
A Sub-quadratic Algorithm for
Approximate Limited Expression Matching

Sun Wu, Udi Manber, & Gene Myers

TR 92-36

A Sub-quadratic Algorithm for Approximate Limited Expression Matching

Sun Wu, Udi Manber1, and Gene Myers2

TR 92-36

ABSTRACT

In this paper we present an efficient sub-quadratic time algorithm for matching strings and limited
expressions in large texts. Limited expressions are a subset of regular expressions that appear often in
practice. The generalization from simple strings to limited expressions has a negligible affect on the
speed of our algorithm, yet allows much more flexibility. Our algorithm is similar in spirit to that of
Masek and Paterson [MP80], but it is much faster in practice. Our experiments show a factor of 4 to
5 speedup against the algorithms of Sellers [Se80] and Ukkonen [Uk85] independent of the sizes of
the input strings. Experiments also reveal our algorithm to be faster, in most cases, than a recent
improvement by Chang and Lampe [CL92], especially for small alphabet sizes for which it is 2 to 3
time faster.

December 16, 1992

Department of Computer Science

The University of Arizona

Tucson, Arizona 85721

1 Supported in part by a Presidential Young Investigator Award DCR-8451397, with matching
funds from AT&T, and by NSF grant CCR-9001619.

2 Supported in part by NIH grant LM04960, NSF grant CCR-9001619, and the Aspen Center for
Physics.

A Sub-quadratic Algorithm for Approximate Limited Expression Matching

1. Introduction
Pattern matching problems are used in many applications including text editors, information
retrieval, compilers, command interpreters, computational biology, and object recognition. The
basic problem is to find all occurrences of a pattern in a text where the pattern and the text are
both simple strings. The two famous algorithms for this string matching problem are the
Boyer-Moore algorithm [BM77] and the Knuth-Morris-Pratt algorithm [KMP77]. The basic
problem has been extended to include more complicated patterns, including a set of strings
(Aho and Corasick [AC75] and Commentz-Walter [CW79]), strings with "don’t care" symbols
(Fischer and Paterson [FP74]), and strings with "don’t care" and "complement" symbols (Pinter
[Pin85]). Abrahamson [Abr87] studied the complexity of several matching problems and
presented algorithms for strings with "classes," which are sets of characters, but as he himself
noted, even though the worst-case running times were better than quadratic, the algorithms were
not practical. Baeza-Yates and Gonnet’s shift-or algorithm [BG92] can handle all of the above
options and it is very practical but only for short patterns.

The approximate string matching problem is a generalization of the exact string-matching
problem in that now we are looking for all substrings in the text that are similar to the pattern.
There are many ways to define the similarity metric; we will concentrate on the edit distance.
The edit distance between two strings A and B is the minimum number of edit operations for
transforming A to B , where an edit operation can be a deletion, an insertion or a substitution.

A classical solution to the approximate string matching problem is a dynamic program-
ming approach (Sellers [Se80]), which is a generalization of the dynamic programming
approach for comparing two strings (Wagner and Fischer [WF74]). Its running time is O (mn),
where m is the size of the pattern and n is the size of the text. There are many results that
improve the dynamic programming approach. For example, Ukkonen [Uk85] gives an algo-
rithm whose expected running time is O (nk), where k is the edit distance, by computing only a
part of the dynamic programming table. The same paper also gave an automata approach which
after some preprocessing of the pattern can process the text in linear time. However, the prepro-
cessing time can be up to 3m which is too high for large m . Later, several papers [My86, LV88,
GP90, UW90] proposed algorithms that achieve O (nk) worst case time complexity, which is an
improvement over the O (nm) approach for small k , but not for the worst case where k = O (m).
Very recently, a number of algorithms that are sublinear in expectation have been proposed
[CL90, Uk92, My90], but the first two are no more effective in practice than former algorithms,
and the latter requires an inverted index of the entire text. Wu and Manber [WM92] have
developed one of the fastest practical algorithms, which is part of the agrep package, and can
handle limited expressions as well as arbitrary regular expressions. However, the algorithm’s

2

dependence on bit-vector operations limits its use to short patterns. A very recent algorithm by
Chang and Lampe [CL92] while theoretically no better than Ukkonen’s O (nk) algorithm, has
been shown experimentally to depend on the size of the underlying alphabet, Σ, as 1/√dddd| Σ | which
makes it very fast for large alphabets.

The only improvement in the worst case performance of approximate string matching is
due to Masek and Patterson [MP80], who used the "Four Russian’s" technique [ADKF70] to
solve the approximate string matching problem in time O (nm / log2 n)3. The "Four Russian’s"
paradigm, which we also employ, consists of first building a table of solutions to all possible
problems of a small size r , and then consulting the table to solve the original problem in blocks
of size r . This paradigm was originally arrived at in the context of multiplying boolean
matrices [ADKF70] and can be applied to many problems, for example, regular expression pat-
tern matching [My92] and approximate regular expression matching [WMM92]. In the case of
Masek and Paterson’s instantiation of the paradigm, there is a hidden dependence on alphabet
size in that the log factor is actually logb n where b = O (| Σ | 2). Thus their result holds only for
strings over fixed size alphabets, and n must be very large before the log-factor is large enough
that the algorithm actually becomes more efficient than the basic dynamic programming algo-
rithm. Indeed, Masek and Paterson estimated that their algorithm would be superior to dynamic
programming only when nm ≥ 262,4192 for an alphabet of only two symbols. They never ran
experiments, presumably, because their conception of the method required a table that would
not fit in the memory of any of todays computers. In the experimental section we argue that
their approach has the potential to be faster than ours only for alphabets of size 2 or 3 and even
then it is unlikely.

We present a new algorithm for approximate string matching that achieves subquadratic
worst case running time and very good expected running time. We made comprehensive exper-
iments and we demonstrate that our algorithm is faster in practice than any of the previous algo-
rithms by Sellers, Ukkonen, and Chang. In addition, our algorithm works for patterns that con-
tain "don’t care," "complement," and "classes" symbols. Most text searching applications
require these types of patterns, therefore algorithms that cannot support them have limited
applicability. Our algorithm has an expected running time of O (nk / log n), which is a log factor
improvement over Ukkonen’s O (nk) expected time algorithm [Uk85]. One of the key differ-
ences of our method over that of Masek and Paterson is that we build a single "universal" Four
Russian’s table, that serves all problem instances. Thus our log-factor does not contain a hidden
dependence on alphabet size and in practice yields an algorithm that is a factor of 4 or 5 times
faster than Ukkonen’s algorithm regardless of the size of n , k , and | Σ | .

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
3 Their result was originally stated as O(nm/logn) under a logarithmic cost model where operations on large integers take time pro-
portional to the number of bits in the operands. In this paper we assume a unit cost model.

3

2. Preliminaries
Let Σ denote the alphabet set. We assume that the symbols in Σ are ordered and every symbol
has a unique index. A literal is a subset of symbols from Σ. A limited expression is a sequence
of literals. For convenience of notation, we use the operators ‘−’, ‘[’, ‘]’, ‘ˆ’, and ‘.’, to
denote common types of literals as follows (this is consistent with agrep).

1. Any symbol in Σ is by itself a literal.

2. A ‘.’ (don’t care symbol) is a literal representing all of Σ.

3. A pair of ‘[’ and ‘]’ define a literal that represents the union of symbols inside the brack-
ets. For example, [abcdx] represents {a , b , c , d , x }.

4. A ‘-’ inside the brackets is used to represent a range of symbols in Σ. If the index of p is
less than that of q , then [p −q] represents the range of symbols between p and q (including
p and q). For example, [a-dx] is the same as [abcdx].

5. A ‘ˆ’ immediately after the ‘[’ represents a complement operation of the literal inside the
brackets. For example, [ˆabc] represents the set of symbols from Σ excluding a , b , and c .

The length of a limited expression is the number of literals in it and will be denoted
throughout by m . Let A = a 1a 2

. . . am be a string, and let P = B 1B 2
. . . Bm be a limited expres-

sion where Bi , 1 ≤ i ≤ m is a literal. A matches P if ai ∈ Bi for all 1 ≤ i ≤ m . We denote by
L (P) the language generated by pattern P , i.e., L (P) consists of all the strings that match P . We
define the k -neighborhood of P , Lk (P), as follows: Lk (P) = {x | y , y ∈ L (P), δ(x , y) ≤ k)},
where δ(x , y) denotes the edit distance between string x and y . The approximate limited expres-
sion pattern matching problem is defined as follows: Given a limited expression P =
B 1B 2

. . . Bm , a text string T = a 1a 2
. . . an , and an integer k , find substrings in the text that are in

Lk (P).

It seems to us that it is not easy to extend some of the O (nk) algorithms for approximate
string matching that depend on tries or suffix trees, e.g. [LV88, GP90, CL90], to approximate
limited expression matching. But for methods based directly on dynamic programming, e.g.
[Se80, Uk85], the extension to limited expressions is quite simple under the assumption that the
size of the alphabet set is fixed. In the next section, we present the basic dynamic programming
approach extended to solve the approximate limited expression matching problem in time com-
plexity O (nm). We then apply our version of the Four Russian’s paradigm [ADKF70] to this
algorithm, to obtain an O (log n) factor of improvement. For the analysis of our Four Russian’s
variations, we assume a unit cost RAM model. In this model, the addressing of an O (n)

memory can be done in constant time, and the arithmetic operation with integers representable
with O (log n) bits can be done in constant time too. This model is satisfied by most computers.

4

3. An O(nm/logn) Algorithm
Let T [j] denote the prefix a 1

. . . aj of T and let P [i] denote the prefix B 1
. . . Bi of P . We can

extend the dynamic programming approach to handle limited expressions in a straightforward
way. We compute an (m +1) × (n +1) matrix E such that E [i , j] is the minimum edit distance
between P [i] and a suffix of T [j]. The matrix is computed using the following recurrence.

For all 0 ≤ i ≤ m , E [i , 0] = i .
For all 1 ≤ j ≤ n ,

E [0, j] = 0 and
For all 1 ≤ i ≤ m ,

E [i , j] = min (E [i −1, j −1] + si , j , E [i −1, j] + 1, E [i , j −1] + 1) (3.1)
where si , j = if aj ∈ Bi then 0 else 1.

This basic recurrence is attributed to Sellers [Se80], the only difference from the original
being the definition of si , j . In order for the algorithm to run in time O (nm), we must be able to
determine si , j in constant time. This is done by precomputing an m × | Σ | table, IN , where
IN [i , σ] is 1 or 0 depending on whether σ ∈ Bi or not, respectively. This table is built in
O (m | Σ |) time and space. Given the table, si , j is simply IN [i , aj].

The matrix E can be evaluated either column by column or row by row. In practice,
column by column is more common, because m is in general much smaller than n . Whenever
E [m , j] ≤ k , it means that there are some substrings ending at position j in the text that match
the pattern with no more than k differences. The computation of column j depends only on the
values of column j −1. Therefore, there is no need to store the whole matrix. Two columns —
the previous column and the current column — suffice. In fact, the algorithm may be viewed as
a scan of T in which each column of E is computed from the previous column and the currently
scanned character.

To develop a sub-quadratic algorithm, we begin with a review of Ukkonen’s automata
approach which consists of two phases: (1) preprocessing the pattern to generate an automaton,
and (2) scanning the text using the automaton. The preprocessing time may be exponential in
m , but after the preprocessing the scanning of the text can be done in linear time.

The states of the automaton, call it M , correspond to all possible columns that can occur in
the computation of the dynamic programming matrix. In the preprocessing, all such possible
states, together with all possible state transitions on every possible input character in Σ, are
precomputed and stored in a transition table modeling M . That is, the algorithm precomputes
all the possible column transitions in the dynamic programming table before it scans the text,
such that when the text string is processed the column transition can be computed in constant
time just by table lookup.

At first glance, it seems that the number of possible states of M could be as high as
O ((m +1)(m +1)), since there are m +1 entries per column and each entry can have value from 0 to

5

m . Ukkonen showed that the number of possible states is actually bounded by 3m by showing
the following lemma actually proven earlier by Masek and Paterson.

Lemma 3.1: [Uk85, MP80]

(3.2)−1 ≤ E [i , j] − E [i −1, j] ≤ 1 for 1 ≤ i ≤ m , 0 ≤ j ≤ n.

We carry this idea a little further by using the differences Dj [i] = E [i , j] − E [i −1, j] directly
in the recurrence and maintaining only these values. To express the column Dj of differences in
terms of column Dj −1, the recurrence below requires the quantities ci , j = E [i , j] − E [i , j −1] at
each row. Note that computationally given an array D [1..m] holding the column Dj −1, the
recurrence permits column Dj to be computed in place with a single auxiliary scalar c holding
the ci , j values as the column is produced in increasing row order.

Lemma 3.2: For 0 ≤ i ≤ m , D [i , 0] = 1.
For all 1 ≤ j ≤ n ,

c 0, j = 0 and
For all 1 ≤ i ≤ m ,

Dj [i] = min(1, si , j − ci −1, j , Dj −1[i] − ci −1, j + 1) (3.3)
and ci , j = ci −1, j + Dj [i] − D [i , j −1].

Proof: We have to prove that (3.3) follows from (3.1). The proof is by a simple algebraic
manipulation. First observe that
Dj [i] = E [i , j] − E [i −1, j]

= min(E [i −1, j]+1, E [i −1, j −1] + si , j , E [i , j −1]+1) − E [i −1, j] (by (3.1))
= min(1, si , j −(E [i −1, j]−E [i −1, j −1]), (E [i , j −1]−E [i −1, j −1])−(E [i −1, j]−E [i −1, j −1]) +1)

= min(1, si , j − ci −1, j , Dj −1[i] − ci −1, j + 1).
Moreover, ci , j = E [i , j] − E [i , j −1]

= (Dj [i] + E [i −1, j]) − (Dj −1[i] + E [i −1, j −1])

= (E [i −1, j] − E [i −1, j −1]) + Dj [i] − Dj −1[i]

= ci −1, j + Dj [i] − Dj −1[i].
Thus (3.3) is correct. `

Lemma 3.1 shows that a state of the automaton M can be represented by a vector of size
m whose entries have values −1, 0, or 1. Lemma 3.2 shows how to compute the transition table
for M directly in this representation framework. Of course the problem is that M has 3m states.
We now proceed to show how to simulate M using a combination of smaller automata.

Our approach is to partition each column into regions and build a smaller automaton for
each region. We then combine these smaller automata to simulate the function of the original
automaton M . Each m -vector is partitioned into sub-vectors, called regions, of size r (to be
determined later). Suppose for simplicity that r divides m evenly. Let region p where
1 ≤ p ≤ m /r , of m -vector D [1 .. m] be the sub-vector D [(p −1).r +1, (p −1).r +2, .. p .r]. Denote by

6

Dj <p > the p region of the j column vector; that is, Dj <p > = Dj [(p −1).r +1 .. p .r]. Each region
can be one of the 3r possible vectors of r differences. From here on we will use the term state
to describe the values of a region, as opposed to the global state of the automaton M . We
encode the state of a region by an integer between 0 and 3r −1 in the obvious way. What we
would like to do is precompute all the state transitions for a region p , so that Dj <p > can be
computed in a single step from Dj −1<p > during the scan of the text string T .

Let’s study (3.3) more closely. The state of Dj <p > depends on three factors: (1) the state
of Dj −1<p >, (2) the value of c (p −1).r , j , and (3) the values of s (p −1).r +1, j , s (p −1).r +2, j , . . . sp .r , j ,
called the characteristic vector of region p on input aj . Overall, Dj <p > depends on two vectors
of size r , and a ‘carry in’ value c (p −1).r , j . The ‘carry out’, cp .r , j , needed as input for region p +1,
is also a function of these same three factors. Both the column vector and characteristic vector
(of size r) can be encoded by an integer in the obvious way, as long as r is bounded by O (log n)

(recall the assumption of unit cost RAM). Thus we can build a transduction automaton whose
states are the 3r possible difference vectors of size r . Given a characteristic vector cv encoded
as an integer between 0 and 2r −1, and a carry-in value c ∈ {−1, 0, 1}, the automaton moves from
its current states s to a uniquely determined next state and outputs a uniquely determined
carry-out value as it does so. This automaton can be modeled as two tables, GOTO [cv , s , c] and
COUT [cv , s , c], that take 2r +1 such values encoded as three integers, and return the next state

and carry-out integers, respectively. If r = log6n , then these tables have exactly 2log6n . 3log6n . 3 =
3n possible index triples and we will show that they can also be computed in time O (n). These
tables can be precomputed and stored in O (n) space. Note that by using the characteristic vec-
tor instead of input characters and literals in the transition, every region can use this same auto-
maton and so we call it a universal automaton. One advantage of such a universal automaton is
that it needs to be computed only once for a given region size r , and can then be used for any
pattern and input string. Thus in practice, one builds an automaton whose size is dependent on
the amount of available memory and not on n , since the time to build the table need no longer
precede every search. However, the characteristic vectors for a particular search are specific to
the pattern and alphabet, and so must be constructed each time. We will talk about constructing
this function in the next paragraph.

Using the precomputed transition table, we can compute r = O (log n) values of the
dynamic-programming matrix in constant time if the input to the transition table can be
obtained in constant time. The carry-in and previous region state are already encoded as
integers, so the only question is how to deliver the integer codes for the characteristic vectors.
Each characteristic vector consists of r binary values and computing these and encoding them
as an integer from scratch every time will take O (r) time which defeats our aims. This
difficulty is circumvented by precomputing for each region the integer for the characteristic
vector that results from each of the | Σ | different symbols that might arise in the text. That is,
we build a table, CV of dimensions m /r × | Σ | , such that for each region p and each σ ∈ Σ,
CV [σ, p] is the integer encoding the vector [IN [(p −1).r +1, σ], IN [(p −1).r +2, σ], . . . , IN [p .r , σ]].

7

Once this table is constructed, the characteristic vector of any region on any input character can
be looked up in constant time.

After the transition table and the characteristic function table have been built, the algo-
rithm finds the approximate matches as detailed in Figure 1. The principal invariant is that just
before the execution of the loop in lines 5 through 11, D [p] = Dj −1<p > for all 1 ≤ p ≤ m /r and
e = E [m , j −1]. That is, the array D contains the states of the regions for column j −1 and e is the
value of the last entry of column j −1. Initially, in lines 1 through 3 the state of each region p ,
1 ≤ p ≤ m /r , is set to the integer encoding of (1, 1, 1, . . . , 1) and e is set to m . By Lemma 3.3,
this correctly establishes D and e for column 0. The loop of line 4 scans the text one character
at a time. To advance the invariant over a character aj being scanned, we compute the state
transition for every region p in increasing order of p so that the carry-out of one region is avail-
able as the carry-in for the next. First, we find the characteristic value for aj corresponding to
region p by a lookup into table CV . Then, we use c = c (p −1).r , j , the current state D [p] of region
p , and the characteristic value, to lookup the state of region p in column j and the carry-out of
the transition in the tables GOTO and COUT . Upon the completion of this computation in the
minor loop of lines 6 and 7, the value of c is cm , j and this is added to e in line 8. From the
invariant and the fact that E [m , j] = E [m , j −1] + cm , j it follows that after scanning aj , the value
of e is E [m , j]. The algorithm is thus correct in reporting a match exactly when e ≤ k in lines 9
and 10.

Now we analyze the space and time complexity of our algorithm. The characteristic func-
tion table CV needs O (| Σ | m / log n) space, since for every symbol we need O (m / log n) integers.
We need O (m) time to precompute the characteristic vectors for a symbol, so the total time to
construct the characteristic function table is O (m | Σ |). In constructing the transition tables,
GOTO and COUT , for the universal automaton, each entry needs O (r) = O (log n) time if com-
puted from scratch. However, once a given entry has been computed, the other 5 entries that
differ only in the last characteristic bit and/or region difference can be computed in constant
time. Similarly, the 5 entries for which the second-to-last characteristic bit and/or region

1. for p ← 1, 2, . . . m /r do
2. D [p] ← (1, 1, . . . 1)
3. e ← m
4. for j ← 1, 2, . . . n do
5. { c ← 0
6. for p ← 1, 2, . . . m /r do
7. (D [p], c) ← (GOTO [CV [p , aj], D [p], c], COUT [CV [p , aj], D [p], c])
8. e ← e + c
9. if e ≤ k then
10. print "Match at". j
11. }

Figure 1: An O (mn / log n) search.

8

difference is different, can be computed incrementally in 2 steps, and the 30 entries differing in
the last part from one of these 6 entries, can be computed incrementally in one step apiece.
Continuing this line of reasoning reveals that by computing entries in consecutive order of their
integer indices and incrementally computing successive solutions, one can compute each entry
in O (1) amortized time. (There is an exact analogy with the observation that counting from 0 to
n requires only 2n carry operations overall despite that fact that some individual increments
take log n carries.) So the transition tables can be computed in O (n) total time and occupy O (n)

space. The total time for scanning a character is O (m / log n), because each region can be pro-
cessed in constant time and there are O (m / log n) regions in each column. The total running
time is thus O (nm / log n) and the total space needed is O (n + m | Σ | / log n).

We conclude this section with a very brief sketch of how to handle arbitrarily large alpha-
bet sets. We assume symbols in the alphabet are ordered so that ranges in literals make sense.
Suppose there are p ≥ m non-meta symbols in the limited expression. Sort the symbols and
observe that the characteristic vectors for any symbol between two consecutive symbols in the
sorted list are all identical. Thus it suffices to build the characteristic function table for the p

symbols in the pattern, and for p +1 representative symbols between them in the sorted list.
Assuming symbols can be compared in constant time, this preprocessing takes O (p 2) time and
the table occupies O (pm / log n) space. During the search, every time we scan an input character
aj , we first do a binary search against the sorted list of pattern symbols to determine which row
of the characteristic function table to fetch characteristic values from. The rest of the algorithm
remains the same. Overall, the running time is now O (p 2 + n log p + nm / log n).

4. An O(nk/logn) Expected-Time Algorithm
The algorithm from the previous section can be improved by applying our Four Russian’s
universal automaton to Ukkonen’s O (kn) algorithm [Uk85] rather than Seller’s O (mn) algo-
rithm [Se80]. Ukkonen’s algorithm was only recently proven to take O (kn) expected time
under suitable distributional assumptions about the input [CL92]. When extended to limited
expressions it is not clear that this performance claim continues to hold. We conjecture that as
long as the literals in the expression are such that they match text characters with a probability
bounded away from 1, then the performance claim does hold. Of course, the constant of pro-
portionality in the O (kn) claim is dependent on these probabilities: the more likely matches are,
the more time that is taken.

Ukkonen improved the expected time of the dynamic programming algorithm by comput-
ing only a portion of the dynamic programming matrix. The approach is to maintain, for each
column j , the smallest row index xj such that E [i , j] > k for all i > xj . Note that this implies
E [xj , j] = k by Lemma 3.1. If we know the value of xj , then we do not need to compute entries
with greater row index in column j since they cannot lead to a match. Lemma 3.1 implies that
xj − xj −1 ≤ 1 and that xj can be computed from xj −1. Notice that it is not sufficient to find the first

9

E-value in a column that is greater than k , because following values can still be less than or
equal to k . What does suffice is to compute all entries in column j through row xj −1+1 and then
set xj to the greatest row in that range whose value is k [Uk85].

To compute the relevant regions in blocks of size r requires that we maintain the last
region, yj , in column j containing an entry equal to k . To do so requires two additional pieces
of information about states not required in the algorithm of the last section. For a state s =
[d 1, d 2, . . . dr] of r differences, let d 1+d 2+ . . . +dr be the block sum of s and let
max (dk +1+dk +2+ . . . +dr : k ∈[1, r]) be the maximal suffix sum of s . Let BKS [s] and MSS [s] be
two tables that given a state s return its maximal suffix sum and block sum, respectively. Cer-
tainly computing these additional tables during construction of the universal automaton does
not increase preprocessing time since the tables are of size 3r = o (n) and take a proportional
amount of time to compute incrementally.

With these preliminaries, our refinement of Ukkonen’s algorithm is given in Figure 2.
The principal invariant is that just before the execution of the loop in lines 6 through 18, (1)
y = yj −1, (2) D [p] =↑ Dj −1<p > for all p ∈ [1, y], and (3) e = Σp =1

y BKS [D [p]]. That is, we know
yj −1, the states of the relevant regions in column j −1, and the column sum of the differences up
to row y .r . We must be careful not to assert that D [p] is exactly Dj −1<p > because the entries
above row xj −1 are not necessarily correct. However, as in Ukkonen’s algorithm these differ-
ences are not relevant as long as they imply that the corresponding value in E is greater than k .
We signal this by using an =↑-sign instead of an equal sign in the assertion about D [p]. This
small detail also requires that the invariant about e be expressed in terms of the values in D and
not those of E . Note however, that when e ≤ k then it is also true that e = E [y .r , j].

1. y ← Rk /r H
2. for p ← 1, 2, . . . y do
3. D [p] ← (1, 1, . . . 1)
4. e ← y .r
5. for j ← 1, 2, . . . n do
6. { if y < m /r then
7. { (e , y) ← (e +r , y +1)
8. D [y] ← (1, 1, . . . 1)
9. }
10. c ← 0
11. for p ← 1, 2, . . . y do
12. (D [p], c) ← (GOTO [CV [p , aj], D [p], c], COUT [CV [p , aj], D [p], c])
13. e ← e + c
14. while y > 0 and e − MSS [D [y]] > k do
15. (e , y) ← (e − BKS [D [y]], y −1)
16. if y = m /r and e ≤ k then
17. print "Match at" j
18. }

Figure 2: An O (nk / log n) expected-time search.

10

The algorithm begins by correctly setting up the invariant for column 0 in lines 1 through
4. So suppose we are about to scan aj and wish to advance the invariant from j −1 to j . In exact
analogy with Ukkonen’s algorithm, in column j we compute all the regions through
max (yj −1+1, m /r) and then set yj to the largest region that contains an entry equal to k . To do
so, the first step is to set the region yj −1+1 of column j −1 to (1, 1, . . . , 1) and to add r to e , if
yj −1 < m /r , in lines 6 through 9. Then in lines 10 through 13, the first yj −1+1 regions of column j

are computed from those of column j −1 in the usual fashion, and the last carryout is added to e

so that its value stays equal to Σp =1
y BKS [D [p]]. The variable y at this point is yj −1+1. The loop

of lines 14 and 15 decrements y until it equals yj . The logic of this minor loop is as follows. If
e minus the maximal suffix sum of region y is greater than k , than region y does not contain an
entry equal to k . Decrement e by the block sum of region y and decrement y by one. Subtract-
ing the block sum from e guarantees that the invariant about it is maintained. Ask the question
repeatedly and while it is true continue to decrement e and y until either y becomes 0 or the
condition is false. For either termination condition, the region y must contain an entry equal to
k and must be the largest such region, i.e., y = yj . This completes the computation of column j .
If yj is m /r and e ≤ k then it must be that e = E [m , j] and the algorithm correctly reports a match
in line 17.

In essence our algorithm exactly mimics Ukkonen’s algorithm except that it performs the
computation in blocks of size r . Choosing r = log6 n as before gives an algorithm that takes
O (n) space for the universal tables. Since xj is O (k) in expectation it follows that yj is
O (k / log n) in expectation. Thus the search of Figure 2 takes O (nk / log n) expected-time.

5. Implementation and Experimental Results
We turn our attention now to practice. First we make several small changes in our algorithm to
make it faster in practice. Then we report empirical data and compare the resulting implemen-
tation to previous algorithms.

In the algorithm of Figure 2, the tables GOTO and COUT are presumed to be three dimen-
sional arrays indexed by (1) an integer in the range 0 to 2r −1 representing a characteristic vec-
tor, (2) an integer in the range 0 to 3r −1 representing the current state of a region, and (3) a
carry-in which is an integer in the range −1 to 1. Indexing such arrays intrinsically involves
computing a linear address with two multiplications. We can remove these by a couple of sim-
ple modifications to the preprocessing step. Namely, we transform every state integer s into
3s +1, and every characteristic-vector integer cv into cv .3r +1. This requires modifying the con-
tents of the tables GOTO and CV , and since states are now every third integer in the range 1 to
3r +1−2, the domain of the table BKS must be enlarged by a factor of 3. We will not use table
MSS and the space occupied by BKS is negligible compared to GOTO and COUT , even after the
expansion. With this modification, the lookup "GOTO [cv , s , c]" becomes "GOTO [cv +s +c]"

where GOTO is now a 1-dimensional array over domain 0 . . . 3.6r −1. We choose this particular

11

translation over the other possibilities because it does not modify carry values, and the domain
of BKS — and hence the space it occupies — is only expanded by a factor of 3. With this
choice, there is never a need to reverse the transformations applied to states and characteristic
vectors.

The next improvement is one of rearranging the logic of the algorithm to reduce uneces-
sary computations. Rather than compute regions 1 through yj −1+1 in column j , consider com-
puting just those through yj −1 initially. yj can be one greater than yj −1 only if the column sum e

of column j −1 equals k and yj −1 is not the last region. This is checked in line 11 of the
refinement in Figure 3. If the condition is true, then the advance is made, and one does not
bother to whittle regions down to yj since at most only the region just added will be removed.
On the other hand, if the condition is not true, then there is no need to compute an extra region.
Instead, one sees if regions can be pealed away to get closer to yj . Rather than use the table
MSS to ascertain precisely if there is a value of k -or-less in the top region, we conservatively
ask if the column sum is greater than k +r . Although this is less precise, it is much more
efficient because it removes a table lookup, an addition, and the need to check that y is positive.
Note that the algorithm is no longer determining yj but only an upper bound of yj . Correctness
still follows as the algorithm correctly computes states within the slightly expanded region it
explores. Moreover, it was found that the algorithm actually ran faster: the cost of the extra

0. (Y , I , K , R) ← (Rm /r H, 3r +1−2, k +r , r − m (mod r))
1. y ← Rk /r H
2. for p ← 1, 2, . . . y do
3. D [p] ← I
4. e ← y .r
5. for j ← 1, 2, . . . n +R do
6. { c ← 0
7. for p ← 1, 2, . . . y do
8. { i ← CV [p , aj] + D [p] + c
9. (D [p], c) ← (GOTO [i], COUT [i])
10. }
11. if e = k and y < Y then
12. { (i , y) ← (CV [y +1, aj] + I + c , y +1)
13. (D [y], e) ← (GOTO [i], e +r +COUT [i])
14. }
15. else
16. { e ← e + c
17. while e > K do
18. (e , y) ← (e − BKS [D [y]], y −1)
19. }
20. if y = Y and e ≤ k then
21. print "Match at" j − R
22. }

Figure 3: The practical refinement of Figure 2.

12

logic to avoid computing a few regions, outweighed the savings gained.

The final implementation issue is one of detail, rather than efficiency. Consider what hap-
pens when r does not divide m . The range of regions naturally runs from 1 to Rm /r H, where only
the first m (mod r) positions of the last region are directly relevant. When computing charac-
teristic vectors for this last region in the preprocessing step, the "trick" is to always set the last
R = r − m (mod r) entries to 0, which effectively pads the pattern with R don’t care symbols.
The only difficutly is that the right end of the true match will be reported R characters after the
fact. This is easily corrected for in line 21 of our refinement. In addition, the text must also be
padded with R don’t care symbols in order that matches at its very end are reported.

The algorithm of Figure 3 was coded in C and full advantage was taken of the language’s
pointer arithmetic capabilities and open interface to the operating system’s I/O routines. The
algorithms against which we compare ours were also implemented in the same framework and
manner, so that idiosyncratic coding differences are minimized. All software was run on a Sun
4/490 with 64 megabytes that is rated at 22mips. The machine was running version 4.1.1 of the
SunOS Unix operating system, and all code was compiled with Version 1.1 of Sun’s unbundled
C compiler, with the optimization option on. The table COUT was coded as an array of char,
and GOTO and BKS as arrays of int, which on a Sun 4/490 translates to 15.6r + 12.3r bytes of
memory. The table below gives the size and time to generate the tables for r from 1 to 7. They
were generated using the incremental approach described earlier.

r Size (in bytes) Time (in secs.)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
1 126 <.001
2 643 <.001
3 3,564 .001
4 20,412 .005
5 119,356 .031
6 708,588 .31
7 4,225,284 2.1cc

c
c
c
c
c
c
c
c
c
c

Despite the fact that size and generation time grow exponentially, observe that even for r as
large as 5 or 6, table size is quite reasonable and the generation time is small enough that it is
not necessary to have prebuilt tables. They can be constructed from scratch as part of each
search without contributing a significant amount of time to the search.

In the introduction we mentioned a dozen algorithms for approximate string matching.
They divide into two classes, those that are highly efficient only when k is a sufficiently small
percentage of m [CL90,My90,Uk92,WM92], and those that do not have such a limit. Our algo-
rithm is in the later class, so we compare it to the algorithms with the same operational capabili-
ties. Of these the only one we need consider is that of Chang and Lampe [CL92], as they have

13

already demonstrated that their algorithm is superior to those of Seller’s [Se81], Ukkonen
[Uk85], Landau and Vishkin [LV88], Galil and Park [GP90], Ukkonen and Wood [UW90], and
Myers [My86]. We also chose to compare our algorithm to that of Ukkonen [Uk85] as a classic
reference against which to calibrate our results.

We performed the following empirical trials. A random sequence of one million charac-
ters was generated over alphabets of size 2, 4, 8, 16, and 32. Each character was chosen with
equal probability. For each of these five texts, a random pattern of length 300 was generated
over the same alphabet, and each algorithm was run for all choices of k from 0 to 10 and every
even number between 10 and 40. Note that the length of the pattern is irrelevant except that it
was chosen to be large enough to make the probability of matching negligble. Our algorithm
was run for each choice of r from 1 to 6. We thus ran 8 programs for 26 choices of k and 5
alphabet sizes, for a total of 1040 data points. For each trial, we also made a separate run that
accumulated the average number of three parameters per column or character scanned: (1) rows
for [Uk85], (2) states for our algorithm, and (3) runs for [CL92]. We call this statistic the aver-
age column height; it is the average number of times the inner-most loop of the algorithm is
repeated per character scanned. As such the running time is expected to be a linear function of
average column height. Indeed, we ran a regression against the 130 timing points for each pro-
gram and obtained the following results. The regresssions show very high correlations and
small estimated error.

Algorithm Regression Line Correlation Coefficient Std. Error of Estimateii
Uk85 .599x + 1.42 .999 .317
CL92 .448x + 2.45 .999 .340
WMM(r=1) .556x + 1.10 .999 .258
WMM(r=2) .548x + 0.89 .999 .094
WMM(r=3) .547x + 0.85 .999 .086
WMM(r=4) .549x + 0.82 .999 .089
WMM(r=5) .560x + 0.79 .999 .072
WMM(r=6) .879x − 0.24 .986 .706c

c
c
c
c
c
c
c
c
c
c
c
c

Graphs illustrating various aspects of our empirical results are shown in Figure 4. A curve
of the time taken as a function of k is plotted for each algorithm in Figures 4a, 4b, and 4c, for
alphabets of size 2, 8, and 32, respectively. The times plotted are not the actual system clock
times reported, but those obtained by applying the appropriate regression function above to the
average column height measured for that run. This effectively smooth system clock fluctuations
as column height is very precisely determined during the scan of one million characters. Figure
4d shows the average column height as a function of | Σ | for each algorithm when k is fixed at
20. Finally, Figure 4e shows the values of k and | Σ | for which our algorithm with r = 5 is supe-
rior to [CL92].

14

(a) Times for | Σ | = 2 (d) Alphabet Dependence with k = 20.

(b) Times for | Σ | = 8 (e) Regions of Superiority

(c) Times for | Σ | = 32

Figure 4: Timing Curves and Other Experimental Results

15

First note that none of the plots show a curve for r = 6. They were left out because, to our
surprise, our algorithm is slower with r = 6 then it is with r = 5. The explanation is that with
r = 6 the table is large enough and lookups unlocalized enough that the Sun 4/490’s 128 kilobyte
cache begins to perform poorly. This is actually quite evident in the slope of the regression fit
above. However, for large alphabets we found that there is a much greater locality of table
lookups because there is a strong bias towards characteristic vectors with very few zeros. Thus
for small alphabets our algorithm was much slower for r = 6 than for r = 5, but for large alpha-
bets it ultimately becomes faster as originally expected. This behavior is further reflected in the
fact that the regression fit for r = 6 was weaker than the rest since the population contained trials
over the spectrum of alphabet sizes. In light of this peculiarity, we decided that in practice r = 5

is probably the best choice for our algorithm, especially since the table is small and takes less
than .1 second to generate from scratch.

One observes that our algorithm with r = 1 and [Uk85] have nearly identical performance
in all cases. As r increases, the curves steadily decrease in slope as expected, with r = 5 being
the best. Also as expected, the algorithm of Chang and Lampe fares better as alphabet size
increases. In Figure 4a, where | Σ | = 2, their algorithm is beaten by ours with r set at just 2. In
Figure 4b, where | Σ | = 8, their algorithm asymptotic performance is between our algorithm with
r = 3 and r = 4. Finally, when | Σ | = 32 in Figure 4c, their algorithm ultimately becomes faster
than ours with r = 5 when k is greater than 25. Note in Figures 4b and 4c that their algorithm’s
timing curve generally starts with a higher y -intercept but has lesser slope than some curves that
it eventually overtakes. For a fixed alphabet size, average column height is a linear function of
k . Thus the regression above corroborates the higher intercept and smaller slope observation.
What happens as alphabet size increases is that average column height drops more rapidly for
their algorithm than for Ukkonen’s or ours. This is illustrated in Figure 4d.

With this information at our disposal, we went back to determine the choices of k and | Σ |
for which our algorithm is faster than Chang and Lampe’s. The plot in Figure 4e summarizes
our results. Basically, our algorithm is always superior when alphabet size is 16 or less, and
when k is 24 or less. There is a small hyperbolic region between these vertical and horizontal
lines where our algorithm is superior, and the rest of the parameter space belongs to [CL92].

Finally, we discuss the potential of the Masek and Paterson algorithm. In order for their
algorithm to give an O (log 2 n) improvement over Ukkonen’s algorithm, the computation must
proceed in r ×r squares with tables that are alphabet dependent. Any attempt to make the tables
universal, e.g. using r 2 characteristic matrices, leads one back to only an O (log n) speedup at
the theoretical level. But alphabet dependent tables grow very quickly. Conservatively, each
lookup has to produce two integers, one for the bottom and right side of an r ×r square, for a
space consumuption of 8.(3 | Σ |)2r bytes on a machine like the Sun 4/490. For | Σ | = 2 one can
build a 3×3 with 365Kb, and a 4×4 with 14Mb. One can build a 3×3 for | Σ | = 3 with 4Mb, and
for | Σ | = 4 with 14Mb. For all other alphabet sizes one cannot build greater than a 2×2 without
occupying more than 64Mb of memory. But our algorithm with r = 4 will certainly perform

16

better in such instances because of its lesser logical complexity. So the only possible cases
where the Masek and Paterson approach might give speeds superior to ours are the 4 very spe-
cial cases above, and even then it is most unlikely because of the increased algorithmic com-
plexity and the caching phenomenon encountered earlier.

References

[AC75]
Aho, A. V., and M. J. Corasick, ‘‘Efficient string matching: an aid to bibliographic
search’’, Comm. of the ACM, 18 (June 1975), pp. 333−340.

[ADKF70]
Arlazarov, V. L., E. A. Dinic, M. A. Kronrod, and I. A. Faradzev, ‘‘On economic con-
struction of the transitive closure of a directed graph,’’ Dokl. Acad. Nauk SSSR, 194
(1970), pp. 487−488 (in Russian). English translation in Soviet Math. Dokl., 11 (1975),
pp. 1209−1210.

[BG92]
Baeza-Yates R. A., and G. H. Gonnet, ‘‘A new approach to text searching,’’ Communica-
tions of the ACM 35 (October 1992), pp. 74−82.

[BM77]
Boyer R. S., and J. S. Moore, ‘‘A fast string searching algorithm,’’ Comm. of the ACM, 20
(October 1977), pp. 762−772.

[CL90]
Chang W. I., and E. L. Lawler, ‘‘Approximate string matching in sublinear expected
time,’’ Proc. 31st Symp. on Foundations of Computer Science (1990), pp. 116−124.

[CL92]
Chang, W. I., and J. Lampe, ‘‘Theoretical and Empirical Comparisons of Approximate
String Matching Algorithms,’’ Proc. 3rd Symp. on Combinatorial Pattern Matching, Tuc-
son, AZ (April 1992), pp. 172−181.

[CW79]
Commentz-Walter, B, ‘‘A string matching algorithm fast on the average,’’ Proc. 6th
International Colloquium on Automata, Languages, and Programming, (1979), pp.
118−132.

[GP90]
Galil Z., and K. Park, ‘‘An improved algorithm for approximate string matching,’’ SIAM
J. on Computing, 19 (December 1990), pp. 989−999.

[KMP77]
Knuth D. E., J. H. Morris, and V. R. Pratt, ‘‘Fast pattern matching in strings,’’ SIAM J. on
Computing, 6 (June 1977), pp. 323−350.

17

[LV88]
Landau G. M., and U. Vishkin, ‘‘Fast string matching with k differences,’’ J. of Computer
and System Sciences, 37 (1988), pp. 63−78.

[MP80]
Masek, W. J., and M. S. Paterson, ‘‘A faster algorithm for computing string edit dis-
tances,’’ J. of Computer and System Sciences, 20 (1980), pp. 18−31.

[My86]
Myers, E. W., ‘‘Incremental Alignment Algorithms and their Applications,’’ Tech. Rep.
86-22, Dept. of Computer Science, U. of Arizona.

[My90]
Myers, E. W., ‘‘A sublinear algorithm for approximate keywords searching,’’ To appear
in Algorithmica. Also, Technical report TR-90-25. University of Arizona, Department of
Computer Science.

[My92]
Myers, E. W., ‘‘A four-Russians algorithm for regular expression pattern matching,’’ J. of
the ACM, 39 (1992), pp. 430−448.

[Se80]
Seller P. H., ‘‘The theory and computations of evolutionary distances: Pattern recogni-
tion,’’ J. of Algorithms, 1 (1980), pp. 359−373.

[Uk85]
Ukkonen E., ‘‘Finding approximate patterns in strings,’’ J. of Algorithms, 6 (1985), pp.
132−137.

[Uk92]
Ukkonen E., ‘‘Approximate string-matching with q-grams and maximal matches,’’
Theoretical Computer Science, (1992), pp. 191.

[UW90]
Ukkonen, E. and D. Wood, ‘‘Approximate string matching with suffix automata,’’ Techn-
ical Report A-1990-4, Department of Computer Science, University of Helsinki, April
1990.

[WF74]
Wagner, R. A., and M. J. Fischer, ‘‘The string to string correction problem,’’ J. of the
ACM, 21 (1974), pp. 168−173.

[WM92a]
Wu S., and U. Manber, ‘‘Agrep — A Fast Approximate Pattern-Matching Tool,’’ Usenix
Winter 1992 Technical Conference, San Francisco (January 1992), pp. 153−162.

[WM92b]
Wu S., and U. Manber, ‘‘Fast Text Searching Allowing Errors,’’ Communications of the

18

ACM 35 (October 1992), pp. 83−91.

[WMM92]
S. Wu, U. Manber, and R. E. W. Myers, ‘‘A Sub-Quadratic Algorithm for Approximate
Regular Expression Matching,’’ submitted for publication (May 1992) to J. of Algorithms.

