Modularity in the Design and | mplementation of Consul

Shivakant Mishra,' Larry L. Peterson and Richard D. Schlichting

TR 92-20

Abstract

Many applications constructed as Autonomous Decentralized Systems require high dependability, often
leading to the use of distributed architectures and their associated fault-tolerance techniques. Consul is
a system designed to support the use of such techniques in the construction of fault-tolerant, distributed
systems structured according to the state machine approach. Here, the way in which modularity has been
used in the design and implementation of Consul is described. Our approach to thisissue makes it easy to
configure a system customized to the needs of a specific application, aswell asfacilitating the devel opment
of the individual components that make up Consul.

August 3, 1992

Department of Computer Science
The University of Arizona
Tucson, AZ 85721

! Current address: Dept. of Computer Science and Engineering, University of CaliforniaSan Diego, La Jolla,
CA 92093, USA

1 Introduction

Distributed computer systems, in which multiple machines are connected by a communication network
with no shared memory, are important for realizing many of the potential benefits of Autonomous
Decentralized Systems (ADS). For example, the lack of memory contention in such an architecture
makes distributed systems more scal abl ethan their shared memory counterparts, thusfacilitating system
expandability. Another advantage, whichisthefocusof thispaper, isthat distributed systemsprovidean
inherent redundancy that can be exploited to improve the overall dependability of the system [Lap92].
High dependability is often the single-most important attribute needed in many of the applications for
which ADS are used, such as railway control and manufacturing systems.

To achieve high dependability, the software for a distributed system must be implemented as a
fault-tolerant, distributed program that can continue executing despite processor or network failures.
Recently, we have designed and implemented a system called Consul [Mis91, MPS91b] that provides
support for constructing such programs using the state machine approach [Sch90]. It does this by
providing various fault-tol erant services such as group-oriented multicast, membership, and recovery,
which simplify the problems associated with consistently ordering events and dealing with failuresin
thisapproach. These servicesare realized using protocol s asthe fundamental modules of the system. A
large amount of research has been performed in areas related to this approach, including devel opment
of new algorithms[CM84, Cri88, GMS91, RB91, VM90] and systems [BSS91, KDK+89, PSB*88].

In this paper, we overview the way in which modularity has been used in the design and imple-
mentation of Consul. Unlike other systems, in our approach, each fault-tolerant serviceis designed and
implemented independently of the others as one or two protocols, with a system then being constructed
from alibrary of such protocols. This configuration process is relatively simple, which makes it fea-
sible to customize the system by selecting only those specific services required by the application. In
addition, constructing a system from fundamental building blocks in this way also makes it easier to
design, implement, debug, and optimizeindividua protocols, as well as facilitating theidentification of
interactions and dependencies among protocols. Of course, it has long been recognized that judicious
use of modularization can simplify the development of any type of complex system. Our goal during
the development of Consul has been to bring this technique to bear on the problem of constructing
fault-tolerant, distributed systems.

This paper is organized as follows. In Section 2, we first outline the basics of the state machine
approach and then describe the design of Consul, focusing on the variousindividual protocolsthat have
been defined. Section 3 then describes the structural aspects of the system implementation; in addition
to serving as a case study of how such modularity is achieved in fault-tolerant systems, this description
also documents other interesting features of the implementation. Our use of the x-kerndl [HP91] as
an implementation platform has been influential in many aspects of Consul’s implementation, so its
fundamental characteristics are outlined here aswell. Finaly, Section 4 offers some conclusions.

2 Design Modularity

As aready noted, Consul is a collection of protocols that form a communication substrate upon which
fault-tolerant, distributed systems can be built using the state machine approach [Sch90]. In this
approach, a system is structured as a collection of generic services that are implemented by multiple
processes for fault-tolerance. Each such service is characterized as a state machine, which maintains
statevariablesthat are modified in responseto commandsthat are received from other state machinesor
the environment. Execution of acommand is deterministic and atomic with respect to other commands.

APPLICATION

(RE)START

[FAILURE DETECTION | [MEMBERSHIP [RECOVERY| |ORDER|

STABLE STORE

NETWORK

Figure 1. Consul protocol configuration

The output of a state machine, that is, the sequence of commands to other state machines or the
environment, is completely determined by the sequence of input commands. A fault-tolerant version
of a state machine isimplemented by replicating that state machine and running each replicain paralléel
on a different processor in a distributed system. Key requirements for implementing the state machine
approach include maintaining replicaconsistency at all timesand integrating repaired replicasfollowing
failure. The protocols found in Consul are designed specifically to support these requirements. For
example, the multicast service provides atomic (i.e. al or nothing) message delivery and a consistent
ordering among all recipients, which makes it idea for disseminating commands to state machine
replicas.

Consul assumes a distributed architecture in which the communication network is asynchronous,
i.e., there is no bound on the transmission delay for a message between any two machines. Messages
may be lost or delivered out-of-order, but it is assumed that they are never corrupted. Furthermore,
processors are assumed to suffer fail-silent semantics [PSB*88], i.e., they fail by crashing without
making any incorrect state transitions. Finally, Consul assumes that stable storage is available to each
processor, and that data written to stable storage survives processor crashes [Lam81].

A copy of Consul resides on each processor in the system, and provides an interface between
the application program (i.e., the state machine replicas) and the underlying network. The system
architecture is optimized to handle a relatively small number of replicas, a reasonable strategy given
Consul’s orientation towards the state machine approach. It does mean, however, that issues of scale
have not been addressed explicitly as they have been in other systems[BSS91, GM S91].

In keeping with our emphasis on modularity, the fault-tolerant services supported by Consul are

implemented independently of one another asindividual protocol srather than together in one monolithic
system. Figure 1 illustrates the detailed architecture of a typical protocol configuration in Consul. In
this figure, the rectangles are protocols, with an arrow from protocol P; to protocol P, indicating that
P, depends on the correct functioning of P, to ensure its own correctness [Cri91]. The stable store
protocol at the base of the substrate provides a storage facility that survives processor crashes. The
(re)start and divider protocols are configuration protocols, i.e., they aid the user in building a system
according to the requirements of the application. The (re)start protocol establishesa connection among
various protocols needed by an application for proper communication, and reestablishes them after a
failure; this protocol remains quiescent at other times. Thedivider protocol isademultiplexing protocol
that directs messagesin the system to the appropriate protocols. Therole of these protocolsis described
further in Section 3.

Psync is the main communication mechanism in Consul [PBS89]. It provides a group-oriented
interprocess communication mechanism in the form of a multicast facility that maintains the partia
order of messages exchanged in the system. Specifically, it supportsa conver sation abstraction through
which a collection of processes such as the state machine replicas exchange messages. A conversation
is explicitly opened by specifying a set of participating processes called the membership list, M L. A
message sent to the conversation is multicast to al processesin M L. Fundamentally, each process
sendsamessagein the context of those messagesit has already sent or received, arelationthat definesa
partial ordering on the messages exchanged through the conversation. Thispartia order, which hasalso
been called causal order [BSS91], is maintained explicitly by Psync in the form of a directed acyclic
graph called a context graph. At any given time during execution, each participant has a view of the
context graph, which is the subgraph corresponding to those messages it has sent or received up to that
point. Psync provides a set of operations for sending and receiving messages, as well as for inspecting
the context graph. The multicast message delivery implemented by Psync is atomic, i.e., either al the
processesin M I, receive the message, or none do.

Theorder protocol in Consul enforces consistency among replicason theorder in whichthey receive
messages, aproperty that is used to guarantee that replicas process commandsin an order that maintains
state consistency. This protocol is chosen from a suite of different and independent protocols, each
providing adifferent kind of consistent message ordering using the consistent partial ordering provided
directly by Psync as a base. At this point, two other kinds of orderings have been constructed. One
isa consistent total order; when combined with the atomic message delivery guarantees of Psync, this
givestheeffect of an atomic broadcast [CASD85, KTHB89, MSM89, VRB89]. Theother isasemantic
dependent order; this takes advantage of the commutativity of the commands encoded in messages to
provide an ordering that is less restrictive than total ordering, yet still strong enough to preserve the
correctness of the application [MPS39].

The failure detection and membership protocols deal with replica failures and recoveries, and
together comprise Consul’s membership service [MPS91a]. The failure detection protocol is used to
monitor replicas for failures. It does this based on message treffic, i.e., if no message isreceived from
some replicain a given interval of time, itsfailure is suspected. The membership protocol maintains
a consistent system-wide view of which replicas are functioning and which have failed at any point
intime. It does this by establishing agreement among correct replicas on (a) whether areplicathat is
suspected down has actua ly failed and (b) when that failure occurred rel ative to the stream of messages.
Similarly, when a previously failed replicarecovers, this protocol consistently incorporatesitinto M L
on all machines.

The recovery protocol comes into play when a previously failed replica recovers. Specificaly, it
deals with restoring the state of the recovering replica to the current state of the other replicas, and

incorporating it smoothly back into the normal flow of the computation. Thisis done by first, reading
a checkpoint stored by the replica during execution, and then using an automatic replay of messages
stored in Psync's context graph to process missing commands. Further detailson all of these protocols
can be foundin [Mis91].

3 Implementation Modularity

The implementation of Consul is made up of approximately 10,000 lines of C code, of which 3,500 is
Psync. As aready mentioned, the implementation vehicleis the x-kernel, an operating system kernel
designed explicitly for experimenting with communication protocols. The version of the x-kernel
currently being used by Consul executes standalone on Sun-3 workstations, with a port to a version
running on the Mach microkernel in progress. Two small prototype applications have been constructed,
areplicated directory object and areplicated word search game; following the completion of the Mach
port, Consul will aso be used to implement a replicated tuple space for a fault-tolerant version of the
Linda coordination language [ACG86]. Here, we first give an operational overview of the x-kernel
derived from [HP91] and then describe how it has been used to construct a modular implementation of
Consul.

3.1 Overview of the z-kerndl

The z-kernel is an operating system kernel explicitly designed to support the rapid implementation of
efficient network protocols by providing a uniform protocol interface and an implementation support
library. The z-kernel provides three primitive communication objects: protocols, sessions, and mes-
sages. Protocol objects are static and passive. Each protocol object corresponds to a conventional
network protocol—e.g., IP [Pos81], UDP [Pos80], TCP [USC81]—where the relationships between
protocols are defined at the time a kerndl is configured. Session objects are also passive, but they are
dynamically created. Intuitively, asessionobject isan instanceof a protocol object that containsa“ pro-
tocol interpreter” and the data structures that represent the local state of some “network connection”.
Messages are active objects that move through the session and protocol objectsin the kernel. The data
contained in amessage object correspond to one or more protocol headers and user data.
A protocol object supportsthree operationsfor creating session objects:

sessi on = open(protocol, invoking_protocol, participant_set)
open_enabl e(prot ocol , invoking_protocol, participant_set)
session = open_done(protocol, invoking_protocol, participant_set)

Intuitively, a high-level protocol invokes a low-level protocol’s open operation to create a session;
that session is said to be in the low-level protocol’s class and created on behaf of the high-level
protocol. Each protocol object isgiven acapability for thelow-level protocol suponwhich it depends at
configurationtime. The capability for theinvoking protocol passed to the open operation serves asthe
newly created session’shandle on that protocol. In the case of open_enabl e, the high-level protocol
passes a capability for itself to alow-level protocol. At somefuturetime, thelatter protocol invokesthe
former protocol’s open_done operation to inform the high-level protocol that it has created a session
on itsbehalf. Thus, the first operation supports session creation triggered by a user process (an active
open), while the second and third operations, taken together, support session creation triggered by a
message arriving from the network (a passive open).

In addition to creating sessions, each protocol also “switches” messages received from the network
to one of itssessionswith adenux(pr ot ocol , nessage) operation. dermux takes a message as
an argument, and either passes the message to one of its sessions, or creates a new session—using the
open_done operation—and then passes the message to it.

A session object supportstwo operations. push(sessi on, nmessage) and pop(sessi on,
nmessage) . Thefirst isinvoked by a high-level session to pass a message down to some low-level
session. The second is invoked by the demux operation of a protocol to pass a message up to one of
its sessions.

3.2 Substrate Implementation using the z-kernel

Each of the protocols shown in Figure 1 is available to the system designer as a protocol object. Ac-
cordingly, there are singleprotocol objectsimplementing Psync, divider, membership, failure detection,
and recovery; thereis aso a suite of objectsimplementing order, where each object realizes a different
ordering semantics. Connections among the protocol objects are established by the (re)start protocol
object. For every specific combination of protocols needed by the user, there is a separate protocol ob-
ject implementing the corresponding (re)start protocol; the application picks up the appropriate (re)start
protocol object that suitsits needs.

When compared to a monalithic aternative, our emphasis on modularity in the implementation of
Consul forced usto pay specia attention to the communication and configuration aspects of the system.
Accordingly, we now focus on these aspects of the implementation by describing how messages are
structured, how the connections between various protocol objects are established initially and used
during normal operation, and how these connections are restored following afailure. We also discuss
optimizations that were performed to avoid some of the performance penalties often associated with
modular systems.

Message Structure. In general, the emphasis on modularity in the design of Consul means that
protocols need to interact with one another to implement a given fault-tolerant service. For example,
as noted in Section 2, the failure detection and membership protocols cooperate to implement the
functionality of amembership service. To facilitatethistype of cooperation, both between protocolson
different machines as well between different protocols on the same machine, certain information about
the structure of messages is shared among protocolsin the system. Specifically, information is shared
about the two types of messages that are pushed onto the Psync protocol object in the communication
substrate: OT (operationtype) and MT (monitoring type). The OT message isan application-generated
message used to invoke specific operationson each replica, whilethe MT message is used to ensurethe
consistency of Consul during failures and recoveries.

|first |OT | op | data |
o 1 2 8 31

Figure 2: Operation Type message

Figure 2 schematically depicts the OT message. As shown here, it is four bytes long, with the
numbers along the bottom indicating the starting position of each field. Here, first indicates whether
this is the first message of the system, op is the operation to be invoked on the object and the data

includes the arguments of the operation. The MT message, which is 12 bytes long, is schematically
depicted in Figure 3. Here, mode indicates the type of the membership message and p_addr indicates
the address of the replica. As described in [MPS914d], there are five types of membership messages:
<P is down><P is up><Ack, P is down> <Nack, P is down>and<Ack, P is
up>. Thefirst issent by the failure detection protocol object upon suspecting thefailure of areplicato
initiate the agreement protocol, the second is sent by arecovering replicafor the same purpose, and the
final three are responses that may be generated by other functioning replicas.

|first|MT|mode| p_addr | data |
0 1 2 8 72 95

Figure 3: Monitoring Type message

In Consul, a protocol object receives one or more types of messages. For example, the order
protocol object receives both the OT and MT messages, while the membership protocol object receives
only MT messages. The protocol objects specify which messages they expect to receive to the divider
protocol object upon initialization, and the divider protocol object, in turn, delivers the appropriate
messages as they are received.

Initialization. An application using Consul consists of a well-defined set of processes—one for
each state machine replica—that explicitly open connections among themselves in order to exchange
messages, plus potentially some user processes that submit commands externally. To establish these
connections among replicas, one replica does an active open, while the remaining replicas do passive
opens. This process of starting Consul is similar to that used for Psync, and in fact, an active open in
Consul resultsin an active open of the Psync protocol object, while a passive open resultsis a passive
open of Psync. Figure 4 shows the sessionsthat are created at one site in Consul; protocol objectsare
depicted as rectangles, with the corresponding session objects shown as circles. In the following, we
describe how these sessions are created and how the connections are established among the protocol
objects; in doing so, we consider both active and passive opens. For convenience, we use the terms
protocol and protocol object synonymously.

Active Open. Each user process wishing to interact with the replica on a particular processor is
identified by a port_id. This process opens the (re)start protocol once for every operation exported by
thereplica. Thisis done using the open primitive provided by the x-kernel. The parameters of this
call include the operation.id, port.id, and participant set. The session returned from this call is then
used by the user process to invoke the corresponding operation by doing a push onto this session.
The (re)start protocol is responsible for opening every protocol needed by the user process. The
open procedure of the (re)start protocol object opens the divider protocol when it isinvoked for the
first time for agiven port.id. The argumentsto thiscall includetherestart_id, port_id, and participant
set. Thesession.id of the session returned from thiscall acts as the unique system-wide identifier of the
system and is referred to as the system_id; since any given instantiation of Consul contains exactly one
Psync session, thisidentifier allowsauser processto participate simultaneously in multipleapplications
built using the system. The (re)start protocol maintains a mapping of port.id to system.id for future
reference. On receiving this system.id, the (re)start protocol opens the failure detection, membership,
recovery, and dispatch protocol objects. The failure detection, membership, and recovery protocol

USER

(RE)START
(re)start (re)start
Srecover (rg)start . Sdispatch OO
y failure detection
RECOVERY IFAILURE DETECTION | DISPATCH
S(re)start Q dispatch
membership Sorder
IMEMBERSHIP | ORDER
failure detection
recovery membershi divider
divider Savider Q corder
divider
DIVIDER
divider
Spsync O
PSYNC

Figure 4: Protocol and session objects

objects are opened exactly once for agiven port_id, whilethe dispatch protocol object is opened every
time the open procedure of the (re)start is invoked. The arguments for al these invocationsinclude
the system_id and the participant.id of the replica invoking the call. The arguments for opening the
dispatch protocol aso include the corresponding operation.id. The session returned by the dispatch
protocol is returned to the user process.

The open procedure of the dispatch protocol object opens the appropriate order protocol object
once for agiven system.id. It creates a session and returnsit to the invoking protocol object. The pair
< Sdispateh oneration_id > isused by the dispatch protocol to demultiplex incoming messagesto the
appropriate sessions above.

When the open procedure of the failure detection, membership, recovery, and order protocol
objectsisinvoked, these protocol objectsin turn open thedivider protocol. The argumentstothesecalls
include the system_id and the types of messages that these protocol objects expect to receive. These
protocol objectsalso create a session on thisinvocation. The session returned by the divider protocol is
used by these protocol objects to demultiplex theincoming messages to the appropriate sessions above.

Thedivider protocol isused to demultiplex theincoming messages to one or more protocol sabove.
When it is opened by the (re)start protocol, it opens the Psync protocol abject and returns the Psync
session, returned from the Psync open procedure, to the (re)start protocol. When opened by some
other protocol object, it creates a session and returns it to the invoking protocol. It also maintains a

map from (system_id, message type) to aset of sessions, which isused to demultiplex theincoming
messages to the appropriate protocols. This map is updated every time a protocol other than (re)start
opensthe divider.

Passive Open. The user processes on the sites containing passive replicas do openenabl e on the
(re)start protocol, once for every operation the replicaexports. The corresponding sessionsare returned
by the (re)start protocol by invoking the user process' opendone procedure.

Theopenenabl e procedureof the(re)start protocol invokesopenenabl e of thedivider protocol
exactly once for a given port.id. This procedure also maintains a map from port.id to a list of
< operation_id, participant id > to be used when the corresponding opendone procedure is
invoked. The opendone procedure of the (re)start protocol isinvoked by the divider protocol when
thefirst message is received with the port_id as argument. In this procedure, (re)start opensthe failure
detection, membership, recovery, and dispatch protocols. The opendone procedure then invokesthe
opendone procedure of the user process with the appropriate dispatch session as argument.

When the openenabl e procedure of the divider protocol isinvoked, it performs an openenable
on the Psync protocol. When thedivider’'sopendone procedureisinvoked, it invokestheopendone
procedure of the (re)start protocol with the Psync session as one of thearguments. Thefailure detection,
membership, recovery, dispatch and order protocolsdo not have openenabl e procedures since these
protocols are always opened actively.

Optimizations. Severa optimizations have been made in the implementation to improve system
performance while still retaining its modular structure. The most important of these involve modifying
the message flow to direct messages only to those protocol and session objects that actually process
it. Figure 5 shows the path a message takes as it moves upwards from the Psync protocol through
the substrate. There are two optimizations done as the message flows in this direction. First, since
the (re)start protocol is needed only for establishing connections, it does not need to see messages.
Accordingly the (re)start protocol object and the (re)start session object are bypassed and the message
moves directly from the dispatch sessions to the user protocol object. The second optimization is
bypassing the divider sessions. The divider protocol needs to see the incoming message to demultiplex
it to the appropriate protocols above, but there is no function to be performed in its sessions as the
message flows up. Thus, these sessions are bypassed and the message moves directly from the divider
protocol to thefailure detection, membership, recovery or order protocols.

Figure 6 shows the path a message takes as it moves down through the communication substrate.
Again, there are two optimizations performed as the message flowsin thisdirection. Thefirst optimiza
tion involves bypassing the (re)start sessions. Since the (re)start sessions do not process an outgoing
message, the message is directly pushed from the user to the appropriate dispatch sessions. In the
second optimization, the divider sessions are bypassed. Since divider is a headerless protocol and is
needed only for demultiplexing the message as it flows upwards, the corresponding sessions do not
need to see the message as it moves in the other direction. Accordingly, a message is pushed directly
from the failure detection, membership, recovery, or order sessionsto the Psync session.

The net result of the optimizations is that the (re)start sessions are not created since they end up
performing no function in the substrate. On the other hand, the divider sessions, though not used in
the message flow, are created, since the session_id of these sessions are used by the failure detection,
membership, recovery, and order protocols to demultiplex incoming messages to the sessions above.

USER
(RE)START

(re)start
S(re)start (re)start d|spatch Q S)
recovery S '
| failure detection

RECOVERY [FAILURE DETECTION | DISPATCH
S(ré)‘§tart dispatch /~
menibership Sorder
IMEMBERSHIP | ORDER

Y

failure detectig,n«"""w

recovery e divider .-~
S, membership
divider <:> Sdivider a“l’ <:> - <:>§;ﬁ§;

DIVIDER
divider
e

Figure 5: Message flow upwards

Restoring Connections. Theconnectionsamong various protocol and session objects, aswell astheir
states, are lost when a processor crash occurs. Asaresult, when areplicarecovers, al of these objects
and interconnectionsmust be recreated. To restore these connections, every protocol and session object
storesinformationin the stablestore at awell knownlogical address. Typically, aprotocol object stores
the number of its associated session objects and for every session, the logical addresses in the stable
store where the session state is checkpointed, while a session object storesits state. Thisis performed
during the periodic checkpointing that every session performs while the systemisin operation. After
this is done, connections among protocol and session objects are restored by the (re)start protocol.
However, there is an additional complexity: the session states cannot be fully restored given only the
information stored by the corresponding protocol and session object, since these states aso depend on
the checkpoints taken by the other protocols. This problem is solved as follows. First, the (re)start
protocol gathers the relevant checkpointsfrom all the protocols; these checkpointsincludethe port_ids
that invoked the (re)start protocol, the corresponding system.ids, and al the operation identifiers for
every port_id. The (re)start protocol theninvokesthe divider protocol with acontrol operationto restore
the sessions corresponding to each system.id. Thedivider protocol, in turn, invokes the Psync protocol
object to reconstruct the session state corresponding to the session_id retrieved from stable storage. The
Psync protocol object creates a Psync session, reconstructs the context graph from the stable storage
and returns the new system_id to the divider protocol, which returnsit to the (re)start protocol. (re)start

9

USER
(RE)START

(re)start
S(re)start O S(re)start Sdispatch O O
recovery - failure detection H i
RECOVERY FAILURE DETECTION | DISPATCH
S(re)sfé,(t O dispatch
membetship_ Sorder .
[MEMBERSHIP | _[ORDER
'g Y failure detecﬂpﬁx
g recovery m embé‘rsh;‘p Sdivider
divider Q Sdivider *, | O gorder
R e divider

I
divider $~¢"
Spsync

[PSYNC]

Figure 6: Message flow downwards

then invokesthe failure detection, membership, dispatch, and recovery protocol objectsto recover their
appropriate session states, while the dispatch protocol in turn invokesthe order protocol to recover the
state of its session.

This compl etes restoration of the connections among various protocol and session objects of the
communication substrate. The connection between the user process and the substrateis restored when
the user invokesthe (re)start protocol with the appropriate port_id.

4 Conclusions

Consul is a modular system, both in its design and its implementation. The design emphasizes the
use of separate protocolsfor each fault-tolerant service, with communication between protocolson the
same or different machines being constrained to well-defined interfaces. Such a strategy avoids many
of the ad-hoc structuring and control paths that often accompany a monolithic system. Moreover, the
implementation retains thismodularity by using the configuration and communication support provided
by the x-kerndl. Our experience, both with Consul directly [Mis91] as well as with other systems
built using the x-kernel model [HPOAB9, OP92], is that this modularization comes with little or no
performance penalty.

10

Despite our positive experience with modularization in this context, therewere, in fact, anumber of
difficultiesthat madetheprocesslessstraightforward thanit might appear. Many of thesewere caused by
indirect dependencies between protocols. In contrast with direct functional dependencies such asthose
illustrated in Figure 1, an indirect dependency occurs when execution of one protocol affects another
without any direct communication. For example, in Consul, the states of the recovery, membership, and
Psync protocolsaffect the optimal va ue of thetimer maintained by the failure detection protocol. Such
dependencies complicate the process of defining modulesand their interfaces, and ensuring correctness
and efficiency of the system.

Our current research inthisareais concentrating on identifying and characterizing the dependencies
that exist between protocols used for building fault-tolerant, distributed systems. As part of thiseffort,
we are aso working on developing a new model for this type of protocol that we hope will facilitate
modularization [HS92]. This new model is based on further refining protocols into their orthogonal
properties and then realizing these properties with a standard system framework.

Acknowledgments

Thiswork has been supported in part by NSF Grant CCR-9003161, ONR Grant N00014-91J-1015, and
DARPA Contract DABT63-91-0030.

References

[ACG86] Sudhir Ahuja, NicholasCarriero, and David Gelernter. Lindaand friends. | EEE Computer, 19(8):26—
34, August 1986.

[BSS91] K. Birman, A. Schiper, and P. Stephenson. Lightweight causal and atomic group multicast. ACM
Transactionson Computer Systems, 9(3):272—-314, Aug 1991.

[CASDS85] F. Cristian, H. Aghili, R. Strong, and D. Dolev. Atomic broadcast: From simple message diffusion
to Byzantine agreement. In Proceedings of the Fifteenth International Symposium on Fault-Tolerant
Computing, pages 200-206, Ann Arbor, M1, Jun 1985.

[CM84] J. Chang and N. Maxemchuk. Reliable broadcast protocols. ACM Transactions on Computer
Systems, 2(3):251-273, Aug 1984.

[Cri88] F. Cristian. Agreeing on who is present and who is absent in a synchronous distributed system.
In Proceedings of the Eighteenth International Conference on Fault-tolerant Computing, pages
206-211, Tokyo, Jun 1988.

[Crio1] F. Crigtian. Understanding fault-tol erant distributed systems. Communi cationsof ACM, 34(2):56—78,
Feb 1991.

[GMS91] H. GarciaMolinaand A. Spauster. Ordered and reliable multicast communication. ACM Transac-
tions on Computer Systems, 9(3):242-271, Aug 1991.

[HPI1] N. C. Hutchinson and L. L. Peterson. The z-kerndl: An architecture for implementing network
protocols. |EEE Transactions on Software Engineering, 17(1):64—76, Jan 1991.

[HPOAB89] N.C. Hutchinson, L. L. Peterson, S. O'Malley, and M. Abbott. RPC in thex-kernel: Evaluating new
design techniques. In Proceedings of the Twel fth ACM Symposium on Operating Systems Principles,
pages 91-101, Litchfield Park, AZ, Dec 1989.

[HS92] M. Hiltunenand R. D. Schlichting. M odularizing fault-tol erant protocols. In Fifth S GOPSEuropean
Workshop, Le Mont Saint-Michel, France, Sept 1992. To appear.

11

[KDK*89] H.Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabl, C. Senft, and R. Zainlinger. Distributed

[KTHB8Y]
[Lam81]
[Lap92]
[Mis91]

[MPS89]

[MPS914]

[MPS91b]

[MSM89]

[OP92]
[PBSB9]
[PosB0]
[PosB1]

[PSB+88]

[RBO1]

[SchoO]
[USC81]

[VMOO]

[VRBS9]

fault-tolerant real-time systems: The Mars approach. 1EEE Micro, pages 2540, Feb 1989.

M. F. Kaashoek, A. Tanenbaum, S. F. Hummel, and H. Bal. An efficient reliable broadcast protocol.
Operating Systems Review, 23(4):5-19, Oct 19809.

B. Lampson. Atomic transactions. In Distributed Systems—Architecture and I mplementation, pages
246-265. Springer-Verlag, Berlin, 1981.

J. C. Laprie, editor. Dependability: Basic Concepts and Terminology. Springer-Verlag, Vienna,
1992.

S. Mishra. Consul: A Communication Substrate for Fault-tolerant Distributed Programs. PhD
thesis, Dept of Computer Science, University of Arizona, Tucson, AZ, 1991.

S. Mishra, L. Peterson, and R. Schlichting. Implementing replicated objects using Psync. In
Proceedings of the Eighth Symposium on Reliable Distributed Computing, pages 42-52, Sesttle,
Washington, Oct 1989.

S. Mishra, L. Peterson, and R. Schlichting. A membership protocol based on partia order. In
Proceedings of the Second Wor king Conference on Dependable Computing for Critical Applications,
pages 137-145, Tucson, AZ, Feb 1991.

S. Mishra, L. L. Peterson, and R. D. Schlichting. Consul: A communication substrate for fault-
tolerant distributed programs. Technical Report TR 91-32, Dept of Computer Science, University of
Arizona, Tucson, AZ, 1991.

P.M. Mdliar-Smithand L. E. Moser. Fault-tolerant distributed systems based on broadcast commu-
nication. In Proceedings of the Ninth International Conference on Distributed Computing Systems,
pages 129-134, Newport Beach, CA, Jun 1989.

Sean W. O'Malley and Larry L. Peterson. A dynamic network architecture. ACM Transactions on
Computer Systems, 10(2):110-143, May 1992.

L. L. Peterson, N. C. Buchholz, and R. D. Schlichting. Preserving and using context information in
interprocess communication. ACM Transactions on Computer Systems, 7(3):217-246, Aug 1989.

Jon Postel. User datagram protocol. Request For Comments 768, USC | nformation Sciences|nstitute,
Marinadel Ray, Calif., Aug 1980.

Jon Postel. Internet protocol. Request For Comments 791, USC Information Sciences Institute,
Marinadel Ray, Calif., Sep 1981.

D Powell, D. Seaton, G. Bonn, P. Verissimo, and F. Waeselynk. The Delta-4 approach to dependability
in open distributed computing systems. In Proceedings of the Eighteenth Symposium on Fault-
Tolerant Computing, Tokyo, Jun 1988.

A. Ricciardi and K. Birman. Using process groups to implement failure detection in asynchronous
environments. In Proceedings of Tenth Annual ACM Symposium on Principles of Distributed
Computing, pages 341-353, Montreal, Quebec, Canada, Aug 1991.

F. Schneider. Implementing fault-tolerant services using the state machine approach: A tutorial.
ACM Computing Surveys, 22(4):299-319, Dec 1990.

USC. Transmission control protocol. Request For Comments 793, USC Information Sciences
Ingtitute, Marinadel Ray, Calif., Sep 1981.

P. Verissimo and J. Marques. Reliable broadcast for fault-tolerance on local computer networks. In
Proceedings of the Ninth Symposiumon Reliable Distributed Systems, pages 54-63, Huntsville, AL,
oct 1990.

P. Verissimo, L. Rodrigues, and M. Baptista. Amp: A highly paralel atomic multicast protocol. In
S GCOMM’ 89, pages 83-93, Austin, TX, Sep 1989.

12

