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Abstract

Disgtributed systems, in which multiple machines are connected by a communications network, are often
used to build highly dependable computing systems. However, constructing the software required to
realize such dependability isadifficult task sinceit requires the programmer to build fault-tol erant software
that can continue to function despite failures. To simplify this process, canonical structuring techniques
or programming paradigms have been developed, including the object/action model, the primary/backup
approach, the state machine approach, and conversations. In this paper, some of the system abstractions
designed to support these paradigms are described. These abstractions, which are termed fault-tolerant
services, can be categorized into two types. Onetype providesfunctionality similar to standard hardware or
operating system services, but with improved semantics when failures occur; these include stable storage,
atomic actions, resilient processes, and certain kinds of remote procedure call. The other type provides
consistent information to all processors in a distributed system; these include common globa time, group-
oriented multicast, and membership services. In addition to describing the fundamental properties of these
abstractions and their implementati on techniques, a hierarchy highlighting common dependencies between
services is presented. Finally, a number of systems that use these abstractions are overviewed, including
the Advanced Automation System (AAS), Argus, Consul, Delta-4, 1SIS, and MARS.
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1 Introduction

The need for computer system dependability, defined as the basi ¢ trustworthinessof acomputer system
that allows peopleto rely on the serviceit delivers[Lap92], has been steadily increasing. Not only are
computers becoming more pervasive, they are also being used in critical applications where failures
resulting in deviation from specified service can have disastrous consequences. For example, air traffic
control, banking, and nuclear reactor control are al applications that fit into this category. Moreover,
there are many, well-documented instances where problems in hardware and/or software have in fact
caused system failuresresulting in loss of life or substantial economic disruptions[Neu91].

Distributed systems, where a collection of processors are connected by anetwork with no physically
shared memory, are often used as a basis for providing highly dependable computing services. One
reason for thisisthat many critical applicationsare process-control situationsin which the components
being controlled—and hence the controlling computers—are physically dispersed. For example, au-
tomated factories and nuclear reactors often fit this description. In cases such as these, the particular
architecture isfixed by the demands of the application and is not a variablein the design process.

Another reason for the use of distributed systems is that such an architecture provides a natural
framework for using fault-tolerance techniques to enhance system dependability. These techniques,
which are used to construct a system that can continue to function despite the failure of internal
components, are al based on using redundancy of some form to mask and/or detect failures. The
multiple processors, memories, and secondary storage units typically found in a distributed system
inherently provide redundancy that can be used for fault-tolerance purposes. Thus, distributed systems
are agood basis for dependabl e computing even when not dictated directly by the characteristics of the
specific application.

A distributed architecture by itself is, of course, only a starting point: it rests with the software to
actually translate this potential into a dependable computing system. To accomplish this, the software
must be constructed as fault-tolerant software, that is, software that can continue to provide service
despite (some number and type of) faillures. Unfortunately, there are a large number of complicating
factors that must be taken into account when writing thistype of software. These include complexities
caused by the distributed nature of the software (e.g., concurrency, network delays), as well as the
arbitrary and asynchronous nature of hardware and software failures themselves. Moreover, many
of the applications requiring dependable computing have real-time constraints as well, which further
complicates the situation by adding yet another degree of freedom that must be taken into account.
All of the these factors conspire to raise the complexity level of such software and to make its design,
implementation, and validation a daunting task.

The problems associated with devel oping complex software have, of course, been recognized for
years, and many different techniques have been proposed for rectifying the situation. Of these, one
that has proved especiadly effective for constructing fault-tolerant software is the judicious use of
programming paradigms, which reduce the complexity of the task by providing canonical software
organi zation techniques and supporting abstractionsfor a given type of problem. Important paradigms
that have been developed for fault-tolerant software include the object/action paradigm [Gra86], the
primary/backup approach [AD76], the state machine approach [Sch90], and conversations [Ran75].
Fundamenta abstractions that have been defined in conjunction with these paradigms include stable
storage[Lam81], atomic actions[Lis85], common global time[Lam78], and reliablemulticast[CM84].
These abstractions serve as aconvenient base for realizing the various paradigms by defining operations
with higher-level functionality or with semantics that are well-defined even when failures occur. For
example, many of these abstractions can bethought of as more dependabl e variants of common hardware



or operating system services. These paradigms and abstractions have been used in many systems
oriented towards fault-tolerant distributed applications, such as the Advanced Automation System
(AAS) [CDD90], Argus [LS83, Lis88], Consul [MPS91], Delta-4 [PSB* 88], ISIS[BJ87, BSS91], and
MARS[KDK*89].

In this paper, we overview these abstractions, which we refer to by the general term fault-tolerant
services. Our primary goa in doing so is to identify useful services and describe their relevant
properties. In the process, we a so outline various implementation techniques for each service, paying
special attention to their assumptions and limitations. Our secondary goa is also to describe the
relationships between the different services, and to highlight the common ways in which services
depend on each other. We do thisby constructing aservice hierarchy that il lustrateshow agiven service
can be implemented using the other services. Thisfocus on surveying awide range of fault-tolerance
abstractions for distributed systems and explaining their interrelationships help distinguish this paper
from other similar efforts (e.g., [BMD91, Cri91, Koh81, RLT78, Sch9(].)

This paper is organized as follows. We begin by outlining our software and hardware system
model in Section 2, with a specia focus on identifying properties that affect the algorithms used in the
implementation of the different fault-tolerant services. We aso describe the four software structuring
paradigms mentioned above in more detail. Section 3 through 8 then describe the fault-tolerant
services; specifically, we consider services that implement a common global time in a distributed
system, multicast communication, remote procedure call, membership, atomic actions, and resilient
processes. The common dependencies between services are outlined in Section 9, while Section 10
overviews some of thefault-tolerant systemsthat have been designed and built using these abstractions.
Finaly, Section 11 summarizes the paper.

2 System Model

2.1 Overview

The hardware basis for a distributed system consists of a collection of processors connected by a
communication network. Each processor has its own loca memory, but there is typically no shared
memory between processors. This property implies that the only means for processes executing on
different machines to communicate is by message exchange. The actual configuration of the network
can vary within these constraints, ranging from, for example, local-area broadcast networks like an
Ethernet, to store-and-forward networks like those commonly used for wide-area communication.

The software found on such systemsvarieswidely inits overall structure and organization, but can
generaly be divided into application software and system software. The fault-tolerant servicesthat are
thefocusof thispaper are part of the system software, so the organi zation of the software on aparticular
processor is as depicted in Figure 1. From the bottom, the software consists of the standard operating
system services providing abstractions such as processes and virtual memory, a fault-tolerance support
layer realizing the fault-tolerant services, and finally the application software. Asisstandardin such a
level-structured organi zation, each layer usesthe abstractions defined by thelevel below it to implement
itsown services. Section 9 further refinesthisorganization for thefault-tolerance support layer by giving
common dependencies between the various services.

The purpose of the fault-tolerance support layer is to implement abstractions—i.e., fault-tolerant
services—that simplify the programming of distributed applications requiring resilience to failures.
For many of these abstractions, the implementation requires that software components on two or more
machi nes communi cate and cooperate, so the most accurate way to view thissupport layer isasasingle
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Figure 1. Overal system model

logical entity that spans multiple machines. Protocols are the set of rules that software components
on different machines use to realize a given abstraction. We also use this term informally to refer to
the actual software componentsimplementing these rules, so each fault-tolerant service can be thought
of as being implemented by one or more protocols on each machine. These protocols are typically
identical on al machines.

The abstractionsimplemented by the fault-tol erance support layer can be classified into two general
categories based on the kind of functionality they provide. The first contains those abstractions that
are similar to features found in standard systems, but with improved failure semantics. Examples of
such abstractions in Figure 1 include stable storage, atomic actions, resilient processes, and certain
types of remote procedure call (RPC). Stable storage is data storage that suffers no failures itself and
is not affected by the failure of other components [Lam81]; thus, stable storage is similar to standard
memory or disk storage, but with better semanticsin the face of failures. Atomic actions are sequences
of instructions potentially spanning multiple machines that are guaranteed to either execute completely
or not at all despite failures [Lis85]; again, this makes atomic actions similar to standard sequential
execution sequences, but with better behavior when failures occur. Resilient processes are processes
that can continue executing correctly even if interrupted by failure and then restarted; the similarity
here s, of course, to regular processes, but with the ability to tolerate failures. Finaly, RPC refersto a
collection of interprocess communication protocols commonly used in distributed systemsthat attempt
to provide semantics similar to procedure calls; while most of these protocols simply terminate a call
abnormally when failures occurs, afew actually provide strong fault-tolerance guarantees.

The second category encompasses abstractions whose purpose isto provide consistent information
to processes executing on different machines in a distributed system. Examples of such abstractions
in Figure 1 include common global time, membership, and multicast. Common global time providesa
consistent time basefor al machines despitethelack of asingle physical clock; thisserviceisespecialy
useful for consistently ordering eventsin a distributed system. Membership isaservice that provides a
consistent view of which processorsare functioning and which havefailed at any given moment intime.



Finally, multicast is a communication service that allows a message to be transmitted asynchronously
to a group of processes rather than just a single process; properties often associated with multicast
primitives designed for fault-tolerant systemsinclude atomicity and various ordering properties, which
ensure that messages are delivered to all processesin some sort of consistent order.

The collection of fault-tolerant services needed for a given application and the exact way in which
they are implemented depend on a multitude of factors. Of these, three can be identified as especialy
important: the programming paradigm used for the application, the failure model assumed, and the
synchrony of the system. The first refers to the way in which the application software is organized,;
as mentioned in the Introduction, several canonica structuring techniques have been identified, so
we concentrate our attention on these. The failure modd is the type of failure a component in the
system is assumed to suffer; common failure models used for fault-tolerant distributed systemsinclude
fail-stop [SS83], crash [PSB*88], and Byzantine [LSM82]. The synchrony of the system is related to
assumptions made about the time bound on certain activities; components are usually assumed to be
either synchronous or asynchronous. Given the importance of these factors, we now discuss each in
more detail.

2.2 Programming Paradigms

As noted above, four common programming paradigms for fault-tolerant distributed software are the
object/action model, the conversation model, the primary/backup approach, and the state machine
approach. As its name implies, the primary components of the object/action model are objects and
actions. Objects are passive entities that encapsulate a state and export certain operations to modify
that state; typicaly, this state involves long-lived data that is assumed to be stored on stable storage
to survive failures. Actions are active entities similar to threads that invoke operations on objects to
carry out some task. The objects comprising an application can potentialy be located on multiple
machinesin anetwork, which impliesthat actions may logically cross machine boundaries during their
execution. An action has two properties that guarantee the atomicity of its execution with respect
to both failures and the concurrent execution of other actions. First, it is recoverable, that is, it is
either executed completely or not at all, despite failures; second, it is serializable, that is, the effect of
executing multiple actions concurrently is equivalent to some seria schedule. Seriaizability has also
been called indivisibility [Lis85], while recoverability has aso been called totaity [Wei89] and the
unitary property [Lam81]. In the context of databases, atomic actions are usually called transactions
[BHGS87]. Abstractions that are useful for supporting the object/action model include stable storage,
atomic actions, RPC, and resilient processes.

Inthe conversation model, processes and messages play aprimary role. An applicationisstructured
as acollection of concurrent processes that communicate by exchanging messages. Processes periodi-
cally checkpoint their state onto stable storage so that they can recover and continue executing following
failures. Conversations are a structuring technique for coordinating checkpoints among processes to
guarantee that the checkpoints represent a consistent global state or, equivalently, form arecovery line
[RLT78]. Thisavoids the domino effect, in which a single failure can force the rollback of multiple
processes to successively earlier checkpoints to find a consistent state. In addition to checkpointing
facilities, some sort of reliable interprocess communication is also required to implement this model.
The object/action model and conversation model have been shown to be duals of one another [SMR88].
Abstractionsthat are useful for supporting conversationsinclude stable storage and resilient processes.

An application following the primary/backup approach is organi zed as a coll ection of services, each
of which isimplemented by multiple processes to provide fault-tolerance. The name comes from the
notion that only one of the processesfor a given service isactive at any time; this processis caled the
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primary, and al requests for service are routed to that process. The remainder of the processes, which
are referred to as backups, do not respond to requests unless a failure occurs that prevents the primary
from providing service. At this point, one of the backups becomes the primary, typicaly startingin a
state that was checkpointed by the primary onto stable storage prior to failure; alternatively, this state
could be actively propagated to the backups during execution rather than checkpointed. This approach
is also sometimes called passive replication. Abstractions useful for supporting the primary/backup
approach include stabl e storage, multicast, and membership.

Like primary/backup, in the state machine approach, an application is structured as a collection
of services that are implemented by multiple processes for fault-tolerance. Here, each service is
characterized as a state machine, which maintains state variables that are modified in response to
commands that are received from other state machines or the environment. Execution of a command
is deterministic and atomic with respect to other commands. The output of a state machine, that is,
the sequence of commands to other state machines or the environment, is completely determined by
the sequence of commands input for execution by the state machine. The fundamental difference from
primary/backup is that the fault-tolerant version of a state machine isimplemented by replicating that
state machine and running each replicain parallel on adifferent processor in adistributed system. This
approach is sometimes called active replication. Issues that must be addressed in the state machine
approach include maintaining replicaconsistency at all timesand integrating repaired replicasfollowing
failure. Abstractionsthat are useful for supporting replicated state machines include common global
time, multicast, membership, RPC, and, if reintegration of replicasback onto thecomputationisdesired,
stable storage and resilient processes.

2.3 FailureModds

When a specification of a component’s acceptable behavior isavailable, it provides a standard against
which the behavior of that component can be judged. The specification may prescribe both the
component’s response for any initial state and input sequence, and the real-time interval within which
the response should occur. A component is correct if, in response to inputs, it behaves in a manner
consistent with the specification; if it behaves otherwise, it has failed [Cri91].

A failuremodel isaway for precisaly specifying assumptionsabout how acomponent behaveswhen
itfails. A number of such failure models have been defined; although we state these in terms of generic
components, they are most often applied to processors. In thefail-stop failure mode, it is assumed that
the component fails by ceasing execution without undergoing any incorrect statetransition and that this
failureis detectable by other components [SS83]. In acrash model, a component is assumed to fail in
the same way, but without the guarantee of detectability. This model has also been termed fail-silent
[PSB*88]. The omission failure model assumes that a component fails by not responding to some
input [CASD85]. Under the assumption that a component remains inactive following a crash failure,
then failures in this class are a special case of omission failuresin which a component never responds
to inputs following its first omission. The timing failure model assumes that a component fails by
giving an untimely response; that is, the responseis functionally correct but occurs outsidethe required
real-time interval [CASD85]. The timing failure can be early timing failure or a late timing failure;
late timing failures are also sometimes called performance failures. A failureis classified as arbitrary
or Byzantine if the component’s failure behavior is completely unspecified [LSM82]. A component
assumed to fail in this make may unknown, inconsistent, or even malicious actions. The inclusion
relationship among these modelsisillustrated in Figure 2.
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24 Synchrony

Synchrony refers to assumptionsthat are made about the execution bounds on components. A hardware
or software component is synchronous if it always performs its intended function within a finite and
known time bound, and asynchronous otherwise. Thisbound on the execution time of the synchronous
component must hold whenever the component is correctly operating, and in particular, under all
operational conditionswithinits specification. Synchrony can be defined for communication channels,
communication networks, processors, and protocols. For example, in a synchronous communication
channdl, the transmission delay of a unit of data across the link is known and bounded. Similarly, a
synchronous processor isaprocessor inwhichthetimeto execute aunit of work isknown and bounded.

Thesedefinitionsof synchronouscomponentsextend to groupsof componentsaswell. For example,
a synchronous network is one in which the time required to transmit a unit of data from any machine
to another is known and bounded. Thiswill be the case either if al of the channels are synchronous,
or if a time limit is placed on transmission such that any data arriving after that limit has expired
is considered an indication of failure on the part of the network or sending machine. Similarly, a
distributed system is considered synchronous if it contains a synchronous network and synchronous
processors, and asynchronous otherwise. Examples of synchronous systems used in the literature
include [CDD90, KDK*89]; acompletely asynchronous systemis assumed in [FLP85]. Some systems
in the literature [BJ87, CM84] have been described as asynchronous, but actually employ certain
mechanisms that have the effect of making them synchronous. Examples of such restrictions include
assumptions about failure detection or, as noted above, bounds on message transmission time. In
fact, strong impossibility results related to cooperation among processes have been proved for truly
asynchronous systems [FLP85], so any realistic system is actually based on assumptions of synchrony.

The notion of synchrony can be applied to software components as well. A protocol is defined to
be synchronous if the time to perform the sequence of events required by the protocol is known and
bounded. Two different approaches have been taken to designing such protocols. clock-driven and
clockless [Ver90]. In the clock-driven approach, the protocol relies on a common globa time base
constructed using the clock synchronization techniquesdescribed in Section 3. Most of these protocols
areperiodicinnature, taking certai n actionsbased on thetimeread from the common clock; synchronous



processorsand communi cation are typically assumed by these protocols. In contrast, clocklessprotocols
do not rely on the existence of such synchronized clocks, nor do they explicitly assume the existence
of synchronous processors or communication. The result is a radicaly different system style and
organi zation, where the protocol s themsel ves approximate processor and communication synchrony by
using techniques such as timeouts and acknowledgements to put a bound on delays.

3 Common Global Time

In a standard distributed architecture, each processor has its own clock, but there is no global physical
clock that can be accessed by all processors. This lack of a global time base has important negative
implications, perhaps the most important of which relates to determining the causal relation among
various events on different processors. This causality relation holds between two events « and b on
the same or different processorsif the execution of « could possibly have affected execution of b. For
example, two consecutive statements in the same process are causally related, as are the send of a
message in one process and the receive of the same message in the destination process. Therelation is
extended using transitive closure.

Normally, onewould think to usethelocal clock timeto determine the causal relation between two
eventsa and b. That is, if the time at which ¢ occurred is less than the time at which b occurred, then
a and b would be defined to be causally related. However, given that local clocks can drift relative to
one another at a variable and unpredictable rate, this may not hold if « and b are events on different
processors. For example, if would be possibleto conclude that the send of a message occurred after its
receipt if the clocks were skewed in the right way, aviolation of causality. Thistype of clock drift also
makes it difficult to determine the real time at which an event occurred.

A fault-tolerant time service in a distributed system addresses these problems by providing the
abstraction of a common global time despite failures. Since this service provides functionality similar
to a single shared clock, it facilitates the construction of event orderings that are consistent with the
causality relation. This property is useful for, among other things, ensuring that messages multicast
among agroup of processes are received in the same order by all processes and in an order that reflects
causality. This, in turn, providesthe kind of ordering that is needed to preserve replica consistency in
the state machine approach to constructing fault-tolerant programs.

There are two basic approaches to implementing a decentralized fault-tolerant time service in a
distributed system. In the first approach, local processor clocks are synchronized at regular intervalsin
such away that the clocks remain within some maximum distance of each other. Thetime of an event
at a process executing in processor P is then defined to be the value of P's clock at the time the event
occurs. Thetiming of events at different processors may be compared by alowing for the maximum
difference by which the local clocks may differ before they are synchronized.

The second approach derives the tempora order in which different events occur in the system
without direct association to a hardware clock value. To do this, alogical clock is constructed that
causally orders different events of the system. For any two events, say a and b, exactly one of the
following three relationships holds: event a occurred before event b, event a occurred after event b, or
events a and b occurred at the same logical time. Thelogical clock is constructed to assign vaues to
these eventsin such away that these relationshipsare preserved.

Each of these two approaches has advantages and disadvantages. For example, logica clocks do
not provide a mapping from the timing of an event to real time, whereas synchronized clocks may
provide this mapping by synchronizing with an external time source. On the other hand, logical clocks
preserve causality among different events depending on what events have been seen by the processes



when an event occurs. In particular, two events happen at the sametime at different processesif neither
processis aware of the other event. A synchronized clock coerces an order that depends on their loca
times, thereby leading to loss of information about causality.

In the following, we discuss the details of how acommon global time base can be constructed in a
distributed system using each of these approaches.

3.1 Synchronizing Clocks

Asmentioned, clock synchronizationinvolves periodically adjusting thevalues of local clocksto prevent
them from drifting too far apart. There are two basic variants on clock synchronization. In the first,
termed internal clock synchronization, the processor clocks are always kept within a certain maximum
drift of one another. In the second, termed external clock synchronization, the processor clocks are
alwayskept within certain maximum deviation from an external timereference. By definition, externally
synchronized clocksare also internally synchronized, whileinternally synchronized clocksmay deviate
arbitrarily from the external time reference. In the following, we introduce the salient features and
agorithms of clock synchronization; C',(t) is used to denote the local clock time at processor p ét real
time ¢. Our discussion concentrates primarily on internal clock synchronization since the additional
mechanism required to synchronize to an external time source is usually straightforward.

Properties of synchronized clocks
The following three correctness criteria can be used to assess clock synchronization schemes.

e Monotonicity: The clock isamonotonically increasing counter, that is

In general, since a clock increases by discrete values, it is possible that in a small real-time
interval, 7, C;(t + 7) = C;(t). However, the granularity of most clocksis very small and for all
practical reasonsit is correct to assumethat C; (¢) isastrictly increasing function of ¢.

e Precision: The synchronized clocks are always within some maximum deviation of each other.
That is,
| Ci(t) = Cy(t) | <

where /3 isthe specified synchronization precision.

e Interval Preservation: Also known as the linear envelope, this property states that any interval
measured by the synchronized clocksis within some linear function of thereal timeinterval:

(1=p)7 < Cilt+7) = Ci(H) < (L+p)7
Here, p iscaled the maximum clock drift rate.

While 3 specifies the maximum allowed distance between any two clocks, p specifies the maximum
allowed drift of a clock from real time. Thus, p and /3 together specify the interval in which the local
clocks must resynchronize. Multiplelocal clocks that are synchronized so as to satisfy the above three
properties can be thought of as acommon global clock ' that has the following property for al pairs
of ¢ and j



Cilt+7) = C5(1)

T

(1-R) < < (1+R)

Here, C,,(t) denotesthe value of the common global clock at process p, and R is the maximum allowed
drift between any two synchronized clocks per unit time. This second value is called the drift rate of
the synchronized clock.

A synchronized clock may be used to measure intervals and to order various events in the system.
The most common way to measure timeintervalsis by using afunction get_time elapsed(t : time) that
returns the time elapsed since the clock showed time ¢. This function typically compensates for the
changesin the clock value dueto synchronization. In another approach [HSSD84], the notion of aclock
is not bound to specific hardware and a processor may possess any number of clocks. In particular,
every instance of clock synchronization logicaly gives rise to a new version of the clock. Here, the
version of the clock used to time an event is the most recent version at the time the event occurred.
Various events in the system can then be ordered using the local clock time of the processor at which
they occur.

Complexities of clock synchronization
Oneof thebasic functions needed to synchronize clocksisthe ability to read the val ue of aremote clock.
Thisis done either through the exchange of messages using some underlying communication network
or through specia hardware that generates clock signals and propagates them to other processors. In
either case, there is a random propagation delay introduced before a process receives the message
or signa. Thus, the time it takes to read a local clock or to set a local clock is not deterministic.
This variation, along with the variable processing time for various messages received, introduces a
random processing delay in the process of clock synchronization. The random propagation delays and
the random processing delays limit the extent to which the clocks may be synchronized. The need to
consider failuresal so complicatesthe algorithms, especialy when failures are assumed to be Byzantine.
A few results are known that put alimit on the closeness with which clocks may be synchronized.
In [LWL8E], the authors show that » clocks cannot be synchronized with certainty closer than (1 —
1/n)(max —min), evenintheabsence of any failures; here, maz and min represent the maximumand
minimum delay in message communication. Another result statesthat NV clocks cannot be synchronized
in the presence of more than N /3 Byzantine failures if authentication is not used, that is, if it is not
possible to determine reliably who sent a given message. However, clocks may be synchronized in
presence of any number of Byzantine failures given authentication [DHS86]. Optimal algorithms for
clock synchronization under different failure scenarios are also known [ST87].

Algorithms

The problem of clock synchronization has been studied extensively, and a large number of algorithms
proposed [Cri89, HSSD84, KO87, LMS85, LWL88, ST87]. A survey of some of these agorithms
appears in [RSB90]. These algorithms differ from each other in their assumptions about the clocks
and the network topology, as well as their failure hypothesis. The mechanics of clock synchronization
involves periodically exchanging information about local clock values and then computing a correction
factor and applying it to the local clock.

Both hardware and software approaches have been taken to address the problem of clock synchro-
nization. In the former, special hardware is used to propagate signals between network nodes and
to calculate correction values, as opposed to the use of explicit messages and software in the latter.
Software approaches tend to be more flexible but suffer from larger clock skews, sincethe lower bound



on clock skews in such casesis the difference between the minimum and the maximum message transit
times. The hardware approaches provide a smaller clock skew, but are expensive and inflexible. Some
of the agorithms use a combination of hardware and software, where the smaller skew of the hardware
algorithmsis sacrificed for alower software cost [RSB90].

Most of the software approaches use a convergence function that guarantees the properties of
monotonicity, precision and interval preservation. One class of algorithms consists of first exchanging
local clock values and then applying a fault-tolerant averaging function to these values to compute a
new clock value [LMS85, LWL 88]. Among the fault-tolerant averaging functions used are egocentric
average, fast convergence algorithm, fault-tol erant midpoint, and fault-tolerant average [Sch87]. These
agorithmsrequireafully connected network, aknown upper bound on messagetransit delay, and initia
synchronization of the clocks.

In another class of agorithms, the clock values of various processors are first obtained through a
protocol that guarantees an agreement among all correct processors on a vector of values, one from
each clock [LMS85]. Each processor then applies the same averaging function to compute a new clock
value. The agreement process is used to tolerate failures and ensures that al the processors apply
the averaging function on the same set of values. In genera, these agorithms do not require a fully
connected network or initial synchronization of clocks, but do requireabound on messagetransit delays
and alimit on the maximum number of processesthat may fail.

A third class of algorithms use a synchronizer process to synchronize clocks [HSSD84, ST87]. In
this approach, the synchronizer process collects values from al local clocks and then propagates these
valuesto all processes, which use them to compute anew clock value. To avoid problems caused by the
singlepoint of failure represented by the synchronizer process, every processin the system periodically
attemptsto become the synchronizer at preset timeintervals. At least oneisguaranteed to succeed. An
agreement protocol is used to guarantee that al correct processes attempt to become the synchronizer
a roughly the same time. These agorithms require a bound on the message time delays and initial
synchronization of the clocks. The network need not be fully connected.

A probabilisticapproach hasbeen used in [Cri89], where an a gorithmis given that allowsa process
to read the clock on another machine to within some specified precision with a probability as close to
one as desired. When a process succeeds in reading the clock, it knows the actual reading precision
achieved. This method of reading a remote clock can also be used to improve most of the algorithms
described above. A master-slave arrangement, in which one clock acts as master and others as slaves,
is used to synchronize the clocks here, where the slave clocks adjust their value according to the value
of the master clock. In general, the algorithmsto elect a new master clock are fairly complex.

All the algorithms described above make the assumption that the network is synchronous, i.e., that
message transit times are bounded. In [Mar84], the author assumes an asynchronous network and uses
explicit timeoutsto put abound on processor and communication del ay.

3.2 Logical clocks

The original approach for constructing a logical clock was proposed by Lamport in [Lam78]. In this
paper, a happened before relation is defined that can be used to construct alogical clock in terms of
the ordering of eventsin adistributed system. Specifically, given that a and b are events, a “happened
before” b (denoted @ — b) if either of the following are satisfied.

e ¢ and b are eventsin the same process and « comes before b, or

e « correspondsto the sending of a message and b correspondsto the receipt of the same message.
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Furthermore, thisrelation is transitive, sothat if ¢« — band b — ¢, thena — c. If eventse and b are
suchthat @« 4 b and b /4 «a, then they are said to be concurrent.

Thisrelation is used to construct a logical clock C' by assigning avalue C'(a) to every event ¢ in
the distributed system. This value can be thought of as the logical time at which the event occurred.
This assignment is done in such away that the happened before relation is preserved, so that for any
two eventsa and b, if « — b then C'(a) < C'(b). A logica clock constructed in this manner can then
be used to order the various events in the system.

The various algorithms that have been proposed to implement logical clocks differ in the notations
they use and the amount of information they convey through the clock values. In the original solution
by Lamport, the system-wide logica clock C' is implemented by a collection of individua logical
clocks C; for each process F;; here, C; isafunction that assignsan integer C;(a) to every event a that
happensin process P;. Thelogical clock assigns an integer C'(a) to such an event a by using C;, i.e,
C'(a) = C;(a). Each process F; implements C; by maintaining a counter &; which is incremented
between successive events. Also, on receipt of a message, m, P, sets K; to the larger of the current
valueof K; and avalue greater than the logical clock time of the event corresponding to the sending of
m.

Inthissolution C'(a) < C'(b) if a — b, but the converseisnot true. That is, C'(a) < C'(b) doesnot
necessarily imply ¢« — b. Asaresult, given any two events, it is not aways possible to determine if
they are concurrent using theselogical clock values. Extensionshave been described in [Fid88, Mat89]
to rectify this problem. Here, the clock valueis a vector of size n (sometimes called version vector),
where n is the total number of processorsin the system. Each entry ¢ in this vector keeps a count of
the messages received from process F;. The update of the vector follows a similar procedure to that
described above. Two vectors V; and V;, can then be compared as follows:

Vi<V, if Vi, 1<u<mn, Vi[i] < V5[i] and 3j, 1 < j < n, Vi[j] < Va[j]

Using this, two events ¢ and b are concurrent if the corresponding logical times, say, vectors V, and V,
respectively, satisfy the following :

VoV, and V, £V,

A logica clock is aso constructed as part of the Psync multicast primitive [PBS89]. Here, the
complete tempora order of message-passing events in the system is represented in the form of agraph
calledthe context graph. A nodeinthegraph representsan event corresponding to message transmission
and an edge represents the happened before relationship. For any two events « and b, there is a path
from a to b in the graph if « — b. The absence of a path between « and b implies that « and b are
concurrent events.

4 Multicast

Providing consistent information to multiple processes is important for constructing fault-tolerant
distributed programs, particularly those structured using the state machine approach. A key component
to providing such consistency is multicast, an interprocess communication (IPC) mechanism that
providesthe ability to send identical copies of a message to each processin agroup. Such aserviceis
useful in other kinds of distributed applications as well. For example, distributed database update and
commit protocols, managing replicated data, distributed synchronization, and distributed transaction
logging require multicast of onetype or another.
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Properties

Many different multicast services have been designed, each with features tuned to the specific require-
ments of the target application. Nonetheless, most multicast services provide some combination of five
largely orthogonal properties, as follows.

Dissemination: The message is disseminated to all processesin a group. In a point-to-point network,
thisisachieved by sending acopy of the message to every processin the group separately. Inlocal-area
networks such as Ethernets and token ringsthat provide a multicast primitive, the dissemination can be
done with asinglelower-level operation.

Atomicity: The message is delivered either to al the correctly functioning processes in the group or to
none. This property ensuresthat the information received by every functioning processisidentical.

Reliability: Themessageisdelivered to every processinthegroup. If aprocesshasfailed, amechanism
is provided to deliver this message following recovery.

Order: Messages sent by different processes are delivered in some consistent order at al the group
members. Possible consistent ordersinclude:

e Partial order: The messages are delivered in an order that preserves the causality or happened
before relation. Processes may receive concurrent messages in different orders, but a messageis
only delivered after al themessagesthat precede thismessagein therelation have been delivered.
Thisissometimes called causal ordering [BJ87].

e Semantic dependent order: Messages are delivered in an order that varies at processes depending
on the semantics of theinformation carried in amessage. For example, the order of two messages
could be different at different processes and still preserve the correctness of the application if
the messages contain commutative operations. Typically, thisordering is a combination of other
kinds of ordering.

e Total order: Messages are delivered in the same order to al the processes. In other words, if a
message m; is delivered before m, a one process, m, isdelivered before m, at every process.

e Total order preserving causality: Messages are delivered in the same order at al the processes
and this order preserves causdlity.

These orderings become more and more restrictive as we go down thislist and, in general, most costly
in terms of how much synchronization they require between processes. As a result, the ordering used
by an application should be the least restrictive that is sufficient to preserve the correctness of the
application.

Termination: Every message is delivered to al correct processes in the group within a known time
interval, even if concurrent failures and recoveries occur. This property can be satisfied only if the
communication protocol is synchronous.

Examples of Multicast Services

The various multicast services that have been developed differ in which of the above properties they
provide. A large number, typically called atomic broadcast services, provide atomicity and total order;
examples include [BJ87, CM84, CASD85, KTHB89, MSM89, NCN88, PBS89, VRB89]. The tota
order provided by [PBS89, VRB89] also preserves causality, whilethe service provided by [CASD85]
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alsoincludesthetermination property. An atomic broadcast service isuseful in many distributed agree-
ment applications, such as propagating updates to manage replicated data and committing distributed
transactions.

The multicast service proposed in [GM S91] preserves both atomicity and reliability, but not neces-
sarily order. This service, sometimes called a reliable multicast service, is useful in applications that
need fast delivery of messages where the order of delivery is not critical. Examples include managing
highly availabl e replicated databases and some real-time applications.

The multicast services proposed in [BJ87, PBS89] provide atomicity and partial order. These
services are useful in cases where concurrent events may be executed in different order at different
processes. Moreover, using these services, it is possibleto construct more restrictive multicast services.
An example of thisisfound in [MPS89], where amulticast is described that provides atomicity and a
semanti c-dependent ordering based on the commutativity of the operations.

Algorithms

The algorithms used to implement multicast services are typically complex dueto the uncertain nature
of the communication network and the possibility of processor failures. In particular, messages may
be lost or corrupted on the communication channel or may be received in different order at different
processors, while processors may fail in different ways. As aresult, the two main problems that are
encountered in designing such algorithms—how to order messages and how to make the broadcast
atomic—must deal with these situations. The way in which this is done is aso influenced by the
assumptions made about the topol ogy of the network, the failure model s used, and the synchrony of the
network and processors.

In [CASD85], synchronized clocks are used to order different messages. Each message includes
the clock time at which it was sent and the messages are ordered according to thistime. The message
is then delivered to each process at local timet + A\, where ¢ is the time when the message was sent
and A is aconstant that depends on such network properties as message delivery time. Atomicity is
achieved by diffusing every incoming message onto every outgoing link and treating non-receipt of a
message with time ¢ + A time units as a failure. With this approach, a family of broadcast protocols
that tolerate increasingly general fault classes—omission, timing and Byzantine—is constructed. All
these protocol s assume a point-to-poi nt communication network.

Algorithmsproposed in [Lam78, MSM89, PBS39, BJ87, MPS39] use logical clocksto implement
order. Atomicity isachieved either by using positiveacknowledgements, where every receiver sendsan
acknowledgement for every messagereceived [BJ87], or by using anegativeacknowledgement scheme,
where a retransmission is requested by the receiver only when a missing message is detected[ PBS89,
MSM89]. A point-to-point communication network is used in all but [MSM89], which assumes the
existence of a broadcast network. All of these algorithms assume a crash failure model.

Another approach employsasingle processto order messages[CM84, GMS91, NCN88, KTHB89].
In thisapproach, every broadcast messageisfirst sent to one process, called the funnel process, that puts
a sequence number on the message and then resends it to al the processesin the group. The messages
are then delivered in an order corresponding to the sequence numbers. This approach only supportsa
total ordering among the messages exchanged in the system. There are also two other disadvantages
to this approach. First, the funnel processis a single point of failure and the protocols must provide
a way to recover from this falure, something that can be very complicated. Second, the funnel
process is potentially a performance bottleneck since it must process every message. The atomicity
in this approach is achieved by positive acknowledgements [NCN88], negative acknowledgements
[KTHB89], or a combination of positive and negative acknowledgements [CM84]. The approach
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proposed in [CM84] uses a broadcast communication network, while the remainder assume point-to-
point. Once again, crash failures are assumed.

Multicast protocols that tolerate Byzantine failures, commonly called Byzantine agreement algo-
rithms, are inherently more complex. In [LSM82], it is shown at least 3t + 1 processes are needed
to tolerate ¢ failures for any deterministic algorithm, and an algorithm is presented that achieves this
bound. This algorithm is based on multiple rounds of message exchange among all processes and is
essentially recursive in nature, with processes executing the al gorithmfor one fewer failure during each
successive round.

Simplier Byzantine agreement algorithms can be constructed if authentication schemes[RSA78] or
randomization [Rab76] are used. In the authentication schemes, a correct processor can sign a message
such that any modification of the message can be detected by other processors and other processors
cannot forge its signature. Using this, severa algorithms have been proposed that can tolerate any
number of Byzantine failures [DS83, LSM82, BD85]. Algorithms using randomization techniques
make use of randomly chosen numbers to simulate alocal random coin toss. Algorithmsthat use this
approach [Rab83, CC85, Per85] differ from each other mainly in their assumptions about synchrony,
in the number of failures they can tolerate, and in their complexity.

5 Remote Procedure Call

Remote procedure call (RPC) is an IPC mechanism based on the well-known and easily understood
procedure call mechanism. In particular, an RPC is like an ordinary procedure call except that the
invocation statement and procedure body are executed by two different processes, called the client and
server respectively, potentially on different machinesin a distributed system. When aremote procedure
isinvoked, theargument val uesare marshalled into amessage by theclient and transmitted tothe server;
any result values are returned in an anal ogous manner following execution. The synchronizationislike
that of a procedure cal, so the client does not continue execution until the server compl etes execution
of the invoked procedure and returns the results.

RPC has many attractive features. Oneis it possesses clean and well-understood synchronization
semantics, which simplifies the process of writing distributed applications. Another isthat it enhances
network transparency by hiding the fact that the client and server may be on different machines. Yet a
third is that itsimplementation can be optimized to the point that the resulting performance is superior
to other IPC mechanisms [SB90] and even within an order of magnitude of regular procedure call in
the case that the client and server are on the same machine [BALL90].

These features make RPC a good abstraction for building many kinds of distributed applications,
including those with fault-tolerant requirements. However, in such applications, careful attentionneeds
to be paid to the precise semantics in the presence of failures. For example, what is the effect on the
program if the processor executing a remote procedure crashes during the call operation? Although
failure to execute the desired action is sometimes a concern with regular procedures (these are often
termed exceptions[Cri84, Goo75]), the nature and effect of failures on RPC arefundamentally different
since two separate processes potentially communicating across a network are involved. Thisleadsin
turn to different problems and different approaches for dealing with failures in the context of RPC.

Properties of RPC

Given that RPC is intended to be a natural extension of standard procedure call to multiple processes,
it is desirable that RPC semantics be as close to those of procedure call as possible. However, thisis
sometimes difficult given theinherent uncertai ntiesassociated with a distributed architecture, including
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the possibility of lost messages, out-of-order message delivery, processor failures, etc. To cope with
these, a number of different execution semantics have been defined for RPC. These differ based on
what inferences may be made in the invoking process about the number of times the remote procedure
has been executed, both in the case when the invocation terminates normally and when it terminates
abnormally; the latter occurs, for example, when the server crashes prior to completing execution of
the remote procedure. The most common are [Nel81, PS38]:

e At Least Once: The remote procedure has been executed one or more times if the invocation
terminates normally. If it terminates abnormally, no conclusionispossible, i.e., it may have been
executed one time or multiple times, may have been partially through an execution, or may not
have been executed at all.

e Exactly Once: The remote procedure has been executed exactly one time if the invocation
terminates normally. If it terminates abnormally, no conclusion is possible other than it has not
been executed more than once.

e At Most Once: The same as Exactly Once if the invocation terminates normally. However, in
addition, the effect if it terminates abnormally is guaranteed to be atomic, i.e., has either been
executed completely or not at al.

Communication and processor failures during a remote invocation can also give rise to orphans,
which are unneeded computations that continue at the server even after a call has been terminated
abnormally. For example, aclient that crashes during an RPC may reissue the call after being restarted
even though the server is still executing the original call. Another possible scenario is that the client
reissuesan RPC after failing to receive aresponse from the server within a specified period of time even
though the server is still up and running. Orphans can cause consistency problems by interfering with
subsequent calls to the server or with other computations going on in the system [PS88]. In addition,
orphans waste system resources.

The possible creation of orphansisafundamenta problem for any RPC mechanism, so techniques
must be provided to detect such computations and eliminate them. In addition, if the semantics of the
mechanism require that there be no side effectsin the event of an abnormally terminated call—aswould
be the case with At Most Once semantics, for example—the effects of the orphan must be undone. A
number of RPC orphan detection and abortion algorithms have been described [L S83, PS88, RC89],
and will be discussed further below.

Another property that should be preserved by an RPC mechanism is call ordering. This criterion
states that a sequence of invocationsgenerated by a given client should result in the computations being
performed by the destination servers in the same order. This requirement can be relaxed somewhat,
however, if theinvoked procedures operate on disjoint data. Dueto the synchronousnature of RPC, this
criteriais trivialy satisfied in the absence of failures, so the problem reduces to ensuring that orphans
not invalidate call ordering. Note that this property is very similar to the partial ordering property of
multicast, and that the ability to relax the requirement with digoint datais like a semanti c-dependent
ordering.

Replicated RPC

RPC has been generalized in both system [Coo85, SDP91] and language [ CGR88] contextsto work in
cases where the client and/or server have been replicated to enhance fault-tolerance. This facility is
called replicated RPC, with the replicated client termed the client replica set and the replicated server
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termed theserver replicaset. Inthisapproach, an RPC resultsinindependent invocation messages being
generated by processes in the client replica set, with each client replica sending invocation messages to
all processesin the server replicaset. Upon receiving these messages, each server replica executesthe
appropriate remote procedure. No coordinationis done between server replicason acal, so theremote
procedures will be executed concurrently. Upon completing execution, each server replicawill send a
reply message to every client replica. Note that the client and server can be viewed as replicated state
machines, making this program structure a variant of the state machine approach.

In addition to the general RPC issues, there are other issuesthat arise due to the replicated nature of
theinvocation. Oneisfixing the point at which aserver replicabeginsto execute the remote procedure,
with the basic choices being either as soon as a message from one client replica arrives, or only after
messages from all client replicas have arrived. Each choice represents a tradeoff. In the first case,
execution can proceed with no delay, but the results of the procedure execution must be retained by the
server replicauntil it has been communicated to every client replica. In the second case, the execution
delay islonger, athough error detection and transparent error correction can be provided by checking
whether all the messages received are identical.

Another aspect of replicated procedure calls that is somewhat more complex is ensuring call order.
When a server is replicated, not only must the concurrent calls from different client replica sets be
ordered by each server replica, but the order chosen must be consistent acrossall replicas. Thisrequires
additional coordination that makes the implementation more complex than standard RPC.

Algorithms

Numerous RPC mechanisms have been described [BN84, Coo85, Cou81, LG85, LS83, PS88, RC89].
These dgorithms differ from one other in their assumptions about the underlying network and the
type of processor failures to be tolerated, in the particular semantics they implement, whether they
support replicated procedure call, and in their treatment of orphans. The agorithms proposed in
[BN84, Cou81, Coo85, PS88] implement Exactly Once semantics, whilethosein [LG85, LS83] are At
Most Once. Techniquesto detect and abort orphansare providedin [L S83, PS88], with orphan adoption
being used in[RC89]. Theagorithmsin[BN84, PS88] can dea with afixed number of communication
failures(i.e., lost messages), whilethosein [Coo85, LG85, L S83, RC89] can al so tolerate crash failures
of processors executing servers. Only [LG85] and [LS83] add support for recovery to remove side
effects caused by orphans prior to being aborted.

All of these algorithms can be viewed as having two distinct components. The first deals with
issues such as naming a procedure, locating remote machines, and managing message transfer, while
the second deal swith detecting failures, and detecting and aborting orphans. Thea gorithmsare broadly
similar in how they implement this functionality, although there are many differences in the details.
A typica scheme isto have a manager process on every processor that can be contacted using some
well-known network address. This process acts as a conduit for all RPC requests either originating
from or destined for itsmachine. Inthefirst instance, it accepts the messagefrom alocal client and then
either deals with the invocationitself if the server islocal, or forwards it to the appropriate manager if
not. In the second, it accepts messages from other managers for servers on its machine and generates
theinvocation. In [PS88], the manager process spawns a server process on receiving arequest, with al
subsequent calls from that particular client being handled directly by the server. In[BN84], every call
goes through the manager.

The agorithms differ from each other in the way they handle orphans. In [PS88], orphans are
managed by including a deadline and crash count in every invocation. The deadline indicates the
maximum time allowed for execution of the remote procedure by the server; if a server exceeds this
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deadline, it abortsitself. The crash count is used to distinguish between calls prior to a processor crash
from new cals. In [RC89], servers are replicated, so an orphan is adopted by one of the secondary
replicas of the server when the primary one fails. Algorithms proposed in [LG85, LS83] provide
backward error recovery techniquesto abort an orphan and remove side effects. These techniques are
similar to the ones described in Section 7.

6 Membership

To ensure consistent actions, a group of cooperating processes typically needs to have an agreement
on the set of functioning members at any moment in time. Changes in group membership may occur
due to the failure of processes, the recovery of previously failed processes, new processes joining the
group, or a process voluntarily leaving the group. A membership service is used to maintain such a
consistent, system-wide view of which processes are functioning at any given moment. This service
has proved to be one of the most fundamental servicesin fault-tolerant distributed systems, simplifying
many problems. It is especialy associated with the state machine approach, although variants are used
in other paradigms as well.

Thereare actually two types of membership services, each serving adifferent purpose[VM90]. The
first can be viewed as a user-level service that typically translates the failure or recovery confirmation
into an event that is then ordered with respect to other events in the system. This ordering is then
made available to the application to use in making decisions. Examples of this kind of service include
[BJB7, CM84, Cri88, KGR91]. Inthiscase, the application program is explicitly notified of the changes
in the group membership.

The other type of membership service is sometimes called a monitor service [VM90]. In contrast
to the user-level orientation of thefirst type, the monitor serviceisused by the systemitself to maintain
a consistent view of which processes are functioning and hence participating in system decisions. For
example, such informationisused in reliable multicast protocol sto determine when a message has been
received and acknowledged by every functioning process so that it can be committed to the application.
The processor failure or recovery event must again be consistently ordered with respect to other events
such as interprocess communication to guarantee that messages are committed consistently, but the
failure notification is not necessarily passed on to the application. Examples of this kind of protocol
include[MPS92, VM9(Q].

Properties

Intuitively, an a gorithm solvesthe membership problemif it ensuresthat the processesusing thisservice
remain consistent in the presence of failures and recoveries. Although thisimpliesthat the solution to
the membership problemis application-dependent, there are solutionsthat are general enough to ensure
the correctness of any distributed application. Typically, such a solution enforces agreement among
all the processors on a unique sequence of process joins and departures, and the precise way in which
these membership changes interleave with regular events such as message receipt. A large number
of membership services satisfy this condition [BJ87, CM84, Cri88, KGR91, RB91]. However, such a
conditionmay actually be overly restrictivefor many applications. The membership protocol described
in [MPS92] is lessrestrictive in thisregard. Here, an sf-group at process P is defined to be the set of
all the processes that have failed simultaneously as perceived by the process P. The proposed solution
ensures that al the processes in an sf-group are removed simultaneously and the order of removal of
these sf-groupsisthe same at al the processes, but the points at which these changes occur need not be
same at all processes.
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There are some critical applications, such as process control, in which the membership service
must also satisfy the timeliness property. This property states that, once initiated, the membership
service is guaranteed to terminate in a known real time interval. This property is typically satisfied
by membership services implemented using clock-driven protocols, that is, protocols built on top of a
global time base [Cri88, KGR91]. Membership protocols constructed without such a facility do not
satisfy the timeliness property.

Failure and Recovery Detection

As mentioned above, changes in membership occur when a process fails or recovers. Thus, the
membership protocol is initiated when a process is suspected to have failed or when a functioning
process learns about the recovery of a previously failed processor. The technique used to detect the
failure varies from system to system depending on the system model used. Typicaly, afalure of a
process P is suspected when no messagesfrom P arriveinagiveninterval of time. Thisfailuredetection
mechanism is typically implemented by a heartbeat protocol where every functioning member of the
group periodically sends “1 am alive’” messages. Examples of protocols using such a mechanism
include [BJ87, Cri88, KGR91]. This detection protocol can also be application dependent, where
the application messages being exchanged are monitored and a failure is suspected when a message
expected by the application fails to arrive within certain interval of time [MPS92]. For systems
that assume asynchronous processors and communication, it is this failure detection mechanism that
puts an upper bound on response time, and hence, essentially adds the synchrony required to reach
agreement. Notification of recovery istypically done explicitly by the recovering process as part of its
reboot process, when received by other group members, the membership protocol isinitiated. These
mechanisms may also be used to detect failures or recoveries while the membership protocol itself is
in progress, thus allowing simultaneousfailures and recoveries to be handled.

Network Partitions

A network partition occurs when a subset of processes in the group cannot communicate with another
subset dueto afailure. Insuch acase, processesin each subset may concludethat all the processesinthe
other subset havefailed. Some of the clockless membership protocol scan tolerate network partitionsby
alowing a subset with aclear majority of processes to continue functioning[CM84, RB91]. However,
clock-driven protocols cannot tolerate a network partition since this may lead to divergent views
among different processors. There are known techniques to reconcile divergent views [ SSCA87], but
inconsi stent actions may be taken while the reconciliation protocol isin progress.

Algorithms
A number of algorithms have been proposed to solve the membership problem. In [Cri88, EL9O0,
KGR91], the authors have proposed clock-driven solutions to the membership problem for systems
with a broadcast communication network. The agorithm proposed in [Cri88] relies on an atomic
broadcast service and a message diffusion service; periodicaly, each process affirms its existence by
sending a present message. In [KGR91], global time is used to control access to the communication
channel by asynchronousTDMA (Time-Division Multiple-Access) strategy; aprocessincludescertain
membership information with every message that it broadcasts, which isthen used by all the processes
to compute group membership.

Clockless membership agorithms such as those proposed in [BJ87, CM84, MPS92, RB91] tend to
be more complex since they typically assume only asynchronous processors and then add synchrony
through mechanisms such as failure detection. A completely connected network with FIFO channels
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is required in the agorithm proposed in [RB91]. A distinct manager process is used to coordinate
updatesto the other processes’ local views. A two-phase protocol is used by the manager to coordinate
updates and a three-phase protocol is used to select a new coordinator when the manager is thought to
have failed. The protocol proposed in [CM84] also makes use of a distinct manager process. In this
approach, dl the normal traffic is suspended while the protocol isin progress. The protocol is three-
phase for the manager process and two-phasefor other processes. The protocol proposed in[MPS92] is
fully distributed in the sense that it does not require a single manager process; instead, the functioning
processes use multicast communication among themsel vesto agree on removal of failed processes. As
mentioned above, a novel feature in this agorithm is that additional failures during execution of the
membership protocol are handled incrementally.

7 Atomic Actions

Atomic actions are an abstraction that is central to the structuring of many fault-tolerant distributed
systems[Lam81, Lis88, SDP9I1, Svo84]. An atomic actionisdefined informally asaprogram-specified
computation that, although composed of many primitivecomputational stepsexecuted at different times
and by different processors, is seen as an indivisible state transformation by other computations despite
concurrency and failures. Therelevance of atomic actionsto the design of fault-tolerant systemsisthat
they provide a simple framework for controlling the effects of failures, since a failure can only occur
(conceptually) between atomic actions. They are most commonly used in contexts where long-lived
data stored on stable storageis subject to concurrent access by multiple processes.

An atomic action satisfies two important properties: serializability and recoverability. The serial-
izability property statesthat the effect of executing a collection of atomic actionsis equivaent to some
seria schedule in which the actions are executed one after another. The recoverability property states
that the external effect of an atomic action is al-or-nothing; that is, either al the state modifications
performed by the atomic action take place or none of them. Note that this potentially involvesmultiple
processors. These properties and various techniques to implement them have been discussed in detail
in [BHG87, Koh81]. We discuss some of the salient features of thesein the following.

7.1 Serializability

A simpleway to implement serializability is by forcing actions to actually execute sequentially. How-
ever, thismethod doesnot alow the constituent steps of the various actionsto beinterleaved or executed
concurrently, a decided disadvantage especialy in a distributed system. The usual method for avoiding
this praoblem isto synchronize access to shared resources in such a way that the overall effect is as if
the actions had been run sequentially even through concurrent execution is actually taking place.

Algorithms

One of the most popular techniques for implementing serializability is two-phase locking [BSW79,
EGLT76, Pap79]. Inthisscheme, alock is associated with each shared resource, with the requirement
that alock be acquired prior to any access of the associated resource. The action is further constrained
in the order in which it can acquire and release locks to go through two distinct phases. In the first,
sometimes called the growing phase, needed locks are accumul ated; in the second, called the shrinking
phase, locksarereleased. Thekey tothisschemeisthat an action isprohibited from acquiring additional
locks once it has entered its second phase by doing arelease. While ensuring serializability, two-phase
locking can lead to deadlocksin which one or more actions waiting to acquire locks may block forever.
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Deadlock detection and elimination schemes such as [CES71, GS80, Hol 72, Mar76, MR79] must be
used in such situations. This deadlock may also be avoided by using a conservative approach in which
every action acquires al the locks that it needs at one time.

A second technique for implementing a serializable schedule uses timestamps to order various
actions[SM77, Tho79]. A timestamp is a system-wide unique number chosen from a monotonically
increasing sequence that is assigned to an action. In this technique, a shared resource is accessed by
various actions in their respective timestamp ordering. If the timestamp of an action trying to access a
shared resource is smaller than some action that has accessed that resource then this access is denied
and the corresponding action must be aborted. This scheme essentially regulates the access to shared
resources according to the logical global time at which the actions start (see Section 3). Timestamps
can also be used to avoid deadlocksin the two-phase locking scheme [RSL78].

Another approach maintains adynamic graph of how different actions are accessing various shared
resources at any point in time[Bad79, Cas81, HY 86]. This graph contains a node for each action that
is currently executing, as well as a node for actions that have committed. The edges between nodes
specify dependencies between actions, and serializability is guaranteed by ensuring that the graph
aways remains acyclic. The unbounded growth of this graph is controlled by deleting the nodes and
the corresponding edges for the actions that will not be involved in a cycle a any time in the future.
An easy way to do thisisto delete the nodes that have no incoming edges and the corresponding action
has been terminated.

Many more techniques have been proposed to ensure serializable schedules, including those based
on token circulation [LeL 78], analysis of conflicts among various actions [BSR80], use of reservation
lists [Mil79], and certification tests [KR81]. Many of these techniques can be combined in various
ways to produce additional approaches [BG81, BGL83].

7.2 Recoverability

The recoverability property impliesthat the system state at any given time—and in particul ar, the state
of data on stable storage—reflects only the effects of completely executed actions. The mechanism for
realizing thisis a commit operation, which is executed by the action to make its state changes across
al of the machines on which it executed available to other actions; a commit is an irrevocable action
that must appear to be indivisiblewith respect to failures. An action that does not commit due to, say,
bad dataor an untimely processor failure, is aborted; in this case, all machine states must be restored to
their origina values. Thus, the two problems that must be addressed are, first, providing a mechanism
to install and restore the state on an individual machine, and, second, ensuring that the decision on
whether an action is committed or aborted is made consistently across all machines.

Installing and Restoring State
The techniques used to deal with the problem of state installation and restoration depends on which of
two basic update strategies are used [BHG87]. One strategy is caled in-place updating; this involves
keeping a single copy of each data element that is modified directly by actions during execution.
Installing the new stateistrivial and typically involvesrel easing locks; note that thisinstallationis easy
to restart should, for example, it be interrupted by a processor crash. Restoring the state should the
action be aborted is somewhat more difficult since each modified data element must be restored to its
old vaue. Perhaps the most common way to do thisisto maintain an incremental log of all changeson
stable storage, which can later be used to recreate the initial state of a data element.

The second update strategy is called shadow updating. This strategy involves maintaining two
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copies of each data element, and aso two copies of directory or index that is used to access the data
elements. One copy of the index contains references to the current copy of each data element, that
is, the value from the most recently committed actions. The second copy contains references to a
shadow copy of each data element, which is the copy updated by actions that have not yet committed.
The current copy pointer indicates which index contains references to the current copies of the date
dements. Installing a new state when an action commits is done by changing the current copy pointer
to indicate the other index, effectively reversing the roles of the current and shadow copies. Note that
this can be done indivisibly since it involves changing only a single value. Restoring the state of an
aborted action istrivia: the current copy pointer is simply not changed. Thisleaves each data element
initsorigina state.

Commit Protocols

While the above techniques solve the problem of committing or aborting actions on a single machine,
an atomic action in a distributed system may execute across many machines prior to committing or
aborting. Thus, the second problem to be addressed is guaranteeing that machines make a consistent
decision on whether to commit or abort a given action, a process that is complicated substantialy by
the need to tolerate failures during the decision-making process. A commit protocol is an agorithm
that ensures such consistency despite failures [Gra78].

A large number of commit protocols have been proposed [DIW89, Gra78, LS76, ML83, NS89,
SkeB2a, SCI0], with different approaches based on assumptions about the type of failures, the network
model and so on. The best known of these protocolsis the two-phase commit protocol [Gra78], which
is designed to reach a consistent decision despite processor crashes. In this approach, a collection of
processes, one on each machine on which the atomic action executed, cooperate to decide whether to
commit or abort the action. One of these processes—usually the one on the machine where the action
originated—acts as the coordinator, while the others are participants. In this scheme, al participants
make a tentative local decision as to whether to commit or abort. The protocol then guarantees the
following:

e All processes that reach afinal decision reach the same one.

o If al local decisionsare to commit and there are no processor crashes and communication failures
during protocol execution, thefinal decisionisto commit.

o If all machinesthat crash eventually restart and remain up sufficiently long, all processes even-
tually reach afinal decision.

In the first phase of the protocol, the coordinator starts by sending a prepare message to each
participant. Upon receipt of such a message, the participant replies “commit” if its local decision
is commit and “abort” if its local decision is abort. If the coordinator receives at least one negative
response, it multicastsan abort message. Upon receiving such amessage, a participant doesalocal abort
of the action, and acknowledges receipt. On the other hand, if all processes have replied affirmatively,
the coordinator commits the action by writing a commit record to stable storage and multicasting
a commit message. On receipt, each participant commits the action on its machine and sends an
acknowledgment.

The consequences of a failure of the machine executing the coordinator depend on how far the
protocol has progressed at the time of thefailure. If thefailure occurs after the coordinator has decided
to commit, as evidenced by the existence of the commit record, then upon restart, the coordinator checks
to ensure that every participant has been notified to commit the action. If acommit record isnot found,
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an abort message can be transmitted. The effect of the failure of a participant’s machine also depends
on how far the protocol has progressed. Should the failure occur during the prepare phase, the action
is aborted by the coordinator. On the other hand, should failure occur after a final decision has been
reached, the coordinator waits until the participant recovers and then retransmitsits decision. Note that
the protocol is subject to blocking if the coordinator crashes or if the network suffers a partition.

Thetwo-phase commit protocol hasbeen extended and improvedin many different papers,including
[Bor81, DIW89, HS80, ML83, MSF83, ML 086, SC90]. A three-phase commit protocol has also been
developed to avoid the blocking property mentioned above [ Ske82a, Ske82b]. Many of these variants
are described in [BHG87].

8 Resilient Processesand Stable Storage

A resilient processis a process that can continue to execute correctly even if interrupted by a failure
and then restarted. This abstraction is oriented towards crash or fail-stop type failures, so theintuition
is that these are processes whose execution was suddenly halted at some arbitrary point and then later
restarted, either on the same processor after repair and reboot, or on another functioning processor. The
hardware model also typically assumes that storageis divided into two types: volatile storage, whose
contents are lost when the failure occurs and stable storage, whose contents remain intact. Given that
stable storage is an important abstraction for programming fault-tolerant systemsin its own right, we
briefly elaborate on it below as well.

8.1 Recovery Techniques

Implementation of resilient processes is based on recovery techniques, which involve restoring the
process to some well-defined state following a failure so that it can continue execution. The most
common variant of this strategy is backward recovery in which enough values are saved on stable
storage to enable some past state of the process to be reconstructed should a failure occur. Recovery
techniquesare useful in al of the programming paradigms outlinedin Section 2. In particular, recovery
isused to maintain the atomicity of object operation execution in the object/action model, to ensurethat
the states of all processes remain consistent following failure in the conversation model, to provide a
starting state for anew primary in the primary/backup approach, and to reconstruct the state of afailed
state machine in the state machine approach.

Themost common form of backward recovery isbased on the use of checkpoints, inwhichtheentire
state of aprocessis periodically written to stable storage. Then, should afailure occur, the most recent
checkpoint is used as the beginning state after restart. This checkpoint must be written atomically with
respect to failures, implying the use of recoverability techniques similar to those described in Section
7.2. Most often, avariant of shadow updating isused inwhich two copies are maintained along with an
indication of whichiscurrent. If stable storageisimplemented using multiple machines (see below), a
commit protocol is needed as well.

The decision of when to checkpoint involves a tradeoff between the time it takes to write the
checkpoint to stable storage and the amount of computation that must be redone in the event of failure.
Details of the particular application also can play arole; for example, it may not be possible to restart
the computation from every state, which would make these ineligiblefor use as a checkpoint. Or, one
might choose a state in which the size of the state to be checkpointed is small in order to minimize the
overhead associated with writing to stable storage. Yet another factor to be considered in the timing of
checkpointsiswhether values generated by the program as output can be safely repeated; thiscan occur
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since any computation after a checkpoint may potentially be executed more than once in the event of
failures. If thisis not feasible, then the output and the checkpoint must be done as one atomic action.
Itisessentially this same problem that can cause difficulties with interacting resilient processes, where
the output in this case consists of the messages being transmitted between processes.

Checkpointing and, in fact, most recovery techniques rely on stable storage, an abstraction of
perfect storage that survives processor failures [LS76]. Access is performed using atomic read and
write operations, with different techniques used to implement failure resilience depending on the needs
of the application. For some, keeping a single copy of the values on anon-volatiledevicelikeadisk is
sufficient. For others, wherethe cost associated with losing valuesin stable storage (i.e., the abstraction
failing) is less acceptable, redundant copies are kept. These can be on the same device or, if more
safety is needed, on multiple devices with independent failure behavior. The abstraction can also be
implemented by having redundant processes executing on multiple machines keep copies of the data,
such asdonein [CASDS85]. !

Finally, as already noted above, the techniques for achieving atomic access to stable storage are
identical to thosedescribed earlier for atomic actions. Thisnaturally raisesthe question of whether these
techniquesare implemented in this case as part of the stable storage abstraction or as a separate service.
Although this depends on many factors (e.g., whether datareplication is used), for the purposes of this
paper, we adopt the view that stable storage directly provides atomic access for relatively small-grained
values (e.g., a single variable), with the atomic action abstraction used to implement atomicity for
writing multiple values, such as would typically be required for a checkpoint.

8.2 Interacting Resilient Processes

Consider a distributed program in which resilient processes interact with each other using message
passing to accomplish a task. Following [JZ90], we characterize such a process by a sequence of
events, where an event is either alocal computation, or the send or receipt of a message. The state of
aprocess after receiving a message, say m, becomes dependent on the state the sender had just before
it sent m. 2 Thus, as a result of message exchanges in the system, the states of various processes
become dependent on one another in interlocking ways. Define the system state at a particular time to
be a history of events that constitute the set of all process states at that time. Then, a system state is
said to be consistent if for every event corresponding to the receipt of a message in the state, the event
corresponding to the sending of that message is also included [JZ90].

In a collection of interacting resilient processes, the fundamental issue is ensuring a consistent
system state after recovery following a failure. The particular problem is that it may be necessary to
modify the states of processes other than the one that was on the failed processor because of the state
dependence caused by message passing. For example, consider a scenario in which a processfails after
sending a message that is received by another process. If the state to which the process is restored
during recovery isprior to the send, then the corresponding event will no longer be in the process state.
Asaresult, theresulting system state will be inconsistent unlessthe event corresponding to the message
receipt is also removed from the state of the receiving process. Specia recovery techniques have been
designed to deal with this type of problem by ensuring that the state of the system remains consistent
following recovery of one or more processes.

! Thistechniqueis, in fact, just an example of the state machine approach, so many of the services described in this paper
are directly relevant to the problem of implementing stable storage as well as other applications.

2 This notion of state dependence is also captured in formal axiomatic rules for message passing as, for example, in
[AFdR80, LG81, SS84].
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Checkpoint and Rollback Recovery

Thefirst technique is based on each process checkpointing similar to that described above. Recovery
then involves rolling back all the processes to the most recent combination of saved states that gives
a consistent system state. There are two approaches to creating these checkpoints. In the first,
each process periodically checkpointsindependent of the other processes. During recovery, then, the
processes must dynamically determine aset of checkpoints, one from each process, such that the system
state constructed out of these checkpointsis consistent. In this approach, no coordination between the
processes is required while checkpointing but processes must coordinate during recovery. One of the
drawbacks of this approach is that the rollback of a process may result in a cascade of rollbacks that,
in the worst case, can push all processes back to their starting states. Thisis again the domino effect
mentioned in Section 2 [Ran75, Rus80]. Moreover, since cascading rollbacks may require any of the
previously stored checkpoints, the processes must retain al of their checkpointsindefinitely.

This independent checkpointing approach is used in a variety of contexts [BL88, Had82, Kim78,
KYA86, MPS91, Ng88, RS88, SY85]. The scheme proposed in [Had82] is limited to a centralized
database, while the ones proposed in [Kim78, KYA86] rely on an intelligent underlying processor
system to automatically establish checkpoints of the coordinating processes. In [BL88], a recovering
process computesthe set of globally consistent checkpointshby invokingatwo-phaserollback al gorithm.
In thefirst phase, it collectsthe information about rel evant message exchangesin the system and usesiit
in the second phase to determine both the set of processesthat must roll back and the set of checkpoints
up to which rollback must occur. 1n [Ng88], the authors propose a commit protocol for checkpointing
distributed transactions. Although the domino effect is possible here, it is shown that the lost work can
be reduced by reusing portions of completed computations. In [RS88], synchronized clocks have been
used for checkpointing and rollback recovery; these clocks coupled with theidea of a pseudo-recovery
block approach [SL84] are used to devel op a checkpointing agorithm. Independent checkpointing is
aso donein [MPS91]. However, no domino effect is possible here because checkpointing is done just
as an optimization and the state of a process can fully be recovered from information stored at other
processes.

Inthe other main approach, processes coordinatewith each other to checkpoint [BS83, KT87, LB89,
TS84]. Typically, the processes use a two-phase commit protocol to checkpoint, thus ensuring that the
set of checkpointsstored is consistent. In this scheme, two checkpointsneed to be stored at any time: a
permanent checkpoint that cannot be undone and a tentative checkpoint that can be undone or changed
to apermanent checkpoint. Notethat even with the coordinated checkpointing, thereis aneed for some
synchronization. In the absence of such synchronization, processes cannot all restore their checkpoints
simultaneously and livel ocks, in which processes endlessly cycle, can be introduced [KT87]. To avoid
this, the recovery is again donein two phases. In thefirst phase, arequest to restart from a checkpoint
is sent; in the second, a decision to restart is propagated.

M essage L ogging

Independent checkpointing can be enhanced by the use of message logging in a technique sometimes
called optimisticrecovery [JZ90, SW89, SY 85]. In these schemes, processes checkpoint independently
and log input messages aong with some dependency information in stable storage. Recovery then
consistsof (a) restoring an earlier possibl e state of the failed process using a checkpoint from the stable
store plus potentialy replaying the logged messages, (b) recognizing the set of processes whose states
depend on lost states using the dependency information and rolling them back, and (c) committing
messages to the outside when it is known that the states that generated the messages will never need
to be undone. The logging of messages can also be done on volatile storage as has been shown in
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[JZ287, PBS89, SY85]. In this case, messages are logged on the volatile storage of other processes and
then replayed to the recovering process at the time of recovery.

9 Common Dependencies

In the preceding sections, we have described some of the key abstractions that have proved important
for constructing dependable distributed systems, focusing on both the fundamental properties of each
abstraction and the most important approaches used to realize these properties. In doing so, however,
each service was treated largely as an isolated entity without concern for how it might interact with
other services. The reality of the situation, of course, is that any given system usualy contains a
number of these fault-tolerant services that interact in various ways and use one another to implement
their functionality. For example, in Section 4 we outlined how some approaches to multicast use the
functionality provided by a common global time service to implement a consistent message ordering.
Following [Cri91], we term such relationships dependencies, where a service « depends on a service
v if the correctness of « depends on the correctness of v; in this case, we will informally refer to u
as the higher-level service and v as the lower-level service. This notion of dependency can be viewed
as generalizing the kind of level-structuring that has long been common in operating system design
[Dij68].

Asmight be expected, the dependenciesexhibited by a given systemvary based on the programming
paradigm used, and other details of the design and implementation. However, some dependencies are
essentially independent of a specific system or implementation, and hence, are more common than
others. In this situation, the lower-level service usually provides some fundamental function without
which the higher-level service cannot be implemented. ® The goal of this section is to identify and
explain some of these common dependencies.

Thegraph in Figure 3 shows some of the common dependenciesamong the programming paradigms
and fault-tolerant services we have described. In thisfigure, the rectangles are paradigms or services,
and edges are dependencies. The edge labels indicate the property (or properties) that induce the
dependency; that is, they indicate properties of the higher-level entity that require the functionality
of the lower-level entity to be realized. Note that a new abstraction called “ Atomic Actions (shadow
updating)” hasbeenintroduced. We simply usethistermtorefer to single-machineatomic actionswhere
recoverability isimplemented by the shadow updating (or two-copy) approach described in Section 7.2;
this particular implementation technique for atomic actionsis being separated from the othersin order
to clarify certain dependencies. Two additional caveats are also in order before describing the graph
in more detail. First, it should be emphasized that this graph is not intended to capture all possible
combinations of services or dependencies, but only certain common patterns. Second, the graph should
be considered speculative at best, since these services often interact in subtle ways that are only now
beginning to be understood.

Programming Paradigms

Many of the direct dependencies from the four programming paradigms to lower-level fault-tolerant
services should be clear based on their descriptions in Section 2 and subsequent discussions. The
object/action model, of course, uses atomic actions as one of its fundamental concepts, and also relies
on RPC for communication between objects. A conversation is a collection of resilient processes that
interact by message-passing, making that edge its fundamental dependency to a fault-tolerant service.

 Whether these two services can in fact be identified as separate in the implementation is a different issue.
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The state machine approach uses a number of the abstractions directly. Multicast is often used to
coordinate replicas, usually a variant with at least atomicity and ordering properties. Membership is
also used to provide consistent information on which replicas are functioning at any given time. In
some systems, replicas are reintegrated into the system upon recovery following afailure, which means
that each replicais aresilient process. Findly, interaction between replicas of different state machines
is sometimes implemented using either regular or replicated RPC.

The primary/backup approach commonly depends on both multicast and membership services.
Multicast is useful for updating backup processesto reduce the amount of recomputation required when
the primary fails, while membership isneeded to recognize the failure of the primary. Another common
dependency, although not shown explicitly as an edge on the graph, isto the lower-level atomic actions,
thisoccurs if the primary employs checkpointing to save intermediate states for a backup to use should
afailure occur.

Atomic Actions

The major dependency edge for atomic actionsisto the resilient process abstraction since many of the
relevant implementation techniques require that a process execute some recovery action upon restart.
For example, the use of in-place updating for realizing recoverability on a single machine requires that
the modified data €l ements be restored to their original values after recovery. Another exampleisfound
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in the two-phase commit protocol for coordinating actions across multiple machines; in thistechnique,
the coordinator process reads a commit record following recovery and then either commits or aborts
the action.

Remote Procedure Call

Some of the variants of RPC have dependencies to other fault-tolerant services. For example, an RPC
mechanism defined to have At Most Once semantics is dependent on the atomic action abstraction
because of the need to implement orphan removal; that is, the remote procedure needs to be executed
as an atomic action by the server to guarantee that any effects are undone and that call ordering is not
violated should the process become orphaned. In the graph, we have drawn this edge to the lower-level
atomic action since checkpointing is the most common implementation technique; aternatively, the
edge could be to the higher-level variant if logging is used instead. Another variant of RPC that
has dependencies is replicated RPC. Specifically, this type of RPC often depends on the multicast
abstraction to ensure that messages are delivered to a collection of processes reliably and in some
consistent ordering.

Resilient Processes

The resilient process abstraction has several properties that can induce dependencies. One that has
aready been mentioned is recovery of a previous state following failure; this requires writing check-
points and/or log entries to stable storage. Given that checkpoints are usually large, the dependency
here isto lower-level atomic actions, which implement the atomicity aspect of the write. Log records
are usually on the order of a single value that can be written atomically by stable storage directly, so
the dependency in thiscaseis directly to stable storage. Another relevant property when a collection of
processes are cooperating is ensuring that the recovering processis reincorporated back into the group.
Doing this consistently across all processes is the task of the membership service, leading again to a
dependency relationship between abstractions.

Atomic Actions (shadow updating)

The basic dependency for thistypeof atomic actionsisto stable storage, for two reasons. Oneissimply
that atomic actions at this level are typically used to manipulate long-lived data of the type that is
typically stored on stable storage. The other is that the shadow updating technique uses redundancy in
theform of extradatastored on stable storage asthe basis for implementing recoverability. Specifically,
two copies of the data are kept on stable storage, along with an indicator of which is current.

Multicast and Member ship

The dependenci esinvol ving the multicast and membership servicestend to differ depending on whether
the protocols are clock-driven or clockless, that is, whether or not they assume a common globa time
base implemented by synchronized clocks. In both the clock-driven and clockless approaches, the
time service is used to provide consistent message ordering; however, in the clock-driven approach,
synchronized clocksare used, whilelogical clocksare used intheclocklessapproach. Multicast services
that satisfy the termination property, which are typically clock-driven, are also commonly implemented
using global time to achieve that property.

The biggest difference comes when considering the rel ationship between the multicast and mem-
bership services themsalves. In clock-driven systems, multicast can determine a consistent order for
received messages independent of an explicit membership protocol by using the synchronized clocks
and assumptions about the synchrony of the network and processors. Specifically, for a message sent
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at a given time and timestamped with that value, the receiving process need only wait long enough
to ensure no earlier messages will arrive. This approach is not sufficient with a clockless protocol,
however, since the logical timestamp included on a message puts no bound on how long the receiver
must wait to ensure no earlier messages. To overcome this, acknowledgements (implicit or explicit)
are used, which allows the receiver to conclude no earlier messages will arrive after it has received a
message from every other functioning process with atimestamp at the same or greater (logical) time. *
But knowing “every other functioning process’ consistently across machines requires membership, thus
leading to a dependency edge from multicast to membership for clockless protocols. The alternative
clockless algorithms that use a funnel process aso need membership to detect the failure of the funnel
process and subsequent election of anew funnel process.

There is a more fundamental reason for the dependency of multicast on membership in clockless
protocols. Asshownin [DDS83], reaching agreement in the presence of failuresin adistributed system
is possible if both the communication system and processors (processes) are synchronous. Clockless
protocols approximate this first property given an asynchronous network by using low-level message
acknowledgments and retransmission. However, the second property of synchronous processors is
still needed to reach agreement, in this case on the consistent total order of messages to be enforced
by multicast. It is this property that is supplied by the membership service. Specifically, the failure
detection aspect of membership approximates this property by putting an upper bound on the amount
of time processes can execute before they are considered to have failed. Thus, in clockless protocols,
multicast depends on the membership service to realize the synchronous process requirement needed
to reach agreement.

10 Fault-Tolerant Systems

The abstractions outlined in the previous sections have been used as fundamental components in a
number of fault-tolerant distributed systems that have been designed and/or implemented over the
past decade. Here, we briefly outline some representative examples: the Advanced Automation
System (AAS) [BDD*89, CDD90], Argus [LS83, Lis88], Consul [MPS91], Delta-4 [PSB+88], I1SIS
[BJ87, BSS91], and MARS [KM85, KDK*89]; our specific emphasis is on describing how each
fits into the framework developed above. Others systems of interest include ADS [IM84], ANSA
[Tea91, OOW91], Arjuna[SDP91], Avalon [DHW8S], Chorus [BFG*85], and Clouds [LW85].

10.1 Advanced Automation System

AAS is afault-tolerant distributed system currently being developed by IBM as the next-generation
air-traffic control system for the U.S. Federal Aviation Administration. The system is structured as
a collection of Area Control Computer Complexes (ACCC), each of which manages one of the 23
areas into which U.S. airspace is divided. An ACCC is, in turn, structured as a distributed system of
workstations and mainframes connected by a local-area network; among its tasks are to provide air
traffic controllers with display information concerning the location of aircraft within the area based on
radio and radar input, process flight plans, and interpret commands from air traffic controllers. Each
ACCC aso communicates with other computing complexes, including other ACCCs to implement
transfer of aircraft between areas, airport tower complexes to coordinate takeoffs and landings, and
weather computer systems. As might be expected, the availability requirements for this system are

* A messagefor which acknowledgmentshave been received s called astable messagein [PBS89] and fully acknowledged
in [Sch82].
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stringent; for example, certain critical services are not supposed to be unavailable for more than 3
seconds per year. Such specifications have lead to the extensive use of fault-tol erance techniques.

The software associated with an ACCC is organized as a collection of services, each of which
implements a particular function. For example, the Surveillance Processes and Correlation (SPC)
Service tracks aircraft based on radar input. To increase availability in the face of failures, services
are implemented by groups of redundant server processes executing on separate physica machines.
These groups are organi zed using either the state machine approach or primary/backup, with the choice
depending primarily on the real-time requirements of the particular application. For example, the
SPC service has strict requirements in this regard and so uses the state machine approach, while the
Flight Planning Service uses primary/backup since alonger interval of unavailability can be tolerated.
Group management functions—for example, coordinating promotion of a backup to a primary—are
localized in a Group Service Availability Management (GSAM) Service, which is itself implemented
by redundant processes using the state machine approach. The failure model assumed throughout
correspondsto performance failures.

To support these paradigms, AAS uses a number of the abstractions described in previous sections,
including a time service, multicast, membership, RPC, and resilient processes. The time service is
provided by synchronizing clocks using the probabilistic scheme mentioned earlier [Cri89]. The multi-
cast service, termed atomic broadcast here, provides atomicity, consistent total order, and termination.
Interestingly, it and the membership service are used only in the implementation of the GSAM service,
with a separate replicated RPC service being used to implement group communication for the other
services; this RPC provides either At Least Once or At Most Once semantics depending on the situa
tion. The checkpointing and message-logging techniques associated with resilient processes are used
to implement redundant server processes organized according to the primary/backup approach.

The dependency structure of the fault-tolerant services essentially followsthe clock-driven organi-
zation, with thetime servicerealized using clock synchronizationasthelowest layer. Ontop of thisare,
successively, multicast, membership, and then the GSAM service. Thereplicated RPC, as mentioned,
isimplemented separately, and so depends on none of these. The GSAM also depends on recovery to
realize the primary/backup approach.

10.2 Argus

Argusis aprogramming language and system for constructing fault-tolerant distributed programs that
has been designed and implemented at MIT [LS83, Lis88]. The systemisoriented towards applications
inwhich preserving the consistency of long-lived datais the primary concern, such aswould be found,
for example, in banking or airline reservation systems. Thus, the emphasis has been on developing
mechani sms to efficiently manipul ate such data, while controlling the consistency-destroying potential
of concurrent access and failures. A genera distributed architecture is assumed, together with crash
failure semantics for the processors and performance failure semantics for the network.

To support this type of application, Argus provides a programming model based on objects and
actions. Objects in Argus are dynamically-created entities caled guardians, which are the units of
distribution that encapsulate data and export handlersthat can be invoked from within other guardians
to manipul atethe data. Guardiansal so contain processes; these are created to executeincoming handler
invocations, or are background processes that operate independently of invocations. Data within a
guardian can be declared to be stable, in which case it is stored on stable storage to facilitate recovery
in the event of a processor crash; data not declared to be stable is stored in volatile storage, and is
therefore lost should a failure occur. In addition, there are provisionsfor specifying recovery code to
be executed upon restart of a guardian following failure.
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Argusal so supportsactions, which are computationsthat exhibit the serializability and recoverability
properties described in Section 7. More precisely, an action preserves these properties for any built-in
or user-defined atomic object that it manipul ates during execution; these objects—for example, atomic
arrays or records—typically contain the shared data that is being accessed concurrently by multiple
actions. Actions are denoted syntactically within the code of background processes of guardians, and
cross machine boundariesby using RPC to invokethe handlers of other guardians. Nested or subactions
are also supported [Mos85]. These are used both to increase concurrency and to limit the amount of
computation lost due to failure; the former comes from provisionsfor concurrent spawning of multiple
subactions, whilethe latter follows from the property that a failure during the execution of a subaction
only aborts the subaction and not the entiretop-level action. The call to ahandler automatically runsas
a subaction, which givesit the semantics of At Most Once RPC.

Of the abstractions described above, those that are used in the implementation of Argus include
atomic actions, RPC, and stable storage. For atomic actions, two-phase locking is used to realize
seridizability, with shadow updating of stable data and the two-phase commit being the basis for
recoverability. Asaready mentioned, the RPC in Argusimplements At Most Once semantics, and also
aso handles the detection and elimination of orphans. Stable storage is used to store data declared to
be stable by the user and in the implementation of the two-phase commit protocol. The dependency
structureis similar to that shown in Figure 3.

10.3 Consaul

Consul is a collection of protocols developed at The University of Arizona for implementing fault-
tolerant distributed programs based on the replicated state machine approach. As such, it provides
support for consistently ordering input messages submitted to the state machine, for maintaining a
consistent view of group membership despite process failure and recovery, and for reestablishing a
consistent state for a process upon recovery. At the heart of Consul is Psync, a multicast protocol
that maintains the partial (or causal) ordering of messages exchanged among replicas in the form of
an explicit graph that is made available to the application and other protocols [PBS89]. Thisgraphis
replicated by Psync on al processors on which participating processes reside. Consul is implemented
inthe x-kernel, an operating system kernel designed to facilitate the implementation of communication
protocols [HP91]. This platform makes Consul highly-configurable in the sense that it is simple to
construct an instance of the system oriented towards a particular application given a preexisting library
of protocols. The failure model assumed correspondsto performance failures.

Of the abstractions described in previous sections, Consul includes multicast, time, membership,
resilient processes, and stable storage. For multicast, the basic functionality plus consistent partia
ordering are redized directly by Psync; additiona protocols that use Psync's message graph give
semantic-dependent and total ordering. The time service is also provided by Psync in the form of
logical clocks. Membership is implemented by two protocols, one that does failure detection and
another that realizes agreement on group membership in the event of failure or recovery. The state
machine replicas are resilient processes that can use a combination of checkpointing and message
logging to recover following afailure; of specia interest here is that the messages need not be logged
explicitly to stable storage since the replication of the message graph in the volatile memory of multiple
processors by Psync automatically implements similar functionality.

In Consul, the dependencies are as follows. The multicast service depends on the time service to
provide the various types of consistent message orderings. Membership and multicast, in turn, depend
on each other; membership usesthe partial order provided by the multicast in its agreement algorithms,
while multicast uses membership to establish total ordering. Finally, resilient processes depend on the
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membership service to consistently incorporate the recovering process into the collection of replicas,
and on stable storage to do checkpointing. *

104 Delta-4

The Delta-4 project is a European effort whose goal is to define a general system architecture for
dependable, distributed systems. This project, which began in 1986 and involves both industrial and
academic organizations, has addressed a number of different problems ranging from communication
protocols and application support environments to protocol validation, dependability modeling, and
fault-injection. The applicationstargeted by the project are correspondingly broad, and include process
control, computer integrated manufacturing, distributed databases, transacti on processing, and scientific
computation. The project officialy ended in 1991, although work continues on various aspects under
follow-on projects.

Two complementary architectures have been developed during the course of the project: an Open
System Architecture (OSA) and an Extra Performance Architecture (XPA). As its name implies, the
OSA is intended to work in an open environment in the sense that it conforms to Open Systems
Interconnection (OSl) reference models and, hence, is able to work with heterogeneous architectures,
proprietary operating systems, etc. It also supportsthewidest variety of applicationsand fault-tolerance
techniques. The XPA, on the other hand, is an architecture designed explicitly for constructing fault-
tolerant distributed programs that aso have critical real-time requirements. The two share the same
design philosophy and overall structure.

The Delta-4 hardware system model consists of a hnumber of host machines connected by a com-
munication network. Interposed between each host and the network is a specialized processor called a
Network Attachment Controller (NAC) that executes the communications software. The failure model
assumed for hostsin the OSA can be either crash failures or arbitrary failures, with the latter naturally
requiring more expensive protocols and fault-tolerance techniques; the failure model for hosts in the
XPA iscrash failures. In both architectures, the NACs are assumed to suffer only crash failures

Delta-4 supports a number of different software structuring paradigms to achieve fault-tolerance.
These include the state-machine approach, primary/backup, and a variant of the state-machine called
|eader/follower in which replicas remain synchronized, but a single process is deemed responsible for
making all decisions that affect replica determinism, such as message receipt order and preemption
times. ° The fundamental support for all of these techniques comes from two different multicast
protocolsexecuted by the NAC. Thefirst, called AMp (Atomic Multicast protocol), isused in the OSA;
it providesatomicity, total ordering, and termination. The second, called xAMp, isused by the XPA; it
extends AMp to provide arange of services ranging from unreliable datagrams to reliable (unordered)
multicast to full atomic multicast [RV91]. XxAMp aso includes a membership service in the form of a
Group Management layer.

Interms of the abstractionsdefined in earlier sections, Delta-4 includes multicast, membership, and
atime service. Asdready mentioned, the more general XAMp providesavariety of services, including
al of the possible message orderings described in Section 4. Membership allows processes to join
and leave process groups, as well as handling the detection and removal of failed processes. Two
time services are provided, one implemented by synchronizing physical clocks and the other by logical
clocks; the former isintended primarily for use by applications, while thelatter is used in the multicast

5 A rudimentary single-processor atomic action service is implemented as part of stable storage, so it can be argued that
thereis also a dependency to atomic actions similar to that in Figure 3.
6 This approach can be viewed as a generalization of the use of afunnel process described in Section 4.

31



services for messages orderings [VR91]. The dependency structure generally follows that shown in
Figure 3, athough the exact relationship between membership and multicast is not entirely clear.

105 ISIS

ISISisatoolkit developed at Cornell University to support the construction of distributed applications,
including thosethat have fault-tolerance requirements. The softwareis oriented around a programming
model based on virtually synchronous process groups, which are groups in which member processes
see a consistently-ordered stream of events such as multicast messages, group membership changes,
and failure notifications. This property makes the distributed system appear to be synchronous to the
user, and hence, easier to program as compared with a system in which events occur asynchronously. ?
This programming model is most attuned to the state machine approach for constructing fault-tolerant
programs, but experience has a so shown it to be useful for structuring distributed applicationsin other
ways [BC9I1]. Thetoolkit is currently implemented as alibrary on top of UNIX, with plans underway
to integrate key features into the Mach operating system at alower level to improve performance.

The fundamental fault-tolerant abstraction provided by 1SIS is a multicast service made up of
a collection of different protocols. The most important of these is CBCAST (“Causa Broadcast”),
which provides delivery atomicity and partial ordering of messages; among its unique features is that
it preserves causal ordering among multiple groups that have overlapping memberships. An atomic
broadcast protocol called ABCAST, which extends CBCAST to a consistent total ordering, is also
provided; this protocol uses the funnel process approach described in Section 4. Other services found
within 1SIS include a membership service, which is used to agree on when events corresponding to the
leaving and joining of processes occur, and a time service based on logical clocks.

Dependencies among services that can be identified in 1SIS include the following. The multicast
service depends on the time service to provide both partial and total ordering of messages, and on the
membership service to manage the failure of the funnel process used for total ordering. Membership
a so depends on the multicast service. In particular, theinstances of the membership protocol executing
on different machines use a variant of multicast to communicate among themselves; in this protocol,
messages are delivered atomically but with no consistent ordering guarantee.

106 MARS

MARS (MAintainable Real-time System) is a system being developed at Institut fur Technische In-
formatik, Vienna for use with distributed process control applications such as stedl rolling mills and
railroads. In thisapplication area, the control system must meet stringent real-time guarantees, in addi-
tion to being functionally correct and fault-tolerant. The system model used in MARS is hierarchical:
closely-cooperating machines are connected by a bus into clusters, which are themselves intercon-
nected. Unlike many of the other projects, MARS isa combined hardware and software effort. Custom
hardware that has been devel oped include the bus controller chip used for intracluster communication
and a clock synchronization unit.

Thegeneral software organi zation can be characteri zed asaperiodic systemin which componentsare
initiated periodically at predetermined intervalsto handle externa eventsthat may have occurred since
the last time they were executed. The computation required to respond to a given event potentially
involves processes on several machines within a cluster; these computations are termed real-time
transactions, although fault-tolerance is handled by replication, implying that the computing model has

" The meanings of synchronousand asynchronousin this case are somewhat different than the way in which they are used
in Section 2.
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more in common with the state machine approach than a pure object/action model. The failure model
correspondsto crash failures; explicit assumptionsabout the number of possible concurrent failuresare
also made.

As might be expected given its periodic nature, the various fault-tolerant services are organized
along thelines of a clock-driven system. Accordingly, atime serviceliesat the heart of the system; this
service is readlized by the hardware clock synchronization units aluded to above, which synchronize
the clocks relative to an external time source. The fundamental multicast service for communicating
within a cluster is based on a TDMA (Time-Division Multiple-Access) approach in which the busis
conceptually divided into slotsalong the time dimension and machines are allocated time slotsusing a
round-robin scheduling algorithm. Each message is sent multiple time in succession to deal with the
potential for lost messages. The combination of these strategies gives a service that realizestota order
and termination based on the definitions given in Section 4.

MARS aso has a membership service, which is implemented by logicaly including a machine's
current membership set in every message. Interestingly, the effect of combining this service with the
basic multicast is a multicast with atomicity, since any machine not receiving a message—and there
can be at most one due to their failure assumptions—is removed from the membership set on the next
TDMA cycle. In addition, the membership serviceis used in turn to construct an enhanced multicast
service, which the system’s developers term an atomic broadcast. However, the atomicity realized
by this service is somewhat different than that defined in Section 4; in particular, the sender specifies
a collection of destination machines, and the multicast succeeds only if that set is a subset of the
membership at the time the multicast originates. Thus, if one of the machines in the destination set has
failed, al receiving machines will discard the message.

The service dependenciesin MARS are thoseimplied by the above discussion. The basic multicast
service depends on the time service, while membership depends on multicast. The MARS atomic
multicast then depends on membership.

11 Summary

In thispaper, we have described anumber of fault-tolerant servicesthat simplify the task of constructing
dependabl e distributed systems. The usefulness of these system abstractions comes in a general sense
from the support they provide for implementing the various programming paradigms that have been
developed for building this type of system, including the object/action model, the primary/backup
approach, the replicated state machine approach, and conversations. Some of these abstractions, such
as stable storage, atomic actions, resilient processes, and RPC, can be viewed as analogous in many
waysto standard functions, but with improved semantics when failures occur. Others, such as common
globa time, multicast, and membership, are more oriented towards making consistent information
available to all machines in a distributed system despite the lack of physically shared memory. The
specific agorithms used to realize these services are sensitive to the programming paradigm being
supported and the failure model that is assumed. There are aso significant differences based on the
overal organizationa strategy used for the system, with the two most common being termed clock-
driven and clockless. In the literature, the former have often been referred to as synchronous and the
latter as asynchronous, athough we attempted to argue that, strictly-speaking, al systems are actually
based on some type of synchrony assumption.

In addition to outlining key properties of these abstractions in isolation, different ways in which
fault-tolerant services interact have been identified. Thiswas donein two ways. First, we argued that
certain interactions are fundamental when considering the properties of the various abstractions, which
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led to a hierarchy of common dependencies. Second, we described the way in which these abstractions
are actually organized and interact in various fault-tolerant systems, specifically AAS, Argus, Consul,
Delta-4, ISIS, and MARS. While by no means an exhaustive survey, these systems represent in many
ways the current state-of-the-art in dependabl e distributed systems.

Finally, we note that the programming paradigms and fault-tolerant services described in this pa-
per by no means close the book on the problems associated with constructing dependable distributed
systems. Further work isneeded in many areas, ranging from designing additional techniquesfor imple-
menting existing abstractions, to improving our understanding of dependencies between abstractions,
to developing new and better programming paradigms and supporting abstractions. All of these have
the potentia to help meet the increasingly inevitable need for computer systems that can be relied on
provide dependabl e service.

Acknowledgments

Wewouldliketothank D. Bakken, F. Cristian, M. Hiltunen, P. Homer, and V. Thomasfor reading earlier
versions of this paper and providing valuable feedback. Special thanksalso to V. Thomas for preparing
thefigures and for contributing to the discussions on dependencies that led to the material in Section 9.
Thiswork has been supported in part by NSF Grant CCR-9003161 and ONR Grant N0O0014-91J-1015.

References
[AD76] P. A. Alsbergand J. D. Day. A principlefor resilient sharing of distributed resources. In Proceedings
of Second I nternational Conference on Software Engineering, pages 627644, Oct 1976.

[AFdR80] K. Apt, N. Francez, and W. de Roever. A proof system for Communicating Sequential Processes.
ACM Transactions on Programming Languages and Systems, 2(3):359-385, Jul 1980.

[Bad79] D. Z. Badal. Correctness of concurrency control and implications in distributed databases. In
Proceedings of IEEE COMPSAC Conference, pages 588-593, Nov 1979.

[BALL90] B. Bershad, T. Anderson, E. Lazokska, and H. Levy. Lightweight remote procedure call. ACM
Transactions on Computer Systems, 6(1):37-55, Feb 1990.

[BCIA1] K. Birman and R. Cooper. The ISIS project: Real experience with a fault-tolerant programming
system. Operating Systems Review, 25(2):103—107, Apr 1991.

[BD85] O. Babaoglu and R. Drummond. Streets of Byzantine: Network architectures for fast reliable
broadcast. |EEE Transactions on Software Engineering, SE-11(6):546-554, Jun 1985.

[BDD*89] R. A. Bend, R. D. Dancey, J. D. Dehn, J.C. Gutmann, and D.M. Smith. Advanced automation
system design. Proceedings of the |IEEE, 77(11):1653-1660, Nov 1989.

[BFGT85] J.S. Banino, J.C. Fabre, M. Guillemont, G. Morisset, and M. Rozier. Some fault-tolerant aspects of
the Chorus distributed system. In Proceedings of the Fifth I nternational Conference on Distributed
Computing Systems, pages 430-437, May 1985.

[BG81] P. A. Bernstein and N. Goodman. Concurrency control in distributed database systems. ACM
Computing Surveys, 13(2):185-221, Jun 1981.

[BGL83] P A.Bernstein, N. Goodman, and M. Y. Lai. Analyzing concurrency control when user and system
operations differ. |EEE Transactions on Software Engineering, SE-9(3):233-239, May 1983.

[BHG87] P A.Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Database
Systems. Addison-Wesley Publishing Company, 1987.

34



[BJ37]

[BLSS]

[BMD91]

[BN84]

[Bor81]

[BS83]

[BSR80]

[BSS91]

[BSW79]

[Cas8l]

[CASDS85]

[CC85)]

[CDDY0]

[CEST1]

[CGRSS]

[CM84]

[Coo85]

[Cou81]

[Crig4]

K. Birman and T. Joseph. Reliable communication in the presence of failures. ACM Transactions
on Computer Systems, 5(1):47-76, Feb 1987.

B. Bhargava and S. Lian. Independent checkpointing and concurrent rollback for recovery in
distributed systems — An optimistic approach. In Proceedings of the Seventh Symposium on
Reliable Distributed Computing, pages 3-12, Columbus, Ohio, Oct 1988.

M. Barborak, M. Maek, and A. Dahbura. The consensus problem in fault-tolerant computing.
Technical Report 91-40, Department of Computer Sciences, University of Texas at Austin, 1991.

A.D.Birrell and B. J. Nelson. Implementing remote procedurecalls. ACM Transactionson Computer
Systems, 2(1):39-59, Feb 1984.

A. Borr. Transaction monitoringin ENCOMPASS: Reliable distributed transaction processing. In
Proceedings of International Conference on Very Large Data Bases, Sep 1981.

G. Barigazzi and L. Strigini. Application-transparent setting of recovery points. In Proceedings of
the Thirteenth Symposium on Fault Tolerant Computing, Jun 1983.

P. A.Berngtein, D. W. Shipman, and J. B. Jr. Rothnie. Concurrency control in asystem for distributed
databases (SDD-1). ACM Transactions on Database Systems, 5(1):18-25, Mar 1980.

K. Birman, A. Schiper, and P. Stephenson. Lightweight causal and atomic group multicast. ACM
Transactionson Computer Systems, 9(3):272—-314, Aug 1991.

P A. Bernstein, D. W. Shipman, and W. S. Wong. Formal aspects of serializability in database
concurrency control. |EEE Transactions on Software Engineering, SE-5(3):203-216, May 1979.

M. A. Casanova. The concurrency control problem of database systems. In Lecture Notes in
Computer Science 116. Springer-Verlag, Berlin, 1981.

F. Cristian, H. Aghili, R. Strong, and D. Dolev. Atomic broadcast: From simple message diffusion
to Byzantine agreement. I1n Proceedings of the Fifteenth International Symposium on Fault-Tolerant
Computing, pages 200-206, Ann Arbor, M1, Jun 1985.

B. Chor and B. A. Coan. A simple and efficient Byzantine agreement algorithm. |EEE Transactions
on Software Engineering, SE-11(6):531-539, Jun 1985.

F. Crigtian, B. Dancey, and J. Dehn. Fault-tolerance in the Advanced Automation System. In
Proceedings of the Twentieth Symposium on Fault-Tolerant Computing, pages 6-17, Newcastle-
upon-Tyne, UK, Jun 1990.

E. G. Coffman, M. Elphick, and A. Shoshani. System deadl ocks. ACM Computing Surveys, 3(2):67—
78, Jun 1971.

R.F. Cmdik, N.H. Gehani, and W. D. Roome. Fault Tolerant Concurrent C: A tool for writing
fault tolerant distributed programs. In Proceedings of the Eighteenth International Symposium on
Fault-Tolerant Computing, pages 55-61, Tokyo, June 1988.

J. Chang and N. Maxemchuk. Reliable broadcast protocols. ACM Transactions on Computer
Systems, 2(3):251-273, Aug 1984.

E. C. Cooper. Replicated distributed programs. In Proceedings of the Tenth ACM Symposium on
Operating Systems Principles, pages 63—78, Orcas Island, WA, 1985.

Courier. Courier: The remote procedure call protocol. Technica Report XSIS 038112, Xerox
System Integration Standard, Stamford, CT, Dec 1981.

F. Crigtian. Correct and robust programs. |EEE Transactions on Software Engineering, SE-
10(2):163-174, Mar 1984.

35



[Crigg]

[Crigg]

[Cri91]

[DDS83]

[DHS86]

[DHWSS]

[Dij68]

[DIWSY]

[DS83]

[EGLT76]

[EL90]

[Fidss]

[FLPSS5]

[GMS91]

[Goo75]

[Grarg]

[Grase]

[GS80]

[Had82]

[Hol 72]

F. Cristian. Agreeing on who is present and who is absent in a synchronous distributed system.
In Proceedings of the Eighteenth International Conference on Fault-tolerant Computing, pages
206-211, Tokyo, Jun 1988.

F. Cristian. Probabilistic clock synchronization. In Proceedings of the Ninth I nter national Symposium
on Distributed Computing Systems, pages 288—-296, Newport Beach, CA, Jun 1989.

F. Crigtian. Understanding fault-tol erant distributed systems. Communi cationsof ACM, 34(2):56—78,
Feb 1991.

D. Dolev, C. Dwork, and L. Stockmeyer. On the minima synchronism needed for distributed
consensus. In Proceedings of 24th Annual Symposiumon Foundationsof Computer Science, Tucson,
AZ, Nov 1983.

D. Dolev, J. Y. Hapern, and R. Strong. On the possibility and impossibility of achieving clock
synchronization. Journal of Computer and System Science, 32(2):230-250, 1986.

D. L. Detlefs, M. P. Herlihy, and J. M. Wing. Inheritance of synchronization and recovery properties
in Avalon/c++. |EEE Computer, 21(12):57-69, Dec 1988.

E. W. Dijkstra. The structure of the THE multiprogramming system. Communications of the ACM,
11(5):341-346, May 1968.

S. Davidson, L. Insup, and V. Wolfe. A protocol for timed atomic commitment. In Proceedings
of the Ninth International Conference on Distributed Computing Systems, pages 199-206, Newport
Beach, CA, Jun 1989.

D. Dolev and H. R. Strong. Authenticated algorithms for Byzantine agreement. SSAM Journal of
Computing, 12:656-666, Nov 1983.

K. P Eswaran, J. N. Gray, R. A. Lorie, and |. L. Traiger. The notions of consistency and predicate
locksin a database system. Communicationsof the ACM, 19(11):624-633, Nov 1976.

P. D. Ezhilchelvan and R. Lemos. A robust group membership algorithm for distributed real-time
system. In Proceedings of the Eleventh Real-Time Systems Symposium, pages 173-179, Lake Buena
Vista, Florida, Dec 1990.

C. Fidge. Timestamps in message-passing systems that preserve the partia ordering. In Proceedings
of the Eleventh Australian Computer Science Conference, 1988.

M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with one
faulty process. Journal of the ACM, 32(2):374-382, Apr 1985.

H. GarciaMolinaand A. Spauster. Ordered and reliable multicast communication. ACM Transac-
tions on Computer Systems, 9(3):242-271, Aug 1991.

J. Goodenough. Exception handling, issues, and a proposed notation. Communicationsof the ACM,
18(12):683-696, Dec 1975.

J. Gray. Operating systems: An advanced course. In Lecture Notesin Computer Science 60, pages
393-481. Springer-Verlag, Berlin, 1978.

J. Gray. An approach to decentralized computer systems. |EEE Transactions on Software Engineer-
ing, SE-12(6):684-692, Jun 1986.

V. D. Gligor and S. H. Shattuck. On deadlock detection in distributed systems. |EEE Transactions
on Software Engineering, SE-6(5):435-440, Sep 1980.

V. Hadzilacos. An agorithm for minimizing rollback cost. In Proceedings of the First ACM
Symposium on Principles of Distributed Computing, pages 93-97, Ottawa, Canada, 1982.

R. C. Holt. Some deadlock propertiesin computer systems. ACM Computing Surveys, 4(3):179-196,
Sep 1972.

36



[HP91]
[HS80]

[HSSD84]

[HY86]

[IM84]
[Jz287]
[3Z90]
[KDK+89]

[KGRO1]

[Kim78§]

[KM85]
[KO87]
[Koh81]
[KR81]
[KT87]
[KTHB8Y]

[KYAS6]

[Lam78]

[Lam81]

N. C. Hutchinson and L. L. Peterson. The z-kerndl: An architecture for implementing network
protocols. |EEE Transactions on Software Engineering, 17(1):64—76, Jan 1991.

M. Hammer and D. Shipman. Reliability mechanisms for SDD-1. ACM Transactionson Data Base
Systems, Dec 1980.

J. Y. Halpern, B. Simons, R. Strong, and D. Dolev. Fault-tolerant clock synchronization. In
Proceedings of the Third ACM Symposium on Principles of Distributed Computing, pages 89-102,
Vancouver, Canada, Aug 1984.

T. Hadzilacos and M. Yannakakis. Deleting completed transactions. In Proceedings of Fifth ACM
SIGACT-S GMOD Symposium on Pronciples of Database Systems, pages 4347, Cambridge, MA,
Mar 1986.

H. Ihara and M. Mori. Autonomous decentralized computer control systems. |EEE Computer,
17(8):57—66, Aug 1984.

D. Johnson and W. Zwaenopod . Sender based message logging. In Proceedings of the Seventeenth
International Symposium on Fault-Tolerant Computing, pages 14-19, Pittsburgh, PA, Jun 1987.

D. Johnson and W. Zwaenepoel. Recovery in distributed systems using optimistic message logging
and checkpointing. Journal of Algorithms, pages 462—491, 1990.

H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabl, C. Senft, and R. Zainlinger. Distributed
fault-tolerant real-time systems: The Mars approach. |1EEE Micro, pages 2540, Feb 1989.

H. Kopetz, G. Grungteidl, and J. Reisinger. Fault-tolerant membership service in a synchronous
distributed real-time system. In A. Avizienis and J.C. Laprie, editors, Dependable Computing for
Critical Applications, pages 411-429. Springer-Verlag, Wien, 1991.

K. H. Kim. An approach to program-transparent coordination of recovering parallel processes and
its efficient implementation rules. In Proceedings of 1978 International Conference on Parallel
Processing, Aug 1978.

H. Kopetz and W. Merker. The architecture of MARS. In Proceedings of the Fifteenth Symposium
on Fault-Tolerant Computing, pages 274-279, Ann Arbor, Mi, Jun 1985.

H. Kopetz and W. Ochsenreiter. Clock synchronization in distributed, rea-time systems. |EEE
Transactions on Computers, C-36(8):933-940, Aug 1987.

W. H. Kohler. A survey of techniques for synchronization and recovery in decentralized computer
systems. ACM Computing Surveys, 13(2):149-183, Jun 1981.

H. T. Kung and J. T. Robinson. On optimistic methods for concurrency control. ACM Transactions
on Database Systems, 6(2):213-226, Jun 1981.

R. Koo and S. Toueg. Checkpointing and rolback-recovery for distributed systems. |EEE Transac-
tions on Software Engineering, SE-13(1):23-31, Jan 1987.

M. F. Kaashoek, A. Tanenbaum, S. F. Hummel, and H. Bal. An efficient reliable broadcast protocol.
Operating Systems Review, 23(4):5-19, Oct 19809.

K. H. Kim, J. h. You, and A. Abouelnaga. A scheme for coordinated execution of independently
designed recoverabl edistributed processes. In Proceedings of Sixteenth Symposiumon Fault Tolerant
Computing, Jun 1986.

L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communications of
ACM, 21(7):558-565, Jul 1978.

B. Lampson. Atomic transactions. In Distributed Systems—Architecture and I mplementation, pages
246-265. Springer-Verlag, Berlin, 1981.

37



[Lap92]

[LB8Y]

[Lel78]

[LG81]

[LG85]

[Lis85]

[Lis88]

[LMS85]

[LST76]

[LS83]

[LSM82]

[LW85]

[LWL8S]

[Mar76]

[Mars4]

[Mat89]

[Mil79]

[ML83]

J. C. Laprie, editor. Dependability: Basic Concepts and Terminology. Springer-Verlag, Vienna,
1992.

P. Leu and B. Bhargava. A model for concurrent checkpointing and recovery using transactions.
In Proceedings of the Ninth International Conference on Distributed Computing Systems, pages
423-430, Newport Beach, California, Jun 1989.

G. LeLann. Algorithms for distributed data-sharing which use tickets. In Proceedings of Third
Berkeley Workshop on Distributed Data Management and Computer Networks, pages 259-272,
Berkeley, CA, Aug 1978.

G.LevinandD. Gries. A proof techniquefor Communi cating Sequential Processes. Acta I nformatica,
15:281-302, 1981.

K. J. Lin and J. D. Gannon. Atomic remote procedure call. |IEEE Transactions on Software
Engineering, SE-11(10):1126-1135, Oct 1985.

B. Liskov. The Arguslanguageand system. In M. Paul and H.J. Siegert, editors, Distributed Systems:
Methods and Tools for Specification, Lecture Notes in Computer Science, Volume 190, chapter 7,
pages 343-430. Springer-Verlag, Berlin, 1985.

B. Liskov. Distributed programming in Argus. Communications of the ACM, 31(3):300-312, Mar
1988.

L. Lamport and P. M. Mélliar-Smith. Synchronizing clocksin the presence of faults. Journal of the
ACM, 32(1):52—-78, Jan 1985.

B. Lampson and H. Sturgis. Crash recovery in a distributed data storage system. Technical report,
Computer Science Laboratory, Xerox, Palo Alto Research Center, Palo Alto, CA, 1976.

B. Liskov and R. W. Scheifler. Guardians and actions: Linguistic support for robust distributed
programs. ACM Transactions on Programming Languages and Systems, 5(3):381-404, Jul 1983.

L. Lamport, R. Shostak, and Pease M. The Byzantine generals problem. ACM Transactions on
Programming Languages and Systems, 4(3):382—401, Jul 1982.

R. J. LeBlanc and C. T. Wilkes. Systems programming with objects and actions. In Proceedings
of the Fifth International Conference on Distributed Computing Systems, pages 132—-139, Denver,
Colorado, May 1985.

J. Lundelius-Welch and N. Lynch. A new fault-tolerant algorithm for clock synchronization. Infor-
mation and Computation, 77(1):1-36, 1988.

P. M. Marci. Deadlock detection and resolution in a CODASYL based data management system.
In Proceedings of ACM SSGMOD International Conference on Management of Data, pages 4549,
Washington, D.C., Jun 1976.

K. Marzullo. Maintaining the Time in a Distributed System. PhD thesis, Stanford University,
Department of Electrical Engineering, Mar 1984.

F. Mattern. Time and global states in distributed system. In Proceedings of the International
Workshop on Parallel and Distributed Algorithms, North-Holland, 1989.

M. Milenkovic. Update synchronization in multiaccess database systems. Technical Report PhD
dissertation, Dept of Electrical & Computer Engineering, University of Massachusetts, Amherst,
MA, 1979.

C Mohan and B. Lindsay. Efficient commit protocols for the tree of processes modd of distributed
transaction. In Proceedings of the Second ACM SIGACT/SGOPS Symposium on Principles of
Distributed Computing, Montreal, Canada, Aug 1983.

38



[MLOS6]

[Mos85]

[MPS89]

[MPS91]

[MPS92]

[MR79]

[MSF83]

[MSM89]

[NCN8S]

[Nel81]

[Neu91]

[Ng8g]

[NS89]

[OOW91]

[Pap79)

[PBS89]

[Per8s]

[PS88]

C. Mohan, B. Lindsay, and R. Obermarck. Transactions management in the R* distributed database
management system. ACM Transaction on Database Systems, 11(4):378-396, Dec 1986.

J. E. B Moss. Nested Transactions. An Approach to Reliable Distributed Computing. MIT Press,
Cambridge, MA, 1985.

S. Mishra, L. Peterson, and R. Schlichting. Implementing replicated objects using Psync. In
Proceedings of the Eighth Symposium on Reliable Distributed Computing, pages 42-52, Sesttle,
Washington, Oct 1989.

S. Mishra, L. L. Peterson, and R. D. Schlichting. Consul: A communication substrate for fault-
tolerant distributed programs. Technical Report TR 91-32, Dept of Computer Science, University of
Arizona, Tucson, AZ, 1991.

S. Mishra, L. Peterson, and R. Schlichting. A membership protocol based on partial order. In J. F.
Meyer and R. D. Schlichting, editors, Dependable Computing for Critical Applications 2, pages
309-331. Springer-Verlag, Wien, 1992.

D. A. Menasce and Muntz R. R. Locking and deadlock detection in distributed databases. |EEE
Transactions on Software Engineering, SE-5(3):195-201, May 1979.

C Mohan, R. Strong, and S. Finkelstein. Method for distributed transaction commit and recovery
using Byzantine agreement within clusters of processors. In Proceedings of the Second ACM
S GACT/SIGOPS Symposium on Principles of Distributed Computing, Montreal, Canada, Aug
1983.

P.M. Mdliar-Smithand L. E. Moser. Fault-tolerant distributed systems based on broadcast commu-
nication. In Proceedings of the Ninth International Conference on Distributed Computing Systems,
pages 129-134, Newport Beach, CA, Jun 1989.

S. Navaratnam, S. Chanson, and G. Neufeld. Reliable group communication in distributed systems.
In Proceedings of the Eighth International Conference on Distributed Computing Systems, pages
439446, San Jose, Cdlifornia, Jun 1988.

B.J. Nelson. Remote Procedure Call. PhD thesis, Dept of Computer Science, Carnegie-Mellon
University, Pittsburgh, PA, 1981.

PG. Neumann. Illustrativerisksto the publicin the use of computer systems and rel ated technol ogy.
Software Engineering Notes, 16(1):2-9, Jan 1991.

P. Ng. A commit protocol for checkpointing transactions. In Proceedings of the Seventh Symposium
on Reliable Distributed Computing, pages 22—31, Columbus, Ohio, Oct 1988.

T. P Ng and S. Shi. Replicated transactions. In Proceedings of the Ninth International Conference
on Distributed Computing Systems, pages 474480, Newport Beach, CA, Jun 1989.

M. Olsen, E. Oskiewicz, and J. Warne. A model for interface groups. In Proceedings of the Tenth
Symposium on Reliable Distributed Systems, pages 98-107, Pisa, Italy, Sep 1991.

C. H. Papadimitriou. Serializability of concurrent database updates. Journal of the ACM, 26(4):631—
653, Oct 1979.

L. L. Peterson, N. C. Buchholz, and R. D. Schlichting. Preserving and using context information in
interprocess communication. ACM Transactions on Computer Systems, 7(3):217-246, Aug 1989.

K. J. Perry. Randomized Byzantine agreement. |EEE Transactions on Software Engineering, SE-
11(6):539-545, Jun 1985.

F. Panzieri and S. K. Shrivastava. Rajdoot: A remote procedure call mechanism supporting orphan
detection and killing. IEEE Transactions on Software Engineering, SE-14(1):30-37, Jan 1988.

39



[PSB+88]

[Rab76]
[Rab83]
[Ran75]

[RBO1]

[RC89]
[RLT78]

[RS88]

[RSA78]
[RSBOO]
[RSL78]
[Rus80]
[RV91]
[SB9O]
[SC90]
[Sch82]
[Sch87]
[Sch90]
[SDP91]

[SkeS2d]

D Powell, D. Seaton, G. Bonn, P. Verissimo, and F. Waeselynk. The Delta-4 approach to dependability
in open distributed computing systems. In Proceedings of the Eighteenth Symposium on Fault-
Tolerant Computing, Tokyo, Jun 1988.

M. O. Rabin. Probabilistic agorithms. In J. F. Traub, editor, Algorithms and Complexity, pages
21-39. Academic Press, 1976.

M. O. Rabin. Randomized Byzantine generals. In Proceedings of Twenty-fourth Annual Symposium
on Foundations of Computer Science, Tucson, AZ, Nov 1983.

B. Randell. System structurefor software fault tolerance. |EEE Transactions on Software Engineer-
ing, SE-1(2):220-232, Jun 1975.

A. Ricciardi and K. Birman. Using process groups to implement failure detection in asynchronous
environments. In Proceedings of Tenth Annual ACM Symposium on Principles of Distributed
Computing, pages 341-353, Montreal, Quebec, Canada, Aug 1991.

K. Ravindranand S. T. Chanson. Failuretransparency in remote procedure calls. |EEE Transactions
on Computers, 38(8):1173-1187, Aug 1989.

B. Randdll, PA. Lee, and PC. Treleaven. Reliability issues in computing system design. ACM
Computing Surveys, 10(2):123-166, Jun 1978.

P. Ramanathan and K. G. Shin. Checkpointing and rollback recovery in a distributed system using
common time base. In Proceedings of the Seventh Symposium on Reliable Distributed Systems,
pages 13-21, Columbus, OH, Oct 1988.

R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key
cryptosystems. Communications of the ACM, 21:120-126, Feb 1978.

P. Ramanathan, K. G. Shin, and R. W. Butler. Fault-tolerant clock synchronization in distributed
systems. |EEE Computer, 23(10):33-42, Oct 1990.

D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis. System level concurrency control for distributed
database systems. ACM Transactions on Database Systems, 3(2):178-198, Jun 1978.

D. L. Russdl. State restoration in systems of communicating processes. |EEE Transactions on
Software Engineering, SE-6(2):183-194, Mar 1980.

L. Rodriguesand P. Verissmo. xAMp: A multi-primitivegroup communications service. Technical
report, INESC, Lisboa, Portugal, Sep 1991.

M. Schroeder and M. Burrows. Performance of Firefly RPC. ACM Transactions on Computer
Systems, 6(1):1-17, Feb 1990.

J. W. Stamos and F. Cristian. A low-cost atomic commit protocol. In Proceedings of the Ninth
Symposium on Reliable Distributed Systems, pages 66—75, Oct 1990.

F. Schneider. Synchronization in distributed programs. ACM Transactions on Programming Lan-
guages and Systems, 4(2):125-148, Apr 1982.

F. Schneider. Understanding protocols for Byzantine clock synchronization. Technical Report
87-859, Dept of Computer Science, Cornell University, Aug 1987.

F. Schneider. Implementing fault-tolerant services using the state machine approach: A tutorial.
ACM Computing Surveys, 22(4):299-319, Dec 1990.

S. K. Shrivastava, G. N. Dixon, and G. D. Parrington. An overview of the Arjuna distributed
programming system. |EEE Software, 8(1):66—73, Jan 1991.

D. Skeen. Nonblocking commit protocols. In Proceedings of ACM SSGMOD Conference on
Management of Data, pages 133-147, Orlando, FL, Jun 1982.

40



[SkeB2b]

[SL84]

[SM77]

[SMR88]

[SS83]

[SS84]

[SSCAS87]

[ST87]

[Svo84]

[SW89)]

[SY85]

[Tes91]

[Tho79]

[TS84]

[Ver90]

[VMOO]

[VRO1]

[VRBS9]

[Weigg]

D. Skeen. A quorum based commit protocol. In Proceedings of Sxth Berkeley Workshop on
Distributed Data Management and Computer Networks, pages 69-80, Berkeley, CA, Feb 1982.

K. G. Shinand Y. H. Lee. Evaluation of recovery blocks used for checkpointing processes. |EEE
Transactions on Software Engineering, SE-10(6):692—700, Nov 1984.

R. M. Shapiro and R. E. Millstein. Reiability and fault recovery in distributed processing. In
Oceans 77 Conference Record, Vol |1, Los Angeles, 1977.

S. K. Shrivastava, L. V. Mancini, and B. Randell. On the duality of fault tolerant system structures.
In J. Nehmer, editor, Experiences with Distributed Systems, volume 309. LNCS Springer-Verlag,
1988.

R. Schlichting and F. Schneider. Fail-stop processors. An approach to designing fault tolerant
computing systems. ACM Transactions on Computer Systems, 1(3):222—-238, Aug 1983.

R. Schlichting and F. Schneider. Using message passing for distributed programming: Proof rules
and disciplines. ACM Transactions on Programming Languages and Systems, 6(3):402—431, Jul
1984.

R. Strong, D. Skeen, F. Cristian, and H. Aghili. Handshake protocols. In Proceedings of the Seventh
International Conference on Distributed Computing Systems, pages 521-528, Berlin, Sep 1987.

T. K. Srikanth and S. Toueg. Optimal clock synchronization. Journal of the ACM, 34(3):626-645,
Jul 1987.

L. Svobodova Resilient distributed computing. |EEE Transactions on Software Engineering, SE-
10(3):257-268, May 1984.

A. P Sistlaand J. L. Welch. Efficient distributed recovery using message logging. In Proceedings of
Eighth Annual ACM Symposiumon Principlesof Distributed Computing, pages 223-238, Edmonton,
Canada, Aug 1989.

R. Stromand S. Yemini. Optimisticrecovery in distributed systems. ACM Transactionson Computer
Systems, 3(3):204-226, Aug 1985.

I SA Project Core Team. ANSA: Assumptions, principles, and structures. In Conference proceedings
of Software Engineering Environments, University College of Wales, Aberystwyth, Wales, Mar
1991.

R. H. Thomas. A mgority consensus approach to concurrency control for multiple copy databases.
ACM Transactions on Database Systems, 4(2):180-209, Jun 1979.

Y. Tamir and C. H. Sequin. Error recovery in multicomputersusing global checkpoints. In Proceed-
ings of the Thirteenth International Conference on Parallel Processing, Aug 1984.

P. Verrissimo. Real-time data management with clockless reliable broadcast protocols. In Pro-
ceedings of the Workshop on Management of Replicated Data, pages 20-24, Houston, TX, Nov
1990.

P. Verissimo and J. Marques. Reliable broadcast for fault-tolerance on local computer networks. In
Proceedings of the Ninth Symposiumon Reliable Distributed Systems, pages 54-63, Huntsville, AL,
oct 1990.

P. Verissimo and L. Rodrigues. A posteriori agreement for fault-tolerant clock synchronization on
broadcast networks. Technica report, INESC, Lisboa, Portugal, Nov 1991.

P. Verissimo, L. Rodrigues, and M. Baptista. Amp: A highly paralel atomic multicast protocol. In
S GCOMM’ 89, pages 83-93, Austin, TX, Sep 1989.

W. Weihl. Using transactions in distributed applications. In Sape Mullender, editor, Distributed
Systems, pages 215-235. Addison-Wesl ey Publishing Company, ACM Press, New York, New York,
1989.

41



