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Abstract

Given a sequence of length and a regular expression of length , an approximate regular expression
pattern matching algorithm computes the score of the optimal alignment between and one of the sequences

exactly matched by . An alignment between sequences and is a
list of ordered pairs, such that and . In this case, the
alignment aligns symbols and , and leaves blocks of unaligned symbols, or gaps, between them. A
scoring scheme associates costs for each aligned symbol pair and each gap. The alignment’s score is the
sum of the associated costs, and an optimal alignment is one of minimal score. There are a variety of schemes
for scoring alignments. In a concave gap-penalty scoring scheme , a function gives the
score of each aligned pair of symbols and , and a concave function gives the score of a gap of length .
A function is concave if and only if it has the property that for all , .
In this paper we present an algorithm for approximate regular expression matching
for an arbitrary and any concave .
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Approximate Regular Expression Pattern Matching
with Concave Gap Penalties

1 Introduction

The problem of approximately matching a regular expression with concave gap penalties falls into a fam-
ily of approximate pattern matching problems that compute the score of an optimal alignment between a
given query sequence and one of the sequences specified by the pattern. An alignment is simply a pairing of
symbols between two sequences such that the lines of the induced trace do not cross, as shown in Figure 1.
Alignments are evaluated with a scoring scheme that gives scores for each aligned pair and each contigu-
ous block of unaligned symbols, or gap. The score of an alignment is the sum of the scores assigns to each
aligned pair and gap, and an optimal alignment is one of minimal score. The input for an approximate pattern
matching problem consists of a sequence , a pattern , and an alignment scoring scheme . The problem
is to determine the optimal scoring alignment between and one of the sequences exactly matching ,
where alignments are scored using scheme .

More formally, an alignment between sequence and sequence , over
alphabet , is a list of ordered pairs of indices , called a trace, such that (1)

, (2) , and (3) and . Each pair of symbols and is
said to be aligned. A consecutive block of unaligned symbols in or , where

, is termed a gap of length . An alignment, its usual column-oriented dis-
play, and several gaps are illustrated in Figure 1. Under a scoring scheme with func-
tions and scoring the symbol pairs and gaps, the score of an optimal alignment between and

, or SEQ( , , ), equals
is a valid trace , where for simplicity we

assume , , , and . The optimal alignment score between
and a regular expression is RE( , , ) = SEQ( ) , where

is the language defined by .
In this paper we consider two scoring schemes, symbol-based and concave gap penalty. Both scoring

schemes use an arbitrary function , for , to score the aligned pairs. The difference is in the
scoring of gaps. In a symbol-based scheme, is extended to be defined over an additional symbol not in ,
and the score of an unaligned symbol is given by . The score of a gap is the
sum of the scores of the individual unaligned symbols or . The cost of gaps in is defined
symmetrically. Thus, with symbol-based scores, the scoring scheme is now denoted as .

The concave gap penalty scheme is one of a number of gap-cost models where the cost of a gap is solely
a function of its length (and thus symbol independent). In such a scheme, an additional function gives
the cost of a gap of length . For example, the simple linear gap penalty model defines , for some
constant , and is just a special case of the symbol dependent model where for all .
In a concave gap penalty scheme, the function must be concave in the sense that its forward differences
are non-increasing, or where . One example
of such a function is the logarithmic function , for constants .

The problem considered in this paper is a generalization of several earlier results. The traditional se-
quence comparison problem, SEQ( , , ), finds the optimal alignment between and under symbol-
dependent scoring scheme . Several authors [15, 16, 18] independently discovered an al-
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Figure 1 An alignment a) as a set of trace lines and b) in a column-oriented display.

gorithm for this problem, where and are the lengths of and . In 1984, Waterman [19] generalized
this classic problem by considering concave gap penalties, or equivalently the problem SEQ( , , )
where is concave. A few years a later, a number of authors arrived at an algo-
rithm [8, 12, 5] using the concept of a minimum envelope. In an orthogonal direction of generality, Myers and
Miller [14] considered the problem of approximate matching of regular expressions under symbol-dependent
scoring schemes, RE( , , ). By observing that an automaton for is a reducible graph, they devised
a two-sweep node-listing algorithm requiring time, where is the size of . Note that RE( , ,

) generalizes SEQ( , , ) as a sequence is just a special case of a regular expression.
This paper presents an algorithm for RE( , , ), the problem of ap-

proximately matching to regular expression under a concave gap penalty scheme . The best
previous algorithm [14] required or cubic time. Our sub-cubic result builds on the earlier
results above by combining the minimum envelope and two-sweep node-listing ideas. However, the exten-
sion is not straightforward, requiring the use of persistent data structures [13] and collections of envelopes,
some of which are organized as stacks.

The paper is organized as follows. Section 2 reviews aspects of algorithms for previous problems concen-
trating on the concepts of an alignment graph and dynamic programming recurrence. Section 3 introduces
the concept of a minimum envelope in the form needed for our result, along with a brief digression to show
how it generalizes [12] and why the regular expression algorithm requires this generalization. Finally, Sec-
tion 4 presents the algorithm solving RE( , , ) in sub-cubic time.

2 Preliminaries

All the problems discussed in the introduction can be recast as problems of finding the cost of a shortest
source-to-sink path in an alignment graph constructed from the sequence/pattern input to the problem. The
reduction is such that each edge corresponds to a gap or aligned pair and is weighted according to the cost
of that item. The correctness and inductive nature of the construction follows from the feature that every
path between two vertices models an alignment between corresponding substrings/subpatterns of the inputs.
From these graphs, dynamic programming recurrences for computing the shortest path costs from the source
to each vertex are easily derived. In all cases we seek the shortest path cost to a designated sink since every
source-to-sink path models a complete alignment between the two inputs.

2.1 Sequence vs. Sequence Comparison

For SEQ( , , ), comparing two sequences under a symbol-based scoring scheme, the alignment graph
for versus consists of a collection of vertices, for and , arranged in an
by grid or matrix as illustrated in Figure 2. For vertex , there are up to three edges directed out
of it: (1) a deletion edge to (iff ), (2) an insertion edge to (iff ), and (3) a
substitution edge to (iff and ). In the resulting graph, all paths from source vertex

to sink vertex model the set of all possible alignments between and with the following
simple interpretation: (1) a deletion edge to models leaving unaligned and has weight , (2)
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Figure 2 The sequence vs. sequence alignment graph for and .

an insertion edge to models leaving unaligned and has weight , and (3) a substitution edge
to models aligning and and has weight . The terminology for edge types stems from an
equivalent sequence comparison model where one seeks a minimum cost series of deletion, insertion, and
substitution operations that edit into . It is convenient here only in that the terms distinguish the cases
where symbols of are left unaligned from those where symbols of are left unaligned. A simple induction
shows that paths between vertices and (where and ) are in one-to-one correspondence
with alignments between and , and their costs coincide. It thus follows that
finding the optimal alignment between and is equivalent to finding a least cost path between the source
and sink vertices.

The dynamic programming principle of optimality holds here: the cost of the shortest path to is the
best of the costs of (a) the best path to followed by the deletion of , (b) the best path to
followed by the insertion of , or (c) the best path to followed by the substitution of for .
This statement is formally embodied in the fundamental recurrence:

(1)

Because the alignment graph is acyclic, the recurrence can be used to compute the shortest cost path to each
vertex in any topological ordering of the vertices, e.g. row- or column-major order of the vertex matrix. Thus
the desired value, , can be computed in time.

2.2 Sequence vs. Sequence Comparison with Gap Penalties

For a sequence comparison problem under a gap penalty scoring model, SEQ( , , ), such as the case
where is concave, the alignment graph must be augmented with insertion and deletion edges that model
multi-symbol gaps, since their cost is not necessarily additive in the symbols of the gap, i.e. .
From a vertex , there are now deletion edges to vertices , , , where
an edge from to models the gap that leaves unaligned and has cost .
Similarly, there are insertion edges to vertices , , , where an edge from

to models the gap that leaves unaligned and has cost . The inductive
invariant between alignments and paths still holds, but now the graph has a cubic number of edges. The cost
of each incoming edge, plus the cost of the best path to its tail, must now be considered in computing the cost
of the shortest path to .

(2)
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Figure 3 Constructing the NFA for a regular expression .

The alignment graph is still acyclic, so applying the recurrence to the vertices in any topological order com-
putes the correct shortest path cost to . However each application of the recurrence requires

time, yielding a algorithm. In the next section on minimum envelopes, it will be
revealed how this complexity can be reduced in the case where is concave.

2.3 Sequence vs. Regular Expression Comparison

We now turn our attention to problems that involve generalizing to a regular expression , such as the
problem RE( , , ) treated in [14]. The discussion here is basically a summary of the results in that
paper. Recall that a regular expression over alphabet is any expression built from symbols in
using the operations of concatenation (juxtaposition), alternation ( ), and Kleene closure (*). The symbol
matches the empty string. For example, * denotes the set .

Regular expressions are convenient for the textual specification of regular languages, but the graph-
theoretic finite automaton is better suited to the purpose of constructing an alignment graph. There are sev-
eral different such automaton models, see [9] for more details. We use the nondeterministic, state-labeled
finite automaton model, hereafter referred to as an NFA, employed by Myers and Miller [14] for the symbol-
based regular expression matching problem. Formally, an NFA = consists of: (1) a set
of vertices, called states; (2) a set of directed edges between states; (3) a function assigning a “label”,

, to each state ; (4) a designated “source” state ; and (5) a designated “sink” state . Intuitively,
is a vertex-labeled directed graph with distinguished source and sink vertices. A directed path through

spells the sequence obtained by concatenating the non- state labels along the path. , the language
accepted at , is the set of sequences spelled on all paths from to . The language accepted by is

.
Any regular expression can be converted into an equivalentfinite automaton with the inductive con-

struction depicted in Figure 3. For example, the figure shows that is obtained by constructing and
, adding an edge from to , and designating and as its source and sink states. After inductively

constructing , an -labeled start state is added as shown in the figure to arrive at . This last step guaran-
tees that the word spelled by a path is the sequence of symbols at the head of each edge, and is essential for
the proper construction of the forthcoming alignment graph.

A straightforward induction shows that automata constructed for regular expressions by the above pro-
cess have the following properties: (1) the in-degree of is 0; (2) the out-degree of is 0; (3) every state
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Figure 4 The regular expression alignment graph for A=ab and P=(a b)a*.

has an in-degree and an out-degree of 2 or less; and (4) , i.e. the number of states in is less
than or equal to twice ’s length. In addition, the structure of cycles in the graph of has a special
property. Term those edges introduced from to in the diagram of as back edges, and term the rest
DAG edges. Note that the graph restricted to the set of DAG edges is acyclic. Moreover, it can be shown that
any cycle-free path in has at most one back edge. Graphs with this property are commonly referred to as
being reducible [2] or as having a loop connectedness parameter of 1 [7]. In summary, the key observations
are that for any regular expression there is an NFA whose graph is reducible and whose size, measured in
either vertices or edges, is linear in the length of .

For the problem RE( , , ), the alignment graph for versus consists of copies of ,
as illustrated in Figure 4. Formally, the vertices are the pairs where and . For every
vertex there are up to five edges directed into it. (1) If , then there is a deletion edge from
that models leaving unaligned. (2) If , then for each state such that is an edge in , there
is insertion edge from that models leaving unaligned (in whatever word of that is being spelled).
(3) If and , then for each state such that , there is a substitution edge from
that models aligning with . Note that by the construction of , there are at most two insertion and two
substitution edges out of each vertex, and vertices and edges in the graph.

Unlike the case of sequence comparison graphs, there can be many paths modeling a given alignment in
this graph due to the fact that when , insertion edges to model leaving unaligned and substitution
edges to model aligning with . Such insertion edges insert nothing and thus are simply ignored. The
substitution edges are equivalent in effect to deletion edges. Regardless of this redundancy, it is still true
that every path from to models an alignment between and the word spelled on the
heads of the edges in the path from to in that is the “projection” of the alignment graph path. Moreover,
every possible alignment is modeled by at least one path in the graph, and as long as null insertion edges
are weighted 0 (by defining ), the cost of paths and alignments coincide. Thus the problem of
comparing and reduces to finding a least cost path between source vertex and sink vertex .
It is further shown in [14] that all substitution and deletion edges entering -labeled vertices except can
be removed without destroying the property that there is a path corresponding to every possible alignment.
These edges are removed in the example in Figure 4 to avoid a cluttered graph.

As in the case of SEQ( , , ), one can formulate a recurrence for the shortest path cost to a vertex



6in terms of the shortest paths to its predecessors in the alignment graph:

(3)

Note that cyclic dependencies can occur in this recurrence, because the underlying alignment graph can con-
tain cycles of insertion edges. One may wonder how such a “cyclic” recurrence makes sense. Technically,
what we seek is the maximum fixed point to the set of equations posed by the recurrence. For problem in-
stances where is such that a negative cost cycle occurs, the “optimal” alignment always involves an infinite
number of copies of the corresponding insertion gap and has cost . Such a negative cycle can easily be
detected in time. For the more common and meaningful case where there are no negative weight cy-
cles, the least cost path to any vertex must be cycle free, because any cycle adds a positive cost to the path.
Moreover, by the reducibility of it follows that any such path contains at most one back edge from each
copy of in the graph.

Miller and Myers used the above observations to arrive at the following row-based algorithm where the
recurrence at each vertex is evaluated in two “topological” sweeps of each copy of :

for in topological order of DAG edges do

for 1 to do
for in topological order of DAG edges do

for in topological order of DAG edges do

“The score of the optimal alignment between and is ”

The set DAG in the algorithm above refers to the set of all DAG edges in . Since restricted to the set of
DAG edges is acyclic, a topological order for the for-loops exists. Observe that the algorithm takes
time since each minimum operation involves at most 5 terms.

The algorithm sweeps the row twice in topological order, applying the relevant terms of the recurrence
in each sweep. This suffices to correctly compute the values in the row, because any path from row
to row is cycle free and consequently involves at most one back edge in row . Suppose that a least cost
path to vertex enters row at state along a substitution or deletion edge from row . The least
cost path from to consists of a sequence of DAG edges to a state, say , followed possibly by a back edge

and another sequence of DAG edges from to . The first sweep correctly computes the value at
, and the second sweep correctly computes the value at and consequently at .

2.4 Sequence vs. Regular Expression Comparison with Gap Penalties

The introduction of a gap penalty scoring scheme for the regular expression pattern matching problem has
an effect on the alignment graphs of RE( , , ) similar to that of the sequence comparison problem.
The set of nodes remains unchanged, but extra edges must be added to represent the multi-symbol gaps.
The extra deletion edges in the graphs for RE( , , ) are the same as in the graphs for SEQ( , ,

), i.e. edges from vertex to vertices , for , each modeling the gap that leaves
unaligned. For insertion edges the problem is more complex as there can be an infinite num-

ber of paths between two vertices in a row, each modeling the insertion of a different number of symbols. Due
to this increased generality, it appears very difficult to treat the case of arbitrary . The only result to date is
an time algorithm by Myers and Miller that treats the case where is monotone increasing,



7i.e. . With this restriction, a path between vertices and corresponding to a least
cost insertion gap is a path between and that spells the fewest non- symbols. Let , hereafter called
the gap distance between and , be the number of non- labeled states on such a path. Thus, it suffices to
add a single edge from to of cost for every pair of vertices such that there is a path from

to in , denoted . Each of these insertion edges models an insertion gap of minimal cost over all
gaps that leave a word spelled on the path from to unaligned. Precomputing , for all pairs of and ,
is a discrete shortest paths problem over a reducible graph, and hence can be done in time.

The recurrence for the least cost path to vertex in the alignment graph described above is as follows:

(4)

Note that both the recurrence and the graph construction above require the assumption that , as
can be 0 for some state pairs.

Myers and Miller [14] show that the two sweep approach of the previous section correctly computes the
shortest paths in this cyclic alignment graph if is sub-additive, i.e. for all and ,

. In that paper, this condition is included to preclude sequences of insertion edges from consideration.
In actuality, if a sequence of insertion edges from to is minimal over all such edge sequences, then one
can show that the concatenation of the paths in corresponding to each insertion edge of the sequence must
form an acyclic path in . Thus, two sweeps suffice, even when is not sub-additive.

In the treatment that follows, we will focus on the case where , in addition to being concave, is mono-
tone increasing, i.e. for . If is concave but not monotone increasing, then the
values of rise to a global maximum and then descend to as increases. Under this function, a best
scoring insertion gap involves either the shortest or the longest sequence of symbols spelled on a path from

to in . When contains at least one Kleene closure operator, the Kleene closure admits arbitrarily long
gaps scoring , and consequently such matching problems are automatically ill-posed, as discussed ear-
lier. However, when contains no Kleene closures and is acyclic, then the problem is always well posed
and involves an additional term in Equation 4 above. is the largest number
of non- symbols spelled on a path from to . The algorithms in Section 4.1 can be modified to correctly
solve for this additional term by replacing each instance of with in the equations and algorithms of
that section. The complete algorithm solving this special case problem concurrently executes two versions
of Section 4.1’s algorithms, one computing with values and the other computing with values. The
value of each is the minimum of the two computations at and .

3 Minimum Envelopes and Generalized Candidate Lists

From this point forward, all comparison problems are assumed to be with respect to a gap penalty model
where is concave. The algorithms of [8, 12, 5] employ the concept of a minimum envelope and its candidate
list implementation to solve the sequence comparison problem SEQ( , , ) in less than

time. The algorithms of Section 4, which solve RE( , , ), also use the same concept of a min-
imum envelope but require a more generalized form of its list implementation. This section describes the
required generalization, beginning in Section 3.1 with a brief review of minimum envelopes and candidate
lists as presented in [8, 12, 5]. Section 3.2 then illustrates the complications which arise from the introduction
of regular expressions and specifies the more general candidate lists needed by the algorithms of Section 4.
Finally, Section 3.3 presents the implementation of these generalized candidate lists.
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3.1 Minimum Envelopes and SEQ( , , )

The inefficiency of the cubic algorithm of Section 2.2 is that, for each and , it takes time to compute
the “deletion” term and time for the “insertion” term

. This is the best one can do considering the computation of each in Equation 2 as an isolated
problem. However, the sequence of deletion term minimums required over a given column share a correlation
which if properly exploited permit the computation of each minimum in time. Specifically for a
given column , one needs to deliver the sequence of deletion terms,

(5)

where is . Because the algorithm computes the in topological order of the alignment graph, it
follows that the algorithm requires the values of the terms in increasing order of . Further note that while
all the are not known initially, those with have been computed at the time the value of is re-
quested. An identical, “one-dimensional” problem models the insertion term computations along each row.
Thus a more efficient comparison algorithm results if we can compute all the of Equation 5 in better than

time.
The key to achieving a faster algorithm for Equation 5 is to capture the contribution of the term in the

minimum, called candidate k, at all future values of . To do so, let = be the candidate
curve for candidate , and let the minimum envelope at be the function = over
domain . Each curve captures the future contribution of candidate , and the envelope captures
the future contributions of the first candidates. Simple algebra from the definitions reveals that = .
Thus our problem can be reduced to incrementally computing a representation of for increasing . That
is, given a data structure modeling , we need to efficiently construct a data structure modeling =

.
Observe that each candidate curve is of the form for some and (in the case of ,

and ). Thus all candidate curves are simply a translation of the curve by and in the
- and -axes, respectively. Because every candidate is a translation of the same concave curve, it follows

that any pair of such curves intersect at most once. To see this, consider two curves
and where without loss of generality assume . At any given , curve 1
is rising faster than curve 2 because concavity assures us that . (Recall that

= is the forward difference of .) Thus either curve 1 never intersects curve 2, or
curve 1 starts below curve 2 for small , rises to intersect it as increases (potentially over an interval of
as opposed to just a single point), and then stays above it for all larger .



9The minimum envelope at , = , is the minimum of a collection of variously
translated copies of the same concave curve as illustrated in Figure 5. As such, the value of at a given
is the value of some candidate curve at , in which case we say represents at . Because concave
curves intersect each other at most once, it follows that a given candidate curve represents the envelope over
a single interval of values, if at all. Those candidates whose intervals are non-empty are termed active.
Clearly, the set of intervals of active candidates partitions the domain of the envelope, and can be modeled
by an ordered list of these candidates, , in increasing order of the right endpoints of their
intervals. The relevant information that needs to be recorded for an active candidate is captured in a record

real integer integer . Record encodes an active candidate and its interval as follows:
, , and gives the largest value of at which represents

the envelope. Formally, the envelope represented by such a list of records is given by:

for(6)

where for convenience we define . By construction the candidates are ordered so that
. In addition, observe that it is also true that for all because curves with small ’s rise

more quickly than those with larger ’s.
The equations and suggest that computationally it suffices

to have the operations (1) Value which delivers the value of envelope at , (2) Shift which updates
for the shift from to , and (3) Add to add the effect of the new candidate curve to .

Given these operations, the following algorithm computes the values of Equation 5:

[ ]
for 1 to do

Add Shift
Value

where [ ] denotes an empty candidate list.
Computationally, a simple list data structure results in the following implementations of Value, Shift and

Add. Operation Value simply returns , where is the head of . Operation Shift removes
the head of if , since that candidate becomes inactive at the current value of . For operation
Add, ’s interval of representation in the new envelope must either be empty or must span from to the
intersection point between and the envelope modeled by . This is true because has a smaller
value, , than any candidate in and so rises faster than those candidates. ’s interval is empty if

, and an unaltered is returned in this case. Otherwise, the following steps
create a candidate list modeling the new envelope: 1) remove from where, for all ,

; 2) find the intersection point between and the
surviving head of the list, which was in ; and 3) insert the record as the new head.
The removed candidates are now inactive because is minimal over their intervals of representation, and
the new candidate record models ’s role in the new envelope.

The time complexity of this algorithm is times the computation needed to find each intersection
point in operation Add. When the intersection point can be computed mathematically from in time,
the algorithm runs in time. For a general concave gap-cost function , a binary search over the range

can find an intersection point in time, resulting in an overall time bound of
for the algorithm.

More recently than these minimum envelope algorithms, a series of papers [3, 4, 6, 10, 20] use a matrix
searching technique originally presented in [1] to improve the worst case complexity for this problem and
for a similar one-dimensional variation where is a convex function, i.e. one whose forward differences



10are nondecreasing instead of nonincreasing. That approach solves a column minima problem over an up-
per triangular matrix where, in essence, each row corresponds to the future values of candidate and
the minimal value along each column corresponds to the solution for in Equation 5. The algorithms
using this matrix searching technique solve the two one-dimensional problems in time for convex
and time for concave , where is the inverse Ackermann function. These results are
only mentioned here because they are not applicable to the regular expression problem. In fact, when reg-
ular expressions are introduced, it’s no longer clear whether the basic definitions needed to perform matrix
searching, i.e. a matrix-like structure which retains the quadrangle and inverse quadrangle inequalities, can
be given.

3.2 Min. Envelopes and RE( , , )

The crux to designing an efficient algorithm for RE( , , ) is to efficiently compute the insertion terms,
of Equation 4. Along each “row” of the alignment graph, this involves solving

the one-dimensional problem embodied in the following equation:

(7)

For this problem, an envelope at , , captures the future contribution of its predecessors in order to expedite
the computation of -values at ’s successors in the automaton for . The more complex structure of gives
rise to a number of complications.

First, in the simpler sequence comparison context, it is natural to use the coordinate system of the align-
ment graph as a frame of reference for , i.e. is the value contributes to the vertex in column . The
analogous definition in the case of regular expressions is to define to be the value that contributes to
any state whose gap distance from the start state, , is . However, this fails for regular expressions because
there are automata for which two states at equal gap distance from are at distinct gap distances from . It is
thus essential to make the referent of the parameter . Specifically, must be constructed so that
is the value envelope contributes to any state whose gap distance from is .

Also, unlike the sequence comparison case, there are state pairs and whose gap distance is 0. The
algorithms of Section 4 are greatly simplified when the candidates from such states can be included into the
candidate lists at , instead of delaying their inclusion until some future whose gap distance from is non-
zero. However, candidates with a -value of cannot be treated under the minimum envelope formulation
described in the previous section, because is defined to be concave only for values , and
might not be greater than or equal to . The candidate list implementation must be extended to
handle these -value candidates separately.

The most significant complication arises because of the multiple paths introduced by the alternation and
Kleene closure sub-automata. This complication requires a more complex algorithm which models each
by candidate lists. First, in any incremental computation where the candidate lists modeling enve-
lope are built from the lists at predecessor states, the candidate lists at the start state of each and
sub-automaton are used separately at its two successor states. The construction at each state makes different
changes to the original lists at the start state, and neither set of changes can be allowed to affect the other.
Because of this, the implementation of candidate lists and their operations must be made applicable, or non-
destructive, so that the construction occurring along a path through the NFA does not affect the construction
on concurrent paths through .

At the final states of alternation and Kleene closure sub-automata, the candidate lists from multiple pre-
decessors must be merged together to construct lists modeling (or ). This could easily be done
using either a merge sort style sweep through the active candidates of the two lists or by adding the active
candidates from one list into the other. However, because the candidate lists can be of size , such a



11merge operation yields an time bound for the computation of the values. Barring a more efficient
merge operation, it does not appear that any algorithm which uses either a single or candidate lists can
compute the values in less than time. There are too many repeated candidates in the merges: either
candidates from the same state occurring in the lists being merged at a single (or ), or candidates
from the same state needed at the series of final states occurring in NFA’s with highly nested and

sub-automata.
Given these complications, the algorithms solving RE( , , ) require a more generalized imple-

mentation of candidate lists. Proceeding formally, let be a candidate list data structure modeling a mini-
mum envelope, and let denote the value of the encoded envelope at . The goal is to develop applica-
tive, i.e. non-destructive, procedures for these four operations:

(1) Value : returns when .
(2) Shift : returns a candidate list for which when .
(3) Add : returns a candidate list for when .
(4) Merge : returns a candidate list .

The next section shows how the first three operations above can be accomplished in logarithmic time. Then,
operation Merge simply uses Add to add the candidates from the shorter list into the longer list, as follows:

Merge
if
then ;
else ;

for do
Add

return

Since the active candidates of must also be active candidates in and , the minimum envelope formed
from combining the active candidates of and must model for all . The time
complexity for this operation is the length of the smaller candidate list times the logarithmic cost for each
Add.

These candidate list operations, and the “frame shift” required by the regular expression algorithm, gen-
eralize the one-dimensional problem of Section 3.1 in the following manner. is now defined over the
domain and equals the contribution of the envelope at to the vertex at column (as opposed to
the one at column ). Formally, = for . Some straightforward algebra
reveals that this new definition now implies that = and = .
As before, the envelope is modeled by an ordered list of candidate records, but now and is the
largest value of at which represents the envelope. With these changes, the following
algorithm correctly computes the values specified by Equation 5:

[ ]
for 1 to do

Add Shift
Value

3.3 Generalizing the Minimum Envelope Lists

To simplify the initial development of the operations, we first look at the effect each operator has on the
candidate list without regard to efficiency or the method via which the list is implemented. The typical list
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# the rightmost point of

if then else # the leftmost point of

or # In Add, these test to see if is
or # minimal at and , resp.

Value
if then return

Findmin
return

Shift
if then return

Findmin
Offset

return

Add
if then return

Findmax
if and then return

Findmax
Findmin
Concat

if then
Intersect

if then
Intersect

return

Figure 6 The procedures Value, Shift, and Add.

operations, plus these five additional operations, are assumed; their implementation will be discussed later.

(1) : for candidate record , returns .
(2) Findmin : returns minimal s.t. predicate is true (or if its never true).
(3) Findmax : returns maximal s.t. predicate is true (or 0 if its never true).
(4) Intersect : for records and , returns the maximal such that .
(5) Offset : returns such that, for all , and .

Findmin and Findmax are used to perform searches over a candidate list , and as such the index ranges
over . All the predicates that occur in the calls to below are nondecreasing in
that for all , where false is considered to be less than true. Similarly, all the predicates
used in calls to Findmax are nonincreasing. Note that from an implementation perspective, this implies that
a binary search can be used. In the event that is false for all , the description above states that Findmin
returns . We will use in such contexts to denote a number that is sufficiently large. In all cases such a
number is easy to arrive at, e.g. in the case that the predicate of is defined over list

.
Figure 6 presents the procedures implementing Value, Shift, and Add. The realization of operation Value

follows directly from Equation 6 in Section 3.1. The call to Findmin sets to the index of the candidate
whose interval contains , i.e. , and then the value is returned. For the occurring
in Value, an appropriate choice when solving RE( , , ) is .

Operation Shift requires adding to each record’s -field and subtracting it from each record’s -field,
since in the desired envelope and for all . However, some candidates
become inactive because the right end of their intervals become less than 0 in the new envelope. Specifically,
this is true exactly for those candidates whose -field is less than . Because records are in increasing order
of this field, the call to Findmin finds the leftmost candidate which remains active. The sublist to the right of
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Figure 7 Adding a curve to a minimum envelope.

that candidate, inclusively, is extracted from , and then operation Offset updates the - and -fields of the
remaining candidates.

Add is the most complex, potentially requiring the replacement of an interior sublist of the current en-
velope with the new candidate, as shown in Figure 7. Recall that the candidates in a list occur in increasing
order of their -fields. Thus, the new candidate’s interval of representation, if not empty, occurs between the
candidates in with lesser ’s and those with greater ’s. If the new candidate is not minimal at the division
point between these two sublists of , then its interval is empty because it falls more slowly than the candi-
dates with smaller ’s (moving leftward) and rises more quickly than the candidates with larger ’s (moving
rightward). The first call to Findmax finds the index such that 1) for all and 2)

for all . Let = when and otherwise, and let =
when and otherwise . The predicates RE( ) and LE( ) compare the new candidate
against and at and respectively. They also include clauses “ ” and “ ”
which check for the boundary conditions. If both and are true, then the new candidate
cannot contribute to the left of or to the right of and its interval of representation must be empty. In this
case, Add simply returns the unaltered list .

The alternative is that at least one of the predicates or is false, in which case the
candidate represents the desired envelope over some interval containing either or , or both. Thus, it
suffices to find the left and right points (or if is false) and (or

if is false) where the new candidate intersects the envelope for . The call to Findmax
finds the rightmost candidate, , which is less than the candidate at the left endpoint of ’s interval. Either
candidate ’s interval contains the left intersection point, or and the left intersection point is . The
call to Findmin similarly returns the candidate, , containing the right intersection point. Add then replaces
the candidates strictly between and with the new candidate. This is correct, as the new candidate rep-
resents over the intervals of the candidates just removed. Finally, the exact location of the left and
right intersection points must be stored in the -fields of the records for and the new candidate, respec-
tively. The call, Intersect finds the left endpoint as is the new candidate record, and the call
Intersect finds the right endpoint.

Attention is now turned to the efficient implementation of the candidate list data structure. Each candi-
date list is implemented as a height-balanced tree of candidate records such that the list is given by an inorder
traversal of the tree. This well-known representation for a linear list [11] permits all of the typical list op-
erations, plus the binary search used by Findmax and Findmin, in either constant or logarithmic time of the

suffices for the sequence vs. regular expression problem as longer gap distances will not be encountered. Similarly and
suffice for the one-dimensional column and row problems posed by sequences.



14length of the list. In addition, Myers [13] presents an implementation for applicatively manipulating height-
balanced trees at no additional time overhead. This implementation simply modifies the standard operations
to make copies of any vertices that normally would be destructively modified. Note that this approach does
require extra space: each operation takes space as well. This overhead is reflected in the
space complexity of our final result.

Primitive operation (4), Intersect , involves the monotone predicate whose range is
restricted to , because of the concave curves’ single intersection property and because is a suit-
able choice for in the algorithm for RE( , , ). Thus an binary search over this range
implements Intersect. Operation Offset , primitive operation (5), can be realized in time over a
height-balanced tree as noted for link-cut trees [17]. The “trick” is to store the and values for a candidate
record as offsets relative to the and values at the parent of the candidate in the tree. With such a scheme,

is obtained by summing the -offsets of the vertices on the path from the root of ’s tree to the vertex
representing candidate . Since this path must be traversed in order to access candidate , the computation
accrues no asymptotic overhead. With this structure, Offset simply involves adding and subtracting

to the and values at the root. However, whenever the structure of the tree is modified by an opera-
tion, such as a height balancing rotation, one must carefully readjust the offsets stored at each vertex. For
example, consider the rotation from to where denotes a tree node with
left and right children and . Then, if x.off denotes the offset before and off denotes the offset after, it
suffices to set off off off, off off, off off, off off off, and off off
in order to preserve all absolute values. These changes are made during the rotation at no additional asymp-
totic overhead. Such value-preserving transforms are available for the other necessary rotation operations.
A complete description of one such schema is given in [17].

The final consideration is the extension of candidate lists to include candidates whose -value is zero.
These extended lists consist of two parts: list, a “standard” envelope for the candidates whose -value is
greater than zero; and , the value of the best candidate with a of zero. For such a modified data
structure, the routines Value , Shift , and Add below give the necessary operational extensions. To sim-
plify the algorithm descriptions presented in the rest of the paper, the symbols will be omitted and assumed
by the use of Value, Shift and Add.

Value

Value list
return

Shift
if then return E

list Shift list
if then

list Add list

return E

Add
if then

else
list Add list

return E

4 Regular Expression Pattern Matching

As in the sequence vs. sequence recurrence, the deletion term, , and the insertion
term, , in the recurrence for RE( , , ) give the cubic time bound for the
naive two-sweep algorithm described in Section 2.4. The previous section shows that the problem of deliver-
ing the deletion terms in a given column constitutes a “one-dimensional” problem solvable in
time. This section formulates the problem of delivering the insertion terms in a row as a more complex one-
dimensional problem and solves it in time. The insertion terms are computed in two sweeps
as with the regular expression algorithm of Section 2.3. Combining these one-dimensional solutions with



15the two-sweep dynamic programming computation yields an algorithm that computes , the cost of the
optimal alignment between and , in time.

Consider the computation of the values at vertices in a given row, say , of the alignment graph. Let
= be the deletion term at state , and let = be
the substitution term at state . As noted above, the deletion terms at each state in the row can be delivered
by maintaining envelopes for the one-dimensional problems progressing down each state’s column.
Thus, we can compute = at each state in row in time. Moreover, =

because is concave and thus sub-additive, i.e. . This
follows because, when is sub-additive, the best path to a vertex in the alignment graph ends with at most
one insertion edge. Thus, the critical problem of computing the value at a row becomes that of solving the
one-dimensional problem given by Equation 7 of the previous section.

This one-dimensional problem is now cast in terms of envelopes. What is desired at each is

whereupon the desired -value at each vertex is simply . Note that in the minimum above, there is a
single term or candidate for each state of the automaton. Because states and candidates are in one-to-one cor-
respondence, candidates in an envelope will often be referred to or characterized in terms of their originating
states. These envelopes are actually arrived at in two topological sweeps of ’s NFA, as part of the overall
two-sweep algorithm proceeding across each alignment graph row. In the first sweep, the envelopes
consider only gaps whose underlying paths are restricted to DAG edges, and the second sweep envelopes

consider the gaps whose paths have exactly one back edge. Formally,

Because only cycle free paths must be considered, it follows that = and
. In the remainder of the paper, the path restriction clauses and in the

definitions above are omitted and assumed by the use of either a 1 or a 2 in the name of the defined quantity.
As will be seen, the envelopes and are actually modeled by a collection of up to distinct
candidate lists.

4.1 The First Sweep Algorithm

To compute the envelope at every state, it suffices to consider only the subgraph of the NFA restricted
to edges. Over this acyclic subgraph, the set of predecessors of state are those states where ,
and they are all enumerated before in a topological sweep of . These predecessors are partitioned into
two sets, the up predecessors and down predecessors at , and their candidates are stored in two data struc-
tures, called the up list and down list. This division is based on the predecessors’ position, relative to , in the
nesting structure of induced by Kleene closures and alternations in . This notion of up and down can be
better illustrated by hypothetically extending the two-dimensional NFA’s pictured in this paper into a third
dimension. The positions of states in that third dimension depend on their position in the nesting of alterna-
tion and Kleene closure sub-automata of . The highest tier of states contain all of the states in which are
outside any or sub-automaton. States in successively nested sub-automata are placed in succes-
sively lower tiers, and the most deeply nested sub-automaton’s states make up the lowest tier. The descriptive
terms “up” and “down” used in this section refer to the directions up and down in this third dimension.
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Figure 8 The nesting tree construction and an example nesting tree.

To capture this nesting structure and each state’s position in the nesting, a nesting tree is constructed from
. The formal inductive construction is specified in Figure 8, and an example tree is also given. Informally,

the nesting tree consists of a node corresponding to the subexpression formed by each alternation and Kleene
closure operator in and a root node corresponding to itself. The edges of the tree model the immediate
nesting structure of node subexpressions. A node’s submachine is that sub-automaton in induced by the
node’s subexpression. Each node of the nesting tree is also annotated with a node set consisting of those NFA
states in the node’s submachine except (1) its start and final states, and (2) those belonging to any descendant
node. Thus, the node sets form a partition of the states for , and the relative position of two states in the
nesting of submachines is mirrored in the relative position of the states in the tree. For a state , let denote
the unique node whose node set contains .

The up predecessors of a state are those states for which and , i.e. is an ancestor
of in the nesting tree. All other predecessors of are down predecessors. They are so named because any
NFA path from a down predecessor to contains edges which correspond to moving down the nesting tree.
Given the partition of predecessors into up and down types, one can then decompose the computation of
into the computation of:

where . The rest of this section is devoted to presenting the construc-
tion of the up and down list data structures, showing that these constructions model envelopes and
respectively, and giving complexity claims for the construction algorithms.

Both the up and down lists at a state are constructed incrementally from the lists at ’s predecessor states.
To illustrate these incremental computations, flow graphs called the up tree and down tree are used to show
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Figure 9 The inductive construction of the up and down trees at each state .

the movement of candidate curves through the data structures constructed at each state. Figure 9 gives the
inductive construction of the flow graphs. Figures 10 and 11 give example up and down trees over an NFA.
The incoming edges at each point in the two trees describe the candidates and candidate lists which must
be included in the construction of the two data structures at each state. The up tree edges, down tree edges
and connecting edges specify the inclusion of the up or down list from a predecessor state. The candidate
insertion edges specify the insertion of that state’s candidate curve into the up list. These flow graphs are
used only for illustration, so no proofs are given for the graphs’ correctness. Such proofs, however, can be
inferred from the correctness proofs given for the up and down list constructions.

The overall structure of the construction algorithm consists of a for-loop ranging over the states in
in topological order. At each state, a construction step is applied to construct the up and down lists at that
state. The construction step executed at a state depends on ’s state type. There are five state types, labeled
0 to 4 in Figure 9. Figure 9 also gives the predecessor state notation which is used throughout this section.
The single type 0 state is the start state , and it has no predecessors. Type 1 states are the start states of
the sub-automata and inside each and sub-automaton. denotes the single predecessor of
each type 1 state. Type 2 states are the start states of inside each sub-automaton, and also denotes
the predecessor of each type 2 state. Type 3 and 4 states are final states of and sub-automata,
respectively. The predecessors of the type 3 states are , , and . The predecessors
of the type 4 states are and . These five types categorize every state in an NFA, because each
state must either be the initial state of a sub-automaton at some step in the inductive construction or must be
the final state of an alternation or Kleene closure sub-automaton (this can be seen from Figure 9).
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Figure 10 The up tree for an example NFA.

4.1.1 Up List Construction

The up list data structure consists of a single candidate list, denoted , containing all of the candidates
needed to model . The construction steps for the up list are as follows:

Type 0: Add [ ]
Type 1: Add [ ]
Type 2: Add Shift
Type 3: Merge Shift

Add Merge
Type 4: Add Merge

where [ ] denotes an empty candidate list and the expression returns either 1 or 0 if the expression is
true or false.

LEMMA 1. For any NFA , the constructed models for each state .

Proof. By induction on over the topological ordering of the states according to the DAG edges. For the
base case and all type 1 states, since itself is the only state which can reach

and appears in the nesting sub-tree rooted at . Thus, adding ’s candidate to an empty list constructs an
envelope modeling . The type 2 states are analogous to the sequence comparison recurrence in that

, and the construction first shifts (if ) and then
adds ’s candidate. The type 3 and 4 states are the most interesting cases. For the type 3 states, can
be rewritten as follows:

=
= , # the states in

, # the states in
G , # up predecessors of

# ’s candidate
=



19because (1) all paths to must either originate from inside and or must pass through , (2) and
equal 0, and (3) . Thus, combining , , a shifted , and the candidate

from constructs a data structure modeling . at the type 4 states can be rewritten similarly.

The up list construction algorithm takes time, where is the number of states in . Techni-
cally, the original pattern matching problem defines as the length of the regular expression . The number
of states in , then, can range from to , depending on the sub-expressions of . However, the com-
plexity arguments that follow are clearer when presented using the number of states in . Since, in terms of
the order notation, the size of and the number of states in are essentially equal, any complexity argument
using as the number of states in has an equivalent argument using as the length of . Henceforth,
refers to the number of states in .

In each construction step, the Add and Shift operations take time, since each up list contains
at most candidates. Lemma 2 below shows that the Merge operations at the type 3 and 4 states use no
more than Add operations over the course of the construction. Thus, the whole algorithm uses

Add and Shift operations and takes time.

LEMMA 2. For any NFA with states, the Merge operations in the up list construction require at most
Add operations.

Proof. Let the population of an envelope be the candidates, both active and inactive, in the envelope. So,
for example, ’s population is the set of up predecessors of . Recall that Merge adds each candidate
from the smaller candidate list into the larger, thereby constructing the candidate list for the merged envelope.
Term this copying a candidate from one envelope to another. Define an operation Merge2 which copies the
candidates from the candidate list whose envelope has the smaller population into the list whose envelope
has the larger population. Clearly, Merge2 uses at least as many Add operations as Merge, and it sometimes
may use more as the smaller candidate list can model the envelope with the larger population.

The up list construction only merges envelopes with disjoint populations. This can be seen from the
structure of the up tree in Figure 10, which forms a tree, laying on its side, with leaves and a single root
at the final state of . Under Merge2, a particular state ’s candidate is copied during a merge only when it
appears in the envelope with smaller population. Thus, each time ’s candidate is copied, the merged enve-
lope’s population must be at least twice the size of the input envelope containing . Since the size of any up
list’s population is at most , ’s candidate can be copied at most times. This argument holds for
each state in , so at most Add operations are used by Merge2 over the course of the construction.
Therefore, no more than Adds can be used under operation Merge.

4.1.2 Down List Construction

The down list data structure uses up to candidate lists to hold all of the candidate curves in .
Informally, the down list incorporates the candidates from the up lists at the predecessor of each type 1 state
as the sweep passes into each alternation and Kleene closure sub-automaton. These incorporations construct
a data structure modeling because the down list at each contains the candidates which move “up and
then down” to . When moving down at the type 1 states, the candidates which have moved up to predecessor
state (namely the candidates in the up list at ) must now be included in the down list at .

A simple construction algorithm uses only a single candidate list and calls operation Merge at the type
1 states to incorporate each of the incoming up lists. This algorithm takes time however, because
too many of the up lists can contain active candidates. Instead, our algorithm uses up to
candidate lists and incorporates each up list in one of two ways, either (1) merging the up list into a designated
candidate list or (2) pushing the up list onto a stack of unmerged up lists , where

is a top of stack pointer. By performing a “balancing act” between the cost of merging into and the
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Figure 11 An example NFA’s down tree.

height of the stack, the overall time bound of the construction can be kept under . The down list
construction steps are as follows:

Type 0: The start state, .

[ ]

Type 1: Inner start states in and .

for to do
Shift

if COPY1( ) then
Merge Shift

else

Shift

Type 2: Inner start states in and .

for to do
Shift

Type 3: The final state of .

for to do
Shift

Type 4: The final state of .

for to do

In the construction, COPY1( ) denotes the decisions, called copy decisions, of whether to incorporate ’s up
list candidates by copying into or by pushing ’s up list on the stack. A copy decision is made at the
start state of each alternation and Kleene closure sub-automaton. That decision governs the construction at
each of the successor type 1 states. As can be seen from the construction, these decisions do not affect the
correctness of the algorithm, since the same set of candidates is added to the down list along each branch of
the if. The procedure for making the copy decisions is presented later in this section during the complexity
proof.

LEMMA 3. For any state in an arbitrary NFA , the candidate lists correctly model
in that .

Proof. By induction on the topological ordering of the states. At , contains no candidates (
is the root). For the type 2, 3 and 4 states, , so shifting the candidate lists from
the predecessor states constructs the correct lists. At the type 1 states, contains all of the predecessors



21to except itself, since each state in the sub-tree rooted at is a state in the submachine for which is the
start state. Any state which can reach (and hence reach ) must occur elsewhere in the nesting tree. Thus,

, and combining the up and down lists at creates a data
structure modeling .

The down list construction algorithm consists of three components at each state : (1) constructing
from a predecessor state; (2) constructing the stack of unmerged lists from a predeces-
sor; and (3) computing . The time spent for components
2 and 3 is times the height of the stack at . The time spent for component 1 is plus the
cost of the Merge operations. The actual execution time for these components depends on the copy decisions
made at each type 1 state. If the copy decisions can be made such that (1) the stack of unmerged lists contains
no more than lists at any state and (2) the Merge operations used to construct require no more
than Add operations, then the algorithm’s complexity is . Thus, the
time bound hinges on this copy decision problem.

The procedure solving the copy decision problem uses the nesting tree to make the decisions. The tree
has two properties which can be used to simplify the copy decision problem. First, every node except the
root corresponds to an alternation or Kleene closure sub-expression in , so each edge corresponds to
the copy decision made at the start state of ’s submachine. Denote this start state and note that .
Second, the sequence of edges on a path through the nesting tree mirrors the sequence of copy decisions along
the corresponding path through the down tree. These properties allow the definition of an abstract version
of the copy decision problem, called the label removal problem, whose solutions can be applied to the copy
decision problem. The input to the label removal problem is an edge-labeled nesting tree with nodes.
Each edge in the tree is labeled with an edge set , i.e. the states in
the sub-tree rooted at minus the states in the sub-tree rooted at . Figure 12 gives the labeled tree for the
example NFA being used in this section (see Figure 8 for the state numbering scheme). The problem is the
following:

Remove a subset of the edge sets labeling such that (1) no path in the resulting tree is labeled
with more than edge sets and (2) no state appears in more than of
the removed edge sets.

Note from Figure 12 that each edge set is actually a superset of the states in , since ’s state
set only contains states for which . This more general formulation of the label removal problem is
needed for the second sweep, as another down tree is used there. However, each edge set does contain
all of the states in , and Lemma 4 shows that a solution to the label removal problem can be applied
to the problem of making the correct copy decisions.

LEMMA 4. For any NFA and its nesting tree , the solutionsproduced by any procedure correctly solving
the label removal problem on can be applied to correctly solve the copy decision problem for the down list
construction algorithm for .

Proof. Let the fate of edge set , labeling a tree edge , represent the copy decision needed at
state as follows. The removal of represents setting COPY1( ) = true and merging into . Re-
taining represents setting COPY1( ) = false and pushing onto the stack. The tree edges and copy
decisions are in one-to-one correspondence, and each path through the tree corresponds to the sequence of
copy decisions made on a path through the down tree. Thus, (1) if every path in the final tree has no more
than edge sets, then no path through the down tree can push more than up lists
onto the stack. (2) If no state occurs in more than removed edge sets, then at most
Add operations can be used to merge a particular state into , resulting in an overall bound of
Add operations.
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Figure 12 The nesting tree from Figure 8 labeled with edge sets (in brackets) and the actual sets (in paren-
theses).

The procedure used to solve the label removal problem [copy decision problem] is as follows: Let
be the maximum number of edge sets labeling any path from node . Let always denote the
children of a node , and let , . In a bottom-up manner, compute for each
node in and determine which edge sets to remove as follows:

1. ( is a leaf). Set .

2. and and ( has two or more maximal children). Set
and retain all edge sets [COPY1( ) = false for all ].

3. and ( has one maximal child, ). Set ,
remove [COPY1( ) = true] and retain the other edge sets [COPY1( ) = false for all ].

The two lemmas below show that this procedure satisfies both conditions of the label removal problem for
any labeled nesting tree . Lemma 5 shows that , which bounds the number of edge sets remaining on
any path through , is no greater than . Lemma 6 then shows that no state appears in more than

of the removed edge sets.

LEMMA 5. For all nodes in a nesting tree , where is the size of the sub-tree rooted at
.

Proof. By induction using the three cases above. (1) . (2)
, since and the induction hypothesis holds for and . But this equals

. (3) .

LEMMA 6. For any state and node where , if is the number of times occurs in edge sets
removed from the sub-tree rooted at , then .



23Proof. Let denote the nodes on the path from to where and .
The proof is by induction on the nodes . Since can only appear on outgoing edges from
ancestors to , no other part of can affect the values of . Each step in the induction consists of the
three cases from the label removal procedure.
The base case, and .

(1) Trivial. (2) No edge set on the outgoing edges from are removed, so . (3)
since appears in all outgoing edge sets and so occurs in the removed edge set. But

since for any .

The inductive step is for ,

(1) Not possible. (2) No outgoing edges’ edge sets are removed, so and
by induction . (3) If is the maximal child
of and , then since does not
occur in by definition. Otherwise, if is not the maximum, then was removed and

. But in this case , since some other child of is maximal.
So, .

Summary. To recapitulate, by the correspondence established in Lemma 4, the maximum down list stack
height is bounded by and any state ’s candidate is added to at most times over the down
list construction. Lemma 5 shows that is , and Lemmas 6 and 5 show that is
for any state . Therefore, the height of the stack at any state is , no more than Add
operations are used in the construction of , and the overall time bound for the down list construction is

.

4.2 The Second Sweep Algorithm

The second sweep’s algorithm computes the minimum over the paths whose final insertion edge corresponds
to a path containing exactly one back edge, as embodied in the following equation:

Henceforth, let generically denote a back edge of some in , and let be the sub-automaton
for which and .

The paths which can contribute to the values of are restricted by two properties. First,
states and must appear “inside” , i.e. they must be states in . If either or appear elsewhere
in , then the path must contain a cycle by the inductive NFA construction of Figure 3.
Second, the back edge for which , if such a back edge exists, must be
the innermost surrounding back edge to and . A surrounding back edge is one where the states appear
inside it. The innermost surrounding back edge is the most deeply nested of those back edges. Again by the
NFA construction, a path from to using any other back edge must also pass through the states
connected by the innermost surrounding back edge, or . Those paths must
contain at least as many non- states.

These restrictions simplify the algorithm for the second sweep in the following ways. First, the up lists
from the first sweep contain the candidates needed at each back edge by the second sweep, as

is inside . Second, those up lists are only needed “downwards”
in , because the candidates coming over each back edge can only contribute to when is inside that
back edge. And finally, at state , only the innermost version of each state ’s candidate is needed for the
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Figure 13 The second sweep nesting tree construction and an edge labeled example.

computation of . Other versions coming from non-innermost surrounding back edges to can be safely
removed from the data structures.

The second sweep algorithm follows along the same lines as the first sweep. The candidates in are
partitioned into two sets, the innermost predecessors and the down predecessors, and are stored in two data
structures, an innermost list and another down list. The innermost predecessors are those states in the up list
coming from the innermost surrounding back edge of . The other predecessors to are considered down
predecessors. Informally, the innermost list propagates each up list to the states inside the corresponding
back edge, but outside all nested back edges. At those nested back edges, the innermost list is incorporated
into the down list to make way for the new up list coming over the nested back edge. The advantage to
this algorithm is that the down list only needs to incorporate the innermost list candidates which don’t have
better versions coming over the nested back edge. This incorporation of only a subset of the innermost list’s
candidates permits another “balancing act” to be used by the second sweep down list construction. The rest
of this section presents the formal algorithm resulting from this idea, highlightingonly the points which differ
from the first sweep.

The partition of the innermost and down predecessors uses a second sweep nesting tree, given in Figure
13. This second sweep tree differs from that of the first sweep in that it only contains nodes for each of ’s
Kleene closure sub-expressions. Figure 13 presents the formal construction, along with an example NFA
and its labeled nesting tree. Let now denote the node in the second sweep nesting tree whose node set
contains state . The set of states inside the innermost surrounding back edge of a state exactly corresponds
to the set of states in the node sets of the sub-tree rooted at , as can be seen from the Kleene closure rule
in Figure 13. So, envelopes and model the innermost and down predecessors:

and since the nesting tree partitions the states in .
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Figure 14 The second sweep flow graph construction.

Figure 14 defines the construction of flow graphs for the innermost and down lists, along with the second
sweep state types. Figures 15 and 16 depict the complete flow graphs for an example NFA. The innermost list
data structure consists of a single candidate list , while the down list again uses up to candidate
lists, , , , . The construction steps for the two lists are:

Type 0: The initial state, .
[ ]

Type 1: Inner initial state of .
Shift ( , )

for to do
Shift )

if COPY2( ) then
Merge Shift

else

Shift

Type 2: The other inner initial states.
Shift ( , )

for to do
Shift

Type 3: Final state of .
Shift ( , )

for to do
Shift

Type 4: Final state of .

for to do

where the five state types are those shown in Figure 14 and COPY2( ) gives the second sweep copy decisions.
For the construction step at the type 1 states, the use of and a new candidate list is described momentarily.
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Figure 15 The flow graph for the innermost list.

Figure 16 The flow graph for the second sweep down list.

The construction of the innermost list at each state and the construction of the down list at all but the type
1 states are straightforward, and so are not considered further in this paper. The interesting case occurs in the
down list construction at the type 1 states. At such a state ,
where is the following:

In other words, is the subset of candidates in which do not originate from inside the incoming
back edge to . The candidates in which do originate from inside the back edge to are not needed at
, because the new innermost list contains better candidates from those states.

The sole purpose of the innermost list in this algorithm is to delay the incorporation of each back edge’s up
list into the second sweep down list. A simpler algorithm would immediately incorporate each up list. The
delay provided by the innermost list is necessary to ensure that the “balancing act” and the label removal
problem can be used for the second sweep down list. The relevant properties needed in this case are (1) the
candidates incorporated into the down list at , for tree edge , match the states in the corresponding
edge set , and (2) . These properties do not hold when the up lists are
immediately incorporated into the down list. For the same reason, at the type 1 states, the candidate list
cannot be blindly incorporated into the down list. Another candidate list correctly modeling is needed
at those states.

Unfortunately, a candidate list modeling cannot be constructed in time for every type 1
state. However, the down tree construction only needs a candidate list exactly modeling when the copy



27decision at the type 1 state is to merge into . At the type 1 states where the copy decision is to push onto
the stack, candidate list can be used without sacrificing the complexity or correctness of the second sweep
algorithm. The complexity still holds, because only the number of candidate lists pushed onto
the stack affects the complexity, not the number of candidates appearing in that list. And, while the “extra”
candidates from may cause some incorrect values to be computed for , those incorrect values never
affect the correctness of . For example, at a type 1 state with predecessor , all of the extra candidates
in have dominating candidates in which come from the more deeply nested, incoming back edge to .
Thus, whenever the computed down list value at a state is less than because of those extra candidates,
the value of is always less than both that computed value and . Thus, the ultimate value of
is never affected by these extras.

For each state where COPY2( ) = true, a candidate list modeling can be constructed in
time. The key observation is that, for any node in the nesting tree, the copy decision procedure

decides to copy on at most one outgoing edge from that node. In terms of the construction, this implies that,
for each Kleene closure sub-automaton in , the construction algorithm copies into at the start start of at
most one nested Kleene closure sub-automaton. Thus, a first sweep candidate list can be constructed for each
back edge which contains only the candidates needed by the down list at that one nested back edge where
COPY2( ) = true. Specifically, for each where COPY2( ) = true and ’s innermost surrounding
back edge is , the candidate list at must model

. The construction steps for such a candidate list are the following, using the state types
from the first sweep, but the copy decisions from the second sweep:

Type 0: Add
Type 1: Add
Type 2: Add Shift
Type 3: Merge Shift

Add Merge # , , and
Type 4: Add

if not COPY2( ) then
Merge

At the Kleene closure sub-automatonfinal states, when the second sweep copy decision for that sub-automaton
is true, then the candidates inside that back edge are not added to so that those candidates won’t appear
at the innermost surrounding back edge. When the decision is false, (not ) is used to include the
candidates inside that back edge.

The resulting candidate lists are then propagated during the second sweep to the necessary type 1
states as follows:

Type 0:
Type 1: Shift # is the incoming back edge
Type 2: Shift
Type 3: Shift
Type 4:

This list is used by the second sweep construction algorithm.
The time needed to construct and at each state is , since a single candidate list is incre-

mentally constructed from predecessor states. can be constructed in time as its construction
algorithm is based on the up list construction from the first sweep. The down list construction is such that
lemmas similar to those given in Section 4.1.2 hold, and the label removal procedure in that section can be
used to make the second sweep copy decisions. So, again the height of the stack at any state is bounded by



28and no more than candidates can be added into , giving an overall time complexity
of for the down list construction.

5 Conclusions

In summary we have presented a sub-cubic algorithm for approximately matching regular expressions under
a concave gap-penalty model. Our result is an intricate fusion of the two-sweep node-listing idea for ap-
proximately matching regular expressions and the minimum envelope idea for sequence comparisons with
concave gaps. One wonders if a sub-cubic algorithm has to be as necessarily complex as ours where stacks
of persistent lists were required. Is our algorithm practical or at least efficient enough that one might actu-
ally use it in a pattern matching application? One particularly significant deficit is that the algorithm requires

space. Standard divide and conquer techniques that reduce space requirements to lin-
ear do not apply here. Finally, the idea of approximate pattern matching applies to any pattern class. How
efficiently can one approximately match context free languages with concave gap penalties? A cursory look
at the problem shows it to be polynomial but of very high order.
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