with centers in V1 and a forest S′2 of stars with centers in V2. As we decomposed the253

optimum solution into four star forests, one of them—say S1—has profit p(S1)≥ OPT/4. On the other254

hand, OPT1 ≥ p(S1). Summing up, we get255

ALG ≥ ALG1 ≥ 3OPT1 /(4α) ≥ 3p(S1)/(4α) ≥ 3OPT/(16α).
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Theorem 4. Weighted MAX-CROWN on general graphs admits a randomized 32α/3-approximation.256

Proof. Let G = (V,E) be the input graph and let OPT be the weight of a fixed optimum solution. Our257

algorithm works as follows. We first randomly partition the set of vertices into V1 and V2 =V \V1, that258

is, the probability that a vertex v is included in V1 is 1/2. Now we consider the bipartite graph G′ =259

(V1 ∪̇ V2,E ′) with E ′ = {(v1,v2) ∈ E | v1 ∈V1 and v2 ∈V2} that is induced by V1 and V2. By applying260

Theorem 3 on G′, we can find a feasible solution for G with weight ALG≥ 3OPT′ /(16α), where OPT′261

is the weight of an optimum solution for G′.262

Any edge of the optimum solution is contained in G′ with probability 1/2. Let OPT be the total263

weight of the edges of the optimum solution that are present in G′. Then, E[OPT] = OPT/2. Hence,264

E[ALG] ≥ 3E[OPT′]/(16α) ≥ 3E[OPT]/(16α) = 3OPT/(32α).

Theorem 5. Weighted MAX-CROWN on general graphs admits a 40α/3-approximation.265

Proof. Let G = (V,E) be the input graph. Similarly to the proof of Theorem 3, our algorithm constructs an266

instance of GAP based on G. The difference is that, for every vertex v ∈V , we create both eight bins and267

an item i(v). Capacities and sizes remain as before. The profit of placing item i(v) in a bin of vertex u 6= v268

is p(u,v).269

Let OPT be the value of an optimum solution of MAX-CROWN in G, and let OPTGAP be the value of270

an optimum solution for the constructed instance of GAP. Since any optimum solution of MAX-CROWN,271

being a planar graph, can be decomposed into five star forests [14], there exists a star forest carrying at272

least OPT/5 of the total profit. Such a star forest corresponds to a solution of GAP for the constructed273

instance; therefore, OPTGAP ≥ OPT/5. Now we compute an α-approximation for the GAP instance,274

which results in a solution of total profit ALGGAP ≥ OPTGAP /α ≥ OPT/(5α). Next, we show how our275

solution induces a feasible solution of MAX-CROWN where every vertex v ∈V is either a bin or an item.276

Figure 3: Partition-
ing a 1-tree into a star
forest (gray) and the
union of a cycle and a
star forest (black).

Consider the directed graph G′ = (V,E ′) with (u,v) ∈ E ′ if and only if the item277

corresponding to u ∈V is placed into a bin corresponding to v ∈V . A connected278

component in G with n′ vertices has at most n′ edges since every item can be placed279

into at most one bin. If n′ = 2, we arbitrarily make one of the vertices a bin and280

the other an item. If n′ > 2, the connected component is a 1-tree, that is, a tree and281

an edge. In this case, we partition the vertices into two subgraphs; a star forest282

and the union of a star forest and a cycle; see Fig. 3. Note that both subgraphs can283

be represented by touching boxes if we allow point contacts. This is due to the284

fact that the stars correspond to a solution of GAP. Hence, choosing a subgraph285

with larger weight and post-processing the solution as in the proof of Theorem 3286

results in a feasible solution of MAX-CROWN with no point contacts. Initially, we287

discarded at most half of the weight and the post-processing keeps at least 3/4 of288

the weight, so ALG≥ 3ALGGAP /8. Therefore, ALG≥ 3OPT/(40α).289

4 The Unweighted Case290

In this section, we consider the unweighted MAX-CROWN problem, that is, all desired contacts have291

profit 1. Thus, we want to maximize the number of edges of the input graph realized by the contact292

representation. We present approximation algorithms for different graph classes. First, we give a 2-293

approximation for trees. Then, we present a PTAS for planar graphs of bounded degree. Finally, we294

provide a (5+4α)-approximation for general graphs.295

Theorem 6. Unweighted MAX-CROWN on trees admits a 2-approximation.296

Proof. Let T be the input tree. We first decompose T into edge-disjoint stars as follows. If T has at297

most two vertices, then the decomposition is straight-forward. So, we assume w.l.o.g. that T has at298

least three vertices and is rooted at a non-leaf vertex. Let u be a vertex of T such that all its children,299
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say v1, . . . ,vk, are leaf vertices. If u is the root of T , then the decomposition contains only one star300

centered at u. Otherwise, denote by π the parent of u in T , create a star Su centered at u with edges301

(u,π),(u,v1), . . . ,(u,vk) and call the edge (u,π) of Su the anchor edge of Su. The removal of u,v1, . . . ,vk302

from T results in a new tree. Therefore, we can recursively apply the same procedure. The result is a303

decomposition of T into edge-disjoint stars covering all edges of T .304

We next remove, for each star, its anchor edge from T . We apply the PTAS of Theorem 1 to the305

resulting star forest and claim that the result is a 2-approximation for T . To prove the claim, consider a306

star S′u of the new star forest, centered at u with edges (u,v1), . . . ,(u,vk) and let ALG be the total number307

of contacts realized by the (1+ ε)-approximation algorithm on S′u. We consider the following two cases.308

(A) 1 ≤ k ≤ 4: Since it is always possible to realize four contacts of a star, ALG ≥ k. Note that an309

optimal solution may realize at most k+1 contacts (due to the absence of the anchor edge from S′u).310

Hence, our algorithm has approximation factor (k+1)/k ≤ 2.311

(B) k ≥ 5: Since it is always possible to realize four contacts of a star, we have ALG≥ 4. On the other312

hand, an optimal solution realizes at most (1+ε)ALG+1 contacts. Thus, the approximation factor313

of our algorithm is ((1+ ε)ALG+1)/ALG≤ (1+ ε)+1/4 < 2.314

The theorem follows from the fact that all edges of T are incident to the centers of the stars.315

Next, we develop a PTAS for bounded-degree planar graphs. Our construction needs two lemmas, the316

first of which was shown by Barth et al. [2].317

Lemma 3 ([2]). If the input graph G = (V,E) has maximum degree ∆ then OPT≥ 2|E|/(∆+1).318

The second lemma provides an exponential-time exact algorithm for MAX-CROWN.319

Lemma 4. There is an exact algorithm for unweighted MAX-CROWN with running time 2O(n logn).320

Proof. Consider a placement which assigns a position [`B,rB]× [bB, tB] to every box, with `B+w(B) = rB321

and bB +h(B) = tB. For the x-axis, this gives a (non-strict) linear order on the values `B and rB; an order322

on the y-axis is implied similarly. Together, these two orders fully determine the combinatorial structure323

of overlaps and contacts. (For contact, two boxes must have a side of equal value and a side with overlap,324

both of which can be seen from the orders.) The algorithm enumerates all possible combinations of325

these orders. A single order can be enumerated using a permutation of the variables and, between every326

two variables adjacent in this permutation, whether it is ‘=’ or ‘≤’. The number of orders is bounded327

by O(22n(2n)!), for a total of 2O(n logn) combinations. For any given pair of orders, it can be determined328

if they imply overlaps and what the objective value is: the number of profitable contacts. If there are no329

overlaps, the existence of an actual placement realizing the orders is tested using linear programming. As330

these tests run in polynomial time, an optimal placement can be found in 2O(n logn) time.331

Theorem 7. Unweighted MAX-CROWN on planar graphs with maximum degree ∆ admits a PTAS. More332

specifically, for any ε > 0 there is an (1+ε)-approximation algorithm with linear running time n2(∆/ε)O(1)
.333

Proof. Let r be a parameter to be determined later. Frederickson [12] showed that we can find a vertex334

set X ⊆V (called separator) of size O(n/
√

r) such that the following holds. The vertex set V \X can335

be partitioned into n/r vertex sets V1, . . . ,Vn/r such that (i) |Vi| ≤ r for i = 1, . . . ,n/r and (ii) there is no336

edge running between any two distinct vertex sets Vi and Vj. In what follows, we assume w.l.o.g. that G is337

connected, as we can apply the PTAS to every connected component separately.338

We apply the result of Frederickson to the input graph and compute a separator X . By removing the339

vertex set X from the graph, we remove O(n∆/
√

r) edges from G. Now, we apply the exact algorithm of340

Lemma 4 to each of the induced subgraphs G[Vi] separately. The solution is the union of the optimum341

solutions to G[Vi].342

Since no edge runs between the distinct sets Vi and Vj, the subgraphs G[Vi] cover G−X . Let E? be the343

set of edges realized by an optimum solution to G, let OPT = |E?|, and let OPT′ = |E?∩E(G−X)|. By344

Lemma 3, we have that OPT≥ 2(n−1)/(∆+1) = Ω(n/∆). When we removed X from G, we removed345

O(n∆/
√

r) edges. Hence, OPT = OPT′+O(n∆/
√

r) and OPT′ = Ω(n(1/∆−∆/
√

r)).346
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Since we solved each sub-instance G[Vi] optimally and since these sub-instances cover G−X , the347

solution created by our algorithm realizes at least OPT′ many edges. Using this fact and the above bounds348

on OPT and OPT′, the total performance of our algorithm can be bounded by349

OPT
OPT′

=
OPT′+O(n∆/

√
r)

OPT′
= 1+O

(
n∆/
√

r
n(1/∆−∆/

√
r)

)
= 1+O

(
∆2
√

r−∆

)
.

We want this last term to be smaller than 1+ ε for some prescribed error parameter 0 < ε ≤ 1. It is not350

hard to verify that this can be achieved by letting r = Θ(∆4/ε2). Since each of the subgraphs G[Vi] has at351

most r vertices, the total running time of determining the solution is n2(∆/ε)O(1)
.352

Before tackling the case of general graphs, we need a lower bound on the size of maximum matchings353

in planar graphs in terms of the numbers of vertices and edges.354

Lemma 5. Any planar graph with n vertices and m edges contains a matching of size at least (m−2n)/3.355

Proof. Let G be a planar graph. Our proof is by induction on n. The claim clearly holds for n = 1.356

For the inductive step assume that n > 1. If G is not connected, the claim follows by applying the357

inductive hypothesis to every connected component. Now assume that G has a vertex u of degree less358

than 3. Consider the graph G′ = G−u with n′ = n−1 vertices and m′ ≥ m−2 edges. By the inductive359

hypothesis G′ (and hence, G, too) has a matching of size at least (m′−2n′)/3≥ ((m−2)−2(n−1))/3 =360

(m−2n)/3.361

It remains to tackle the case where G is connected and has minimum degree 3. Nishizeki and362

Baybars [18] showed that any connected planar graph with at least n≥ 10 vertices and minimum degree 3363

has a matching of size at least d(n+ 2)/3e ≥ n/3. This shows the claim for n ≥ 10 since m ≤ 3n− 6.364

Finally, we consider the case that G is connected, has minimum degree 3 and n≤ 9 vertices.365

First, we assume that a maximum matching of G consists of a single edge e = (u,v). Any edge in G is366

either equal to or incident on e. Since the minimum degree of G is 3, there is an edge (u,x) 6= e incident367

on u and an edge (v,y) 6= e incident on v. Since the matching is maximum, we have x = y. Hence, G must368

be a triangle, which is a contradiction.369

Now we assume that the maximum matching consists of two edges e = (u,v) and e′ = (u′,v′). We370

show that n≤ 5, which completes the proof since then 6≤ n≤ 9 guarantees a matching of size at least 3.371

Assume for a contradiction that there are vertices x and y on which e and e′ are not incident. Due to the372

maximality of the matching {e,e′}, edges incident on x and y can only be incident on u, v, u′, and v′.373

Since x has degree at least 3, G contains, w.l.o.g., the edges (x,u) and (x,v). Since y has also degree 3, y374

must be adjacent to at least one of the vertices u and v, say u. But then (x,v,u,y) is an augmenting path375

for the matching, contradicting its optimality.376

Theorem 8. Unweighted MAX-CROWN on general graphs admits a (5+16α/3)-approximation.377

Proof. The algorithm first computes a maximal matching M in G. Let V ′ be the set of vertices matched378

by M, let G′ be the subgraph induced by V ′, and let E ′ be the edge set of G′. Note that Ḡ = G−E ′ is379

a bipartite graph with partition (V ′,V \V ′) since the matching M is maximal and hence every edge in380

E \E ′ is incident to a vertex of V ′ and to a vertex not in V ′; see Fig. 5a in Appendix B. Hence, we can381

compute a 16α/3-approximation to Ḡ using the algorithm presented in Theorem 3.382

Consider the graph G′′ = (V ′,E ′ \M) and compute a maximum matching M′′ in G′′; see Fig. 5b. The383

edge set M∪M′′ is a set of vertex-disjoint paths and cycles and can therefore be completely realized [2].384

The algorithm realizes this set. Below, we argue that this realization is in fact a 5-approximation for G′,385

which completes the proof (due to Lemma 1 and since G is covered by G′ and Ḡ).386

Let n′ = |V ′| be the number of vertices of G′. Let E∗ be the set of edges realized by an optimum387

solution to G′, and let OPT = |E∗|. Consider the subgraph G∗ = (V ′,E∗ \M) of G′′; see Fig. 5c. Note that388

G∗ is planar and contains at least OPT−n′/2 many edges. Applying Lemma 5 to G∗, we conclude that the389

maximum matching M′′ of G′′ has size at least (OPT−5/2n′)/3. Hence, by splitting OPT appropriately,390

we obtain391

OPT = (OPT−5n′/2)+5n′/2 ≤ 3|M′′|+5|M| ≤ 5|M′′∪M| .
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5 APX-Hardness392

Theorem 9. Weighted MAX-CROWN is APX-hard even if the input graph is bipartite of maximum393

degree 9, each edge has profit 1, 2 or 3, and each vertex corresponds to a square of one out of three394

different sizes.395

Proof. We give a reduction from 3-dimensional matching (3DM). An instance of this problem is given by396

three disjoint sets X ,Y,Z with cardinalities |X |= |Y |= |Z|= k and a set E ⊆ X×Y ×Z of hyperedges.397

The objective is to find a set M ⊆ E, called matching, such that no element of V = X ∪Y ∪Z is contained398

in more than one hyperedge in M and such that |M| is maximized.399

The problem is known to be APX-hard [11]. More specifically, for the special case of 3DM where400

every v ∈V is contained in at most three hyperedges (hence |E| ≤ 3k) it is NP-hard to decide whether the401

maximum matching has cardinality k or only k(1− ε0) for some constant 0 < ε0 < 1. We reduce from402

this special case of 3DM to MAX-CROWN.403

To this end, we construct the following MAX-CROWN instance from a given 3DM instance. We404

create, for each v ∈ V , a square of side length 1. For each hyperedge e ∈ E, we create nine squares405

e?,e1, . . . ,e8 where e? has side length 3.5 and e1, . . . ,e8 have side length 3. In the desired contact graph,406

we create an edge (e?,e1) of profit 2 and, for i = 2, . . . ,8, an edge (e?,ei) of profit 3. We also create an407

edge (e?,v) of profit 1 if v is incident to e in the 3DM instance.408

Consider an optimum solution to the above MAX-CROWN instance. It is not hard to verify that, for409

any hyperedge e = (x,y,z), the solution will realize the edges (e?,ei) for i = 2, . . . ,8. Moreover, we can410

assume w.l.o.g. that the solution either realizes all three adjacencies (e?,x), (e?,y), and (e?,z) of total411

profit 3 or the adjacency (e?,e1) of profit 2; see Fig. 6 in Appendix B. We call such a solution well-formed.412

Assume that there is a solution M to the 3DM instance of cardinality k. Then this can be transformed413

into a well-formed solution to MAX-CROWN of profit (7 ·3+2)|E|+ |M|= 23|E|+ k.414

Conversely, suppose that the maximum matching has cardinality at most (1− ε0)k. Consider an415

optimum solution to the respective MAX-CROWN instance. We may assume that the solution is well-416

formed. Let M be the set of hyperedges e = (x,y,z) for which all three adjacencies (e?,x),(e?,y),(e?,z)417

are realized. Then, the profit of this solution is (7 ·3+2)|E|+ |M|= 23|E|+ |M|. Note that M is in fact418

a matching because the solution to MAX-CROWN was well-formed. Thus, the optimum profit is bounded419

by 23|E|+(1− ε0)k.420

Hence, it is NP-hard to distinguish between instances with OPT≥ 23|E|+k and instances with OPT≤421

23|E|+(1− ε0)k. Using |E| ≤ 3k, this implies that there cannot be any approximation algorithm of ratio422

less than423

23|E|+ k
23|E|+(1− ε0)k

= 1+
ε0k

23|E|+(1− ε0)k
≥ 1+

ε0k
(70− ε0)k

= 1+
ε0

70− ε0
,

which is a constant strictly larger than 1.424

6 Conclusions and Open Problems425

We presented approximation algorithms for the MAX-CROWN problem, which can be used for construct-426

ing semantics-preserving word clouds. Apart from improving approximation factors for various graph427

classes, many open problems remain. Most of our algorithms are based on covering the input graph by428

subgraphs and packing solutions for the individual subgraphs. Both subproblems—covering graphs with429

special types of subgraphs and packing individual solutions together—are interesting problems in their430

own right. Practical variants of the problem are also of interest, for example, restricting the heights of the431

boxes to predefined values (determined by font sizes), or defining more than immediate neighbors to be432

in contact, thus considering non-planar “contact” graphs.433
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Appendix485

A Model with Point Contacts486

In this model, adjacencies between boxes are allowed to be realized by a point contact, that is, by a487

contact of the boxes only in two corners.488

Simple cases. As a first consequence, the PTAS for stars gets a bit simpler as we do not have to care489

about avoiding point contacts. The approximation factor does not change there as well as for all classes490

of planar or bounded degree graphs. Note that the APX-hardness proof also holds for this model without491

any modification.492

Bipartite and general graphs. For these graph classes, we do, on the one hand, no longer need the493

post-processing that we applied in Theorems 3 and 5 (and implicitly also in Theorem 4). This post-494

processing cost us up to a quarter of the total profit. Hence, we can (for now) replace α by 3α/4, which495

improves the approximation factors for these cases.496

On the other hand, a realized graph is now not necessarily planar as four boxes can meet in a point497

and both diagonals correspond to edges of the input graph. It is, however, easy to see that the graphs that498

can be realized are 1-planar. This means that an optimal solution has at most 4n−8 edges in the case499

of general graphs and at most 3n−6 edges in the case of bipartite graphs. Furthermore, Ackerman [1]500

showed very recently that a 1-planar graph can be covered by a planar graph and a tree. Hence, we can501

cover a 1-planar graph with seven star forests and a bipartite 1-planar graph with six star forests (via a502

bipartite planar graph and a tree).503

If our approximation algorithm for bipartite graphs uses this decomposition into six star forests, we504

easily get a 6α-approximation for this case. As a consequence, we get (as in Theorem 4) a randomized505

12α-approximation for general graphs. Similarly, decomposing an optimum 1-planar solution into seven506

star forests (instead of five star forests for planar graphs), we get a deterministic 14α-approximation for507

general graphs.508

Unweighted general graphs. In order to modify the algorithm for the unweighted case, we use the509

new decomposition of bipartite graphs. It is easy to prove that any 1-planar graph with m edges and n510

vertices contains a matching of size at least (m−3n)/3: we planarize the graph (by removing at most n511

edges) and then apply Lemma 5. This results in a (7+6α)-approximation for unweighted general graphs.512

Table 2 shows the approximation factors for the model with point contacts; in the cases not mentioned513

in this table, the approximation ratio is the same as in the model without point contacts shown in Table 1.514

graph class weighted unweighted

bipartite 6α

general 14α (det.) 7+6α

12α (rand.)

Table 2: New approximation factors for the version of MAX-CROWN where point contacts are allowed.
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B Additional Figures515

G

(a) The graph G? realized by an opti-
mum solution is planar and bipartite.

H1 H2

(b) G? can be decomposed into two forests H1 and H2 and further into four
star forests S1,S2 (black) with centers in V1 (disks) and S′1,S

′
2 (dashed) with

centers in V2 (boxes).

Figure 4: Partitioning the optimum solution in the proof of Theorem 3.

V ′

V \V ′

}

Ḡ

G′

}

(a) G is covered by Ḡ (bipartite, gray) and
G′ with perfect matching M (gray, bold).

(b) maximum matching M′′

(gray/black) in G′′ = G′−M.
(c) optimum solution to G′: graph
G∗ (black) and part of M (gray).

Figure 5: Partitioning the input graph and the optimum solution in the proof of Theorem 8.

e?

e2

e3

e4 e6

e7

e8

e5

e1

(a) profit 7 ·3+2 = 23

e?

e2

e3

e4 e6

e7

e8
x y z

e5

(b) profit 7 ·3+3 ·1 = 24

Figure 6: The two possible configurations of a hyperedge e = (x,y,z) in the APX-hardness proof (Theorem 9).
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