
Modularity in the Design and Implementation of Consul

Shivakant Mishra,1 Larry L. Peterson and Richard D. Schlichting

TR 92-20

Abstract

Many applications constructed as Autonomous Decentralized Systems require high dependability, often
leading to the use of distributed architectures and their associated fault-tolerance techniques. Consul is
a system designed to support the use of such techniques in the construction of fault-tolerant, distributed
systems structured according to the state machine approach. Here, the way in which modularity has been
used in the design and implementation of Consul is described. Our approach to this issue makes it easy to
configure a system customized to the needs of a specific application, as well as facilitating the development
of the individual components that make up Consul.

August 3, 1992

Department of Computer Science
The University of Arizona

Tucson, AZ 85721

1Current address: Dept. of Computer Science and Engineering, University of California San Diego, La Jolla,
CA 92093, USA

1 Introduction

Distributed computer systems, in which multiple machines are connected by a communication network
with no shared memory, are important for realizing many of the potential benefits of Autonomous
Decentralized Systems (ADS). For example, the lack of memory contention in such an architecture
makes distributed systems more scalable than their shared memory counterparts, thus facilitating system
expandability. Another advantage, which is the focus of this paper, is that distributed systems provide an
inherent redundancy that can be exploited to improve the overall dependability of the system [Lap92].
High dependability is often the single-most important attribute needed in many of the applications for
which ADS are used, such as railway control and manufacturing systems.

To achieve high dependability, the software for a distributed system must be implemented as a
fault-tolerant, distributed program that can continue executing despite processor or network failures.
Recently, we have designed and implemented a system called Consul [Mis91, MPS91b] that provides
support for constructing such programs using the state machine approach [Sch90]. It does this by
providing various fault-tolerant services such as group-oriented multicast, membership, and recovery,
which simplify the problems associated with consistently ordering events and dealing with failures in
this approach. These services are realized using protocols as the fundamental modules of the system. A
large amount of research has been performed in areas related to this approach, including development
of new algorithms [CM84, Cri88, GMS91, RB91, VM90] and systems [BSS91, KDK+89, PSB+88].

In this paper, we overview the way in which modularity has been used in the design and imple-
mentation of Consul. Unlike other systems, in our approach, each fault-tolerant service is designed and
implemented independently of the others as one or two protocols, with a system then being constructed
from a library of such protocols. This configuration process is relatively simple, which makes it fea-
sible to customize the system by selecting only those specific services required by the application. In
addition, constructing a system from fundamental building blocks in this way also makes it easier to
design, implement, debug, and optimize individual protocols, as well as facilitating the identification of
interactions and dependencies among protocols. Of course, it has long been recognized that judicious
use of modularization can simplify the development of any type of complex system. Our goal during
the development of Consul has been to bring this technique to bear on the problem of constructing
fault-tolerant, distributed systems.

This paper is organized as follows. In Section 2, we first outline the basics of the state machine
approach and then describe the design of Consul, focusing on the various individual protocols that have
been defined. Section 3 then describes the structural aspects of the system implementation; in addition
to serving as a case study of how such modularity is achieved in fault-tolerant systems, this description
also documents other interesting features of the implementation. Our use of the x-kernel [HP91] as
an implementation platform has been influential in many aspects of Consul’s implementation, so its
fundamental characteristics are outlined here as well. Finally, Section 4 offers some conclusions.

2 Design Modularity

As already noted, Consul is a collection of protocols that form a communication substrate upon which
fault-tolerant, distributed systems can be built using the state machine approach [Sch90]. In this
approach, a system is structured as a collection of generic services that are implemented by multiple
processes for fault-tolerance. Each such service is characterized as a state machine, which maintains
state variables that are modified in response to commands that are received from other state machines or
the environment. Execution of a command is deterministic and atomic with respect to other commands.

1

DIVIDER

PSYNC

STABLE STORE

ORDERRECOVERYMEMBERSHIPFAILURE DETECTION

(RE)START

NETWORK

APPLICATION

Figure 1: Consul protocol configuration

The output of a state machine, that is, the sequence of commands to other state machines or the
environment, is completely determined by the sequence of input commands. A fault-tolerant version
of a state machine is implemented by replicating that state machine and running each replica in parallel
on a different processor in a distributed system. Key requirements for implementing the state machine
approach include maintaining replica consistency at all times and integrating repaired replicas following
failure. The protocols found in Consul are designed specifically to support these requirements. For
example, the multicast service provides atomic (i.e. all or nothing) message delivery and a consistent
ordering among all recipients, which makes it ideal for disseminating commands to state machine
replicas.

Consul assumes a distributed architecture in which the communication network is asynchronous,
i.e., there is no bound on the transmission delay for a message between any two machines. Messages
may be lost or delivered out-of-order, but it is assumed that they are never corrupted. Furthermore,
processors are assumed to suffer fail-silent semantics [PSB+88], i.e., they fail by crashing without
making any incorrect state transitions. Finally, Consul assumes that stable storage is available to each
processor, and that data written to stable storage survives processor crashes [Lam81].

A copy of Consul resides on each processor in the system, and provides an interface between
the application program (i.e., the state machine replicas) and the underlying network. The system
architecture is optimized to handle a relatively small number of replicas, a reasonable strategy given
Consul’s orientation towards the state machine approach. It does mean, however, that issues of scale
have not been addressed explicitly as they have been in other systems [BSS91, GMS91].

In keeping with our emphasis on modularity, the fault-tolerant services supported by Consul are

2

implemented independently of one another as individualprotocols rather than together in one monolithic
system. Figure 1 illustrates the detailed architecture of a typical protocol configuration in Consul. In
this figure, the rectangles are protocols, with an arrow from protocol P1 to protocol P2 indicating that
P1 depends on the correct functioning of P2 to ensure its own correctness [Cri91]. The stable store
protocol at the base of the substrate provides a storage facility that survives processor crashes. The
(re)start and divider protocols are configuration protocols, i.e., they aid the user in building a system
according to the requirements of the application. The (re)start protocol establishes a connection among
various protocols needed by an application for proper communication, and reestablishes them after a
failure; this protocol remains quiescent at other times. The divider protocol is a demultiplexing protocol
that directs messages in the system to the appropriate protocols. The role of these protocols is described
further in Section 3.

Psync is the main communication mechanism in Consul [PBS89]. It provides a group-oriented
interprocess communication mechanism in the form of a multicast facility that maintains the partial
order of messages exchanged in the system. Specifically, it supports a conversation abstraction through
which a collection of processes such as the state machine replicas exchange messages. A conversation
is explicitly opened by specifying a set of participating processes called the membership list, ML. A
message sent to the conversation is multicast to all processes in ML. Fundamentally, each process
sends a message in the context of those messages it has already sent or received, a relation that defines a
partial ordering on the messages exchanged through the conversation. This partial order, which has also
been called causal order [BSS91], is maintained explicitly by Psync in the form of a directed acyclic
graph called a context graph. At any given time during execution, each participant has a view of the
context graph, which is the subgraph corresponding to those messages it has sent or received up to that
point. Psync provides a set of operations for sending and receiving messages, as well as for inspecting
the context graph. The multicast message delivery implemented by Psync is atomic, i.e., either all the
processes in ML receive the message, or none do.

The order protocol in Consul enforces consistency among replicas on the order in which they receive
messages, a property that is used to guarantee that replicas process commands in an order that maintains
state consistency. This protocol is chosen from a suite of different and independent protocols, each
providing a different kind of consistent message ordering using the consistent partial ordering provided
directly by Psync as a base. At this point, two other kinds of orderings have been constructed. One
is a consistent total order; when combined with the atomic message delivery guarantees of Psync, this
gives the effect of an atomic broadcast [CASD85, KTHB89, MSM89, VRB89]. The other is a semantic
dependent order; this takes advantage of the commutativity of the commands encoded in messages to
provide an ordering that is less restrictive than total ordering, yet still strong enough to preserve the
correctness of the application [MPS89].

The failure detection and membership protocols deal with replica failures and recoveries, and
together comprise Consul’s membership service [MPS91a]. The failure detection protocol is used to
monitor replicas for failures. It does this based on message traffic, i.e., if no message is received from
some replica in a given interval of time, its failure is suspected. The membership protocol maintains
a consistent system-wide view of which replicas are functioning and which have failed at any point
in time. It does this by establishing agreement among correct replicas on (a) whether a replica that is
suspected down has actually failed and (b) when that failure occurred relative to the stream of messages.
Similarly, when a previously failed replica recovers, this protocol consistently incorporates it into ML

on all machines.
The recovery protocol comes into play when a previously failed replica recovers. Specifically, it

deals with restoring the state of the recovering replica to the current state of the other replicas, and

3

incorporating it smoothly back into the normal flow of the computation. This is done by first, reading
a checkpoint stored by the replica during execution, and then using an automatic replay of messages
stored in Psync’s context graph to process missing commands. Further details on all of these protocols
can be found in [Mis91].

3 Implementation Modularity

The implementation of Consul is made up of approximately 10,000 lines of C code, of which 3,500 is
Psync. As already mentioned, the implementation vehicle is the x-kernel, an operating system kernel
designed explicitly for experimenting with communication protocols. The version of the x-kernel
currently being used by Consul executes standalone on Sun-3 workstations, with a port to a version
running on the Mach microkernel in progress. Two small prototype applications have been constructed,
a replicated directory object and a replicated word search game; following the completion of the Mach
port, Consul will also be used to implement a replicated tuple space for a fault-tolerant version of the
Linda coordination language [ACG86]. Here, we first give an operational overview of the x-kernel
derived from [HP91] and then describe how it has been used to construct a modular implementation of
Consul.

3.1 Overview of the x-kernel

The x-kernel is an operating system kernel explicitly designed to support the rapid implementation of
efficient network protocols by providing a uniform protocol interface and an implementation support
library. The x-kernel provides three primitive communication objects: protocols, sessions, and mes-
sages. Protocol objects are static and passive. Each protocol object corresponds to a conventional
network protocol—e.g., IP [Pos81], UDP [Pos80], TCP [USC81]—where the relationships between
protocols are defined at the time a kernel is configured. Session objects are also passive, but they are
dynamically created. Intuitively, a session object is an instance of a protocol object that contains a “pro-
tocol interpreter” and the data structures that represent the local state of some “network connection”.
Messages are active objects that move through the session and protocol objects in the kernel. The data
contained in a message object correspond to one or more protocol headers and user data.

A protocol object supports three operations for creating session objects:

session = open(protocol, invoking protocol, participant set)
open enable(protocol, invoking protocol, participant set)
session = open done(protocol, invoking protocol, participant set)

Intuitively, a high-level protocol invokes a low-level protocol’s open operation to create a session;
that session is said to be in the low-level protocol’s class and created on behalf of the high-level
protocol. Each protocol object is given a capability for the low-level protocols upon which it depends at
configuration time. The capability for the invoking protocol passed to the open operation serves as the
newly created session’s handle on that protocol. In the case of open enable, the high-level protocol
passes a capability for itself to a low-level protocol. At some future time, the latter protocol invokes the
former protocol’s open done operation to inform the high-level protocol that it has created a session
on its behalf. Thus, the first operation supports session creation triggered by a user process (an active
open), while the second and third operations, taken together, support session creation triggered by a
message arriving from the network (a passive open).

4

In addition to creating sessions, each protocol also “switches” messages received from the network
to one of its sessions with a demux(protocol, message) operation. demux takes a message as
an argument, and either passes the message to one of its sessions, or creates a new session—using the
open done operation—and then passes the message to it.

A session object supports two operations: push(session, message) and pop(session,
message). The first is invoked by a high-level session to pass a message down to some low-level
session. The second is invoked by the demux operation of a protocol to pass a message up to one of
its sessions.

3.2 Substrate Implementation using the x-kernel

Each of the protocols shown in Figure 1 is available to the system designer as a protocol object. Ac-
cordingly, there are single protocol objects implementing Psync, divider, membership, failure detection,
and recovery; there is also a suite of objects implementing order, where each object realizes a different
ordering semantics. Connections among the protocol objects are established by the (re)start protocol
object. For every specific combination of protocols needed by the user, there is a separate protocol ob-
ject implementing the corresponding (re)start protocol; the application picks up the appropriate (re)start
protocol object that suits its needs.

When compared to a monolithic alternative, our emphasis on modularity in the implementation of
Consul forced us to pay special attention to the communication and configuration aspects of the system.
Accordingly, we now focus on these aspects of the implementation by describing how messages are
structured, how the connections between various protocol objects are established initially and used
during normal operation, and how these connections are restored following a failure. We also discuss
optimizations that were performed to avoid some of the performance penalties often associated with
modular systems.

Message Structure. In general, the emphasis on modularity in the design of Consul means that
protocols need to interact with one another to implement a given fault-tolerant service. For example,
as noted in Section 2, the failure detection and membership protocols cooperate to implement the
functionality of a membership service. To facilitate this type of cooperation, both between protocols on
different machines as well between different protocols on the same machine, certain information about
the structure of messages is shared among protocols in the system. Specifically, information is shared
about the two types of messages that are pushed onto the Psync protocol object in the communication
substrate: OT (operation type) and MT (monitoring type). The OT message is an application-generated
message used to invoke specific operations on each replica, while the MT message is used to ensure the
consistency of Consul during failures and recoveries.

10 2 8 31
first OT op data

Figure 2: Operation Type message

Figure 2 schematically depicts the OT message. As shown here, it is four bytes long, with the
numbers along the bottom indicating the starting position of each field. Here, first indicates whether
this is the first message of the system, op is the operation to be invoked on the object and the data

5

includes the arguments of the operation. The MT message, which is 12 bytes long, is schematically
depicted in Figure 3. Here, mode indicates the type of the membership message and p addr indicates
the address of the replica. As described in [MPS91a], there are five types of membership messages:
<P is down>, <P is up>, <Ack, P is down>, <Nack, P is down> and<Ack, P is
up>. The first is sent by the failure detection protocol object upon suspecting the failure of a replica to
initiate the agreement protocol, the second is sent by a recovering replica for the same purpose, and the
final three are responses that may be generated by other functioning replicas.

0 1 2 8 72 95
first MT mode p_addr data

Figure 3: Monitoring Type message

In Consul, a protocol object receives one or more types of messages. For example, the order
protocol object receives both the OT and MT messages, while the membership protocol object receives
only MT messages. The protocol objects specify which messages they expect to receive to the divider
protocol object upon initialization, and the divider protocol object, in turn, delivers the appropriate
messages as they are received.

Initialization. An application using Consul consists of a well-defined set of processes—one for
each state machine replica—that explicitly open connections among themselves in order to exchange
messages, plus potentially some user processes that submit commands externally. To establish these
connections among replicas, one replica does an active open, while the remaining replicas do passive
opens. This process of starting Consul is similar to that used for Psync, and in fact, an active open in
Consul results in an active open of the Psync protocol object, while a passive open results is a passive
open of Psync. Figure 4 shows the sessions that are created at one site in Consul; protocol objects are
depicted as rectangles, with the corresponding session objects shown as circles. In the following, we
describe how these sessions are created and how the connections are established among the protocol
objects; in doing so, we consider both active and passive opens. For convenience, we use the terms
protocol and protocol object synonymously.

Active Open. Each user process wishing to interact with the replica on a particular processor is
identified by a port id. This process opens the (re)start protocol once for every operation exported by
the replica. This is done using the open primitive provided by the x-kernel. The parameters of this
call include the operation id, port id, and participant set. The session returned from this call is then
used by the user process to invoke the corresponding operation by doing a push onto this session.

The (re)start protocol is responsible for opening every protocol needed by the user process. The
open procedure of the (re)start protocol object opens the divider protocol when it is invoked for the
first time for a given port id. The arguments to this call include the restart id, port id, and participant
set. The session id of the session returned from this call acts as the unique system-wide identifier of the
system and is referred to as the system id; since any given instantiation of Consul contains exactly one
Psync session, this identifier allows a user process to participate simultaneously in multiple applications
built using the system. The (re)start protocol maintains a mapping of port id to system id for future
reference. On receiving this system id, the (re)start protocol opens the failure detection, membership,
recovery, and dispatch protocol objects. The failure detection, membership, and recovery protocol

6

USER

DIVIDER

DISPATCH

MEMBERSHIP

RECOVERY

PSYNC

S

S
membership
divider

recovery
dividerS

psync
divider

S

...

(RE)START

S
membership
(re)start

Sdispatch
(re)start

recovery
(re)start

ORDER

Sdivider
order

S
dispatch
order

dividerS
failure detection

FAILURE DETECTION

S
(re)start

failure detection

Figure 4: Protocol and session objects

objects are opened exactly once for a given port id, while the dispatch protocol object is opened every
time the open procedure of the (re)start is invoked. The arguments for all these invocations include
the system id and the participant id of the replica invoking the call. The arguments for opening the
dispatch protocol also include the corresponding operation id. The session returned by the dispatch
protocol is returned to the user process.

The open procedure of the dispatch protocol object opens the appropriate order protocol object
once for a given system id. It creates a session and returns it to the invoking protocol object. The pair
< S

dispatch
order ; operation id > is used by the dispatch protocol to demultiplex incoming messages to the

appropriate sessions above.
When the open procedure of the failure detection, membership, recovery, and order protocol

objects is invoked, these protocol objects in turn open the divider protocol. The arguments to these calls
include the system id and the types of messages that these protocol objects expect to receive. These
protocol objects also create a session on this invocation. The session returned by the divider protocol is
used by these protocol objects to demultiplex the incoming messages to the appropriate sessions above.

The divider protocol is used to demultiplex the incoming messages to one or more protocols above.
When it is opened by the (re)start protocol, it opens the Psync protocol object and returns the Psync
session, returned from the Psync open procedure, to the (re)start protocol. When opened by some
other protocol object, it creates a session and returns it to the invoking protocol. It also maintains a

7

map from hsystem id;message typei to a set of sessions, which is used to demultiplex the incoming
messages to the appropriate protocols. This map is updated every time a protocol other than (re)start
opens the divider.

Passive Open. The user processes on the sites containing passive replicas do openenable on the
(re)start protocol, once for every operation the replica exports. The corresponding sessions are returned
by the (re)start protocol by invoking the user process’ opendone procedure.

Theopenenableprocedure of the (re)start protocol invokesopenenableof the divider protocol
exactly once for a given port id. This procedure also maintains a map from port id to a list of
< operation id; participant id > to be used when the corresponding opendone procedure is
invoked. The opendone procedure of the (re)start protocol is invoked by the divider protocol when
the first message is received with the port id as argument. In this procedure, (re)start opens the failure
detection, membership, recovery, and dispatch protocols. The opendone procedure then invokes the
opendone procedure of the user process with the appropriate dispatch session as argument.

When the openenable procedure of the divider protocol is invoked, it performs an openenable
on the Psync protocol. When the divider’sopendone procedure is invoked, it invokes the opendone
procedure of the (re)start protocol with the Psync session as one of the arguments. The failure detection,
membership, recovery, dispatch and order protocols do not have openenable procedures since these
protocols are always opened actively.

Optimizations. Several optimizations have been made in the implementation to improve system
performance while still retaining its modular structure. The most important of these involve modifying
the message flow to direct messages only to those protocol and session objects that actually process
it. Figure 5 shows the path a message takes as it moves upwards from the Psync protocol through
the substrate. There are two optimizations done as the message flows in this direction. First, since
the (re)start protocol is needed only for establishing connections, it does not need to see messages.
Accordingly the (re)start protocol object and the (re)start session object are bypassed and the message
moves directly from the dispatch sessions to the user protocol object. The second optimization is
bypassing the divider sessions. The divider protocol needs to see the incoming message to demultiplex
it to the appropriate protocols above, but there is no function to be performed in its sessions as the
message flows up. Thus, these sessions are bypassed and the message moves directly from the divider
protocol to the failure detection, membership, recovery or order protocols.

Figure 6 shows the path a message takes as it moves down through the communication substrate.
Again, there are two optimizations performed as the message flows in this direction. The first optimiza-
tion involves bypassing the (re)start sessions. Since the (re)start sessions do not process an outgoing
message, the message is directly pushed from the user to the appropriate dispatch sessions. In the
second optimization, the divider sessions are bypassed. Since divider is a headerless protocol and is
needed only for demultiplexing the message as it flows upwards, the corresponding sessions do not
need to see the message as it moves in the other direction. Accordingly, a message is pushed directly
from the failure detection, membership, recovery, or order sessions to the Psync session.

The net result of the optimizations is that the (re)start sessions are not created since they end up
performing no function in the substrate. On the other hand, the divider sessions, though not used in
the message flow, are created, since the session id of these sessions are used by the failure detection,
membership, recovery, and order protocols to demultiplex incoming messages to the sessions above.

8

USER

DIVIDER

DISPATCH

MEMBERSHIP

RECOVERY

PSYNC

S

S
membership
divider

recovery
dividerS

psync
divider

S

...

(RE)START

S
membership
(re)start

Sdispatch
(re)start

recovery
(re)start

ORDER

Sdivider
order

S
dispatch
order

Sdivider
failure detection

S
(re)start

failure detection

FAILURE DETECTION

Figure 5: Message flow upwards

Restoring Connections. The connections among various protocol and session objects, as well as their
states, are lost when a processor crash occurs. As a result, when a replica recovers, all of these objects
and interconnections must be recreated. To restore these connections, every protocol and session object
stores information in the stable store at a well known logical address. Typically, a protocol object stores
the number of its associated session objects and for every session, the logical addresses in the stable
store where the session state is checkpointed, while a session object stores its state. This is performed
during the periodic checkpointing that every session performs while the system is in operation. After
this is done, connections among protocol and session objects are restored by the (re)start protocol.
However, there is an additional complexity: the session states cannot be fully restored given only the
information stored by the corresponding protocol and session object, since these states also depend on
the checkpoints taken by the other protocols. This problem is solved as follows. First, the (re)start
protocol gathers the relevant checkpoints from all the protocols; these checkpoints include the port ids
that invoked the (re)start protocol, the corresponding system ids, and all the operation identifiers for
every port id. The (re)start protocol then invokes the divider protocol with a control operation to restore
the sessions corresponding to each system id. The divider protocol, in turn, invokes the Psync protocol
object to reconstruct the session state corresponding to the session id retrieved from stable storage. The
Psync protocol object creates a Psync session, reconstructs the context graph from the stable storage
and returns the new system id to the divider protocol, which returns it to the (re)start protocol. (re)start

9

FAILURE DETECTION

USER

DIVIDER

DISPATCH

MEMBERSHIP

RECOVERY

PSYNC

S

S
membership
divider

recovery
dividerS

psync
divider

S

...

(RE)START

S
membership
(re)start

Sdispatch
(re)start

recovery
(re)start

ORDER

Sdivider
order

S
dispatch
order

dividerS
failure detection

S
(re)start

failure detection

Figure 6: Message flow downwards

then invokes the failure detection, membership, dispatch, and recovery protocol objects to recover their
appropriate session states, while the dispatch protocol in turn invokes the order protocol to recover the
state of its session.

This completes restoration of the connections among various protocol and session objects of the
communication substrate. The connection between the user process and the substrate is restored when
the user invokes the (re)start protocol with the appropriate port id.

4 Conclusions

Consul is a modular system, both in its design and its implementation. The design emphasizes the
use of separate protocols for each fault-tolerant service, with communication between protocols on the
same or different machines being constrained to well-defined interfaces. Such a strategy avoids many
of the ad-hoc structuring and control paths that often accompany a monolithic system. Moreover, the
implementation retains this modularity by using the configuration and communication support provided
by the x-kernel. Our experience, both with Consul directly [Mis91] as well as with other systems
built using the x-kernel model [HPOA89, OP92], is that this modularization comes with little or no
performance penalty.

10

Despite our positive experience with modularization in this context, there were, in fact, a number of
difficulties that made the process less straightforward than it might appear. Many of these were caused by
indirect dependencies between protocols. In contrast with direct functional dependencies such as those
illustrated in Figure 1, an indirect dependency occurs when execution of one protocol affects another
without any direct communication. For example, in Consul, the states of the recovery, membership, and
Psync protocols affect the optimal value of the timer maintained by the failure detection protocol. Such
dependencies complicate the process of defining modules and their interfaces, and ensuring correctness
and efficiency of the system.

Our current research in this area is concentrating on identifying and characterizing the dependencies
that exist between protocols used for building fault-tolerant, distributed systems. As part of this effort,
we are also working on developing a new model for this type of protocol that we hope will facilitate
modularization [HS92]. This new model is based on further refining protocols into their orthogonal
properties and then realizing these properties with a standard system framework.

Acknowledgments

This work has been supported in part by NSF Grant CCR-9003161, ONR Grant N00014-91J-1015, and
DARPA Contract DABT63-91-0030.

References

[ACG86] Sudhir Ahuja, Nicholas Carriero, and David Gelernter. Linda and friends. IEEE Computer, 19(8):26–
34, August 1986.

[BSS91] K. Birman, A. Schiper, and P. Stephenson. Lightweight causal and atomic group multicast. ACM
Transactions on Computer Systems, 9(3):272–314, Aug 1991.

[CASD85] F. Cristian, H. Aghili, R. Strong, and D. Dolev. Atomic broadcast: From simple message diffusion
to Byzantine agreement. In Proceedings of the Fifteenth International Symposium on Fault-Tolerant
Computing, pages 200–206, Ann Arbor, MI, Jun 1985.

[CM84] J. Chang and N. Maxemchuk. Reliable broadcast protocols. ACM Transactions on Computer
Systems, 2(3):251–273, Aug 1984.

[Cri88] F. Cristian. Agreeing on who is present and who is absent in a synchronous distributed system.
In Proceedings of the Eighteenth International Conference on Fault-tolerant Computing, pages
206–211, Tokyo, Jun 1988.

[Cri91] F. Cristian. Understanding fault-tolerant distributedsystems. Communicationsof ACM, 34(2):56–78,
Feb 1991.

[GMS91] H. Garcia-Molina and A. Spauster. Ordered and reliable multicast communication. ACM Transac-
tions on Computer Systems, 9(3):242–271, Aug 1991.

[HP91] N. C. Hutchinson and L. L. Peterson. The x-kernel: An architecture for implementing network
protocols. IEEE Transactions on Software Engineering, 17(1):64–76, Jan 1991.

[HPOA89] N. C. Hutchinson, L. L. Peterson, S. O’Malley, and M. Abbott. RPC in the x-kernel: Evaluating new
design techniques. In Proceedings of the Twelfth ACM Symposium on Operating Systems Principles,
pages 91–101, Litchfield Park, AZ, Dec 1989.

[HS92] M. Hiltunen and R. D. Schlichting. Modularizing fault-tolerant protocols. In Fifth SIGOPS European
Workshop, Le Mont Saint-Michel, France, Sept 1992. To appear.

11

[KDK+89] H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabl, C. Senft, and R. Zainlinger. Distributed
fault-tolerant real-time systems: The Mars approach. IEEE Micro, pages 25–40, Feb 1989.

[KTHB89] M. F. Kaashoek, A. Tanenbaum, S. F. Hummel, and H. Bal. An efficient reliable broadcast protocol.
Operating Systems Review, 23(4):5–19, Oct 1989.

[Lam81] B. Lampson. Atomic transactions. In Distributed Systems—Architecture and Implementation, pages
246–265. Springer-Verlag, Berlin, 1981.

[Lap92] J. C. Laprie, editor. Dependability: Basic Concepts and Terminology. Springer-Verlag, Vienna,
1992.

[Mis91] S. Mishra. Consul: A Communication Substrate for Fault-tolerant Distributed Programs. PhD
thesis, Dept of Computer Science, University of Arizona, Tucson, AZ, 1991.

[MPS89] S. Mishra, L. Peterson, and R. Schlichting. Implementing replicated objects using Psync. In
Proceedings of the Eighth Symposium on Reliable Distributed Computing, pages 42–52, Seattle,
Washington, Oct 1989.

[MPS91a] S. Mishra, L. Peterson, and R. Schlichting. A membership protocol based on partial order. In
Proceedings of the Second Working Conference on Dependable Computing for Critical Applications,
pages 137–145, Tucson, AZ, Feb 1991.

[MPS91b] S. Mishra, L. L. Peterson, and R. D. Schlichting. Consul: A communication substrate for fault-
tolerant distributed programs. Technical Report TR 91-32, Dept of Computer Science, University of
Arizona, Tucson, AZ, 1991.

[MSM89] P. M. Melliar-Smith and L. E. Moser. Fault-tolerant distributed systems based on broadcast commu-
nication. In Proceedings of the Ninth International Conference on Distributed Computing Systems,
pages 129–134, Newport Beach, CA, Jun 1989.

[OP92] Sean W. O’Malley and Larry L. Peterson. A dynamic network architecture. ACM Transactions on
Computer Systems, 10(2):110–143, May 1992.

[PBS89] L. L. Peterson, N. C. Buchholz, and R. D. Schlichting. Preserving and using context information in
interprocess communication. ACM Transactions on Computer Systems, 7(3):217–246, Aug 1989.

[Pos80] Jon Postel. User datagram protocol. Request For Comments 768,USC Information Sciences Institute,
Marina del Ray, Calif., Aug 1980.

[Pos81] Jon Postel. Internet protocol. Request For Comments 791, USC Information Sciences Institute,
Marina del Ray, Calif., Sep 1981.

[PSB+88] D Powell, D. Seaton, G. Bonn, P. Verissimo, and F. Waeselynk. The Delta-4 approach to dependability
in open distributed computing systems. In Proceedings of the Eighteenth Symposium on Fault-
Tolerant Computing, Tokyo, Jun 1988.

[RB91] A. Ricciardi and K. Birman. Using process groups to implement failure detection in asynchronous
environments. In Proceedings of Tenth Annual ACM Symposium on Principles of Distributed
Computing, pages 341–353, Montreal, Quebec, Canada, Aug 1991.

[Sch90] F. Schneider. Implementing fault-tolerant services using the state machine approach: A tutorial.
ACM Computing Surveys, 22(4):299–319, Dec 1990.

[USC81] USC. Transmission control protocol. Request For Comments 793, USC Information Sciences
Institute, Marina del Ray, Calif., Sep 1981.

[VM90] P. Verissimo and J. Marques. Reliable broadcast for fault-tolerance on local computer networks. In
Proceedings of the Ninth Symposium on Reliable Distributed Systems, pages 54–63, Huntsville, AL,
oct 1990.

[VRB89] P. Verissimo, L. Rodrigues, and M. Baptista. Amp: A highly parallel atomic multicast protocol. In
SIGCOMM’89, pages 83–93, Austin, TX, Sep 1989.

12

