User's Manual for the
Icon Programming Language¥*

Ralph E. Griswold

TR 78-14

Department
of

Computer Science

The University of Arizona

User's Manual for the
Icon Programming Language*

Ralph E. Griswold

TR 78-14

October 6, 1978

The Department of Computer Science
The University of Arizona

*This work was supported in part by the National Science
Foundation under Grant MSC75-01307.

Copyright (c) 1978, by Ralph E. Griswold
All rights reserved.

No part of this work may be reproduced, transmitted, or stored in

any form or by any means without the prior written consent of the
author.

CONTENTS

Chapter 1 -- Introduction

(W
L] L] []
PR

An Overview Of ICON.::ceieeessaceessccsesssssssncsnsssossnesal
Syntax NOotatioNeeeeeoeeeeoseoeesossscssssscssscsssscosaseald
Program Text and Character SetS...c.cecccceccecscccsssscsl
Organization of the Manual...cceeeeessccccsssccccssnscosel

Chapter 2 -- Basic Concepts

DN
e e o & o o
OO NdWN -

2.9

Values and TYyPEeSeeeesssssssssssssssssssssssssssssscsscssd
VariableS.eceescecsoooscscsssososscsssscsssssssscsscscssnssessabd
ASSIgNMENEt . ceeeeeevessscsassscssoscscscasscsscsssssscssssassccsh
KeYWOLAS eeeososescsssascsscsosnosssscsssescssscsscsscscsccsscscnsnecael
Built-in FUNCtiONS.eecessssssossccscssssossscsssccncsoscscsl
OpPEeratOrSesecesscacsscssoascssssssesssssssssssscssscssncsnssld
Values and SignalS.cececesssssccccsscsssscsscssosssssssacecsd
Control StruCtUreS.cececececssosencessscassacsscscscseasll

2.8.1 Basic Control StructuUreS.cecccecccscccscsoascnsall
2 Compound EXpPresSSiONS.ccecccccccoscscsscsscsssscessll
3 GENEratOrSeecescescosocssscssscsssccssossnnsessll
4 Goal-Directed EvaluatioON.eceesocecccsscccscescesll
5 LOOP EXitSieseesscecesosssscocnsssssccsssnanssassld
d

ures-...00.....0..oo-.olooo..ooc0000000000'00000014

2
2
2
2
r

P

Chapter 3 -- Arithmetic Operations

3.1

INtEegerSeececesssscsoscsssscsscsssscnssossssssesncsssossessssesll
3.1.1 Literal INtegerS.cecscscscssccscscsssccososssssssssl’
3.1.2 Integer ArithmetiC.ceceecccesscccccsscscscosssl8B
3.1.3 Integer COMPAriSON.ccecosescscccssscsosssssscceeld

Real ArithmeticCececeeecscscosscccssscssscssesssosssccasscssl
3.2.1 Literal Real NumberS..ecceceessceccccoccsccscsassll
3.2.2 Real ArithmetiCeeeeeecseessssassssscsssccscsasasssl
3.2.3 Comparison of Real NUMDEIS.eeesasssscssasassssll

Mixed-Mode ArithmetiC.ccecececsoscocesccscsssssccossseall

Arithmetic Type CONVErSiON.:cseececcsssscsossssoscsscssssesel?
3.4.1 Conversion to INteger.ceseecccccccscccsossssccceell
3.4.2 Conversion tO ReAl.icveceescscscssscssssossssseneell

NUMELiC TeSteeeeeoeosaccscsssaccsosssccosssscsssssssccelDd

Chapter 4 -- String Processing

4.1 CharacterSeeeeseesecesscssssasssscsssscsssscscssssccscscenell
4.2 StriNgS.cceecsescescsscsccsossssssossosossscscscsosssscssccsscscsscsll
4.2.1 Literal StringS.ceecececcsssccccsccccosccscscsscscecll
4,2.2 Built-In StringSeecececccssscsessssssscscscsssssld
4,2.3 String Lengtheeeeeccceccccecsocccccsoccccocccnscssld
4.2.4 The NUull String.e.eecsssccsccccessssccoscsscssccccees3l
4.2.5 Positions of Characters in a Stringeeecesceeces30
Character SetS.ceseccccaccscsssrsescsosscsssesscscscsaccsssasll
TYPE CONVEISiONSeeeeeeccsssssssssssssssssssssossssssssssI2
Constructing StriNgS.ecesececccccsccsscsscessssccscosccscsssssld
4.5.1 ConcatenatioON.eceessceossesscsssssssscsencsssscsessald
2 String ReplicatiON.ceecseecssccscssscscncccccseld
Positioning Strings for Column Output..eceeeee35

4 SUDSEriNgS.eceeescsscsscccscecsccsscsccsscssssesoeslb
5 Other String-valued OperationS.ccececcccecseess3’
Ng COMPAriSON.ssscscscscscscscscscccsssccscsscccscccsescdl
String AnalySiSeeceeccescscoccosssccoscscossssoscsccsccssesccidl
4,7.1 Identifying SubstringS.eeceeecccecescccccccscssssdl
4.7.2 Lexical AnalySiS.ececeececcscscsscsccsssssasnossssed
4.8 String SCanNNiNg.cceseccceccccscoccsccccscsccccccscscccscesidd
4.8.1 Scanning KeywoOrdS.eeeeoecseoososssccssscsccccccecsed’

2 Positional SynthesSiS..eececececcoscecccccsccccssced’
3 Scanning OperationNS.cecesscccsssscccscscssnccsesdb
4 The Scope Of ScanNinNg.cecececccsccccssssoscoceced?

N
* o o
U W

W >
L N
~ o

wn

Chapter 5 -- Structures

5.1 Al YAy Sessecsocssccsncosssssscccssossosasssssscsessssancsscesdd
5.1.1 Creation Of ArrayS.ceecceccccssccscssccsccscccessdd

5.1.2 Accessing Array ElementS.sscecccccsscccsnssoeedl

5.1.3 Expandable ArrayS.sececcsscsesecssscassscsssascecssedl

5.2 TableSeeeeeeessosssssssssssscssssssasasssssssssnosssscncsesdl
5.2.1 Creation o0f TableS.ececesesccsescsccsssossssseead?

5.2.2 Accessing Table ElementSecececsssscscccossssessbl

5.2.3 Closed TableS.ieeeesescesosscsossssssssscsssassadd

5.3 StaACKSeeeesovseesssnsoscssssssoscsncssssosncscsnsssssccscsesseedd
5.3.1 Creation Of StacCKS.ecsesesecsscsscssccsncscscascssdd

5.3.2 AccessSing StaCKS.eeeeecsocsccscssccssoscsscosonseedd

5.4 RECOIASeeecececcccassssasoscencsscscssssnssssssscssssossssssosdd
5.4.1 Declaring RecCOrd TYPESeeeesssssccasssssscssceedd
5.4.2 Creating RECOIAS.ceeeccccccssscsossssssassossssendbd
5.4.3 Accessing ReCOrdS.ceseeescsssssscsssssosssncsosd?
CopYying StrUCtUILESeeesccocosscsccsossscssossssssssssssscssesd/
SOorting StrUCtUreS.ceeecesessssssssssscsscsssssssssssssscd]
SErUCtUre SiZE.eeeecevocscsccccsosssscscssssccssssscsnssessdd
Generation of Elements in StructuresS.cececeecsccscessssesed9d

(SR O)]
e o o o
o ~JoyWn

ii

Chapter 6 -- Input and Output

Files......0..0....0..0..0.0.0..0...-.0.0.0.0.00...’...61

Opening and Closing Files.'.uoo.-00.0..00.....00..0....61
Writing Data tO Files-oooc........-o.oo.oo.-l..Oo..o...63
Reading Data from Files.--. ..0..0..0..00..--...-0000-0064

O OY OO
e o o o
o> w N

Chapter 7 -- Miscellaneous Operations

7'1 Random Number Generation.o...0....0..0....0......0.....65
7'2 Time and Dateo......oc.o.....oo..o.oon..oo-oo...ooo...l65

Chapter 8 -- Procedures

1 Procedure DeclaratiON.cecececescececscesscesscscsascsccscsaceab?
2 Procedure ActivatioOn.ceececcescecccsscsccscscscsacascscaceasbB
8.2.1 Procedure INvOCAtiON.cececcoscssccccsssssscsscssb8
8.2.2 Return from ProCedUEESecescecscscccsceccccsssssb?
8.2.3 Procedure Level.ieceeeacesccccscssscsassasssascassll
8.2.4 Tracing Procedure ACtivitVeeeeeoesooeccssssaaall
Listing Identifier ValueS..ceceeseessososcocsssscrssssseell
Procedure Names and Valu€S.eeeeccecsesccscscsssccoscsssscsll

8'
8.

@ o
= W

Chapter 9 -- Programs

9.1 Program StrUCtUrE.ceeeceosocsascsosscssossnssssssssssscsselDd
9.1.1 Preparation of Program Te€Xt.eeeeeceoseocecececeeald
9.1.2 Program Character Set.cececcccecccsscsssssscsslbh
9.1.3 COMMENESeeceecesccocscssscssscsssscsssscsessossscselb
.2 Including Text from Other FileS.ccieeecsososcsscsacscncaell
3 Program EXeCUtiON.eeescsesssessscssssssssssssssnscssscsssall
9.3.1 Translation ErrOrSececscecssssscescascsscscsanell
9.3.2 Initiating ExecUtioON.ceeececsecsscsccccsoscscscceelB
9.3.3 Program TerminatioN.eeceeceecessccssccccssscscsocsselB

Appendix A -- Syntax

Formal SyntaXeeeeessocseeeossssessssssscscsssssscsccssssseldl
Precedence and AssSoCiativitVeeseesoooeccoosssasnoscscsseasl3
Reserved WOrdS.ececeeeocesoscscsacsossoscssscssssssssssssssscssslBd
The Significance Of BlankS..eeeeseccccccsccessacsccsessBd

i
> W N

Appendix B -- Built-In Operations

Bol Functions.o....o.....ol.......oo...o000000-00000000000085

iii

B.2 OPeratOrSeeeeeceescscecscessccsososascsossscscsncssscsasasassscsesdb
B.2.1 InfiXx OperatOrS.csceceesccescscecsccssccsccccsceseldb
B.2.2 Prefix OperatorS.cecscsccessscsacsansssscsasseelb
B.2.3 Suffix OpPeratorS.eceeececesscscccscscccccoscsessBb

Bl3 Keywords.................l.'.....................'.....86
Appendix C -- Summary of Defaults
C.l Initial Values Of Identi fiers. ® © & & 5 0 O 00 9 O OO PSP SO O S .89

c.2 Omitted Arguments in FUNCtiONS..eeeececcccscccccnsossss89
Cc.3 Omitted Components in Structure SpecificationS.seeeeee.90

Appendix D -- Summary of Type Conversions

D.l Explicit COnVersions.oo.n-ooooooooooooooo.oon-.oo-o-o.ogl
D.2 Implicit COnVersions............I...l.......l..'.......91
Appendix E -- Summary of Error Messages

E.1 Translator Error MeSSAgeS.:ecessccsssscssssssssassascsssssd3

E02 Program Error Messages...o..OOO0.00...........0...0....93

Appendix F -- The ASCII Character Set

F.l Characters and Codes.oo...oo.ooo..o...oo000000000-0-00097
Acknowledgemnt....o.c...oo....oo....c..oo..o.loo.o..o....oocloo

References..oo.t't.n0.-....0..00.00...-0...-...0.000.....0..100

Index...0...0............0..'..t..o.t...0..00..00.....0..-0.101

iv

Introduction 1

CHAPTER 1

Introduction

This manual describes the Icon programming language. It is
neither a tutorial nor a detailed reference manual. It attempts
to give a comprehensive coverage of the language in a complete
but informal way. The reader is assumed to have experience with
other programming languages. A familiarity with SNOBOL4 [1] will
be helpful in placing the concepts in perspective.

The first part of this manual gives an overview of Icon and
presents the techniques that are used for describing language
features. Subsequent chapters describe the language in detail.
There are a number of appendices at the end of this manual that
provide guick reference to frequently needed information.

1.1 An Overview of Icon

Icon is a general-purpose programming language with an empha-
sis on string processing. 1Icon is a descendant of SNOBOL4 and
SL5 [2] and shares much of the philosophical bases of these lan-
guages.

Icon differs from SNOBOL4 in that it provides string proces-
sing that is integrated into the language rather than as a sepa-
rate pattern-matching facility. Icon lacks some of the exotic
features of both SNOBOL4 and SL5; in order to provide greater
efficiency in the most frequently used operations, Icon restricts
run-time flexibility. 1In this sense, Icon follows the more tra-
ditional method of binding many language operations at compile
time.

One of the unusual characteristics of Icon is goal-directed
expression evaluation, which provides automatic searching for
alternatives and a controlled form of backtracking. This method
of evaluation allows concise, natural formulation of many algo-
rithms while avoiding the inefficiency of uncontrolled backtrack-
ing.

Syntactically, Icon is a language in the style of Algol 60.
It has an expression-based structure and uses reserved words for
many constructs.

In addition to conventional control structures, Icon has a
number of unusual control structures related to alternatives and
goal-directed evaluation. The result of expression evaluation is
both a value and a signal. The signal indicates the success or
failure of the operation (as in SNOBOL4 and SL5) and is used to
drive control structures.

2 CHAPTER 1

To balance efficiency and ease of use, Icon provides optional
compile-time specifications and defaults. Variables may be typed
or nontyped. Nontyped variables are treated as in SNOBOL4 and
SL5, with automatic type checking and coercion. On the other
hand, variables may be typed to provide error checking and
greater efficiency. Similarly, there are default values for the
arguments of many functions, allowing conciseness and suppression
of notational detail.

1.2 Syntax Notation

The syntax of Icon is described in a semi-formal manner with
emphasis on clarity rather than rigor. For simple cases, English
prose is generally used. Where the syntax is more complicated, a
formal metalanguage is used.

In this metalanguage, syntactic classes are denoted by ital-
ics. For example, expr denotes the class of expressions. The
names of the syntactic classes are chosen to be mnemonic, but
have no formal significance. Program text is given in the regu-
lar type face, except for reserved words, which are given in
boldface for emphasis. There is, of course, no distinction be-
tween reserved words and other program text in actual programs,
except for the significance of the reserved word names.

Alternatives are separated by bars (|) and by the wertical
stacking of items. Braces ({}) enclose mandatory items, while
brackets ([]) enclose optional items. Ellipses (...) indicate
indefinite repetition of items. The metalinguistic and literal
uses of bars, brackets, braces and periods are not mixed in any
one usage, and the meaning should be clear in context. In the
summary of the syntax given in Appendix A, ambiguity is resolved
by using primitive syntactic classes. For example, bar denotes
the symbol | and the symbol [is denoted by left-bracket.

1.3 Program Text and Character Sets

The natural character set for Icon is ASCII [3]. To allow for
compatibility with computers and equipment that do not support
the full ASCII character set, the following characters are equiv-
alent syntactically:

lower-case letters and upper-case letters
blank and tab

" and ~

and @

[and {

] and }

| and \ and !

Y

In the program examples given in this manual, lower-case let-
ters are used exclusively. However, these letters can be entered
in upper case in a program without changing the operation of the
program. Similarly, braces and brackets are used differently in

Introduction 3

the manual, although they can be used interchangeably in a pro-
gram. Bars and backslashes are treated in the same fashion. The
important point is that the equivalences above apply uniformly to
program constructs (although characters in literals are taken
exactly as they are entered).

1.4 Organization of the Manual

This manual is organized around chapters describing the major
features of the language. For example, all the string-processing
operations are described in one chapter. Each operation and
function is described separately or is grouped with others of a
similar nature. Following the description, examples of usage are
given.

The examples are not intended to motivate language features,
but rather to provide concrete instances, to show special cases
that may not be clear otherwise, and to illustrate possibilities
that may not be obvious. For these reasons, many of the examples
are contrived and are not typical of ordinary usage.

Where appropriate, there are remarks that are subsidiary to
the main description. These remarks are divided into notes,
warnings, defaults, failure conditions, and error conditions.

The notes describe special cases, details, and such. The
warnings are designed to alert the programmer to programming
pitfalls and hazards that might otherwise be overlooked. The
defaults describe interpretations that are made in the absence of
optional parts of expressions. The failure conditions specify
situations in which an operation may signal failure. The error
conditions specify situations that are erroneous and cause pro-
gram termination. The defaults and error conditions are summa-
rized in Appendices C and E.

It is not always possible to describe language features in a
linear fashion; some circularity is unavoidable. This manual
contains numerous cross references between sections. In the case
of forward references, an attempt has been made to make the ref-
erenced items clear in context even if they cannot be completely
described there. For a full set of references, see the index.

Basic Concepts 5

CHAPTER 2

Basic Concepts

2.1 Values and Types

Computation involves the specification, creation, and compari-
son of data. The concept of value is a fundamental one. The
nature of values varies from one kind of data to another and much
of this manual is concerned with various kinds of wvalues.

Icon supports several kinds of data, called types:

integer
real
string
. cset
file
procedure
array
table
stack
null

Integers and reals (floating-point numbers) serve their conven-
tional purposes. Strings are sequences of characters as in SNO-
BOL4. Csets are sets of characters in which membership is sig-
nificant, but order is not. Files identify external data stor-
age. Procedures serve their conventional purpose, but it is
notable that they are data objects. Arrays, tables, and stacks
are data structures with various organizations and access meth-
ods. The null type serves a special purpose as an identity ob-
ject and is convertible to other types. For example, the integer
equivalent of &null is 0, while the string equivalent of &null is
the string containing no characters. 1In addition to the types

li sted above, there is a facility for defining record types. The
type names are reserved words that have different roles, depend-
ing on context.

Types are indicated in examples by letters related to conven-
tional usage or the type name. In particular, i, j, and k are
used to indicate integers, while sl, s2, and s3 are used to indi-
cate strings and x indicates an object of undetermined type.

The values of certain types can be specified literally in the
program text. These are integer, real, and string. Integers and
reals are represented as constants in the conventional manner.
For example, 300 is an integer, while 1.0 is a real. Strings are
enclosed in quotation marks, as in "summary". See Sections
3.1.1, 3.2.1, and 4.2.1 for further descriptions of the methods
available for representing literals. Values of types other than

6 CHAPTER 2

these can be constructed and computed in a variety of ways, but
they do not have literal representations.

2.2 Variables

A variable is an entity that can have a value. Variables

provide a way of storing and referencing values that are computed
during program execution.

The simplest kind of variable is the identifier. Syntactical-
ly, an identifier must begin with a letter, which may be followed
by any number of other letters and digits. Underscores may occur
within an identifier but not at the beginning or end. Reserved
words may not be used as identifiers.

examples:

syntactically correct identifiers

X
X

k00001
summary
reportl
node link

syntactically erroneous identifiers

23K
reports$
x0"r
string
node
_link

There are various forms of variables other than identifiers.
Some variables, such as the elements of an array, are computed
during program execution and have various syntactic representa-
tions. See Sections 4.5.4, 5.1.2, 5.2.2, 5.3.2, 5.4.3, and
8.2.2.

2.3 Assignment

One of the most fundamental operations is the assignment of a
value to a variable. This operation is performed by the := infix
operator. For example,

X = 3

assigns the integer value 3 to the identifier x.

Basic Concepts 7

Note: The assignment operator associates to the right and re-
turns the value of its right operand. Thus multiple assignments
can be made as in the following example '

X :=y = 3
which assigns 3 to both x and y.

Any variable may appear on the left side of an assignment
operation and any expression may appear on the right. For
example,

X = 2

assigns the value of the identifier z to the identifier x.

Error Condition: If the expression on the left side of the as-
signment operation is not a variable, Error 121 occurs.

The infix operator :=: exchanges the values of its operands.
For example,

X :=: Y
exchanges the values of x and y.

Note: The exchange operator associates to the right and returns
the value of its right operand.

Error Condition: 1If the expression on either side of the ex-
change operation is not a variable, Error 121 occurs.

2.4 [Keywords

Keywords provide an interface between the executing program
and the environment in which it operates. Keywords have a number
of uses. Some have important constants as values, others change
the status of global conditions, while others provide the values
of environmental variables.

Keywords are distinguished by an ampersand followed by a word
that has a special meaning. Examples are &date, whose value is
the current date, and &null, whose value is the object of type
null.

Some keywords are variables, and values can be assigned to
them to set the status of conditions. An example is &trace,
which controls the tracing of procedure calls (see Section
8.2.4). If strace is assigned a nonzero value, tracing is en-
abled, while a zero value disables tracing.

Some keywords are not variables and cannot be assigned values.
An example is &date.

Keywords are described throughout this manual in the sections
that relate to their use.

8 CHAPTER 2

2.5 Built-in Functions

Built-in functions provide much of the computational reper-
toire of Icon. Function calls have a conventional syntax in
which the function name is followed by arguments in an expression
list enclosed in parentheses:

name (expr [, expr] ...)

For example, size(x) produces the size of object x,
map(sl,s2,s3) produces a character mapping on sl, and write(s)
writes the value of s.

As indicated, an argument may be any expression of arbitrary
complexity.

Different functions expect arguments of different types, as
indicated above. Automatic conversion (coercion) is performed to
convert arguments of other types to the expected types.

Error Condition: If an argument cannot be converted to a re-
quired type, an error with a number of the form 10n occurs, where
n is a digit that identifies the expected type. See Appendix E.

Default: Omitted arguments default to &null and are converted to
the required type unless otherwise noted. In some cases, omitted
arguments have special defaults. These cases are noted through-
out the manual and are summarized in Appendix C. If trailing
arguments are omitted, the trailing commas may be omitted also.

Failure Condition: As indicated in Section 1.1, some functions
fail under certain conditions. See also Section 2.7. If the
evaluation of an argument fails, the function is not called, and
the calling expression fails. If more arguments are provided
than are required by the function, the extra arguments are evalu-
ated, but their values are ignored. If an extra argument fails,
however, the function is not called and the calling expression
fails.

2.6 Operators

Operators provide a convenient abbreviated notation for func-
tions. There are three kinds of operators: prefix, infix, and
suffix.

Prefix operators have one operand (argument). An example is
-i, which produces the negative of i. Suffix operators also have
one operand, but follow rather than precede the operand. An
example is i-, which decrements the value of i by one and pro-
duces the new value.

Basic Concepts 9

Note: The & in keywords is part of the keyword and is not a
prefix operator.

Infix operators have two operands and stand between them.

Examples are i + j and i * j, which produce the sum and product
of 1 and j, respectively.

Failure Condition: 1If evaluation of an operand of an operation
fails, the operation is not performed and the expression fails.

While all prefix and suffix operators are single symbols, some
infix operators are composed of more than one symbol. Examples

are i ** j, which produces i raised to the power j, sl || s2,
which produces the concatenation of the strings sl and s2, and
sl == s2, which compares strings sl and s2 for equality.

Various operators used in conjunction produce potentially
ambiguous expressions. For example, i--j might be interpreted in
several ways. Blanks may be used to differentiate otherwise
ambiguous expressions. For example, i- - j and i - -j are clear-
ly different. Parentheses may also be used for grouping. The

expressions (i-)-j and i-(-j) are alternate forms of those given
above.

In the absence of blanks or parentheses, rules are used to
interpret potentially ambiguous expressions. In addition, rules
of precedence and associativity are used to determine which oper-
ands are associated with which operators in complex expressions.

As a class, prefix operators have the highest precedence (bind
most tightly to their operands). Suffix operators have the next
highest precedence, and infix operators have the lowest prece-
dence. For example, -i*j is equivalent to (-i)*j, while i*j- is
equivalent to i*(j-). Different infix operators have different
precedences. For arithmetic operators, the conventional prece-
dences apply. Thus i+j*k is equivalent to i+(j*k). A complete
list of infix operator precedences is given in Appendix A.

Infix operators also have associativity, which determines for
two consecutive operators of the same precedence, which one ap-
plies to which operand. Most operators associate to the left.
For example i-j-k is equivalent to (i-j)-k. Exponentiation,
however, associates to the right. Thus i**j**k is equivalent to
i** (j**k), A complete list of infix operator associativities is
given in Appendix A.

2.7 Values and Signals

As indicated in Section 1.1, the result of the evaluation of
an expression is both a value and a signal. The value serves the
traditional computational role. The signal, success or failure,
indicates whether or not a computation completed successfully or
whether or not a specified relation held. For example, i = j
succeeds if i is equal to j and fails otherwise. The value re-
turned on success is the value of j.

10 CHAPTER 2

When an expression fails, the value is not used and the fail-
ure is passed on to any larger expression of which it is a part.
For example

i< j <k
is equivalent to
(i < 3) <k
This expression fails if i is not less than j or if j is not less

than k.

2.8 Control Structures

Expressions ordinarily are evaluated in the sequence in which
they appear in the program. Various control structures provide
for other orders of evaluation.

2.8.1 Basic Control Structures

Icon contains a number of traditional control structures.
These control structures are driven by signals (rather than by
boolean values as in most programming languages).

1. The control structure
if exprl then expr2 [else expr3]

evaluates exprl. If exprl succeeds, expr2 is evaluated; other-
wise expr3 1s evaluated. The result returned by if-then-else is
the result of expr2 or expr3, whichever is evaluated. 1If the
else clause is omitted and exprl fails, the result of the
if-then-else expression is &null and the signal success.

2. The control structure

while exprl do expr2

evaluates exprl repeatedly until exprl fails. Each time exprl
succeeds, expr2 is evaluated.

3. The control structure

until exprl do expr2

evaluates exprl repeatedly until exprl succeeds. Each time exprl
fails, expr2 is evaluated.

Some control structures are designed specifically to use the
signaling mechanism of control.

Basic Concepts 11

4. The control structure
repeat expr
evaluates expr repeatedly until expr fails.
Note: repeat succeeds and returns &null when expr fails.
Note: while-do, until-do, and repeat all return &null and the

signal success on completion, regardless of the success or fail-
ure of expressions within them.

5. The control structure
expr fails

succeeds if expr fails and fails if expr succeeds. For example,
if exprl fails then expr2 else expr3

is equivalent to

if exprl then expr3 else expr?2

Note: fails returns &null when it succeeds.

6. The control structure
null expr
succeeds if the value of expr is &null.

Note: If the value of expr is of type other than &null, an at-
tempt is made to convert the value to &null.

examples:
value signal

null "" &null success
null 0 &null success
null 0.0 snull success
null "0o" failure

2.8.2 Compound Expressions

Expressions may be compounded to allow several expressions to
appear in a control structure that specifies only a single
expression. A compound expression has the form

{ [expr [; expr] ... 1}

For example

12 CHAPTER 2

if z = 0 then {x := 0; y := 0}
sets both x and y to zero if z is zero.

If the expressions of a compound expression are placed on
separate lines, the semicolons are not necessary. For example,

if z = 0 then {
0
0

X
y @
}

is equivalent to the line above. See also Section 9.1.1.

The result of a compound expression is the signal and value of
the last expression in the sequence.

2.8.3 Generators

One of the unusual aspects of Icon is the concept of genera-
tors. . Some expressions are capable of generating a series of
values to obtain successful evaluation of the expression in which
they occur.

The most fundamental generator is alternation

exprl | expr2

which first evaluates exprl. If exprl succeeds, its value is

returned. If exprl fails, however, expr2 is evaluated and its
result (value and signal) is returned by the evaluation. For

example,

(1 =3) 1 (3 =k)
succeeds if i is equal to j or if j is equal to k.

Alternation has an important additional property. If exprl is
successful, but the expression in which the alternation occurs
would fail, the alternation operator then evaluates expr2. For
example ‘

x = (11 3)
succeeds if x is equal to 1 or 3.
Another generator is
exprl to expr2 [by expr3]

which generates, as required, the integers from exprl to expr?2
inclusive, using expr3 as an increment. For example

Basic Concepts 13

X = (0 to 10 by 2)

succeeds if x is equal to any of the even integers between 0 and
10, inclusive.

Notes: expr3 is evaluated only once. Generation continues until
expr2 is reached or exceeded. expr3 may be negative, in which
case successively smaller values are generated until expr2 is
reached. T

Default: If the by clause is omitted, the increment defaults to
T.

2.8.4 Goal-Directed Evaluation

Goal-directed evaluation, in which a successful result is
sought, is implicit in the examples of the previous section., If
a component of an expression fails, evaluation is continued until
all alternatives have been attempted.

There are two control structures that are expressly concerned
with goal-directed evaluation.

1. The control structure
every exprl [do expr?2]

produces all alternatives of exprl. For each alternative that is
generated, expr2 is evaluated. For example,

every i := (1 | 4 | 6) do f(i)
calls f(1), £(4), and f(6). Similarly,
every i := 1 to 10 do £ (i)
calls £(1), £(2), ..., £(10).
The every loop continues until all alternatives in 35351 have
been generated. every-do succeeds and returns &null when it

completes.

Note: every i := j to k do expr is equivalent to the for control
structure found in many programming languages.

2. The conjunction operator

exprl & expr?2

succeeds only if both exprl and expr2 succeed. For example
(x = y) & (z = 1)

succeeds only if x equals y and z equals 1.

14 , CHAPTER 2

If exprl succeeds but expr2 would fail, alternatives in exprl
are sought in an attempt to obtain successful evaluation of the
entire expression. For example

(x := 1 to 10) & (x > V)

succeeds and assigns to x the least value between 1 and 10 that
is greater than y, provided such a value exists.

Note: The conjunction operator does not perform any backtrack-

ing. If it fails because expr2 fails, the results of intermedi-
ate evaluations are not reversed. In the example above, if the

value of y were 20, the value of x after failure of the conjunc-
tion would be 10.

2.8.5 Loop Exits

There are two control structures for bypassing the normal
completion of expressions in loops. These control structures may
be used in repeat and in the do clauses of every, until, and
while.

1. The control structure next causes immediate transfer to the
beginning of the loop without completion of the expression in
which the next appears.

2. The control structure break causes immediate termination of

the loop without the completion of the expression in which the
break appears.

2.9 Procedures

A program is composed of a sequence of procedures. Procedures
have the form

procedure name (argument-list)
procedure-body
end

The procedure name identifies the procedure in the same way
that built-in functions are named. The argument list consists of
the identifiers through which values are passed to the procedure.
The procedure body consists of a sequence of expressions that are
evaluated when the procedure is invoked. A return expression
terminates an invocation of the procedure and returns a value.

An example of a procedure is
procedure max (i,Jj)

if i > j then return i else return j
end

A procedure is invoked in the same fashion that a built-in
function is called. For example

Basic Concepts 15

m := max(size(sl) ,size(s2))
assigns to m the maximum of the sizes of sl and s2.

Program execution begins with an invocation of the procedure
named main. All programs must have a procedure with this name.

For a more detailed description of procedures, see Chapter 8.

16

Arithmetic Operations 17

CHAPTER 3

Arithmetic Operations

Icon provides integer, real, and mixed-mode arithmetic with
the standard operations and comparisons.

3.1 Integers

Integers in Icon are treated as in most programming languages.
The allowable range of integer values is machine dependent.

Note: For machines that perform arithmetic in two's-complement

form, the absolute value of the largest negative integer is one
greater than the largest positive integer.

3.1.1 Literal Integers

Integers may be specified literally in a program in the stand-
ard fashion.

Notes: Leading zeroes are allowed but are ignored. WNegative
integers cannot be expressed literally, but may be computed as
the result of arithmetic operations.

examples:

value
0 0
000 0
10 10
010 10
27524 27524

Integer literals such as those given above are in the base 10.
Other radices may be specified by beginning the integer literal
with nr, where n is a number (base 10) between 2 and 36 that
specifies the radix for the digits that follow. For digits with
a decimal value greater than 9, the letters a, b, ¢, ... are
used.

Note: The digits used in the literal must be less than the
radix.

18

examples:

2rll
8rlo0
10r10
l6rff
36rcat

3.1.2

Integer Arithmetic

CHAPTER 3

decimal wvalue

3

8

10
255
15941

The following infix arithmetic operations are provided.

i+ 3 addition

i-3 subtraction
i* 3 multiplication
i/ 3 division

i ** 3 exponentiation
Note:

Error Conditions:

relative
precedence associativity
1 left
1 left
2 left
2 left
3 right

The remainder of integer division is discarded, that is,
the result is truncated.

If the result of an arithmetic operation ex-

ceeds the range of allowable integer values, Error 203 occurs.
On some computers, exceeding arithmetic limits may cause abnormal

program termination.
201 occurs.

examples:

* % AN |+

BN NN

The function mod(i,j) produces the residue of i mod j,
is, the remainder of i divided by j.

the sign of i.

If an attempt is made to divide by 0, Error

value

OO HHHFHOKFHONONDKFW

-2
262144

that
The sign of the result is

Arithmetic Operations 19

Error Condition:

examples:

mod (4, 3)
mod(4,4)

mod(-4,3)
mod(-4,-3)

If j is 0, Error 202 occurs.

value

1
0
-1
1
-1

The two prefix operators +i and -i are equivalent to 0 + i and
0 - i, respectively. That is, -i is the negative of i.

examples:

-(4 - 7)

There are also
that have integer

1. The
the new

2. The
the new

operation
value.

operation
value.

Error Condition:

Error 121 occurs.

examples:

value

1
-1
0
0
3

two suffix operators that apply to variables
values.
i+ increments the value of i by 1 and produces

i- decrements the value of i by 1 and produces

If the operand of i+ or i- is not a variable,

expressions in sequence value of i
iz=1 1
i+ 2
i+++ 5
i- 4
i-e=- 0

3.1.3 Integer Comparison

There are six operations for comparing the magnitude of inte-

gers.

egual to
not equal to
greater than

20 CHAPTER 3

i>= greater than or equal to
i< 3 less than
i <=3 less than or equal to

All the comparison operators associate to the left and have
lower precedence than any of the arithmetic computation opera-
tions.

The operations succeed if the specified relation between the
operands holds and fail otherwise. The value returned on success
is j.
examples:

value signal

=] 1 success
=1 failure
failure
success
success
success
success
success
failure

NN NN b N b
BN N

3.2 Real Arithmetic

Real numbers are represented in floating-point format. The
range and precision of real numbers is machine dependent.

3.2.1 Literal Real Numbers

Real numbers may be specified literally in a program in the
standard fashions using either decimal or exponent notation.

Note: For magnitudes less than 1, a leading zero is required.
Additional leading zeroes are allowed but are ignored.

examples:

value
3.14159 3.14159
0.0 0.0
000. 0.0
27e2 2700.0
27e-6 0.000027

27e5 2700000.0

Arithmetic Operations 21

3.2.2 Real Arithmetic

The same arithmetic operations are available for real numbers
as are available for integers. See Section 3.1.2.
Note: Some systems do not support exponentiation of real num-
bers.
Error Condition: 1If an attempt is made to raise a negative real
number to a real power, Error 206 occurs.
examples:

value

1.0 + 2.0 3.0
1.0 - 2-0 —100
1.0 * 2.0 2.0
1.0 / 2.0 0.5
2.0 / 1.0 2.0
1-0 _100 - 1-0 _100
1.0 * 2.0 / 2.0 1.0
1.0 / 2.0 * 2.0 1.0
mod(4.7,2.0) 0.7
mod(2.5,1.0) 0.5
expressions in sequence value of x
x := 3.1416 3.1416
X+ 4.1416
X+++ 7.1416
X=- 6.1416
3.2.3 Comparison of Real Numbers

The
as are

Note:

tation
may no
real a

exampl

NN HDNDE -

OO0 CCOOOCOCO
AANAANAANNVYV

same comparison operations are available for real numbers
available for integers. See Section 3.1.3.

Because of the imprecision of the floating-point represen-
and computation, comparison for equality of real numbers
t always produce the result that would be obtained if true

rithmetic were possible.
es:
T value signal
1.0 1.0 success
1.0 failure
1.0 failure
1.0 1.0 success
2.0 2.0 success
1.0 failure
2.0 2.0 success
3.0 < 4.0 4.0 success
3.0 <= 4.0 4.0 success
3.0 = 4.0 failure

22 CHAPTER 3

3.3 Mixed-Mode Arithmetic

Except for exponentiation, if either operand of an infix oper-
ation is real, the other operand is converted to real and real
arithmetic is performed. 1In the case of exponentiation, a nega-
tive real number may be raised to an integer power.

examples:

1.0 + 2 3.0
1+ 2.0 3.0
l1 - 2.0 -1.0
1.0 * 2 2.0
1.0 / 2 0.5
2/ 1.0 2.0
l1-1-1.0 -1.0
1 * 2.0/ 2 1.0
1/ 2.0 * 2 1.0
1.0 / 2 * 2 1.0
2.0 ** 2 4.0
2.0 ** -] 0.5

3.4 Arithmetic Type Conversion

3.4.1 Conversion to Integer

The value of integer(x) is an integer corresponding to x,
where x may have type integer, real, string, cset, or null.

Failure Condition: integer(x) fails if the type of x is not one
of those listed above.

1. An object of type integer is returned unmodified by inte-
ger (x)

2. An object of type real is converted to integer by truncation.
Failure Condition: Conversion of a real to integer fails if the

value of the real number is out of the allowable range of inte-
gers.

Arithmetic Operations 23

examples:
value signal

integer (2.0) 2 success
integer(2.5) 2 success
integer(-2.5) -2 success
integer (2e75) failure

3. For type string, the string is converted to integer in the
same way that an integer literal is treated in program text,
except that leading and trailing blanks are allowed, but are
ignored. See Section 3.1.1.

Notes: An initial sign is allowed in conversion of a string to
an integer. If the string corresponds to a real literal, real-
to-integer conversion is performed. See Section 3.4.2. The null
string is converted to the integer 0.

Failure Condition: integer(s) fails if s is not a proper repre-
sentation of an integer or real.

examples:
value signal

integer ("10") 10 success
integer ("8r1l0") 8 success
integer ("-10") -10 success
integer (" 3") 3 success
integer (" 0003™) 3 success
integer("3.5") 3 success
integer (") 0 success
integer("3.x") failure
integer ("3r4") failure

4. Objects of type cset are converted to string and then to
integer. See Section 4.4.

5. For type null, the value of integer(x) is 0.

For operations that require objects of type integer, implicit
conversions are automatically performed for the types real,
string, cset, and null.

Error Condition: If conversion fails, Error 101 occurs.

examples:

1+ "10" 11
2 ** 3.7 8

1 > &null 0

24 CHAPTER 3

3.4.2 Conversion to Real

The value of real(x) is a real number corresponding to x,
where x may have type real, integer, string, cset, or null.

Failure Condition: real(x) fails if the type of x is not one of
those listed above.

1. An object of type real is returned unmodified by real (x).

2. An object of type integer is converted to the corresponding
real value.

examples:

value
real (10) 10.0
real (-10) -10.0
real (8r10) 8.0
real (2700000) 2.7e6

3. For type string, the string is converted to a real number in
the same way as a real literal is treated in program text, except
that

(1) Leading and trailing blanks are allowed, but are ignored.
See Section 3.2.1.

(2) A leading sign may be included.

(3) A leading zero is not required before the decimal point
for values whose magnitudes are less than 1.

Notes: 1If the string corresponds to an integer literal,
integer-to-real conversion is performed. See Section 3.4.1. The
null string is converted to 0.0.

Failure Condition: real(s) fails if s is not a proper represen-
tation of a real or integer.

examples:

value signal

real("10.0") 10.0 success
real("-10.0") -10.0 success
real ("2700000") 2.7e6 success
real (" 3.0") 3.0 success
real (" 0003.0") 3.0 success
real ("8rl0") 8.0 success
real("") 0.0 success
real("3.x") failure
real ("3r4") failure

4. Objects of type cset are first converted to string and then
to real. See Section 4.4.

Arithmetic Operations 25

5. For type null, the value of real(x) is 0.0.

For operations that require objects of type real, implicit
conversions are automatically performed for the types integer,
string, cset, and null.

Error Condition: 1If conversion fails, Error 102 occurs.

examples:

value
1.0 + "10.0" 11.0
"2.0" ** 3 8.0
1.0 > &null 0.0

3.5 Numeric Test

The function numeric(x) succeeds if x is of type integer,
real, or if it is convertible to one of these types. See Section
3.4. The function fails otherwise. 1If it succeeds, the value
returned is the integer or real corresponding to x.

Note: The value of numeric(&null) is the integer 0.

examples:
value signal

numeric (0) 0 success
numeric(0.0) 0.0 success
numeric("0") 0 success
numeric("0.0") 0.0 success
numeric("a") failure
numeric("3r4") failure
numeric("™) 0 success
numeric(&null) 0 success

26

String Processing 27

CHAPTER 4

String Processing

4.1 Characters

Although characters are not themselves data objects in Icon,
strings of characters are, and strings are important in many
situations, forming the heart of Icon's processing capabilities.

Icon uses the ASCII character set [3], which is shown in de-
tail in Appendix F. There are 128 characters in the ASCII char-
acter set. Some are associated with graphics and are used for
representing text and for producing printed output. Other char-
acters have no standard graphics; they typically signify control
functions for operating systems and various input and output
devices.

Note: The thirty-third character (octal code 40) is the blank
(space). Since it has no visible representation the symbol B is
used in the body of the text to represent the blank.

Different computer systems use different character sets. For
example, the DEC-10 and PDP-11 use ASCII, but the IBM 360/370
uses EBCDIC [5], and CDC 6000 and CYBER systems use both Display
Code [6] and ASCII. Despite these differences, the internal
character set used by Icon is ASCII and translations are per-

formed upon input and output for computers that use different
character sets.

While it is customary to think of characters in terms of their
graphic representations and control functions, the 128 ASCII
characters are basically just 128 integers in sequence. Inter-
nally these integers are represented by octal codes from 000 to
177. The order of characters is determined by these codes and
specifies the "collating sequence" of the ASCII character set.
For example, Z comes before z in the collating sequence. This
order is the basis for comparing strings (see Section 4.6) and
for sorting (see Section 5.6).

4,2 Strings

A string is a sequence of zero or more characters. Any char-
acter in the ASCII character set may appear in a string. There
are many ways of constructing strings during program execution.
See Section 4.5.

28 CHAPTER 4

4.2.1 Literal Strings

Strings may be specified literally in a program by delimiting
(enclosing) the sequence of characters by double quotes or single
guotes. The same type of quote must be used at the beginning and
end of each string literal, and a quote of one type cannot appear
directly in a literal delimited by that type (see below).

examples:

literal string

1] X 1] X

'X! X

1] n 6 5

"abcd" abcd

"Isn't the temptation great?" Isn't the temptation great?
'He yelled "whoopee".' He yelled "whoopee".

Note: In this manual, string values are given in the body of the
text without the delimiting quotation marks.

Some characters cannot be entered directly in program text
because of their control functions. To allow specification of
all ASCII characters in literal strings, an escape convention is
used in which the backslash (\) causes subsequent characters to
have a special meaning:

backspace - \b
delete \d
escape \e
form feed \ £
line feed \1

carriage return \r
horizontal tab \t

vertical tab \v
double quote \"
single quote \'
backslash A\
octal code \ddd

The specification \ddd represents the character with octal code
ddd (see Appendix F). Only enough digits need to be given to
specify the code. For example, \0 specifies the null character.
If the character following a backslash is not one of those listed
above, the backslash is ignored.

Notes: The convention used here for representing ASCII charac-
ters in literals is adapted from that used by the C programming
language [4]. Since |, \, and ! are all eqguivalent in their
syntactic interpretation, any of these characters may be used as
the escape character and to be represented literally, all these
characters must themselves be preceded by an escape character.

String Processing 29

Warning: If |, \, or ! is intended to be used literally, it must
be preceded by an escape character. Otherwise unexpected results
or a syntactically erroneous construction may occur.

examples:

literal string
ll\\ll \
“\"OOpS\" " |loopsll
ll\ "\ll n "n
|\l\l 1 [}

I\ 1 B
"\a\x" ax
"\132" z
"\134\134" \\
nygn 1

lliill ;

" l lll |

n !\ll \

4.2.2 Built-In Strings

The protected keyword &ascii consists of a string of all the
ASCII characters in collating sequence.

Warning: Ordinarily the value of sascii should not be transmit-
ted to an output device, since some ASCII characters are typical-
ly used to control such devices. ‘

The letters of the alphabet are used so frequently that two
protected keywords are provided for convenience:

keyword value
&ucase ABCDEFGHIJKLMNOPQRSTUVWXY?Z
&lcase abcdefghijklmnopgrstuvwxyz

4.2.3 String Length

The length of a string is the number of characters it contains
and is computed by size(s).

examples:

value
size ("abcd") 4
size (&lcase) 26
size(" ") 1
size(&ascii) 128

The maximum length of a literal string (excluding the delimiters

30 CHAPTER 4

and special encodings) is 120. Strings constructed during pro-
gram execution are limited in length by internal, machine-
dependent considerations. The practical maximum is usually dic-
tated by the amount of memory available. 1In any event, strings

may be very long, although the manipulation of long strings is
expensive.

4.2.4 The Null String

The null string is the string consisting of no characters and
has length zero. It may be represented literally by two adjacent
quotes, enclosing no characters. The null string is also pro-
duced by the use of the keyword &null in a context that requires
a string.

examples:

value
size () 0
size("") 0
size (&null) 0

The default initial value of identifiers of type string is the
null string.

Notes: Since the null string contains no characters, it has no
visible representation. 1In this manual, the symbol g is used to
represent the null string in the body of the text. The null
character (see Appendix F) is not related to the null string. A
string consisting of a single null character has a length of 1.

4,.2.5 Positions of Characters in a String

The positions of characters in a string are numbered from the
left starting at 1. The numbering identifies positions between
characters.

example: The positions in the string CAPITAL are

Note that the position after the last character may be specified.

Positions may also be specified with respect to the right end
of a string, using nonpositive numbers starting at 0 and continu-
ing with negative values toward the left:

C A P I T A L

For this string, positions 8 and 0 are equivalent, positions -1
and 7 are equivalent, and so on.

String Processing 31

Note: The only allowable positions for the null string are 1 and

0, which are equivalent.

The positions that can be specified for a string s are in the
range -size(s) <= i <= size(s)+l. Other values are out of range
and are not allowable position specifications.

In general, the positive specification i is equivalent to the
negative specification -(size(s)+l)+i. While nonpositive posi-
tion specifications are frequently convenient, it is also often
necessary to express position specifications in their positive
form. The value of pos(i,s) is the positive position specifica-
tion of i with respect to s, regardless of whether i is in posi-
tive form or not.

Failure Condition: ©pos(i,s) fails if i is out of range of s.

examples:

value signal

pos(0,&lcase) 27 success
pos(-1,&lcase) 26 success
pos(1l,&lcase) 1 success
pos (28 ,&lcase) failure
pos(0,&null) 1 success
pos(-1,&null) failure

Default: pos(i) defaults to a special meaning for string scan-
ning. See Section 4.8.3.

4.3 Character Sets

Whereas a string is an ordered sequence of characters in which
the same character may appear more than once, a character set

(type cset) is an unordered collection of characters. Character
sets are subsets of the ASCII character set and are useful for
operations on strings where specific characters are of interest,
regardless of the order in which they appear. See Sections 4.7.2
and 4.8.3.

The value of cset(s) is a character set consisting of the
characters in s. Duplicate characters in s are ignored, and the
order of characters in s is irrelevant.

examples:

characters
cset ("abcd") abocd
cset ("badc") abocd
cset ("energy") egnry

The value of "¢ is the complement of ¢ with respect to &ascii,

32 CHAPTER 4

that is, a character set containing all ASCII characters that are
not contained in c.

Note: A character set may be empty, i.e. containing no charac-

ters. Such a character set may be obtained by cset (&null) or
~“cset(&ascii).

4.4 Type Conversions

The value of string(x) is a string corresponding to x, where x
may have type integer, real, string, cset, file, or null.

Failure Condition: string(x) fails if the type of x is not one
of those listed above.

1. An object of type string is returned unmodified by string(x).

2. For the numeric types integer and real, the resulting string
is a representation of the numerical value corresponding to the
literal representation that the numeric object would have in the
source program.

Note: Literal representations are in normal form -- without
Teading zeroes and according to the following rules for reals:

(1) Trailing zeroes are suppressed.
(2) The number of significant digits depends on the precision
of reals and is machine dependent. 1In the examples that follow,

a precision of five digits is assumed.

(3) If the absoluyte value of the real number is greater than
10° or less than 10~ , the exponent notation is used.

examples:

value
string (10) 10
string (00010) 10

string (8r10)

string(2.7) 2.
string (02.70) 2.
string(27e-1) 2.
string (2700000.) 2.
string (0.0000027) 2.

3. For type cset, the value is a string of characters in the

cset, arranged in order of the ASCII character set (see Section
4.6).

String Processing

Note:

S := string(cset(s))

33

Conversion of a string to a cset and back to string, as in

eliminates duplicate characters and sorts the characters of the

string.

examples:

string (cset ("abcd"))
string (cset ("badc™))
string(cset ("energy"))
string(cset("a + b"))

value

abcd
abcd
egnry
B+ab

4. For type file, the value of string(x) is the file name. The

representation of file names,
equivalent files is machine and system dependent.

6.1.

as well as the normal forms of

See Section

5. For type null, the value of string(x) is 4.

There are two other functions that convert objects of various

types to strings.

1. The function type(x) returns a string that is the name of the

type of x.

2. The function image(x) produces a string that resembles the
form the value of x would have in the text of a program. For
strings, this includes enclosing quotes and escapes as necessary.

examples:

type (1)
type(2.0)
type (nn)
type ()

image (1)
image (2.0)
image ('abc!')
image (Il ll)
image ()

value

integer
real
string
null

1

2.0

n abc L1}

&null

For operations that require objects of type string, implicit
conversions are automatically performed for the types integer,

real, cset, file, and null.

34 CHAPTER 4

Error Condition: If an object of any other type is encountered
in a context that requires a string, Error 104 occurs.

examples:

value
pos(0,10) 3
size (010) 2
size (10) 2
size (&null) 0

Similary, for operations that require objects of type cset,
implicit conversion is performed automatically for types integer,
real, string, and null. The conversions are performed by first
converting to type string, if necessary, and then to type cset.

Error Condition: If an object of any other type is encountered
in a context that requires a character set, Error 105 occurs.

examples:
characters

cset (1088) 0

18
cset(3.14159) 134509

Note: 1In this manual, arguments of type cset are usually given

as strings for clarity.

4.5 Constructing Strings

There are a number of operations for constructing strings.
Most of these operations are descibed in the following sections.
See also Sections 4.8.2 and 4.8.3.

4.5.1 Concatenation

Since a string is a sequence of characters, one of the most
natural string construction operations is concatenation, append-
ing one string to another. The value of sl || s2 is a string
consisting of sl followed by s2.

Note: The null string is the identity with respect to concatena-
tion. That is, the result of concatenating the null string with
any string s is simply s.

String Processing 35

examples:

value
llall | l llle az
1} [u | I "abcd" | | u]u [abcd]
"abcd" || &null abcd
nn | | nn ¢

4,5.2 String Replication

The value of repl(s,i) is the result of concatenating i copies
of s.

Error Condition: 1In repl(s,i), if i is negative, Error 211 oc-
curs.,

Note: The value of repl(s,0) is dg.

examples:

value signal
repl("a",3) aaa success
repl("*.",3) *,k %, success
repl (&1lcase) a3 success

4.5.3 Positioning Strings for Column Output

When text is printed in columns, it is useful to position data

in strings of a specified size. There are three functions for
doing this.

1. The value of left(sl,i,s2) is sl positioned at the left of a
string of size i. s2 is used to fill out the remaining portion
to the right of sl1, and is replicated as necessary, starting from
the right. The last copy of s2 is truncated at the left if nec-
essary to obtain the proper size. 1If the size of sl is greater
than i, it is truncated at the right end.

Default: A null or omitted value of s2 defaults to " ".

Error Condition: 1In left(sl,i,s2), if i is negative, Error 212
occurs. '

examples:

left("abcd",6,". ") abcd.b
left("abcd",7,". ") abcdb . B
left("abcge",7",. ™) abcde.b
left ("abcd",6) abcdbb

left(s&lcase,10) abcdefghij

36 CHAPTER 4

2. The value of right(sl,i,s2) is similar to left(sl,i,s2),
except that sl is placed at the right, s2 is replicated starting
at the left, with the truncation of the last copy of s2 at the
right if necessary.

Default: A null or omitted value of s2 defaults to " ".

Error Condition: 1In right(sl,i,s2?2), if i is negative, Error 213
occurs.,

examples:

value
right ("abcd",6,". ") .Bbabcd
right ("abcd",7,". ") .B.abcd
right ("abcde,7,". ") .Babcde
right ("abcd",6) Bbabcd
right(&lcase,10) grstuvwxyz

3. The value of center(sl,i,s2) is sl centered in a string of
length i. s2 is used for filling on the left and right as for
the functions above. 1If sl cannot be centered exactly, it is

placed one character to the left of center.

Default: A null or omitted value of s2 defaults to " ".

Error Condition: 1In center(sl,i,s2), if i is negative, Error 214
occurs.

examples:

value
center ("abcd",8,". ") .Bbabcd.b
center ("abcd",9,". ") .babcdb.B
center ("abcde",9,". ") .Babcde.b
center ("abcd",6) Babcdb
center (&lcase,10) ijklmnopqgr
center (&lcase,1l) hijklmnopgr

4.5.4 Substrings

A substring is a sequence of characters within a string. An
initial substring of s is one that begins at the first character
of s. A terminal substring of s is one that ends at the last
character of s. There are four operations that return sub-
strings.

1. The value of section(s,i,j) is the substring of s between
positions i and j, inclusive.

String

Failure Conditions:

Processing

range.

Defaul&:

string.

examples:

section(&lcase,l1,2)
section(&lcase,2,1)
section(&lcase,1,1)
section(&lcase,27,28)
section(&lcase,-1,-2)
section ("abcd",2)
section ("abcd",2,-7)
section ("abcd")

value

section(s) defaults to section(s,1,0),

signal

O Y W

cd

abcd

success
success
success
failure
success
success
failure
success

i.e.,

37

section(s,i,j) fails if i or j is out of

the entire

If the first argument of section is a variable, assignment to

section(s,i,3)

string and hence change the value of s.

examples:

expressions in seqguence

s := "abcd"

section(s,1,2) :=
section(s,-1,0) := ""
section(s,1,1) :=

lex 1]

llabcll

value of s

abcd
xxbcd
xxbc
abcxxbc

can be performed to replace the specified sub-

2. The value of substr(s,i,j) is the substring of length j

starting at position i of s.

The length specification may be

negative, indicating a string taken from i toward the left.

Note:

Failure Conditions:

substr(s,i,]j)

of range.

examples:

substr (&lcase,2,1)
substr (&lcase,2,26)

substr (

"abcd",2,2)

substr (&lcase,-1,-2)
substr (&lcase, ,-1)

substr (
substr (
substr (

"abcd",2,0)
"abcd",2)
"abcd",2,-3)

substr(s,i,j)

value signal
b success
failure
bc success
Xy success
z success
@ success
g success
failure

is equivalent to section(s,i,j+pos(i,s)).

fails if i or pos(i)+3 is out

Assignment to substr(s,i,j) can be performed in the same

manner as to section(s,i,j).

38 CHAPTER 4

examples:

expressions in sequence value of s
s := "abcd" abcd
substr(s,1,1) := "x" xbcd
substr(s,2,-1) := "" bcd
substr(s,1l) := "xxx" xxxbcd

3. The expression s[i]} is equivalent to substr(s,i,l).

examples:
value signal

&lcase[1l] a success
&lcase[0] failure
&ascii[98] a success
&ascii[33] b success
&lcase[-1] V4 success
"abcd" [-2] c success
&null[2] failure

Warning: The internal representation of characters starts at 0,
not 1, while the positions in a string start at 1. Consequently,
there is a difference of 1 between the position of a character in
&ascii and its (decimal) code value (see Appendix F). Thus
&ascii[l] is the null character. This difference may be an an-
noyance and also a source of error. It is the consequence of the
technique used for specifying positions from either end of the
string by unique integers.

Assignment to s[i] can be performed in the same manner as to
substr(s,i,l). For example

s[3] := "xy"
replaces the third character of s by xy. Similarly,
s[3] :=: s[4]

exchanges the third and fourth characters of s.

examples:

expressions in sequence value of s
s := "abcd" abcd

s[2] := "x" axcd

sf1l] := s[-1] dxcd

s[2] :=: s[3] dcxd

s[1l] := "abcd" abcdxcd

s[1] &null bcdxcd

String Processing 39

4. The operation !s is a generator that produces, as required,
s[1], s[2], ee., s[size(s)].

Note: Assignment to !s may be performed in the same manner as to
s{i]).

examples:
sequence of values

every !"abcde" a, b, ¢, d, e
every !section(&lcase,10,15) j, k, 1, m, n, o

4.5.5 Other String-valued Operations

l. The value of reverse(s) is a string consisting of the charac-
ters of s in reverse order.

examples:

value
reverse ("abcd") dcba
reverse(&lcase) zyxwvutsrgponmlkjihgfedcba

reverse(&null)

2. The value of trim(s,c) is a string consisting of the initial
substring of s with the omission of the trailing substring of s
which consists solely of characters contained in c.

Default: trim(s) defaults to trim(s,cset(" ")).

examples:

trim("abcd L abcd
trim("abcd ") abcd
trim("abcd ,"a" abc
trim("abcd n,ran) abcdbbb
trim("abcd ",&ascii) @

3. The value of map(sl,s2,s3) is a string resulting from a char-
acter mapping on sl, where each character of sl that is contained
in s2 is replaced by the character in the corresponding position
in s3. Characters of sl that do not appear in s2 are left un-
changed. 1If the same character appears more than once in s2, the
rightmost correspondence with s3 applies.

40 CHAPTER 4

Error Condition: If the lengths of s2 and s3 are not the same,
Error 215 occurs.

Note: If sl is a transposition (rearrangement) of the characters

of s2, then map(sl,s2,s3) produces the corresponding transposi-
tion of s3.

examples:

value
map(uabcdau’uau’u*n) *de*
map("abcda","ad","**") *bC**
map("abcda","ad",“*:") *bC:*
map ("abcda" ,"ax","*:") *bcd*
map("abcda","yx“,"*:") abcda
map ("abcda","bcad","1234") 31243
map("abcda","abac","1234") 32443
map(" WXYZ" ' llzyxwll ’ “ade") dCba

4.6 String Comparison

Strings, like numbers, can be compared, but the basis for
comparison is lexical (alphabetical) order rather than numerical
value. Lexical order includes all characters of the ASCII char-
acter set and is based on the collating sequence as given by
&ascii. If a character cl appears before c¢2 in &ascii, cl is
lexically less than c2. The lexical order for single-character
strings is based on this ordering. Thus X is less than x, but z
is greater than x. For longer strings, lexical order is deter-
mined by the lexical order of characters in corresponding posi-
tions, starting at the left. Two strings are lexically equal if
and only if they are identical, character by character. If one
string is an initial substring of another, then the shorter
string is lexically less than the longer one.

Note: The null string is lexically less than any other string.

The function 1lt(sl,s2) succeeds if sl is lexically less than
s2 and fails otherwise. The value returned on success is s2.

examples:
value signal

1ie("x","x") X success
11t ("x","X") failure
11t ("x","x") failure
11t ("XX","x") X success
11t ("xx","xxX") failure
11t ("xx","xxx") XXX success
11t ("xx","xxX") XxX success
11t (&null,"x") X success

11t (&null,&null) failure

String Processing 41

There are four lexical comparison predicates and two lexical
comparison operators:

11t (sl1,s2) lexically less than

lle(sl,s2) lexically less than or equal
lgt(sl,s2) lexically greater than
lge(sl,s2) lexically greater than or equal
sl == s2 lexically equal

sl == s2 lexically not equal

4,7 String Analysis

The majority of programming operations on strings involve
analysis rather than synthesis, and the repertoire of analytic
operations is correspondingly large. A higher-level form of

string analysis is included in string scanning, which is describ-
ed in Section 4.8.

4.,7.1 Identifying Substrings

There are two functions for identifying specific substrings.

1. The function match(sl,s2,i,j) succeeds if sl is an initial
substring of section(s2,i,j). The value returned is the position
of the end of the substring, that is, i+size(sl).

Failure Condition: match(sl,s2,i,j) fails if sl does not exist
at the beginning of section(s2,i,j).

Default: Since section(s) defaults to section(s,1,0),
match(sl,s2) defaults to match(sl,s2,1,0).

examples:
value signal

match("a","abcd",1) 2 success
match("a","abcd") 2 success
match("a","abcd",2) failure
match ("ab”,"abcd",1,2) failure
match ("bc","abcd",1) failure
match("bc","abcd", 2) 4 success
match("bcde","abcd",2) failure
match(&null,"abcd",1) 1 success
match(&null,"abcd",5) 5 success

2. The function find(sl,s2,i,j) succeeds if sl is a substring
anywhere in section(s2,i,j). The value returned is the position
in s2 where the substring begins.

42 CHAPTER 4

Failure Condition: find(sl,s2,i,j) fails if sl does not exist in
section(s2,i,3).

Default: find(sl,s2) defaults to find(sl,s2,1,0). With the

standard default, an omitted third argument is equivalent to the
end of the string.

examples:
value signal

find("a","abecd",1) 1 success
find("a","abcd") 1 success
find("bc","abcd",1) 2 success
find("a","abcd",2) failure
find("ab","abcd",1,2) failure
find("de","abcd",1) failure
find (&null,"abecd",3) 3 success

find is a generator that produces, as required, a sequence of
the positions, from left to right, at which sl is a substring of
section(s2,i,j).

examples:
sequence of values

every find("a","abaaa") 1, 3, 4, 5
every find("abcd","abcdeabc") 1
every find("bc","abcdeabc") 2, 17

every find("bc","abcdeabc",3) 7

4.7.2 Lexical Analysis

Lexical analysis operations involve sets of characters rather
than substrings. There are four lexical analysis operations.

1. The value of any(c,s,i,j) is i+l if the first character of
section(s,i,j) is contained in the character set c.

Failure Condition: any(c,s,i,j) fails if s[i] is not contained
in c.

Default: any(c,s) defaults to any(c,s,1,0).

examples:
value signal

any ("abc","abed",1) 2 success
any("abc","abcd") 2 success
any ("abc","dcba") failure
any (~"abc","dcba") 2 success
any("abc","dcba",2) 3 success

any("abcd","abcd",1,1) failure

String Processing 43

2. The value of upto(c,s,i,j) is the position in s of the first
instance of a character of ¢ in section(s,i,j).

Failure Condition: upto(c,s,i,j) fails if no character in
section(s,1,])) 1s contained in c.

Default: upto(c,s) defaults to upto(c,s,1,0).

examples:

value signal

upto("a”","abcd",1) 1 success
upto("a","abcd") 1 success
upto("abc","abcd") 1 success
upto (~"abc","abcd") 4 success
upto("d","abcd",2) 4 success
upto("a","abcd",2) failure

upto is a generator that produces, as required, a sequence of
the positions, from left to right, at which a character of ¢
occurs in section(s,i,j).

examples:
sequence of values

every upto("abcd","abcd") 1, 2, 3, 4
every upto("a","abcd") 1

every upto("ab","abcd",2) 2

every upto(~"ab","abcd") 3, 4

3. The value of many(c,s,i,j) is the position in s after the
longest initial substring of section(s,i,j) consisting solely of
characters contained in c.

Failure Condition: many(c,s,i,j) fails if s[i] is not contained
in c.

Default: many(c,s) defaults to many(c,s,1,0).

examples:
value signal

many ("ab","abcd",1) 3 success
many ("ab","abcd") 3 success
many ("ab","abcd", 2) 3 success
many("ab","abcd",3) failure

4, The value of bal(cl,c2,c3,s,i,j) is the position in s after
an initial substring of section(s,i,j) that is balanced with
respect to characters in ¢2 and c¢3, respectively, and which ends
at the end of section(s,i,j) or is followed by a character in cl.

In determining balance, a count is kept starting at 0, as

44 CHAPTER 4

characters in section(s,i,j) are processed from left to right. A
character in c¢2 causes the count to be incremented by 1, while a
character in c¢3 causes the count to be decremented by 1. All
other characters leave the count unchanged. If the count is 0
after processing a character and the termination condition is
satisified, the process is complete at that position. Otherwise,
it is continued.

Failure Condition: If the count ever becomes negative or if the
string is exhausted with a positive count, bal fails.

Notes: Characters in c2 are examined before characters in c3, so
if a character occurs in both c2 and c3, it is treated as if it
occurred only in c2. By the algorithm described above, at least
one character is always processed. If that character is not
contained in c¢2 or c¢3, the value returned is i+l, provided the
termination condition is satisified.

Defaults: bal(cl,c2,c3,s) defaults to bal(cl,c2,c3,s,1,0). If
cl is omitted, it defaults to cset(&ascii). An omitted value of

c2 defaults to cset(" (") and an omitted value of c2 defaults to
cset(")").

examples:

value signal

bal(“+","(“,“)“,“(A)"’(B)",l) 4 success
bal ("+",,,"(A)+(B)",1) 4 success
bal ("+",,,"(A)+(B)") 4 success
bal ("-",,,"(A)+(B)") 8 success
bal(,,," (A)+(B)") 4 success
bal(’ll([ll’"])ll'll(A)+(B)ll) 4 SUCCGSS
bal(,"([","1)","[A)+(B]") 4 success
bal(,,"1","[A)+(B]") 2 success
bal(,,,")A(+)B(") failure

bal is a generator that produces, as required, a sequence of
positions, from left to right, at which successively longer bal-
anced strings terminate.

examples:
sequence of values

every bal(,,," (A)+(B)+(C)") 4, 5, 8, 9, 12
every bal ("+",,," (A)+(B)+(C)") 4, 8, 12

every bal(,,,"abcd") 2, 3, 4, 5

String Processing 45

4.8 String Scanning

String scanning is a high-level facility for the analysis and
synthesis of strings that permits the string being operated on to
be implicit, thus avoiding much of the notational detail that
would otherwise be required.

4.8.1 Scanning Keywords

The string being scanned is the value of the unprotected key-
word &subject. The implicit position in &subject is the value of
the unprotected keyword &pos. Assignment of a value to &subject
automatically sets &pos to 1, the beginning of &subject. &pos
may be subsequently changed as desired.

As an example of implicit arguments, find(s) defaults to
find(s,&subject,&pos,0). Thus, if many operations of this type
are to be performed on the same string, this string can be as-

signed to &subject and the operations can be written in an abbre-
viated form.

4.8.2 Positional Synthesis

There are two functions that change &pos automatically and
return the substring between the previous and new values of &pos.

The value of move(i) is the substring between &pos and
&pos + i, and i is added to &pos.

Failure Condition: 1If &pos+i is out of range, move(i) fails.
and &pos 1s not changed.

examples:

expressions in sequence value signal &pos
&subject := "abcd" abcd success 1
move (2) ab success 3
move (3) failure 3
move (-1) b success 2
move (-2) failure 2
move (0) ‘] success 2

The assignment made to &pos by move(i) is a reversible effect.
If move (i) succeeds but the expression in which it appears fails,
&pos is restored to its original value.

46 CHAPTER 4

examples:

expressions in sequence value signal &pos
&subject := "abcd" abcd success 1
move (2) & move(3) failure 1
move (2) ab success 3
move (-1) & (&pos = 3) failure 3

The value of tab(i) is the substring between &pos and i, and
&pos is set to i.

Failure Condition: If i is out of range, tab(i) fails and &pos
1s not changed.

examples:

expressions in sequence value signal &pOS
&subject := "abcd" abcd success 1
tab (2) a success 2
tab (0) bcd success 5
tab (1) abcd success 1
tab (-5) failure 1

The assignment made to &pos by tab(i) is a reversible effect.

examples:

expressions in seguence value signal &poOS
&subject := "abcd" abcd success 1
tab (0) & move(l) failure 1
tab(0) & move(-1) d success 4

4.8.3 Scanning Operations

Several functions have defaults that provide implicit argu-
ments for string scanning. For example, pos(i) defaults to
pos(i,&subject). Thus, pos(0) = &pos succeeds if &pos is posi-
tioned after the end of &subject. Other defaults are:

form interpretation

any(c) any(c,&subject, &pos,0)
bal(cl,c2,c3) bal (¢l,c2,c3,&subject,&pos,0)
find(s) find (s, &subject,&pos,0)
match(s) match (s, &subject,&pos,0)

many (c) many (c,&subject, &pos,0)

upto (c) upto(c,&subject,&pos,0)

Thus in each case the operation applies to &subject starting at

String Processing 47

&pos and continuing to the end of &subject. The values returned
by these functions are integers representing positions in
&subject, but &pos is not changed.

examples:

expressions in sequence value signal &pos
&subject := "abcd" abcd success 1
upto ("c") 3 success 1
upto ("a") 1 success 1
many ("abc") 4 success 1
any ("4a") failure 1

These functions may be used as arguments to tab to change the
value of &pos and obtain a substring between the new and old
values of &pos.

examples:

expressions in sequence value signal &pPOS
&subject := "abcd" abcd success 1
tab (upto ("c")) ab success 3
tab (upto("a")) failure 3
tab (many("c")) c success 4
tab(any("d")) d success 5

In addition, =s is provided as a synonym for tab(match(s)).

examples:

expressions in sequence value signal &pOS
&subject := "abcd" abcd success 1
="ab" ab success 3
="ab" failure 3
="c" c success 4
="a" d success 5
=gnull a8 success 5
="g" failure 5

4.8.4 The Scope of Scanning

Assignment to &subject establishes a global string as the
implicit argument to scanning operations. A local scope for
scanning is provided by the operation s ? x, which assigns s to
&subject and then evaluates x. The result of s ? x is the result
of x, where X may be any expression.

48 CHAPTER 4

examples:
value signal

"abcd" ? tab(upto("d")) abc success
"abcd" ? {&pos := 0; tab(2)} bcd success
"abcd" ? move (5) failure

The values of &subject and &pos are only changed during the
evaluation of s ? x. 1In fact, s ? x is conceptually equivalent
to

save (&pos)

save (&subject)
&subject := s

X

restore (&subject)
restore (&pos)

where save(v) and restore(v) represent internal operations that
temporarily save and restore values.

Structures 49

CHAPTER 5

Structures

Structures are aggregates of variables. Different kinds of
structures have different organizations and different methods for
accessing these variables. The different organizations and ac-
cess methods are chosen for their suitability in various program-
ming contexts. Variables in arrays are organized like points in
rectangular coordinate systems and are accessed by position,
while tables are sets that are accessed by content. Stacks pro-
vide last-in, first-out access. Records provide an organization
in which fields are accessed by name.

5.1 Arrays

Arrays are accessed by position, using indices that correspond
to spatial coordinates. There is a variable, referred to as an
array element, for each coordinate position in the array. Arrays
may be multidimensional and the origin of the array may be speci-
fied.

5.1.1 Cfeation of Arrays

Arrays are created during program execution by expressions of
the form

array [array-prototype] [type] [initial-clause]

The array prototype describes the structure of the array: the
number of dimensions, their extent, and the origin of the array.
The prototype consists of a list of range specifications, one for
each dimension:

range [, range] ...

Each ran%e specification describes a dimension, with a lower
bound (the origin in that dimension) and an upper bound separated
by a colon:

[lower-bound :] upper-bound

If the lower bound is one, only the upper bound need be given.
For example, 10 and 1:10 are equivalent range specifications.

The extent of a dimension is the difference between its upper and
lower bounds plus one. The size of an array is the product of
the extents of its dimensions. Range specifications may be arbi-
trary expressions, allowing the creation of arrays with computed
ranges.

50 CHAPTER 5

Error Condition: 1If a range specification is erroneous, Error
216 occurs.

Note: Although there is no limit on the range of a dimension or
on the number of dimensions, there is a limit on the size of data
objects, which is imposed by machine architecture and the amount
of available memory. Such limits are machine and environment
dependent.

examples:

dimensionality size origin
list := array 1:10 1 10 1
list := array 10 1 10 1
board := array size(list),size(list) 2 100 1,1
sector := array -5:2 1 8 -5
slab := array -5:2,10 2 80 -5, 1
cube := array 5,5,5 3 125 1, 1, 1

If an array is typed any, it is heterogeneous and its elements
may be of different types. 1If an array has any other type, all
elements are of that type.

The initial clause specifies a value that is assigned to all
array elements when the array is created.

examples:

list := array 10 integer initial 1

bar := array 10 any initial 0

board := array 10,10 string initial "x"
sector := array -5:2 string initial "left"

Defaults: As indicated above, all components of the array
expression are optional. The defaults for omitted components
are:

array-prototype 0
type any
initial-clause initial &null

An array prototype of 0 specifies a one-dimensional array with no
elements. See Section 5.1.3.

Linear arrays with an origin of 1 are called lists. A list of
size n may be created as shown above or by an expression of the
form

<X1,X2,¢..,Xn>

where x1, x2, ..., Xxn are the initial values of the n elements.

Structures 51

examples:

size
triple := <0,0,0> 3
line = <,"> 4
octave := K1,2,3,4,5,6,7,8> 8
unit := < 1

5.1.2 Accessing Array Elements

An element of an array is accessed by specifying the coordi-
nates in an expression of the form

x[il,12,...,in]

where x is an n-dimensional array and il, i2, ..., in are the
coordinates of the element. Coordinates are also called sub-
scripts. Assignment may be made to a reference expression to
assign a value to the element.

Note: Omitted or extra expressions in the reference are treated
Tike omitted or extra arguments in function calls. See Section
2.5.

Failure Condition: The referencing expression fails if a coordi-
nate 1s out of range.

examples:
(for the arrays given in the preceding examples)

value signal

list[3] 1 success
list[3] := list[5] * 5 5 success
list[0] failure
list][] failure
octave[4] 4 success
unit[1] oS success
unit[2] failure
board[1l,1] X success
board{12,5] failure
board[10,0] failure
board][] failure
sector|[] left success

5.1.3 Expandable Arrays

Arrays are ordinarily of fixed size. Lists may be opened for
expansion so that they can be indexed beyond the original upper
bound. A list is opened by the expression open(list).

52 CHAPTER 5

Subsequently, the list expands automatically when assignment
is made to a reference with a coordinate that is one beyond the
current upper bound.

Notes: Expansion occurs only when the coordinate is one beyond
the current upper bound. References to larger coordinates fail.
Expansion occurs only when an assignment is made; merely a refer-
ence to such a coordinate fails.

The open function modifies its argument and also returns its
argument as value.

The function close(list) prevents the list from being expanded
by out-of-range references.

Default: Lists are ordinarily closed when they are created. A
Iist of size 0, however, is created as an open list.

examples:

expressions in sequence

value signal size of list
laundry := array 10 array success 10
laundry([1] & success 10
laundry[1ll] := "shirts" failure 10
open (laundry) array success 10
laundry[12] := "shirts" failure 10
laundry[11] := "shirts" shirts success 11
laundry[12] := "socks" socks success 12
close(laundry) array sucesss 12
laundry[12] socks success 12
laundry([13] failure 12

5.2 Tables

A table is an aggregate of elements that resembles a one-
dimensional array, A table, however, can be referenced by any
object. The elements of a table are not ordered by position.
Thus a table can be thought of as an associative array.

5.2.1 Creation of Tables

Tables are created during program execution by expressions of
the form

table [size] [ref-type] [, value-type]

When tables are created, they are empty and have no elements.
Elements may be added at will (see Section 5.2.3) and tables grow
automatically. The size given in the table expression limits the
number of elements in the table. A size of 0 specifies a table
that is not limited in size, except by the availability of
memory.

Structures 53

Default: An omitted size defaults to 0.

Error Condition: If a size specification is negative, Error 218
occurs.

5.2.2 Accessing Table Elements

An element of a table is accessed by specifying a referencing
value in an expression of the form t[x] where t is a table and x
is the referencing value. The referencing value need not be an

integer. For example, t["n"] references the table t with the
string n.

A value is assigned to a table element in a manner similar to
that for arrays. For example

t["n"] := 3
assigns the integer 3 to the element referenced by the string n.
Defaults: The types for the reference and value of elements of a
table are optional. An unspecified type defaults to any. Note

that a comma separates the two type specifications.

examples:

type default

table table any, any
table string table string, any
table ,string table any, string

A table grows automatically as assignments are made to refer-
enced elements that are not already in the table.

The value of a table element that is not in the table is
&null, and is converted to the expected type. Table elements are
only created, however, when values are assigned to them. See
also Section 5.2.3.

Error Condition: If an attempt is made to exceed the specified
maximum size of a table, Error 301 occurs.

examples:

expressions in sequence value size of table
opcode := table table 0
opcode ["ADD"] := 273 273 1
opcode ["SUB"] @ 1
opcode["SUB"] := 274 274 2
count := table string, integer table 0
count["four"] := count["four"] + 1 1 1
count["score"] := count["score"] + 1 1 2
count["1776"] := count["1776"] + 1 1 3

54 CHAPTER 5

count[1776]
count[1776] := "000O"

O =
w W

5.2.3 Closed Tables

As discussed above, tables are ordinarily expandable and grow
as values are assigned to newly referenced elements. Tables may
be closed to prevent future expansion. A table is closed by
close(t) where t is a table. When a table is closed, new ele-
ments cannot be added, but existing elements can be accessed or
assigned new values.

Failure Condition: When a table is closed, a reference to a
non-exlstent element fails.

The function open(t) opens t for further expansion.

examples:

expressions in seguence value signal

digram := table string, integer table success
digram["th"] := 73 73 success
digram["en"] := 81 81 success
digram["io"] := 41 41 success
close(digram) table success
digram["th"] := digram["th"] + 1 74 success
digram["st"] failure
open (digram) table failure
digram["st"] 0 failure

5.3 Stacks

A stack is an aggregate of variables that resembles a one-
dimensional array. A stack, however, grows and shrinks automat-
ically as elements are added (pushed) and deleted (popped).
Furthermore, a stack can be accessed only at the most recently
added element (top).

5.3.1 Creation of Stacks

Stacks are created during program execution by expressions of
the form

stack [size] [type]

The size expression limits the maximum number of elements the
stack may have. A size of 0 specifies a stack of unlimited size.

Structures 55

Default: An omitted size defaults to 0.

Error Condition: 1If a size specification is negative, Error 217
occurs.

The type specifies the types of elements that may be added to
the stack.

Default: An omitted type specification defaults to any.

5.3.2 Accessing Stacks

When a stack is created, it is empty and contains no elements.
An element is added to a stack by the function push(k,x), where k
is a stack and x is a value to be added to the top of the stack.
The value of push(k,x) is x.

Error Condition: If an attempt is made to exceed the specified
maximum slze of a stack, Error 302 occurs.

An element is removed from a stack by the function pop(k).
The value of pop(k) is the value that is removed.

The top element of a stack is referenced by top(k), which
returns the value of the top element of k. Assignment may be

made to top(k) to change the value of the top element of the
stack.

Failure Condition: pop(k) and top(k) fail if k is empty.

examples:

expressions in sequence value signal size of stack
pstack := stack stack success 0
push (pstack,"x") X success 1
push (pstack,"y") vy success 2
push (pstack,"*") * success 3
top(pstack) * success 3
pop (pstack) * success 2
top(pstack) := "z" z success 2
pop (pstack) z success 1
pop (pstack) X success 0
pop (pstack) failure 0
top (pstack) failure 0

5.4 Records

Records are aggregates of variables that resemble one-
dimensional arrays, but the elements are accessed by name rather
than position.

56 CHAPTER 5

5.4.1 Declaring Record Types

A record type is declared in the form

record name
field-T [:type-1]1,
Tield=27 [:type-2],

field-n [:type-n]
end

Note: A record declaration cannot appear within a procedure
declaration or within another record declaration.

The name specifies a new type, which is added to the reper-
toire of types and becomes a reserved word.

The fields provide names for the n elements of the record and
have type specifications as indicated.

Note: Field names must be unique; different record types cannot
have common field names.

An example is
record complex r:real, i:real end

which declares complex to be a record type with two fields, r and
i, both of which have type real.

5.4.2 Creating Records

A record is created during program execution by an expression
of the form

type value [, value] ...

where the type is one declared by record and the values are as-
signed to the fields of the record in the order corresponding to
the field names. For example,

z := complex 1.0, 2.5

assigns to z a complex record with a value of 1.0 for the r field
and a value of 2.5 for the i field.

Structures 57

Default: An omitted value defaults to &null and is converted to
the expected type.

5.4.3 Accessing Records

A record is accessed by field name, using an infix dot nota-
tion. Continuing the example above, the value of z.r is 1.0.
The infix dot operator binds more tightly than any other infix
operator and associates to the left. For example, a.b.c.d and
((a.b).c).d are equivalent.

Records can also be accessed by position like linear arrays.
For example, z[1l] is equivalent to z.r.

examples:

expressions in sequence value signal

z]l := complex 0,0 complex success
z2 := complex 3.14, -3.14 complex success
zl.r 0.0 success
zl.r + z2.i -3.14 success
zl.r := z2.r 3.14 success
zl.i := zl.r 3.14 success
zl.r - zl.i 0.0 success
z2[2] -3.14 success
z2[3] failure

5.5 Copying Structures

Assignment does not copy structures, but rather assigns the
same structure to another variable. For example,

X
y

1= array 10

= X

assigns the same array to x and y. Subsequently, x{[3] and y{[3]
reference the same element of the same array.

A structure may be copied by the built-in function copy(x).
For example

Z := copy(x)

assigns a copy of x to z. This copy has the same structure as x
and the values of all the elements are the same, but x and z are
distinct structures. Subsequently, x[3] and z[3] reference dif-

ferent elements in the corresponding positions of different
structures.

58 CHAPTER 5

5.6 Sorting Structures

The built-in function sort(x,i) produces a copy of x with the
elements in sorted order. The array a must be a rectangular,
n-by-m array (a linear array is an n-by-1 array). The array is
sorted on column i and the elements in the rows corresponding to
column i are moved correspondingly.

Default: An omitted value of i defaults to 1.

Error Condition: If i is not in the range 1 <= i <= m, Error 219
occurs.

In sorting, strings are sorted in increasing lexical order
(see Section 4.6), while integers and real numbers are sorted in
numerical order (see Section 3.1.3 and 3.2.3). The ordering of
value of other types is unspecified.

In heterogeneous arrays containing values of different types,
values are first sorted by type and then among the values of the
same type. The order of types in sorting is

null
integer
real
string
cset

file
procedure
array
table
stack
defined types

Tables are converted to sorted arrays by sort(t,i). The re-
sult is an n-by-2 array with the element references in the first
column and the corresponding values in the second column. If i
is 1, the result is sorted by reference, while if i is 2, the
result is sorted by value.

Default: An omitted value of i defaults to 1.

Error Condition: 1In sort(t,i), if i is not 1 or 2, Error 219
occurs.

5.7 Structure Size

The size of a structure x is the number of elements in it and
is the value of size(x).

For arrays, the size is specified by the array prototype and
remains constant except for open arrays, in which the size in-
creases as elements are added.

Structures 59

Tables initially have a size of 0, but increase in size as
values are assigned to newly referenced elements.

Note: Merely referencing an element in a table does not add that
element to the table.

Stacks increase and decrease in size as elements are pushed
and popped.

Records are fixed in size by their declaration.

5.8 Generation of Elements in Structures

The operation !X is a generator that produces, as required,
successive elements from the structure x. Assignment may be made
to !x to change the value of the element.

For linear arrays, the order of generation is from the lower
bound to the upper bound. For example, if x is a list

every write(!x)
writes the elements of x in order from the first to the last.
For arrays of higher dimensionality, the order of generation

is by dimension, from left to right. For example, if x is an
array with the prototype 3,2,2, the order of generation is

For tables, the order of generation is unpredictable, but all
elements are generated if required.

For stacks, the order of generation is from the top of the
stack to the bottom of the stack.

For record types, the order of generation is the same as for
linear arrays.

60

Input and Output 61

CHAPTER 6

Input and Output

Many aspects of input and output are strongly dependent on
specific computer architecture, operating system characteristics,
and installation conventions. For these reasons, much of the
material in this chapter is machine dependent.

6.1 Files

The term file refers to a set of data that is physically ex-
ternal to the computer itself. Files may be considered to con-
tain a sequence of strings, called lines.

There are two important files that provide for standard pro-
gram input and output. They permit the program to access data to
be processed and provide a mechanism for recording the results of
computation. The values of &input and &output are the standard
input and output files, respectively.

Error Condition: These keywords are not variables. If an at-
tempt Ts made to assign a value to one of them, Error 121 occurs.

Note: The method by which standard input and output files are
interfaced to a program varies from machine to machine.

6.2 Opening and Closing Files

&input and &output are automatically opened when program exe-
cution begins.

A program may, in addition, read data from files other than
the standard input file and may write data to files other than
the standard output file.

In order to reference files, they are given names. The syntax
of file names is machine dependent and varies significantly from
one system to another.

A file must be opened to be written or read, and must be
closed when input and output are complete. In addition, the
status of the file must be established; some files are designated
for input and others are designated for output.

All files are automatically closed when program execution is
terminated.

62 CHAPTER 6

Warning: 1In the case of abnormal program termination, files may

not be closed. This can result in the loss of data that has been
written to output files. Some systems provide an explicit means

of closing files after program termination.

The function open(sl,s2) opens the file with name sl according
to the options specified by s2. The possible options are repre-
sented by characters as follows:

open for reading

open for writing

open for reading and writing (bidirectional)

open for writing in append mode

provide line terminator at end of write

do not provide line terminator at end of write
provide line terminator after each argument of write
character input and output

QO3+ TE R

Notes: Characters in the option sepcification may be duplicated.
In the case of mutually exclusive specifications, the last
(right-most) specification holds. Not all the options listed
above are available on all machines.

In the case of the w option, writing starts at the beginning
of the file, causing any data previously contained in the file to
be lost. The a option allows data to be written at the end of an
existing file. The b option usually applies to interactive input
and output at a computer terminal where the terminal behaves like
a file that is both written and read.

The 1, n, and e options are provided as optional additions to
the w, b, and a options. The normal mode of output is 1, in
which a line terminator is provided at the end of the sequence of
strings written by the write function. The n option suppresses
this terminator. This permits several strings to be concatenated
on the same line with successive calls to the write function.

The main use of this option, however, is to provide prompting at
a terminal in an interactive mode, allowing the user to respond
on the same (visual) line that an inquiry is written. The e mode
allows several lines to be written with a single call of the
write function.

With the ¢ option, input and output are done one character at
a time.

Default: An omitted value of s2 defaults to "r".

Error Condition: If the option specification is invalid, Error
221 occurs.

Input and Output 63

Failure Condition: open(sl,s2) fails if sl cannot be opened with
the options specified by s2.

The function close(f) closes f. This has the effect of physi-
cally completing output (emptying internal buffers used for in-
termediate storage of data). Once a file has been closed, it
must be reopened to be used again. 1In this case, the file is
positioned at the beginning (rewound).

Error Condition: If a file cannot be closed, Error 401 occurs.

6.3 Writing Data to Files

The function write(f,sl,...,sn) writes the strings sl, s2,
.+«y Sn to the file f. The strings are written one after another
as a single line, not as separate lines (i.e., they are not sepa-
rated by line terminators). The effect is as if sl1, s2, ..., sn
had been concatenated and written as a single line on the file f.

The maximum length of an output line is machine and system
dependent, as is the treatment of output lines of excessive
length.

Notes: A line terminator is normally added after sn, but see
Section 6.4. No actual concatenation is performed by the write
function. Since strings output to a file frequently are composed
of several parts, the write function may be used to avoid concat-
enation that otherwise might be necessary. A significant amount
of processing time may be saved in this way.

Default: If the first argument to write is not of type file, the
arguments are written to the standard output file. That is,

write(sl,s2,...,sn) writes sl, s2, ..., sn to the standard output
file. Note in particular that if the first argument to the write

function is a string, it is not automatically converted to type
file.

Error Condition: 1If an attempt is made to write on a file that
is not open for writing, Error 403 occurs.

Objects of type integer, real, cset, file, and null are auto-
matically converted to string as described in Section 4.4. Argu-
ments of other types are converted to string by use of the image
function (see Section 4.4). Thus arguments of any type can be
specified in the write function.

Notes: If the first argument to write is a file, it is not con-
verted to string, but rather used as the output file. For argu-
ments of type file is positions other than the first, the image
function converts a file to a string with the corresponding file
name. Single enclosing gquotes are used to distinguish the images
of files.

64 CHAPTER 6

examples:

expressions in sequence output file

out := open("data.txt")

flag e = Wk kkin

sep := "on

write(out) @ data.txt
write(out,flag,"a",sep,"b") kkk*x3:b data.txt
write(flag,"a",sep,"b") *k*%ka:b &output
write(out,"x",sep,"y",sep,"z",flaqg) Xsysx*kk* data.txt
write(l,sep,2.0,sep,"2") 1:2.0:2 soutput
write(sep,out,sep) :'data.txt': &output
write(out,out) '‘data.txt' data.txt

6.4 Reading Data from Files

The function read(f) reads the next line of data from the file
f.

Failure Condition: When the end of a file is reached (that is,
when there are no more lines in the file), read(f) fails.

Default: An omitted value for f defaults to &input.

read(f) is a generator, producing successive line of input as
required. For example,

every write(read())

copies all the lines in the standard input file to the standard
output file.

Error Conditions: If an input line exceeds 100 characters, Error
411 occurs. 1If an attempt is made to read from a file which is

not opened for reading, Error 403 occurs. See also Section
9.1.1.

Miscellaneous Operations 65

CHAPTER 7

Miscellaneous Operations

7.1 Random Number Generation

The value of random(i) is an integer taken from a pseudo-
random sequence with the range 1 <= j <= i.

The pseudo-random sequence is generated by a linear congruence
relation starting with an initial seed value of 0. This sequence
is the same from one program execution to another, allowing pro-
gram testing in a reproducible environment. The seed may be
changed by an assignment to &random. For example,

&random := 0
resets the seed to its initial wvalue.

Note: The maximum range of values in the pseudo-random sequence
and the maximum seed value are machine dependent.

Error Condition: If the value of i in random(i) or the wvalue
assigned to &random is negative or out of range, Error 207 oc-
curs.

7.2 Time and Date

The value of the keyword &date is the current date in the form
mm/dd/yy. For example, the value of sdate for April 1, 1979 is
04/01/79.

The value of the keyword &clock is the current time of day in
the form hh:mm:ss. For example, the value of &clock for 8:00
p.m. is 20:00:00.

The value of the keyword &time is the elapsed time in milli-
seconds starting at the beginning of program execution.

Note: The time required for program compilation is not included
in the value of g&time.

Error Condition: &date, &clock, and &time are not variables. 1If

an attempt is made to assign a value to one of them, Error 121
occurs.

66

Procedures _ ‘ 67

CHAPTER 8

Procedures

The basic unit of a program is the procedure. All computation
is performed by invoking procedures.

8.1 Procedure Declaration

A procedure is declared in the form

procedure name [(argument-list)] [: return-type]
[identifier-declaration] [, identifier-declaration] ...
[detault-declaration]
[1nltial-section]
[procedure-body]

end

The argument list specifies the arguments of the procedure and
has the form

argument [, argument] ...

Each argument consists of an identifier and an optional type
specification:

identifier [: type]

Default: An omitted type defaults to any.

The return type specifies the type of the value returned by
the procedure.

Default: An omitted return type defaults to any.
An identifier declaration has the form

[scope] [retention] identifier [, identifier] ... [: type]

The scope declaration may be either local or global. The value
of a local identifier is accessible only to a specific invocation
of a procedure. The value of a global identifier is available to
all invocations of all procedures in which the global identifier
appears. Identifiers in the argument list are local.

The retention specification is allowed only for local identi-
fiers and may be either dynamic or static.

68 CHAPTER 8

Defaults: An omitted retention specification defaults to
dynamic. An omitted type specification defaults to any.

Dynamic identifiers exist only during each invocation of the
procedure. Static identifiers come into existence at the first
call of the procedure in which they are declared and remain in
existence after return from the procedure so that their values
are retained between calls of the procedure.

The default declaration has the form

default default-type

where the default type may be local, global, or error. The de-
fault declaration determines the handling of identifiers in the
procedure that are not declared and are not among the global
identifiers of other procedures. If the default is local, such
identifiers are treated as if they had been declared local.
Similarly, if the default is global, such identifiers are treated
as if they had been declared global. 1If the default is error,
such identifiers are treated as errors.

The initial section has the form
initial expr

The expression in the initial section is evaluated once when the
procedure is first called. The initial section is useful for
assigning values to global or static local identifiers.,

The procedure body consists of a sequence of expressions that
are executed when the procedure is called.

Some examples of procedure declarations follow.

procedure max (i:integer,j:integer) :integer
if i > j then return i else return j
end

procedure accum(s:string) :string
local static t:string
initial t = ","
t:=t |l s Il ","
return t
end

8.2 Procedure Activation

8.2.1 Procedure Invocation

Procedures are invoked in the same form that built-in func-
tions are called:

Procedures 69

name (expr [, expr] ...)

For example, the procedure max given in the example above might
be used as follows:

m := max(size(x),size(y))

Argument transmission is by value. When a procedure is called,

the expressions given in the call are evaluated from the left to
the right.

The values of the expressions in the call are assigned to the
corresponding identifiers in the argument list of the procedure.
Control is then transferred to the first expression in the proce-
dure body. |

Failure Condition: If any expression in the call fails, the
remalning expressions are not evaluated, the procedure is not
called and the calling expression fails.

Note: 1If more expressions are given in the call than are speci-
fied in the procedure declaration, the excess expressions are
evaluated, but their values are discarded. If fewer expressions
are given in the call than are specified in the procedure decla-
ration, &null is provided for the remaining arguments.

]

8.2.2 Return from Procedures

When a procedure is called, the expressions in the procedure
body are executed until a return expression is encountered.
There are four forms of return expression:

return [expr]

succeed [expr]
fail

suspend [expr]

Defaults: An omitted expr in a return expression defaults to
&null. An implicit return &null is provided at the end of every
procedure body.

1. The expression return expr terminates the call of a procedure
and returns the result of evaluating expr. If expr fails, the
procedure call fails. Otherwise the Value of eXpr becomes the
value of the calling expression. For example

j := max(size(x),size(y))
assigns to j the size of the larger of the two objects x and y.
2. The expression succeed expr is the same as return expr, ex-

cept that the signal resulting from the evaluation of expr is
ignored and the procedure signals success.

70 CHAPTER 8

Note: 1If expr fails, &null is returned.

3. The expression fail terminates the call of a procedure with a
failure signal, causing the calling expression to fail. Consider
the following procedure.

procedure typeqg(x,y)

if type(x) == type(y) then succeed else fail
end

This procedure compares the types of x and y, succeeding if they
are the same and failing otherwise.

4. The expression suspend expr is similar to succeed expr, ex-
cept that the procedure call is left in suspension so that it may
be resumed for additional computation. Execution of the proce-
dure body is resumed if goal-directed evaluation requests another
alternative. Thus suspended procedures are generators. Consider
the following procedure.

procedure timer (t) :integer
while &time < t do suspend
fail

end

This procedure suspends evaluation until the time exceeds a spec-
ified limit, in which case it fails. Therefore

every timer (&time + 1000) do expr

evaluates expr repeatedly during an interval of approximately
1000 milliseconds.

suspend, like every, produces all alternatives of expr as
required. For example

suspend (1]2]3)

suspends with the values 1, 2, and 3 on successive activations of
the procedure in which it appears. If the procedure is activated
again, evaluation continues with the expression following the
suspend.

If the expression in return or succeed is a global identifier
or a computed variable (such as an array reference), the variable
is returned. 1In the case of local identifiers, only the value is
returned. An assignment can be made to the result of a procedure
call that returns a variable. Consider the following procedure:

procedure maxel (x:array,i:integer,j:integer)
if x[i] > x[j] then return x[i]
else return x[j]
end

An assignment can be made to a call of this procedure to change
the value of the maximum of the elements i and j in x:

Procedures 71

maxel(roster,k,m) := n
Unlike return and succeed, suspend returns a local identifier as

a variable, since local identifiers in a procedure remain in
existence while the procedure is suspended.

8.2.3 Procedure Level

Since procedures can invoke other procedures before they re-
turn, several procedures may be invoked at any one time. The
value of the &level is the number of procedures that have cur-
rently been invoked.

Error Condition: There is no specific limit to the number of
procedures that may be invoked at any one time, but storage is
required for procedure invocations that have not returned. If
available storage is exhausted, Error 501 occurs.

8.2.4 Tracing Procedure Activity

Tracing of procedure invocation is controlled by the keyword
&trace. If the value of strace is not zero, a diagnostic message
is printed on the standard output file each time a procedure is
called and each time a procedure returns or suspends. The value
of &trace is decremented for each trace message.

Default: The initial, default value of &trace is 0.

Note: Tracing stops automatically when &trace is decremented to
0. If a negative value is assigned to s&trace, tracing continues
indefinitely.

In the case of a procedure call, the trace message includes
the name of the procedure and the values of its arguments. The
message is indented with a number of dots equal to the level from
which the call is made (&level). 1In the case of procedure re-
turn, the trace message includes the function name, the type of
return, and the value returned, except in the case of failure.
The indentation corresponds to the level to which the return is
made.

An example is given by the following program:

procedure acker(m,n)
if (min) < 0 then fail
if m = 0 then return n + 1
if n = 0 then return acker(m-1,1)
return acker (m-1,acker (m,n-1))
end

procedure main
&trace := -1
acker (1,3)
end

72

The trace output produced by this program is

.line 10: acker(1,3)

..line 5: acker(1,2)

...line 5: acker(1l,1)
.s.ssline 5: acker(1,0)
.essesline 4: acker(0,1)
.e.s.line 3: acker returned 2
.s«ssline 3: acker returned 2
..se.line 3: acker(0,2)
.e.ssline 3: acker returned 3
...line 3: acker returned 3
...line 3: acker(0,3)
...line 3: acker returned 4
..line 3: acker returned 4
..line 3: acker(0,4)

..line 3: acker returned 5
.line 3: acker returned 5
line 3: main returned &null

8.3 Listing Identifier values

CHAPTER 8

The function display(i) prints a list of all identifiers and
their values in the i levels of procedure invocation starting at

the current procedure invocation.

Default: An omitted value of i defaults to 1 (only the identi-

fiers 1in the currently invoked procedure are displayed).

Note: display(&level) displays the identifiers in all procedure

invocations leading to the current invocation.

As an example of the display of identifiers, consider the

following program:

procedure hex(x) global hexd
display(&level)

return &ascii[l1l6 * find(x[1] ,hexd) +

find(x[2] ,hexd) - 16]
end

procedure main local label; global hexd

hexd := "0123456789ABCDEF"
label := "hex(61)="
write(label,hex("61"))

end

The output of display(&level) is

hex locals:

x = lI61ll
main locals:

label = "hex(61)="
program globals:

main = procedure main

Procedures 73

hex = procedure hex
hexd = "0123456789ABCDEF"

The program globals, which are common to all procedures, are

listed at the end of every display output, regardless of whether
or not the globals are referenced by the displayed procedures.

8.4 Procedure Names and Values

A procedure declaration establishes an object of type
procedure as the initial value of the identifier that is the
procedure name. This object can be assigned to another variable

and the procedure can be called using the new variable. For
example

assigns to imax the procedure for max as given earlier. Subse-
quently,

imax (i, J)
can be used to compute the maximum of i and j.

Any expression that produces a value of type procedure may be

used in a call. For example, if procs is a list whose elements
have procedures as value, such as

procs[l] := max
then
procs[1](i,3)
computes the maximum of i and j.

If the name of a declared procedure is the same as the name of
a built-in function, the declaration overrides the built-in mean-
ing.

Identifiers that are the names of built-in functions have
objects of type procedure as their value. These values may be
assigned to other variables and used in the same fashion as de-
clared procedures.

Identifiers that are the names of built-in functions and de-

clared procedures are not variables and values cannot be assigned
to them.

74 CHAPTER 8

Note: Such names are similar to those keywords, such as &time,
that are not variables.

Error Condition: 1If an attempt is made to assign a value to an
1dentifier that is the name of a built-in function or declared
procedure, Error 121 occurs.

Programs 75

CHAPTER 9

Programs

9.1 Program Structure

A program is a sequence of declarations for records and proce-
dures. These declarations may appear in any order. Every pro-
gram must contain a procedure named main.

9.1.1 Preparation of Program Text

A program is essentially a file. Program files may be con-
structed using any of the utilities available, which vary from
installation to installation. 1Installations with interactive
facilities may allow the program to be entered and run directly
from a terminal, although this is impractical for all but the
shortest programs.

As a file, a program is a sequence of lines. In most cases it
is convenient and natural to parallel the logical structure of a
sequence of expressions by the physical structure of a sequence
of lines.

If desired, several expressions can be placed on a single line
using semicolons to separate them. For example

N X
L 1) (1] a0
i nn
o=

can also be written as

X 1= 1; y := 2; z2 :=0

The maximum length of a program line is 120 characters, al-
though some systems may impose more stringent limits. Sometimes
an expression is too long to fit on a line. An expression may be
split between lines at any point that a blank may be used. 1Infix
operators whose operands span lines must be surrounded by blanks.

Warning: Care should be taken not to split expressions at places
where components are optional. For example

return e
and

return
e

76 . CHAPTER 9

are quite different.

A string literal may be continued from one line to the next by
entering an underscore () as the last character of the current
line. When a line is continued in this way, the underscore as
well as any blanks or tab characters at the beginning of the next
line are ignored to allow normal indentation and visual layout
conventions to be used.

9.1.2 Program Character Set

Different computers, systems, and peripheral equipment use
different character sets and vary in the characters that are
available on input and output. As mentioned in Sections 1.3 and
4.1, Icon uses the ASCII character set internally. For systems
that do not use this character set, Icon provides automatic
translation between the external character set of the system on
which it is run and the internal character set that it uses,
Since some systems are limited in the number of characters avail-
able and methods for their graphic representation, certain char-
acters are equivalent for syntactic purposes. These are:

lower-case letters and upper-case letters
tab and blank

and
*and @
[and {
] and }
| and \ and !

Note: 1In literal strings, all characters are distinct and the
equivalences above do not apply.

Although this manual distinguishes between these characters to
make program examples more readable, the alternates above can be
used without affecting program behavior. For example, the fol-
lowing expressions are equivalent:

if i := upto(c) then {write(i); x[i] := c}
IF I := UPTO(C) THEN [WRITE(I); X[I] := C]
IF i := Upto(c) Then {wrIte(I); x{i] := C}

While the last example is equivalent to the others, it is clearly
good practice to be consistent in the use of alternative charac-
ters.

Programs 77

9.1.3 Comments

A comment is text in the line of a program that is not part of
the program itself, but is included to describe the program or to
provide other auxiliary information. The character # causes the
rest of the line on which it appears to be treated as a comment.

The following program segment shows the use of comments.

====== . = ===

4 ====== CH ARACTER SET S =====

m===== ======

These functions perform the operation of union, intersection,

and difference on two character sets.

procedure union(csl,cs2) # union of csl and cs2
return cset(csl || cs2)

end

procedure inter (csl,cs2) # intersection of csl and cs2
return ~(~“csl || ~cs2)

end

procedure differ (csl,cs2) # difference of csl and cs2
return “(“csl || cs2)

end

9.2 Including Text from Other Files

Text from other program files can be included by the declara-
tion

include file-name

The contents of the named file replace the include declaration.
This provides a convenient mechanism for incorporating procedures
or record declarations from libraries.

Notes: include may not appear inside a procedure or record dec-
Taration. 1Included files may contain other include declarations.
It is good practice, although not necessary, to have included
files consist of complete declarations.

9.3 Program Execution

There are two phases of program execution. During the first
phase, the text of the program is translated into a form that can
be executed by the computer. The program is then executed to
carry out the operations that it specifies.

78 CHAPTER 9

9.3.1 Translation Errors

The translator can detect a variety of errors. Most of the
errors that the translator can detect are syntactic ones: ille-
gal grammatical constructions. The translator can also detect a
few semantic errors, such as undeclared identifiers in a proce-
dure in which default error is specified.

The translator lists errors and the location at which they are
detected. See Appendix E for a list of error messages.

Notes: Some grammatical errors are not detected until after the
Tocation of the actual cause of the error. For example, if an
extra left brace appears in an expression, the error is not de-
tected until some construction occurs that requires the matching,
but missing right brace. As a result of this phenomenon, the
translator message may not properly indicate the cause or loca-
tion of the error. Similarly, some kinds of errors may cause the
translator to mistakenly interpret subsequent constructions as
erroneous when, in fact, they are correct. Several diagnostic
messages referring to locations in proximity should be suspect.

If the translator detects an error, the translation process is
continued, but the program is not executed.

9.3.2 Initiating Execution

Program execution begins by invocation of the procedure named
main.

Error Condition: 1If the program contains no procedure with the
name maln, Error 108 occurs.

9.3.3 Program Termination

Program execution terminates automatically on return from the
initial call of the main procedure. .

Note: Since a default return is provided at the end of every
procedure body, program execution terminates on completion of
evaluation of the body of the main procedure, even if no explicit
return has been made.

Program termination is also caused by evaluation of
stop(f,sl,s2,...,sn). The function stop writes sl, s2, ..., sn
to £ in the fashion of the write function (see Section 6.2) and
then causes termination. '

Programs A 79

Note: The stop function can be used to terminate program execu-
tion at an arbitrary place and is a convenient way of handling
errors or abnormal conditions that are detected by a program.

The function exit() terminates program execution and preserves

the core image of the program so that it can be saved and re-
started at a future time.

Note: The capability for saving and restarting core images, as
well as the method by which it is done, is machine dependent.
The exit function may not be available on some machines.

There are three kinds of errors that may occur during program
execution: program errors, processor errors, and exception
errors.

Program errors result from logical mistakes, invalid data, and
so forth. If one of these errors occurs, an error number and an
explanatory message are printed and program execution is termi-
nated. Program errors are listed in Appendix E.

Processor errors occur in the case of an unexpected situation
or internal inconsistency in the Icon processor. Such errors
cause program termination with a message and a description of the
internal problem. If a processor error occurs, the problem
should be brought to the attention of the person responsible for
the maintenance of the Icon processor. It is advisable to leave
the program that caused the problem, as well as any data that was
processed, intact so that tests can be performed to locate the
cause of the error.

Exception errors may occur for a variety of reasons that are
machine dependent. For example, arithmetic overflow on some
computers causes termination without allowing the Icon processor
the opportunity to gain control. When a program terminates ab-
normally due to an exception error, the usual termination mes-
sages are not provided and files may not be closed. See Section
6.4.

80

Syntax 81

APPENDIX A

Syntax

A.1 Formal Syntax

In the following listing of the formal syntax of Icon, the
syntactic types bar, period, left-bracket, and right-bracket
indicate occurrences ot the characters |, ., [, and], which have
metalinguistic uses in the syntax description language. The
lexical types identifier, integer-literal, real-literal,
string-literal, file-name, and word are not described here. See
their description in the body of the manual. The syntactic type
record-type is determined by record declarations and varies from
program to program.

program ::= [declar [declar] ...]
declar ::= include | record | procedure
include ::= include file-name
record ::= record field-list end
field-list ::= [identifier [: typel [, identifier [: typel ... |
type ::= integer | real | string | cset | file | procedure
| array | table | stack | null | any | record-type
procedure ::= proc-header proc-declar initial-section

proc-body end

proc-header procedure identifier [(argument-list)]

[: return-typeT

argument-list

[argument [, argument]]

argument

identifier [: type]

return-type

type

proc-declar : [default-declar] [ident-declar [, ident-declar] ...

default-declar

default default-type

default-type :

local | global | error

ident-declar

global ident-list [: type] | local [retention]
ident-1list [: type]

ident-1list

identifier [, identifier] ...

82 APPENDIX A

retention static | dynamic

initial-section

[initial expr]

proc-body ::= [expr [; expr] ...]
expr ::= literal | keyword | operation | call | reference
| list | structure | control-struct | compound-expr
| (expr)
literal ::= integer-literal | real-literal | string-literal
keyword ::= & word
operation ::= prefix-oper expr | expr suffix-oper | expr

infix-oper expr

prefix-oper ::= + | - | ~ | !
suffix-oper ::= + | -
infix-oper ::= 2?2 | & | := | :=: | bar | = | "= | > | < | >=
l <= | ==] == | bar bar | + | - | * | / | ** |

call

..
I

= expr (expr-list)

expr-list

= expr [, expr] ...

reference ::= expr left-bracket expr-list right-bracket
| expr period identifier
list ::= < expr-list >
structure ::= array | table | stack | record-object
array ::= array [array-prototype] [type] [initial-clause]

array-prototype = range [, range] ...

range ::= [lower-bound :} upper-bound
lower-bound ::= expr
upper-bound ::= expr

initial-clause

= initial expr

table ::= table [size] [ref-type] [, value-type]
size ::= expr
value-type ::= type
stack ::= stack [size] [type]

Syntax 83

record-object record-type expr-list

control-struct

if-then-else | while-do | until-do | every-do | repeat
| fails | null | to-by | next | break

if-then-else

if expr then expr [else expr]

while-do

while expr do expr

until-do

until expr do expr

every-do :

every expr [do expr]

repeat ::= repeat expr

fails ::= expr fails
null ::= null expr

to-by ::= expr to expr [by expr]
next ::= next

break ::= break

compound-expr

{ [expr [; expr] ...] }

A.,2 Precedence and Associativity

The relative precedence of reserved words and operators, ar-
ranged in ascending order, follows. For infix operators, the
associativity is listed also.

precedence type associativity

null 1
if-then-else 1
while-do 1
until-do 1
every-do 1
repeat 1
al 1
succeed 1
return 1
suspend 1

? 2 infix left

& 3 infix left
fails 4

= 5 infix right

:=2 5 infix right
to-by 6

| 7 infix left

= 8 infix left

T= 8 infix left

84 APPENDIX A

< 8 infix left
<= 8 infix left

> 8 infix left
>= 8 infix left
== 8 infix left
T== 8 infix left
|| 9 infix left

+ 10 infix left

- 10 infix left

* 11 infix left

/ 11 infix left
*x 12 infix right

+ 13 suffix

- 13 suffix

- 14 prefix

+ 14 prefix

- 14 prefix

= 14 prefix

. 15 infix left

A.3 Reserved Words

The following reserved words cannot be used as identifiers:

array dynamic fails integer record succeed while
break else file local repeat suspend

by end global next return table

cset error if null stack then

default every include procedure static to

do fail initial real string until

A.4 The Significance of Blanks

As a general rule, blanks are syntactic separators (except
that a blank in a string literal represents the blank character
and has no syntactic significance). Syntactically, blanks are
mandatory in some places and optional in others.

Blanks are mandatory where they are necessary to avoid ambigu-
ities:

(1) Between reserved words and expressions unless the expres-
sions are enclosed in parentheses.

(2) Surrounding infix operators that otherwise would be adjacent
to prefix or suffix operators. If a blank occurs on one side of
an infix operator, it must occur on the other size as well.

Blanks are optional before and after punctuation characters
such as parentheses, braces, and commas.

Built-In Operations

APPENDIX B

Built-In Operations

85

The following sections list the built-in operations of Icon.
The primary section references are cited.

B.l Functions

function

any(c,s,i,3)
bal(cl,c2,c3,s,1i,3)
center (sl,i,s2)
close(x)

copy (x)

cset (x)
display (i)
exit()
find(sl,s2,i,3)
image (x)
integer (x)
left(sl,i,s2)
lge(sl1l,s2)

1gt (sl1,s2)
lle(sl,s2)

11t (sl,s2)
many(c,s,i,J)
map(sl,s2,s3)
match(sl,s2,i,3j)
mod (i,]J)

move (i)
numeric (x)
open(x,s)

pop (k)

pos(i,s)

push (k,x)
random (i)

real (x)

read (f)
repl(s,i)
reverse (s)
right(sl,i,s2)
section(s,i,])
size (x)
sort(x,i)
stop(f,sl,s2,...,8n)
string (x)
substr(s,i,3)
tab (i)

top (k)
trim(s,c)

section
4.7.2
4.7.2
4.5.3
5.1.3, 5.2.3, 6.4
5.5
4.3
8.3
9.3.3
4.7.1
4.4
3.4.1
4.5.3
4.6
4.6
4.6
4.6
4.7.2
4.5.5
4.7.1
3.1.2
4.8.2
3.5
5.1.3, 6.4
5.3.2
4.2.5
5.3.2
7.1
3.4.2
6.4
4.5.2
4.5.5
4.5.3
4.5.4
4.2.3, 5.7
5.6
9.3.3
4.4
4.5.4
4.8.2
5.3.2
4.5.5

86 APPENDIX B

type (x) 4.4
upto(c,s,i,J) 4.7.2
write(f,sl,s2,...,8n) 6.2
B.2 Operators
B.2.1 Infix Operators
operator section
? 4.8.4
:= 2.3
i=: 2.3
| 2.8.3
& 2.8.4
+ 3.1.2
- 3.1.2
* 3.1.2
/ 3.1.2
** 3.1.2
= 3-1.3
~= 3.1.3
> 3.1.3
>= 3.1.3
< 3.1.3
<= 3.1.3
I 4.5.1
== 406
~== 4.6
. 5.4.3
B.2.2 Prefix Operators
operator section
+ 3.1.2
- 3.1.2
- 4.3
! 4.5.4, 5.8
= 4.8.3
B.2.3 Suffix Operators
operator section
+ 3.1.2

- 3.1.2

Built-In Operations

B.3 Keywords

keyword

&ascii
&clock
&date
&input
&lcase
&level
&null
&output
&pos
&random
&subject
&time
&trace
sucase

87

gectigg
4.2.2
7.2
7.2
6.1
4.2.2
8.2.3
2.1
6.1
4.8.1
7.1
4.8.1
7.2
8.2.4
4.2.2

88

Summary of Defaults 89

APPENDIX C

Summary of Defaults

C.1 1Initial Values of Identifiers

Omitted type specifications default to any. When a type is
specified for an identifier the initial, default value of the
identifier is the value that results from converting an object of
type null to the type specified for the identifier. The result
is the same as for implicit or explicit conversion of type null
to a specified type, and produces the following results:

type initial value
integer 0

real 0.0

string "o

cset cset ("")

file standard output file
procedure error termination procedure
array open(array 0)

table table 0

stack stack 0

null &null

any &null

The default initial value for a record is an object with default
initial values for each field according to its type.

C.2 Omitted Arguments in Functions

any(c) any(c,&subject,&pos,0)
bal(,,,s,i,j)* bal(cset(&ascii),cset("("),cset(")"),s,i,]j)
bal (¢cl,c2,c3)* bal(cl,c2,c3,&subject,&pos,0)

center (s,i) center(s,i," ")
display(i) display (1)

find(sl,s2) find(sl,s2,1,0)

find (s) find (s,&subject,&pos,0)
left(s,i) left(s,i," ")

many(c,s) many(c,s,1,0)

many (c) many (c,&subject, &pos)
match(sl,s2) match(sl,s2,1,0)
match(s) match(s,&subject,&pos,0)
open(s) open(s,"r")

pos (i) pos(i,&subject)

read () read (&input)

right(s,i) right(s,i," ™)

90 APPENDIX C

section (s) section(s,1,0)

sort (x) sort(x,1)

trim(s) trim(s,cset(" "))
upto(c,s) upto(c,s,1,0)

upto(c) upto(c,&subject,&pos,0)

*These defaults apply separately and may be used in any combina-
tion. For example, bal() defaults to

bal (cset (&ascii) ,cset (" (") ,cset(")") ,&subject,&pos,0)

In addition, if cl is omitted, the balanced string may end at any
position, including at the end of s.

Omitted arguments otherwise default to &null and are converted

to the expected types accordingly. For example, find(sl,s2,2)
defaults to find(sl,s2,2,0).

C.3 Omitted Components in Structure Specifications

When optional components are omitted in structure specifica-
tions, the following defaults are used:

array array 0 any initial &null
table table 0 any, any
stack stack 0 any

Summary of Type Conversions 91

APPENDIX D

Summary of Type Conversions

D.1 Explicit Conversions

The following explicit type conversions are sdpported:

cset (x) cset, integer, null, real, and
string

integer (x) cset, integer, null, real, and
string

real (x) cset, integer, null, real, and
string

string(x) cset, file, integer, null, real,

and string
The success of a conversion operation usually depends on the

specific value involved. For example, integer ("10") succeeds,
but integer("la") fails.

D.2 Implicit Conversions

Where required by context, implicit conversions are performed
automatically for all types corresponding to the type-conversion
functions listed above. 1In addition, all types are automatically
converted to null by the null control structure.

92

Summary of Error Messages 93

APPENDIX E

Summary of Error Messages

E.1 Translator Error Messages

A list of translator error messages follows. These messages
indicate the erroneous condition detected by the translator, not
necessarily the cause of the error.

assignment to nonvariable

cannot open include file

duplicate declaration for local identifier
extraneous closing brace

extraneous end

identifi
integer
invalid
invalid
invalid
invalid
invalid
invalid
invalid
invalid
invalid
invalid
invalid
invalid
invalid
invalid
missing
missing
missing
missing
missing
missing
missing
missing
missing
missing
missing .
missing
missing

er too long

character larger than base
character

construction

context for break

context for next

default

escape specification
expression list

field name

integer base

integer literal

keyword

keyword construction
operator

real literal

argument

closing parenthesis
declaration

do in while or until expression
expression list

procedure end

procedure name

quote

record end

record field

record name

semicolon

then in if-then expression

multiply declared field name

numeric

literal too long

string literal too long
unclosed list

undeclar

ed identifier

unexpected end-of-file

94 APPENDIX E

E.2 Program Error Messages

Program errors fall into several major classifications, de-
pending on the nature of the error. Error numbers are composed
from the number of the category times 100 plus a specific identi-
fying number within the category. 1In the list that follows,
omitted numbers are reserved for possible future use.

Category 1l: invalid type or form

101 integer expected

102 real expected

103 numeric expected

104 string expected

105 cset expected

106 file expected

107 procedure expected
108 record expected

109 stack expected

110 array expected

111 invalid type to size
112 invalid type for reference
113 invalid type to close
114 invalid type to sort
121 variable expected

Category 2: invalid argument or computation

201 division by zero

202 zero second argument to mod

203 integer overflow

204 real overflow

205 real underflow

206 negative first argument in real exponentiation
207 invalid value to random or &random

211 negative second argument to repl

212 negative second argument to left

213 negative second argument to right

214 negative second argument to center

215 second and third arguments to map of unequal length
216 erroneous array bounds

217 negative stack size

218 negative table size

219 invalid second argument to sort

221 invalid option for open

Category 3: 1invalid structure operation

301 table size exceeded
302 stack size exceeded

Category 4: input/output errors

401 cannot close file
402 attempt to read file not open for reading
403 attempt to write file not open for writing

411 input string too long

Summary of Error Messages

Category 5: capacity exceeded

501 insufficient storage

95

96

The ASCII Character Set

APPENDIX F

The ASCII Character Set

F.1 Characters and Codes

position code graphic keyboard entry
1 000 control shift P
2 001 control A
3 002 control B
4 003 control C
5 004 control D
6 005 control E
7 006 control F
8 007 control G
9 010 control H
10 011 control I
11 012 control J
12 013 control K
13 014 control L
14 015 control M
15 016 control N
16 017 control O
17 020 control P
18 021 control Q
19 022 control R
20 023 control S
21 024 control T
22 025 control U
23 026 control V
24 027 control W
25 030 control X
26 031 control Y
27 032 control 2
28 033 control shift K
29 034 control shift L
30 035 control shift M
31 036 control shift N
32 037 control shift O
33 040 space
34 041 ! !
35 042 " "
36 043 # #
37 044 $ $
38 045 % %
39 046 & &
1]

40 047

97

control function

null

bell

backspace
horizontal tab
line feed
vertical tab
form feed
carriage return

escape

98 APPENDIX F

position code graphic keyboard entry control function

41 050 ((

42 051))

43 052 * *

44 053 + +

45 054 ’

46 055 - -

47 056 . .

48 057 / /

49 060 0 0

50 061 1 1

51 062 2 2

52 063 3 3

53 064 4 4

54 065 5 5

55 066 6 6

56 067 7 7

57 070 8 8

58 071 9 9

59 072 : :

60 073 ; H

61 074 < <

62 075 = =

63 076 > >

64 077 ? ?

65 100 @ @

66 101 A shift A
67 102 B shift B
68 103 C shift C
69 104 D shift D
70 105 E shift E
71 106 F shift F
72 107 G shift G
73 110 H shift H
74 111 I shift I
75 112 J shift J
76 113 K shift K
77 114 L shift L
78 115 M shift M
79 116 N shift N
80 117 0 shift O
81 120 P shift P
82 121 0 shift Q
83 122 R shift R
84 123 S shift s
85 124 T shift T
86 125 U shift U
87 126 v shift v
88 127 W shift W
89 130 X shift X
90 131 Y shift v
91 132 Z shift 2

99

position code graphic keyboard entry control function
92 133 [[
93 134 \ \
94 135]]
95 136 - -
96 137
97 140 - =
98 141 a A
99 142 b B
100 143 c C
101 144 d D
102 145 e E
103 146 f F
104 147 g G
105 150 h H
106 151 i I
107 152 3 J
108 153 k K
109 154 1 L
110 155 m M
111 156 n N
112 157 o 0
113 160 P P
114 161 o) 0
115 162 r R
1l6 163 S S
117 164 t T
118 165 u U
119 166 \ v
120 167 w W
121 170 X X
122 171 y Y
123 172 z yA
124 173 { {
125 174 I |
126 175 } }
127 176 - ~

128 177 rub out delete

100

Acknowledgement

The Icon programming language was designed by Dave Hanson
and Tim Korb in collaboration with the author. In addition,
Walt Hansen has made a number of valuable contributions to the
design. The author is indebted to Dave Hanson, Tim Korb, Walt
Hansen, and Madge Griswold for careful readings of drafts of
this manual and for advice on the presentation of language
features.

References

l. Griswold, Ralph E., James F. Poage, and Ivan P. Polonsky.
The SNOBOL4 Programming Language, 2nd ed. Prentice-Hall,
Englewood Cliffs, New Jersey. 1971.

2. Griswold, Ralph E., David R. Hanson, and John T. Korb. An
Overview of the SL5 Programming Language. SL5 Project Docu-
ment S5LDId, The University of Arizona, Tucson, Arizona.
October 18, 1977.

3. American National Standards Institute. USA Standard Code
for Information Interchange, X3.4-1968. New York, New York.
1968.

4. Kernighan, Brian W. and Ritchie, Dennis M. The C
Programming Lanquage. Prentice-Hall, Inc. Englewood Cliffs,
New Jersey. 1978.

5. 1IBM Corporation. System/370 Reference Summary. Form
GX20-1850-3. White Plains, New York. 1976.

6. Control Data Corporation. SCOPE Reference Manual. Publi-
cation Number 60307200. Sunnyvale, California. 1971.

Index

s 39

Ix 59

<x%1,%x2,...,Xn> 50

&ascii 29, 31, 40, 44, 90
&clock 65

&date 7, 65

&input 61, 61, 64

&lcase 29

&level 71

&null 5, 7, 8, 11, 13, 30, 69, 90
goutput 61, 61

&pos 45

&random 65

&subject 45

&time 65

&trace 7, 71

sucase 29

+1i 19
-1 19
= 6

HEH 7
ASCII 27, 40, 97-99
CDC 6000 27

CYBER 27
DEC-10 27
Display Code 27
EBCDIC 27
IBM 360/370 27
PDP-11 27

abnormal termination 62
accessing records 57
addition 18, 21
alternation 12

any 50, 53, 55, 89, 90
any(c) 46

any(c,s,i,j) 42
argument lists 14
argument transmission 69
arguments 8

arithmetic operations 17-25
array coordinates 51
array elements 49

array origins 49

array prototypes 50
array 5, 49, 58, 90
arrays 49-52

assignment 6, 57
associativity 9, 18, 20
backslash 28

bal (cl,c2,c3) 46
bal(cl,c2,c3,s,i,j) 43
balanced strings 43
blank 27

101

built-in strings
center (sl,i,s2)

29
36

character positions 30
character sets 27, 31, 76
characters 27

close 54

close(f) 63

close (x) 52

closed tables 54

closing files 62
collating sequence 27, 29

comments 77

comparison operations 19,
compound expressions 12
computed procedures 73
computed variables 6
concatenation 34, 62, 63
control structures 10
coordinates 49, 51
copy(x) 57

copying structures 57

core images 79
creation of table elements
cset 5, 22, 23, 24, 31, 3
cset(s) 31
decimal notation
declarations 56,
default types 68
default 68
defaults 1, 8,
46, 50, 52,
defined types
display(i) 72
division 18,
dynamic 68
el | e2 12
end 14, 56
equivalent characters
error conditions 7, 8,
53, 55, 58, 61, 62,
error 68
errors 79
escape convention
every-do 13, 14
exception errors
exchanging values
exit() 79
expandable arrays
exponent notation
exponentiation 18,
expressions 5
fail 69
fails 11
failure 9
failure conditions
44, 45, 46, 51,

20
77

13,
53,
58

30,
55,

31
57,

21

76
18
63,

28

79
7

51
20,
21

32

8,
52,

9,
54,

, 40
21
53
2, 33, 34, 58, 63
, 35, 36, 37, 39, 41, 42, 43, 44, 45,
58, 62, 63, 64, 67, 68, 69, 71, 72, 89
, 19, 21, 23, 25, 34, 35, 36, 40, 50,
64, 65, 71, 74, 78
22, 23, 24, 31, 32, 37, 40, 41, 42, 43,
55, 63, 64, 69, 70

102

file names 33, 61

file option specifications 62
file 5, 32, 33, 58, 63

files 61

find(s) 46

find(sl,s2,i,j) 41

floating-point representation 20, 21
generators 12, 42, 43, 59, 64, 70
global identifiers 67

global 67, 68

goal-directed evaluation 13
graphics 27

heterogeneous structures 50
homogeneous structures 50

i< j 19

i <=3 19
i>3j 19

i> 3 19
i * j 18

i ** 5 18
i+ 3 18

i/ j 18

i=3 19

i =3 19
i+ 19

i- 19

identifier declarations 67
identifiers 6, 67
if-then-else 10

image(x) 33, 63

include 77

including program text 77
infix operators 9, 18
initial clauses 49, 50
initial section 67, 68
initial 68, 90

initiating execution 73
input 61-63

integer 5, 22, 24, 32, 33, 34, 58, 63
integer(x) 22

integers 17-20, 22
keywords 7, 9, 45, 61, 65, 71
left(sl,i,s2) 35

letters 29

lexical order 32, 40
lge(sl,s2) 41

1gt(sl,s2) 41

line terminator 62

line terminators 63

lists 50, 51, 52

literal strings 28, 29
literals 17, 20

lle(sl,s2) 41

1lt(sl,s2) 40

local identifiers 67

local 67, 68

103

lower bounds 49

machine dependencies 18, 20, 21, 32,

79
main program 15
many (c) 46
many(c,s,i,j) 43
map(sl,s2,s3) 39
match(s) 46
match(sl,s2,i,j) 41
mod(i,j) 18
move (i) 45
multiplication 18, 21
normal form 32, 33
null character 28, 30
null string 30, 33, 34
null 5, 7, 11, 22, 23, 24, 25, 32,
numeric tests 25
octal codes 27
open(sl,s2) 62
open (x) 52, 54
operators 8
out-of-range references 51
output 61-63
parentheses 9
pop (k) 55
pos (i) 46
pos(i,s) 31
precedence 9, 18, 20
prefix operators 8, 19
procedure bodies 14, 68, 78
procedure declarations 67
procedure invocation 14, 68, 71
procedure level 71
procedure names 73
procedure values 73
procedure 5, 14, 58, 67, 73
procedures 14, 67
processor errors 79
program character set 2
program errors 79
program execution 77
program structure 75
program termination 78
program text 75
program translation 77
prompting 62
prototypes 49
pseudo-random seguences 65
push(k,x) 55
quotation marks 28
radix representation 17
random number seed 65
random seed 65
random(i) 65
range specifications 49
real numbers 20-22, 24

104

33,

33,

34,

50,

58,

61,

63,

62,

89

63,

65,

75,

real 5, 22, 24, 32
real (x) 24

record fields 56
record 56

records 55-57

referencing expressions

repeat 11, 14
repl(s,i) 35
reserved words 5,
results 9

v 3

6,

3, 34,

7

retention specifications

return expressions
return types 67
return 14, 69, 78
reverse(s) 39
reversible effects
right(sl,i,s2) 36

sl == s2 41

sl || s2 34

sl "== g2 41
s[i] 38

scope 67

scope of scanning
section(s,i,j) 36
semicolons 12, 75
signals 9

size of structures
size specifications
size(s) 29

size(x) 58
sort(t,i) 58
sort(x,i) 58
sorting 27, 58
space 27

stac 58

stack 5, 54, 90
stacks 54-55
standard input file

69

45

47

50
5

6

standard output file

static 68
stop(f,sl,s2,...,8n
string comparison
string literals 76
string replication
string scanning 45
string 5, 22, 24,
string(x) 32
strings 27-48
structure size 58
structures 49-59
subscripts 51
substr(s,i,j) 37
substrings 36
subtraction 18, 21
succeed 69

success 9

)
27

35
-48
32,

+ 46

2, 54

1
61,

78

33,

51,

67

63

34,

58,

53,

58,

105

63

57

63

suffix operators 8, 19
suspend 69

syntax notation 2

t[x] 53

tab(i) 46

table 52, 58, 90
tables 52-54

to-by 12

top(k) 55

tracing 7

translation errors 78
trim(s,c) 39

type conversion 8, 22-59, 63, 89
type specifications 53, 55, 67
type (x) 33

types 5, 8, 49, 50, 56
until-do 10, 14

upper bounds 49, 52
upto(c) 46
upto(c,s,i,j) 43
values 5, 9

variables 6, 7
while-do 10, 14
write(f,s,...,sn) 63
x[il,i2,...,in] 51

"¢ 31

106

82 APPENDIX A

retention

static | dynamic

initial-section

[initial expr]

proc-body ::= [expr [; expr] ...]
expr ::= literal | keyword | operation | call | reference
| list | structure | control-struct | compound-expr
| (expr)
literal ::= integer-literal | real-literal | string-literal
keyword ::= & word
operation ::= prefix-oper expr | expr suffix-oper | expr

infix-oper expr

prefix-oper ::= + | - | ~ | !
suffix-oper ::= + | -
infix-oper ::= 2?2 | & | := | :=: | bar | = | "= | > | < | >=
l <= | ==] == | bar bar | + | - | * | / | ** |

call

..
Il

expr (expr-list)

expr-list

expr [, expr] ...

reference ::= expr left-bracket expr-list right-bracket
| expr period identifier
list ::= < expr-list >
structure ::= array | table | stack | record-object
array ::= array [array-prototype] [type] [initial-clause]

array-prototype

range [, range] ...

range ::= [lower-bound :} upper-bound
lower-bound ::= expr
upper-bound ::= expr

initial-clause

initial expr

table ::= table [size] [ref-type] [, value-type]
size ::= expr
value-type ::= type
stack ::= stack [size] [type]

