A Language-Based Approach to
Protocol |mplementation

Mark B. Abbott and Larry L. Peterson®

TR 92-2

Abstract

Morpheusisspecial-purpose programming languagethat facilitatesthe efficient implementation
of communication protocols. Protocols are divided into three categories, called shapes, so that
they can inherit code and data structures based on their category; the programmer implementsa
particular protocol by refining theinherited structure. Morpheus optimizationtechniquesreduce
per-layer overhead on time-critical operationsto a few assembler instructions even though the
protocol stack isnot determined until runtime. This supportsdivide-and-conquer simplification
of the programming task by minimizing the penalty for decomposing complex protocols into
combinations of simpler protocols.

July 2, 1992

Department of Computer Science
The University of Arizona
Tucson, AZ 85721

1Thiswork DARPA Contract DABT63-91-C-0030.

1 Introduction

Network software is difficult to design and implement. As with any distributed concurrent program with
complex functionality, correctness is difficult to achieve. This situation is exacerbated by the additional
requirement of high performance. Thispaper introducesanew approach to the network software problem—
using a programming language designed specifically for high performance protocol implementations. We
have designed such alanguage, called Morpheus.

The foremost advantage of a programming languageisthat it is an ideal vehicle for both imposing and
benefiting from constraints. In other words, alanguage provides both the means to restrict the design choices
available to the programmer, and the medium in which to realize the advantages due to the narrower design
domain. The constraintsimposed by Morpheus take the form of strategies and techniques carefully selected
from among those exposed by collective experiencewith networks[1, 10, 17], plusanovel constraint (shape)
introduced in this paper.

Stated another way, there are two motivations for the constraints imposed by Morpheus. First, they
enforce a good design discipline. It has been argued that the development of a new engineering discipline
often happensin two phases [8]. In the first phase, the capabilities of tools are expanded to cope with the
growing set of problems. In the second phase, tools impose a carefully selected set of constraints on the
engineer in order to enforce a design discipline based on accumulated experience. Morpheus is a tool of
the second phase: it isa special purpose programming language that provides an explicit model for thinking
about and concisely expressing protocols in accordance with a design discipline.

The second motivation is that it makes possible a more powerful tool. In effect, the more the user is
constrained, the more the tool knows about what the user wants to do. For example, protocols written in
Morpheus can be compiled into more efficient object code than those written in genera purpose languages
because a Morpheus compiler has more domain knowledge available to apply to low level optimization.

Morpheusadopts an object-oriented programming style. In Morpheus, thefundamental protocol abstrac-
tionsare represented as objects. The Morpheus programmer implements aparticular protocol by refining the
code and data structures inherited from pre-defined base classes. The shape constraint serves to maximize
the amount of code and data structures that can be inherited.

Morpheus optimizations reduce per-layer overhead on time-critical operations to a few assembler in-
structions, even though the protocol graph isnot determined until runtime. Thissupportsdivide-and-conquer
simplification of the programming task by minimizing the penalty for decomposing complex protocolsinto
combinations of simpler protocols.

Morpheusismorethan aprotocol mode added to an existing language. Morpheus performsoptimizations
that existing languages cannot because they lack Morpheus' built-in knowledge of the common patterns of
use of the elements of the model. It also manages the machine-dependent aspects—alignment and byte
order—of message header manipulation. Although we have not yet exploited it, Morpheus might also be
used to hide the granularity of concurrency on a multiprocessor.

This paper makes two important contributions. First, it describes the Morpheus programming model,
most notably the shape constraint. Second, it discussesthe optimizationtechniquesavail ableto the Morpheus
compiler. We document the effectiveness of these techniques with hand-coded optimizationsin assembler
language for the MIPS R3000 architecture [11].

2 Background

Morpheus was not designed in a vacuum. It reflects our understanding of network software based on
experience building toolsto support the rapid implementation of efficient protocols. This section identifies
related work that has influenced Morpheus and discussesthe biasesin its design.

2.1 Redated Work

Generally speaking, there are two common approaches to implementing network protocols. At one extreme,
theprotocol iswrittenin ageneral purposelanguage, subject only to the constraintsimposed by the operating
system and architectural environment in which the protocol will beused. Although protocolsimplementedin
thisway are generally efficient, the programming task can be exceptionally difficult, depending on the extent
to which the host operating system is designed to accommodate network protocols. In the best case, the
operating system provides explicit support for implementing protocols. For example, the x-kernel provides
a uniform protocol interface and a protocol support library [10].

At the other extreme, network software is automatically derived from a protocol specification expressed
using a Formal Description Technique (FDT) such as Estelle, LOTOS, or SDL [16]. In its current state,
however, thistechnology has not lived up to its promise. Instead of expressing a protocol in purely abstract
terms, protocols are specified in relatively “implementation-oriented” FDTs, and the software generated is
generaly in the form of a skeleton which must be completed with programmer code.

This paper introduces a language-based approach to protocol implementation that lies between these
two extremes. Our language-based approach has several advantages. First, it affords the opportunity to
perform low level optimizations specific to protocol implementations. Second, code and data structuresthat
are routine parts of protocols can be automatically provided, just as procedure prologue and epilogue code
is automatically generated by general purpose languages. Third, alanguage can present a seamless model
of protocols—no underpinningsare visible below the singlelevel of abstraction.

Our approach is not independent of the two aternatives; it isrelated to the OS-based and the FDT-based
approaches as follows.

We were led to this approach by our experience with the x-kernel, which takes the OS-based approach.
Specificaly, we realized there were several ways in which we wanted to extend the x-kernel that could
best be accomplished by embedding x-kernel-style protocol abstractionsin a language. Morpheus is the
result: it offers amore convenient way to express protocols by replacing the “boilerplate” found in x-kernel
protocols with automatically generated code, it implements the operating system aspects of the x-kernel
in the language's runtime system, and it takes advantage of compile-time optimizations not available in a
general purpose programming language. A considerable additional advantage which we have not pursuedis
the potential for aMorpheus debugger that would share Morpheus' knowledge of the structure and behavior
of protocols.

Morpheusislike FDTsinthat it strivesto present ahigher level of abstractionto the programmer/specifier.
However, Morpheus’ level of abstraction is not as high as that of FDTs; programmers still write in a
familiar, imperative programming style. Furthermore, Morpheus is far less general, imposing constraints
that eliminate design choices. Butit isjust thiscombinationthat makesit possibleto present the programmer
withtheright designoptionsand arelatively highlevel of abstraction fromwhich complete, high-performance
implementations can still be generated with current software technol ogy.

2.2 Architectural Biases

One of the liberties we have taken with this research is to imagine what network software could look like
if not constrained by today’s standardized protocols. Current protocols often include artifacts that are not
fundamental to network communication and that interfere with innovations. While we are interested in
providing the same communication services (semantics) as are available in today’s networks, we do so
without regard for the exact form (syntax) of today’s protocols.

In particular, Morpheus supportsa dynamic network architecture, such astheonedescribedin[12]. This
architecture has two key characteristics:

e There are many, very simple protocols.

e Protocols are selected and combined at runtime.

These characteristics have ramificationsthat are apparent in the design of Morpheus. Consider thefollowing
two biases.

First, Morpheus has a bias towards composing network software from the simplest possible protocols,
going so far as to require a certain degree of simplicity. This has decisive advantages when compared to
using shorter stacks of more complex protocols. The primary advantage is that of divide-and-conquer: a
complex protocol is harder to develop, verify, implement, and maintain than an equivalent collection of
simple protocols. A second advantage is that of reuse. Reuse of protocol implementations requires not
only that interfaces are syntactically compatible, but also that the composition of semanticsisuseful. Large
complex protocols are unlikely to implement the precise combination of functions that is appropriate in
another context. A third advantage of simpler protocolsis the increased potential (exploited by Morpheus)
for automatically generating parts of an implementation.

Additional advantages of simple protocols emerge when they can be selected and combined into a
protocol stack, or more generaly, a protocol graph. For one thing, a communication service user can
configure exactly the communication service (i.e. protocol graph) needed, instead of sharing a statically
determined graph. Also, the development of new protocolsis easier because binding decisions are del ayed.
Finaly, it is easier to adapt to changes in the underlying technology; i.e., substitute new protocolsthat are
better suited for the new technology.

Morpheus' second biasis against logica multiplexing—thecombining by aprotocol of multiple higher-
level datastreamsinto asinglelower-level datastream. Thisreflectsthe growing recognition of the penalties
for logical multiplexing [6, 15]:

e When streams are merged, they can’t be distinguished for purposes of quality of service.

e Multiplexing and demultiplexing at multiple layers hurts performance by duplicating effort.

e Multiplexing is a barrier to the propagation of flow and congestion control information between
protocol layers.

Morpheus does not assume that every protocol multiplexes; in fact, Morpheus relegates the multiplexing
protocolsto aspecial category of protocol. Furthermore, Morpheus' inclusionof an interfacefor propagating
flow control information between layersis predicated on the assumption that relatively few layers multiplex.

O a base class

9 9

a subclass a subclass
used in protocol A used in protocol B

Figure 1. Protocols as Refinements

3 Language Abstractions

There are two main design goals behind Morpheus’ language abstractions. First, the fundamental network
abstractionssuch as messages and connectionsshould be an integral part of the language. Second, Morpheus
should automatically supply the predictable code and data structures appropriate for a given protocol. This
second goal grew out of our experiences with the x-kernel. Asis often the case in writing software, one
programs an x-kernel protocol by first copying the code from a similar protocol to use as a template, and
then editing that codeto obtain the desired protocol. Thisapproach derivesitsbenefit from thefact that there
are routine tasks, such as manipulating headers and demultiplexing, that are common to many protocols.
Morpheus has the goal of performing the equivaent task automatically.

Note that automatically supplying code constrains the programmer in that it preempts design choices,
reducing certain design optionsto a single “option” for which Morpheus can supply the code. The obvious
benefit isthat the programmer doesn’t haveto writethat code. Theless obviousbenefit isthat in these cases,
the programmer can’t make a bad design choice.

3.1 Object-Based Design

Morpheus represents the fundamental protocol abstractionsas objects. Morpheus pre-defines a collection of
base classes, and the programmer implements a protocol by refining these base classes to produce subclasses
that are appropriate to the specific protocol, asillustrated in Figure 1. An instance of a protocol is made up
of objectswhich are instances of the subclasses specific to that protocol. Representing protocol abstractions
this way not only achieves our goal of making the fundamenta abstractions explicit in the language, but
it also supports our second goal by providing a language-level mechanism—inheritance—for supplying
pre-defined code and data structures.

Morpheus model of protocolsdivides them into categories, called shapes, based on their functionality.

4

an abstract class

a base class a base class
used by used by
one shape another shape

Q

O O

a subclass a subclass a subclass
used by used by used by
protocol A protocol B protocol C

Figure 2: Classes and Shapes

Shapes are a particularly novel aspect of Morpheus. By constraining protocolsto conform to these shapes,
Morpheus gains additional information about each protocol which it uses to supply more code than would
be possiblefor arbitrary protocols.

In order to supply shape-based code via the mechanism of inheritance, the shape dimension must be
integrated with the class hierarchy. Figure 2 schematically depicts the relationship between classes and
shapes. The abstract classes at the top of the hierarchy specify interfaces used by all protocols. Each base
class a the middle level of the hierarchy adds code and data structures appropriate for al protocols of
the corresponding shape. Each subclass at the bottom of the hierarchy adds the remaining code and data
structures to compl ete the implementation of a specific protocol.

Object-oriented programming iswell suited for representing our protocol abstractions. One characteristic
of our model of protocolsisthat it partitions state information such that each action operates on a specific
body of state information. Object-oriented programming fosters this way of thinking by packaging data
together with related procedures.

Another benefit isnotational economy. Proceduresimplementing operationson an object (the self object)
can refer to the state variables of that object directly, without explicit reference to the object. This benefit is
multiplied in Morpheus because the ability to directly refer to state variablesis extended to those objects of
which the self object isacomponent. In other words, some Morpheus objects are contained in other objects,
in which case they can refer to the state variables of those containing objects.

A final benefit isthat object-oriented programming providesinheritance asalanguage-level disciplinefor
automatically supplying behavior and data structures. Alternativetechniquesthat are outsidethelanguage—
such as macros or library routines—might be workable, but their benefit would be offset by the burden of
working with mechanisms outside the language.

It should be made clear that Morpheus is object-oriented only with respect to the built-in protocol
abstractions; the Morpheus programmer cannot define completely new classes. Also note that Morpheus

OverSa)
P OverSession

Protocol

|]

N

UnderSap UnderSession

Figure 3: Base Classes

benefits could not be duplicated by adding pre-defined classes to a genera aobject-oriented language such
as C++ [14] since it would lack the knowledge of common patterns of protocol operation invocation that
Morpheus exploits to optimize. Also, a genera purpose language could not manage alignment and byte
order considerationsfor message headers. Finally, certain syntactic niceties would have to be sacrificed.

3.2 BaseClasses

Morpheus defines five programmer-refined base classes, corresponding to the fundamental elements of
Morpheus model of protocols. The Morpheus programmer implements a protocol by refining the base
classes, thereby deriving subclasses that are specific to the protocol. A subclassis derived from a base class
by adding new stateinformation (declaring additional instancevariabl es) and by modifying and extendingthe
base classbehavior (defining additional procedure code that augmentsor overridesthe base classprocedures).

The five base classes—Protocol, Over Sap, Under Sap, Over Session, and Under Session—are schemat-
icaly depicted in Figure 3. Note that some objects are nested in others; a Protocol object includes as
components some OverSap and UnderSap objects, OverSapsin turn have OverSessions as components, and
likewise UnderSaps include UnderSessions as components.

Therearetwo kindsof operations associated with objectsof theseclasses: external andinternal. External
operations are operations that can be invoked in Morpheus code. External operations are implemented by
infrastructure provided by Morpheus; this infrastructure invokes the corresponding internal operations. It
is the internal operations that the protocol programmer must implement. There are severa reasons for
the distinction between internal and external operations. First, some externa operations translate into a
combination of several internal operations. Second, the infrastructure in some cases performs significant
work itself. Finally, objectscannot directly invokeinternal operationson objectsbel ongingto other protocols
because this would entail the ability to refer to those objects, violating a vauable protocol-granularity
encapsulation.

The object operations are summearized in Table 1. For purposes of research, we have selected aminimal
functional set of protocol operations. A practical system would require additional operations.

A Protocol object represents a protocol entity: an active instance of a particular implementation of a
protocol specification. Each instantiation of a given protocol in ahost’s protocol graph is adistinct protocol
entity.

EXTERNALLY INVOKED OPERATIONS | CORRESPONDING INTERNAL OPERATIONS
createProtl (under Saps) protl.init(underSaps)
protl.addOverSap(overSap)

underSap.getL ocal Addr() overSap.getL ocal Addr()
underSap.createUnder Sessn(addr) overSessn.initOverSessn(addr)
under Sessn.initUnderSessn(addr)

overSap.createOver Sessn(addr) overSessn.initOverSessn(addr)
under Sessn.initUnderSessn(addr)

underSessn.send(msg) overSessn.send(msg)
overSessn.deliver(msg) underSessn.deliver(msg)
overSessn.grantSends(number) under Sessn.grantSends(number)
underSessn.grantDelivers(number) overSessn.grantDelivers(number)

Table 1: Object Operations

OverSap and UnderSap objects represent Service Access Paints, or SAPs. A SAP is a communication
service interface with an address that uniquely identifiesit. The interface between one particular protocol
entity and another, higher level protocol entity asidentified by agiven addressisa SAP. The communication
service user side of a SAP is represented by a UnderSap object, which is part of the user Protocol object,
while the service provider sideis represented by an OverSap object, which is part of the provider Protocol
(SAP objectsare named from the point of view of the Protocol of which they are components; see Figure 3).
Figure 4 illustrates a complete SAP consisting of a matched UnderSap-OverSap pair.

OverSession and UnderSession objects represent sessions. A session is an endpoint of a data stream or
abstract communication channel (not necessarily a connection) between two specific SAPs. Hence, there
are two addresses associated with a session: the address of the SAP at “this end,” and the address of the
SAP at “the other end.” A session is the interface between the protocol entity that uses the communication
channel and the protocol entity that provides the channel. The user side of a session is represented by an
UnderSession object, and the provider side is represented by an OverSession object. Figure 5 illustrates
UnderSession-OverSession pairs and data streams.

UnderSession objects have a deliver (message) operation (messages are delivered asynchronously,
rather than being received) and a grantSends(number OfM essages) operation used to convey flow con-
trol information. OverSession objects have the analogous operations send(message) and grantDeliv-
er s(hnumber OfM essages).

Note that while the five base classes just defined must be refined by the programmer to derive specific
protocols, Morpheus provides three additional classes that are not refined by the programmer: Message,
Map (akind of hash table) and Event (a schedulable event). These classesrepresent utilitiesfrequently used
by protocols. They play arolesimilar to library routinesin other languages, but are built into the language as
object classes. The programmer uses objectsfrom these utility classesto hel p write thefive protocol-specific
classes.

3.3 Shapes

Morpheus constrains protocols to conform to one of three shapes: multiplexor, router, or worker. The
purpose of this powerful constraint is to maximize the information that the Morpheus compiler can use to
automatically supply code and data structures. This constraint has been carefully selected so as to avoid

Protocol
A

UnderSession
AN

I <— UnderSap

RN
.
//J_l <— QverSap

Protocol
B

. /]
OverSession

Figure 4: Sap and Session objects

1

DATA ~ STREAM

Figure 5: Sessionsand Data Streams

il N e Bl
multiplexor

L s

oo |
L
worker

| S i

[
router

Lo T Lo 7

Figure 6: Three Shapes

restricting the range of protocol functionality that can be implemented. Morpheus shapes result from
partitioning protocol functionality on the basis of addressing. What we mean by “addressing” will be made
clear as the three shapes are defined below. This particular partition provides critical information about
the structure of a protocol—permitting the compiler to supply much more code than would otherwise be
possible—while still supporting the full range of protocol functionality. Figure 6 schematically depictsthe
three protocol shapes.

Multiplexor protocols multiplex and demultiplex. They operate on the multiplexing keys associated
with different users, but are ignorant of host addresses. They may use quality of service (QOS) information
associated with user SAPs in performing multiplexing. A multiplexor protocol provides a variable number
of OverSaps (since it may multiplex channels from many users), but uses just one UnderSap. Multiplexors
can use flow control information regarding sending messages to schedul e outgoing messages, but cannot
enforce flow control on delivery of messages (if needed, it must be implemented in a separate protocal).

Router protocols deal with host addresses. They interpret host addresses, but never see multiplexing
keys. A router protocol provides just one OverSap and uses some fixed number of UnderSaps. Note that
Morpheusrouters are more general thanisusually suggested by theterm “router” (e.g. IP), inthat weinclude
choosing between different paths within the protocol graph. More precisely, a router is any protocol that
must decide at runtime which lower level data stream (UnderSession) to use for a given higher level data
stream (OverSession).

Worker protocols do what might be described as “the real work” such as error detection, buffering for
retransmission, and detecting lost, reordered, or duplicated messages. In particular, any manipul ations of
message dataare performed by workers. They don’'t process host addresses, and they never see multiplexing
keys. A worker protocol entity provides one OverSap and uses one UnderSap.

Without distinguishing protocol shapes, there is little code or state information that is common to all
protocols. However, protocols of a given shape are similar enough that they can usefully inherit default
behavior and state variables. For example, al multiplexors do the same thing when messages are delivered
to them: demultiplex them. Hence, the deliver operation is completely specified for multiplexors. In
contrast, little deliver behavior can be supplied to routers or workers because they may perform widely
varying functions. For another example, each worker protocol has a single user, hence a single OverSap.
A state variabl e representing that OverSap is automatically declared in the Protocol base class for workers.

Multiplexors, which may have many OverSaps, do not have this state variable. Instead, multiplexors
automatically get two state variables which are Map objects for mapping from an incoming message to the
appropriate OverSap.

The Morpheus program for a protocol begins by explicitly stating the protocol’s shape. Thisallowsthe
Morpheus compiler to implicitly provide data structures and behavior based on the shape, thusrelieving the
programmer of the burden of designing and implementing them. Programmers augment the provided data
structures with additional data structures, and augment or override the provided code with their own.

Note that although protocols that are functionally equivalent to protocols such as TCP and IP can be
implemented in Morpheus, those specific protocol s—as specified in their standards—cannot be implemented
in Morpheus. Thisis because they combine the functions of more than one shape in a single protocol. For
example, |P performs multiplexing, routing, and fragmentation/reassembly. In Morpheus these functions
would be implemented as three distinct protocols:; a multiplexor, arouter, and a worker, respectively.

Itisnot surprising that existing protocol sviolate the shape constraint. Onereason isthe belief, refuted in
thispaper and [12], that efficiency requiresthat there be very few layersin aprotocol stack. Thisencourages
large, complex protocols that comprise multiple functionalities. A second reason is that existing protocols
were designed before the current acknowledgement of the drawbacks of logical multiplexing [6, 15]; hence
many existing protocolsinclude logical multiplexing among their functions, even though they need not.

3.4 Inheritance

We now consider how code inherited from Morpheus shapesis integrated with a Morpheus program written
for a specific protocol. The genera problem of integrating superclass behavior with subclass behavior is
known as the method combination problem[9]. The Morpheus case is much simpler than the general case
because asubclassin Morpheusinheritsfrom asinglesuperclass, the superclassdoesnot inherit any behavior,
the superclassis never instantiated directly (it isin this sense an abstract class), and the programmer cannot
define completely new classes.

Morpheus uses ageneralization of the method combination technique used in Simula[5]. In Simula, the
keyword inner is used in a superclass operation definition to indicate that subclass code for this operation
should be executed (like a subroutine or macro) at this point in the superclass code. Unlike most other
object-oriented languages, this requires the programmer to structure code top-down—the superclass has to
anticipate how it will be augmented by subclasses. A top-down structure is idea for Morpheus since the
superclasses are pre-defined by the system, and superclass behavior isintegrated in a fixed way.

More concretely, Morpheus does the following. In the program for a protocol the programmer writes
procedures for the object operations, naming each procedure with its operation name. This code isinserted
into the base class codefor the same operation. The use of procedures here is simply a syntactic convention;
subclass code is combined with base class code at compile time, so there is no procedure call overhead.
If a subclass doesn’t need to augment the base class code for a given operation, it does not define the
corresponding procedure. The procedures corresponding to some operations take parameters which differ
from those of the operations. Thisisbecausetheroleof these parametersisto et the subclass procedurerefer
to context in the base class code. Thisisnot as cluttered as it might sound because most context isimplicit:
the object on which the operation was invoked, and any objects of which that object isa component.

Morpheus has two features not supported by the basic mechanism just described. Thefirst isthe ability
tooverride baseclass behavior. Thispermits base classesto offer default behavior even though that behavior
might not always be desired. The second feature is the ability to intermix base class and subclass code at
afiner granularity. Base class and subclass behavior do not always fall into the neat relationship required

10

by inner. It isuseful for some base class operations to include different blocks of subclass code, each at a
different point. Extending the basic mechanism to support these features is easy because Morpheus doesn’t
require ageneral solution—the base classes are pre-defined so the instances of these features are fixed. The
new code is again packaged as a procedure; the difference isthat the name of the procedureis not the name
of an operation. The procedure is named by a keyword corresponding to the appropriate overridable block
of code or location where new code can be inserted. The keywords and their semantics are as easy to learn
as the operations because, like the operations, they are few and correspond to meaningful units of behavior.

4 Example

The code in Figure 7 is the Morpheus program for a worker protocol called “Sequencer.” Seguencer’s
function is to filter out any duplicate or out-of-order packets. Note that Sequencer does not guarantee that
every message sent is delivered; that would be the function of another ayer.

Worker Sequencer /* protocol Sequencer has shape “worker” */

LittleEndian Header { unsigned seqNum; } /* declare header format */
Protocol { unsigned sendSegNum; } [* declare Protocol state variables */
UnderSession { unsigned receiveSeqNum; } /* declare UnderSession state variables */

/* no programmer-declared state variables needed for the other classes */
initProtocol() { sendSeqNum =1; }

initUnderSession() { receiveSeqNum = 0; }

send(msg)

/* header prepended implicitly */
msg.hdr.seqNum = sendSeqNum-++;
underSession.send(msg); /* underSession: inherited state variable */

}

deliver(msg)

if(msg.hdr.seqNum > receiveSegNum){

receiveSeqNum = msg.hdr.segNum;

/* header stripped implicitly */

overSession.deliver(msg); [* overSession: inherited state variable */
lelse

msg.destroy();

Figure 7: A worker protocol program

Thereader should note the amost complete absence of any code or data structures that are not specific
to Sequencer’s function. In contrast, an implementation of Sequencer in a general purpose language would
include data structure declarations and code for creating and assembling the component objects, connecting
Sequencer to the adjacent layers, creating data streams, and pushing and popping message headers. Using
Morpheus, these routine aspects of a worker protocol are all inherited. The complete Sequencer protocol
can be succinctly defined because one need express only those design choicesthat are specific to Sequencer.

11

Theidentifiersunder Session (used in send) and over Session (used indeliver) are examples of inherited
state variables. Since a worker doesn't do any address translation, there is a one-to-one correspondence
between UnderSessions and OverSessions. Variable over Session gives the UnderSession’s corresponding
OverSession object, and variableunder Session givesthe OverSession’scorresponding Under Session object.
Sequencer uses other state variablesthat are not explicit in Sequencer’s Morpheus program because they are
used exclusively by inherited code.

Theinitialization of the state variable over Session is an example of inherited behavior. I nitUnder Ses-
sion() isinvoked when Sequencer opens a channel of the underlying communication service to initializethe
UnderSession representing Sequencer’s side of the interface to that channel. The inherited base class code
for initUnder Session takes care of setting the UnderSession’s over Session to the OverSession representing
the corresponding Sequencer channel.

The keyword LittleEndian indicates the byte order with which the sequence number segNum in the
header is to be represented. The compiler uses this information to automatically generate the appropriate
code for reading and writing header fields. This highlights an obvious advantage of a language designed
exclusively for writing network protocols; the compiler can worry about network byte order and byte
aignment.

Multiplexor protocols provide a more dramatic example of inheritance. The code in Figure 8 is the
Morpheus program for a multiplexor protocol called “ FCFS.”

Multiplexor FCFS /* protocol FCFS has shape "multiplexor” */
send(msg)

/* header is pushed and filled implicitly */
underSession.pair.send(msg);

}

Figure 8: A multiplexor protocol program

Compared to a worker protocol, more of a multiplexor is specified in the base classes because more is
known about the function of a multiplexor. FCFS inherits specific agorithms and data structures for the
basic multiplexing and demultiplexing tasks performed by every multiplexor.

The dimension along which multiplexors vary is the scheduling of outgoing messages. FCFS is the
simplest useful multiplexor, scheduling outgoing messages first-come-first-serve. More sophisticated mul-
tiplexors transmit messages when permitted by the flow and congestion control information conveyed via
the grantSends operation, and transmit them in an order based on priority or quality of service (QOS)
considerations.

Certainly, more complex protocols require more code than these examples. The essential point of the
examplesis not that they are short, but rather that they don’t require expression of the “routine” codethat is
common to al protocols of athe corresponding shape, and thisis equally true for more involved protocols.

5 Performance Optimizations

This section identifies some domain-specific optimizations available to a Morpheus compiler, and reports
experimental results based on performing these optimizations by hand.

12

5.1 General Strategy

Morpheus optimization techniques are based on the common patterns of protocol execution. Consider the
characteristics of the send operation; deliver behaves similarly. Send takes a message as its argument;
hence there are in effect two arguments, the message and the OverSession object. The typical send does
some computation, accessing the object for state and other information, and using the built-in utilities to
mani pul ate messages, hash tables, and timers; prepends a header to the message; and ends by passing the
message to the next lower layer via the send operation of another OverSession. This is repeated as the
message passes through “many” layers. Morpheus optimizes for this common case.

Morpheus optimizations are targeted primarily at minimizing per-layer costs. The main strategies are
streamlining procedure linkage (since control istransferred between layers by procedure call) and factoring
out computationsthat are repeated in multiplelayers. In the best case, per-layer overhead can be reduced to
two assembler jump instruction, one at the sender and one at the receiver.

Because Morpheus is intended to implement only the protocol subsystem of an operating system, the
generated object code must interoperate with the operating system’s object code. In particular, procedure
callsin either direction between Morpheus-generated machine code and “foreign” machine code adhere to
the calling conventions of the foreign code.

Morpheus optimizations cannot be duplicated by interprocedural optimization of a general purpose
language. Morpheus optimizations are subject to two major constraints not usually encountered in genera
purposeoptimization. First, itisnot determined until runtimewhich protocol will be layered on top of which
other protocal; it is unknown at compile time which callee procedure corresponds to a call site. Second,
only the protocol subsystem is available for interprocedural optimization, not the entire operating system.
Thus, protocolsinvoke and are invoked by foreign code, which has not been involved in theinterprocedural
optimizations. Even if these optimizations could be duplicated using general interprocedura optimization,
it would involve considerable interprocedural analysis at compile time. Moreover, if separate compilation
were to be supported, there would be additional compile time overhead to keep track of interprocedura
dependences between separately compiled modules. Morpheus, which supports separate compilation,
avoids these compile time pendlties. In effect, the interprocedural analysis took place at language design
time.

Before presenting the optimi zation techniques, we briefly review procedure call conventionsfor modern
RISC architectures.! The caller places the calling arguments in registers designated for that purpose. If
there are many arguments, the excess arguments are passed viathe stack. The caller then executes ajump-
to-subroutine, which moves the return address into a designated register and transfers control to the callee.
The callee then updates the stack pointer to leave enough space on the stack for local variables, temporary
variables, callee saved registers, and argumentsto be passed to procedures called by the callee. Any registers
that need to be saved, including the return address register, are then saved on the stack. By convention,
certain registers (callee save registers) must have their contents saved and restored by the callee if it uses
them; certain other registers(caller saveregisters) may be used fredy, but must be saved and restored around
acdl siteby the caler if they are to hold alive value across the call. In preparation for returning, the callee
puts the result in a designated register. |t then restores any saved registers, including the return address
register, restores the stack pointer, and jumps to the return address.

!We have decided to not consider register windowsin thiswork, as we expect them to play adiminishing role in future machine
architectures.

13

5.2 Specific Techniques

Wenow identify five optimization techniquesemployed by the M orpheuscompiler. For clarity, thetechniques
are described in terms of send; they apply equally to deliver.

5.21 Dedicated Message Registers

Consider send’s message parameter, which fits in aregister because it isimplemented as a pointer. If send
calls any procedures (other than those which take the message as an argument, in the same order in the
argument list), the message has to be saved so that another argument can be passed in the argument-passing
registers. Ultimately it must be restored to its original argument-passing register to be passed to the next
layer’'ssend. Morpheus modifies the parameter passing convention by setting aside aregister specifically to
pass the message. Thisregister is selected from among the callee save registers. Thisway it is efficiently
accessible in aregister, and what’'s more, that register need not be freed across subsequent calls to either the
next layer's send or any other procedures.

The part of the message used most heavily isitsheader. A pointer to the message header isused to access
or modify fields in the header, and is incremented or decremented to prepend or strip headers. Morpheus
optimizes for this by designating a callee save register for passing the header pointer explicitly along with
the message object of which it isa part. This eliminates memory accesses otherwise necessary to read or
write the header pointer state variable in the message object, and does so using a register that need not be
saved across calls.

Message and header registers are initialized when the message is created, either to be sent or because
it was just received via a network device. Also, the origina contents of the two registers used are saved at
that same time, and restored upon return. This overhead is amortized over the number of layersin the send
to obtain a per-layer cost. The message and header registers can potentially be reallocated within a send if
registersare in sufficiently short supply or if asecond message must be passed, but this caseisthe exception.

All theseimplementation detail sare concea ed from the M orpheus programmer, who seesonly operations
on aMessage object.

5.2.2 Inline Substitution of Support Routines

Morpheus provides built-in utilities for manipulating messages, mapping identifiers, and setting timers.
Morpheus optimizes for their frequent use by substituting their code inline. The benefit of inlining is that
procedure linkage code is eliminated and more context is exposed for conventiona optimization. The costs
of inline substitution are increased compile time and increased object code size. These costs are held to
reasonable limitsin Morpheus because the set of inlined proceduresisfixed and small, and thereis only one
level of inlining—aprocedure is never inlined into another procedure that isitself inlined.

5.2.3 Eliminating Header Bounds Checking

The most frequent utility operations are pushing (prepending) and popping (stripping) headers. Although
pushing a header usually amounts to incrementing a pointer, it can involve considerable bounds checking
eveninthe casewhere no boundsare exceeded. Morpheusoptimizesthisaway by allocating sufficient header
space to each message as it is created, thereby ensuring that the header will not overflow. Thisis possible
because the runtime system can determine the largest combined header that can possibly to prepended to a
message based on the headers declared by the protocolsin the current protocol graph.

14

5.24 Short-Circuit Return

Most often, the last action taken in a send is to invoke the next layer’'s send. When the lower send
returns, the origina send isdone and also returns. Morpheus short-circuits such returnsin a manner similar
to optimizations for tail recursion, so that sends with no further work are bypassed in the sequence of
procedure returns. Before calling the lower send, the current send restores al registersincluding the stack
pointer. It then jumpsto the lower send, but instead of giving a return addressin the current send, it gives
the return address provided by the current send’s caller.

Thisshort-circuit return optimizationin itself savesrelatively little—asinglejump assembler instruction
per layer on the MIPS processor. However, it contributes to another, conventional optimization that is
significant. If there are no procedure calls in a send operation, then that function can omit saving and
restoring the return address register and updating and restoring the stack pointer. For this purpose, the short-
circuit return effectively eliminates a procedure call. After applying short-circuiting and inline substitution,
and eiminating bounds checking, a significant number of send operations qualify as having no procedure
calls. Thisoccurs frequently since the typical Morpheus protocol isrelatively simple.

A variation on this optimization takes advantage of knowledge about thelikelihood of executing various
branchesin the utility operations. Consider asend in which the sole procedure call isin someinlined utility
codein abranch that is known to be infrequently taken. Instructionsto manage the return address and stack
pointer registers—i.e., a“lazy stack”—are inserted just in that infrequent branch, so that they are executed
only if necessary.

5.25 Procedure Cloning

Send almost always accesses instance variablesin its OverSession objects since these hold connection state
information and other information such as the appropriate lower level OverSession object. It aso frequently
accesses instance variables of the Sap and Protocol objects to which the Session object belongs. Morpheus
optimizes for this by generating a customized version of the send object code for each OverSession. At
compile time, Morpheus generates a template for each protocol’s send. When an OverSession object is
created at runtime, a copy of the template is created and filled in—i.e. object code is modified—using the
addresses of the Session, Sap, and Protocol objects and the values of those state variables that are known to
be constant. Most inherited state variables are known to be constant because they haveto do with connecting
layerstogether, e.g. the OverSap corresponding to a UnderSap, or the source and destination host addresses
in a multiplexor OverSession. A user-declared state variable can be flagged as a constant by a keyword.
Chains of indirect pointersthrough memory are collapsed; for example, the address of the next layer’s send
replaces a chain of pointers that leads to it through the current layer’s UnderSession and the next layer’s
OverSession. Thisalso eliminates the need to pass the OverSession object as a parameter.

Theend result of thetechniqueisthat constantsare hardwired into the code (the constantsare different for
each clone, hence they can’t be hardwired into an uncloned procedure). Thisreduces the number of instruc-
tions executed for each clone. More importantly, it iminates the memory accesses—disproportionately
costly on a RISC machine—that would otherwise be necessary to read these constants.

Thistechniqueisaform of procedurecloning[3]. A procedure can be cloned to partition callstoit based
on interprocedural constants information, or more generally, the solution to any forward interprocedural
data-flow problem [7]. Instead of a single procedure that must satisfy al calls, each cloneis specidized to
more efficiently handle its subset of the calls. While conventional procedure cloning takes place entirdly at
compiletime, in Morpheus the necessary information—the Session object for which the procedureis being

15

cloned—is not available until runtime. Thus Morpheus’ technique could also be classified as runtime code
generation. The Synthesiskernel [13] achieves exceptional performance using a similar technique.

Morpheus' cloning has time and space costs. There is the time cost, paid a runtime, of making a
copy of the template and filling in the appropriate constants. While this does occur at runtime, it is part
of communication channel creation—not in the time-critical send path. The space cost is an extra copy of
the send code for each OverSession; that is, one for each communication channel currently provided by a
protocol. Thereis aready a space cost associated with each channel—a context-state. In Morpheus this
is the OverSession object. The corresponding send clone could be considered a part of that state. Note
also that each clone uses less space than an uncloned version of a procedure because of the simplifications
enabled by the cloning, and because some of the context-state is hardwired into the code. Theincreasein
code space can be bounded by simply ceasing cloning once a code space threshold has been reached, as
proposed in[7]. Thiswould require keeping one uncloned version of each send procedure to operate on any
OverSessions that weren't alocated their own clones.

Increased object code size dueto inlining (not cloning) seemsto have little effect on caching and virtual
memory. [4] found no obviousevidence of either thrashing or instruction cache overflow, and cited previous
reports of similar results. Whilethese studiesinvolved inlining, they suggest that increased object code size
due to cloning would likewise be free of significant performance penalties.

5.3 Experimental Results

To study theimpact of Morpheus’ optimizations, we hand-optimized M1PS assembler codethat was obtai ned
from a prototype implementation of Morpheus’ objects. The prototype wasimplementedin C and compiled
using the GNU C compiler. We then performed two experiments to quantify the effect of Morpheus
optimization strategy: counting instructionsand measuring end-to-end latency.

5.3.1 Instruction Counts

The effect of a given optimization depends on both the particular procedure and the other optimizations
present. Hence, we have selected a particular protocol to use as an example, and report the effects as each
optimizationisappliedtoit in turn. The protocol is Sequencer, which was presented in the previous section.
We focus on Sequencer’s send operation. When Sequencer’s send is invoked, it pushes a header onto the
message. The header is filled in with a sequence number obtained from a Protocol state variable, which is
then incremented. The message is then passed to the next protocol’s send.

The results of the optimizations are summarized in Table 2. The first row of the table refers to the
original, unoptimized version of the code, which consistsof 45 assembler instructions. Thefinal, optimized
version consists of seven instructions.

Inlining the push of the header reduces the common path by seven instructions—essentially the code
for procedure linkage with the header push procedure. Eliminating header bounds checking eliminates an
additional fifteen instructions. It also eliminates all conditional branches, so the common path is aso the
only path.

Dedicating registers for passing the message and its header eliminates an additional four instructions.
This optimization generally gives a greater benefit in cases where there are procedure calls before calling
the next layer’s send (Sequencer has no such intermediate calls after applying the preceding optimizations);
intermediate calls prohibit the message from remaining in an argument-passing register because that register
is also used to pass arguments at the intermediate calls.

16

CUMULATIVE INSTRS | REMAINING
OPTIMIZATIONS | ELIMINATED INSTRS
ORIGINAL VERSION - 45
INLINEUTILITIES 7 38
ELIM BOUNDS CHECK 15 23
DEDICATED REGS 4 19
CLONING 7 12
SHORT-CIRCUIT 5 7

Table 2: Instruction Counts

Cloning send eliminates another seven instructions. Several pointer indirectionsare short-circuited, and
one less parameter is passed to the next send (i.e., its OverSession). Cloning and dedicated registers also
each owe some of their benefit in this case to reducing by one the number of callee save registers needed.

Short-circuiting the return from the subsequent send resultsin the elimination of five more instructions.
Short-circuiting thereturn makesit unnecessary to savethereturn address, which inturn makesit unnecessary
to alocate stack storage.

Thefully optimized Sequencer send consists of seven instructions. one to increment the header pointer,
five to do “the real work”, and one to jump to the next layer. But not all assembler instructions are equal.
L oads and stores can take much more than the single cycle used by other instructions, just how much time
being determined by the current state of the cache. The gap between processor speed and memory speed
can only be expected to widen in the future, making memory accesses an even more dominating factor in
performance. The original, unoptimized version of Sequencer’s send includes 12 | oads and seven stores; the
optimized version has one load and two stores, al in “the real work”. Thisreduction inthe number of |oads
and stores is roughly proportionate to the overall reduction in the number of instructions, a factor of about
SiX.

5.3.2 Timing Measurements

We al so compared the performance of an implementation of UDPin the x-kernel with an equiva ent protocol
stack in Morpheus. Because UDP cannot be implemented in Morpheus—it performs functions belonging to
two different shapes—the Morpheus equivalent consists of two protocols. a multiplexor performing first-
come-first-serve multiplexing, and aworker that records in the message header the length of a sent message
and trims each received message to the length recorded in its header. Omission of the checksumming
function is discussed bel ow.

The purpose of this experiment was to verify whether Morpheus’ purported performance advantages
wouldresult in measurably high performance. Thex-kernel was used asthe standard for comparison because
we could obtain timing measurements for the x-kernel’s UDP on the same processor (Decstation 5000/200),
and because the x-kernd is known to support high performance protocol implementations [10]. UDP was
used as the basis for comparison because, while fairly ssmple, it qualifies asa*rea protocol,” and because
it has a clear Morpheus equivaent.

We measured the end-to-end latency of our two versions of UDP—the time it takes one message to be
sent and received, independent of all other protocols. The measurement was taken by sending and receiving
ten million, 1-word messages, and dividing the elapsed time by ten million. In this experiment, latency was
independent of message size because the optiona UDP checksum was not performed, neither system copies

17

amessageto passit between layers, and messageswere not actually transmitted over anetwork. Thex-kernel
implementation took 24.57 microseconds, while the Morpheus equivalent took only 1.48 microseconds, a
factor of 16 difference.

Two qualifications apply to this result. First, there is the issue of the accuracy of microbenchmarks
and their susceptibility to cache effects. In these experiments, all messages were transmitted over the same
data stream with no intervening messages, with source and destination sharing the same processor, and no
flushing of the cache. This should represent a best case performance, with very little data cache effect.

Second, the figure quoted for the x-kerndl is not strictly latency but aso includes the time to return
control through the protocol graph on both the receiving and sending sides. This returning of control would
normally occur either in parallel with message transmission, or after the message has been received, but took
place serialy in our experiment because source and destination shared the same processor. In this particular
case, the additional time is relatively insignificant because it only involves three procedure returns. This
was not a factor for the Morpheus time because Morpheus' short-circuit return optimization avoids the cost
of returning for the layers being measured.

Despitethese qualifications, the magnitude of the difference argues strongly for aMorpheus performance
advantage. Thedifferenceisnot attributable solely to Morpheus' optimizations, however; two other aspects
of Morpheus also figure prominently.

First, even though UDP's checksum option was not used in the test, the x-kernel version still set the
checksum field to zero on the sending side, and tested it for equality to zero on the receiving side. The
Morpheus equivaent did not have this overhead. We argue that thisis alegitimate advantage, attributableto
the “many, simple protocols’ approach used by Morpheus. In a protocol graph composed of many, simple
protocols, the option of having a checksum isimplemented by having two paths through the graph, onewith
the checksumming layer and one without it.

Second, accessing message headers is a far more elaborate process for the x-kernel than for Morpheus.
Because compound datatypes such as C structuresconformto alignment restrictionsthat may not be sati sfied
by the space alocated to amessage header, x-kernel protocol sread and writefrom temporary headersthat are
copied to and from messages by protocol -specific functionsthat account for potential alignment differences.
Byte swapping, if necessary, is performed at the same time. Header manipulations in Morpheus are more
efficient for two reasons. First, Morpheus ensures that header fields in messages satisfy its alignment
restrictions. Thisis accomplished by padding a header internally so that individua fields are aligned with
respect to the start of the header, and padding a header “externaly” (i.e. on the wire) to maintain the
invariant that each header starts on a word boundary. Second, any byte-swapping is performed by in-line
code generated by the compiler for assignments that appear in the source language program. Hence, no
function calls are required for either alignment or byte order; message headers may be read and written
directly as if they were ordinary records, with any necessary byte swapping taking place invisibly and
efficiently.

5.4 Discussion

There are two conclusionsto draw from these experimental results. The first is that by using optimization
techniques availableto a special purposelanguage, aMorpheus compiler can generate very fast object code.

The second conclusion is that per-layer overhead in Morpheus is negligible. By “per-layer overhead”
we mean the additional end-to-end latency of a protocol that is due to implementing it as a distinct protocol
instead of incorporating it in another protocol. Sequencer’s overhead is four instructions; two from send
and two from deliver. Protocols more complex than Sequencer entail more overhead (because they need

18

stacks and temporary registers and so on), but the overhead at each end is still less than a procedure call.

An argument could be made that combining multiple functionsin a single protocol layer still resultsin
lessoverhead. Itistruethat therelative overhead—theratio of overhead to*“ real work”—generally decreases
as the functionality is squeezed into fewer layers. However, performance is not the sole issue. Combining
functionsin asinglelayer buys performance at the expense of modularity and its advantages in developing,
verifying, implementing, and maintai ning complex functionality. Morpheus not only supports modul arity at
theright level of granularity—indivisible protocol functions—but also offers benefits beyond conventional
static modularity by supporting runtime composition of modules. All these benefits come at an end-to-end
latency cost of less than two procedure calls per layer.

Latency of the protocol stack is not the only performance issue for network software; maximizing end-
to-end throughput is also a pressing problem. The work described in this paper is just a part of a larger
effort to address both latency and bandwidth in the context of a more powerful programming environment.
Moreover, even though improving end-to-end throughput is generally considered to be the more critical
issue in high-speed networking, minimizing latency is still an important goal. Considerable effort has
been expended optimizing the latency of TCF/IP [2], obtaining both a significant performance benefit, and
evidence bearing on the claim that TCP/IP latency need not be a performance bottleneck. The optimization
techniques we introduce are not specific to any one protocol stack such as TCP/IP; hence we obtain both
a significant performance benefit for protocols of any functionality, and evidence bearing on the claim that
protocol latency in general need not be a performance bottleneck. This paper emphasizes per-layer latency
in particular to support our thesis that highly layered architectures need not entail any significant latency
penalty over architectures with few layers.

6 Concluding Remarks

Morpheus is a special-purpose programming language that facilitates the implementation of efficient com-
munication protocols. In the context of implementing network software, our objective is to explore the
design space that lies between implementing protocols by hand in the host operating system, and automati-
cally generating network software from formal specifications. The key to Morpheusisthat it constrainsthe
protocol programmer. Morpheus’ constraints enforce a good design discipline, relieve the programmer of
many low-level design andimplementationtasks, and admit optimizationsfor high performance. A powerful
constraint unigue to Morpheus isthat of protocol shape.

References

[1] D. D. Clark. Modularity and efficiency in protocol implementation. Request for Comments 817, MIT
Laboratory for Computer Science, Computer Systems and Communications Group, July 1982.

[2] D.D. Clark, V. Jacobson, J. Romkey, and H. Salwen. An analysis of TCP processing overhead. |IEEE
Communications Magazine, 27(6):23-29, June 1989.

[3] K. D. Cooper. Interprocedural Data Flow Analysisin a Programming Environment. PhD thesis, Rice
University, April 1983.

[4] K.D. Cooper, M. W. Hal, and L. Torczon. An experiment with inline substitution. Software—Practice
and Experience, 21(6):581-601, June 91.

19

[5] O.-J. Dahl and K. Nygaard. Simula—an Algol-based simulation language. Communications of the
ACM, 9(9):671-678, Sept. 1966.

[6] D. C. Feldmeier. Multiplexing issuesin communication system design. In Proceedings of the S G-
COMM "90 Symposium, 1990.

[7] M. W. Hal. Managing Interprocedural Optimization. PhD thesis, Rice University, April 1991.

[8] G.J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall, Englewood Cliffs, NJ,
1991.

[9] B. L. Horn. An introduction to object oriented programming, inheritance and method combination.
Technical Report CMU-CS-87-127, Computer Science Department, Carnegie Méellon University, Jan.
1988.

[10] N. C. Hutchinson and L. L. Peterson. The x-Kerndl: An architecture for implementing network
protocols. |EEE Transactions on Software Engineering, 17(1):64—76, Jan. 1991.

[11] G. Kane. MIPSRISC Architecture. Prentice Hall, Englewood Cliffs, NJ, 1988.

[12] S.W. OMadlley and L. L. Peterson. A dynamic network architecture. ACM Transactions on Computer
Systems, 10(2), May 1992.

[13] C. Pu, H. Massdin, and J. loannidis. The Synthesis kernel. Computing Systems, 1(1):11-32, winter
1988.

[14] B. Stroustrup. The C++ Programming Language. Addison Wesley, Reading, MA, 1986.

[15] D. L. Tennenhouse. Layered multiplexing considered harmful. In Proceedings of the 1st International
Workshop on High-Speed Networks, Nov. 1989.

[16] G. v. Bochmann. Usage of protocol development tools. Theresults of asurvey. In Protocol Specifica-
tion, Testing, and Verification, VII, 1987.

[17] R. W. Watson and S. A. Mamrak. Gaining efficiency in transport services by appropriate design and
implementation choices. ACM Transactions on Computer Systems, 5(2):97-120, May 1987.

20

