
FT-SR: A PROGRAMMING LANGUAGE FOR

CONSTRUCTING FAULT-TOLERANT

DISTRIBUTED SYSTEMS

(Ph.D. Dissertation)

Vicraj Timothy Thomas

TR 93-23

August 9, 1993

Department of Computer Science

The University of Arizona

Tucson, Arizona 85721

This work was supported in part by the National Science Foundation under grant CCR-9003161 and the

Office of Naval Research under grant N00014-91-J-1015.

FT-SR: A PROGRAMMING LANGUAGE FOR CONSTRUCTING
FAULT-TOLERANT DISTRIBUTED SYSTEMS

by

Vicraj Timothy Thomas

A Dissertation Submitted to the Faculty of the

DEPARTMENT OF COMPUTER SCIENCE

In Partial Fulfillment of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY

In the Graduate College

THE UNIVERSITY OF ARIZONA

1 9 9 3

FT-SR: A PROGRAMMING LANGUAGE FOR
CONSTRUCTING FAULT-TOLERANT DISTRIBUTED

SYSTEMS

Vicraj Timothy Thomas, Ph.D.
The University of Arizona, 1993

Director: Richard D. Schlichting

This dissertation focuses on the area of improving programming language support
for constructing fault-tolerant systems. Specifically, the design and implementation of
FT-SR, a programming language developed for building a wide variety of fault-tolerant
systems, is described. FT-SR is based on the concurrent programming language SR and
is designed as a set of extensions to SR.

A distinguishing feature of FT-SR is the flexibility it provides the programmer in
structuring fault-tolerant software. It is flexible enough to be used for structuring systems
according to any of the standard fault-tolerance structuring paradigms that have been
developed for such systems, including the object/action model, the restartable action
paradigm, and the state machine approach. This is especially important in systems
building because different structuring paradigms are often appropriate for different parts
of the system. This flexibility sets FT-SR apart from other fault-tolerant programming
languages which provide language support for the one paradigm that is best suited for the
class of applications they choose to support. FT-SR, on the other hand, is suitable for
programming a variety of systems and applications.

FT-SR derives its flexibility from a programming model based on fail-stop atomic
objects. These objects execute operations as atomic actions except when a failure or
series of failures cause underlying implementation assumptions to be violated; in this
case, notification is provided. This dissertation argues that fail-stop atomic objects are
the fundamental building blocks for all fault-tolerant programs. FT-SR provides the
programmer with simple fail-stop atomic objects, and mechanisms that allow these fail-
stop atomic objects to be composed to form higher-level fail-stop atomic objects that
can tolerate a greater number of faults. The mechanisms for composing fail-stop atomic
objects are based on standard redundancy techniques. This ability to combine the basic
building blocks in a variety of ways allows programmers to structure their programs in a
manner best suited to the application at hand.

FT-SR has been implemented using version 3.1 of the x-kernel and runs standalone on
Sun 3s. The implementation is interesting because of the novel algorithms and optimiza-
tions used within the language runtime system.

3

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an
advanced degree at The University of Arizona and is deposited in the University Library
to be made available to borrowers under the rules of the Library.

Brief quotations from this dissertation are allowable without special permission, pro-
vided that accurate acknowledgment of source is made. Requests for permission for
extended quotation from or reproduction of the manuscript in whole or in part may be
granted by the head of the major department or the Dean of the Graduate College when
in his or her judgement the proposed use of the material is in the interests of scholarship.
In all other instances, however, permission must be obtained from the author.

SIGNED:

4

5

ACKNOWLEDGMENTS

I am extremely grateful to my advisor Professor Richard Schlichting for truly being
a friend, philosopher and guide to me. He has always been willing to take the time to
discuss with me any problem, research related or not, and help me solve it. It is his words
of encouragement that helped me persevere through the “dry spells” in my research. I am
especially thankful for his efforts in preparing me for a career after graduate school by
involving me in the grant writing process, teaching me the art of writing and presenting
papers, and sending me to conferences to learn and network with other researchers. Rick
taught me that research is about asking the right questions and searching for answers that
embody general principles or abstractions. He also instilled in me the value of clearly
expressing these questions and answers.

I thank Professors Gregory Andrews and Larry Peterson for their valuable comments
about my research, which benefits greatly from products of their own research efforts. I
thank Larry for his valuable feedback during the fault-tolerance research meetings and
Greg for being my “surrogate” advisor during Rick’s sabbatical. They have both been
extremely supportive throughout my stay in Arizona.

I thank David Mosberger for his interest in FT-SR. He is responsible for designing the
syntax of the “backups on” clause of the FT-SR create statement and for porting FT-SR to
run on Unix machines.

I thank all the graduate students in the computer science department for making my
stay in Tucson very enjoyable. I am especially thankful for the camaraderie of Mark
Abbot, Nina Bhatti, Peter Bigot, Curtis Dyreson, Tyson Henry, Patrick Homer, Clint
Jeffery, Nick Kline, Ed Menze, Shamim Mohamed, Bob Simms, Mike Soo and Ken
Walker. Every one of them expanded my horizons in one way or another.

Of the many others who made my stay in Tucson so delightful, I thank Clint Jeffery and
Nick Kline for being such great housemates. I thank Susie Wagner for her friendship and
her innumerable thoughtful gestures. I thank Lesa Stern for the notes of encouragement
she sent me while I was writing the dissertation and for the many delightful lunches we
had together.

I thank my parents and sister whose prayers carried me through the thick and thin of
graduate school. I thank them for their patience over the years, wondering if I’d ever get
out of school.

This research was supported in part by the National Science Foundation under grant
CCR-9003161 and the Office of Naval Research under grant N00014-91-J-1015.

6

7

TABLE OF CONTENTS

LIST OF FIGURES : 9

LIST OF TABLES : 11

ABSTRACT : 13

CHAPTER 1: INTRODUCTION : 15
1.1 Dependable System Construction—Principles and Techniques : : : : : : 15
1.2 Dependable Computing Systems : 18
1.3 FT-SR : 21
1.4 Dissertation Outline : 22

CHAPTER 2: FAULT-TOLERANT SOFTWARE : : : : : : : : : : : : : : : : : : 23
2.1 Failure Models : 23
2.2 Abstractions : 25
2.3 Program Structuring Paradigms : 26

2.3.1 The Object/Action Model : 26
2.3.2 The Restartable Action Paradigm : : : : : : : : : : : : : : : : 27
2.3.3 The Replicated State Machine Paradigm : : : : : : : : : : : : : 28

2.4 Programming Language Support for Fault-Tolerance : : : : : : : : : : : 29
2.4.1 Argus : 31
2.4.2 Fault-Tolerant Concurrent C : : : : : : : : : : : : : : : : : : : 31

2.5 Summary : 32

CHAPTER 3: FT-SR: PROGRAMMING MODEL AND LANGUAGE DESCRIP-
TION : 33
3.1 The FT-SR Programming Model : 33
3.2 The FT-SR Language Description : 36

3.2.1 Simple FS Atomic Objects : 36
3.2.2 Higher-Level FS Atomic Objects : : : : : : : : : : : : : : : : 39

3.3 Summary : 43

CHAPTER 4: PROGRAMMING WITH FT-SR : : : : : : : : : : : : : : : : : : : 45
4.1 A Distributed Banking System : 45
4.2 The Dying Philosophers Problem : 50
4.3 A Distributed Word Game : 56
4.4 Summary : 60

8

CHAPTER 5: IMPLEMENTATION AND PERFORMANCE : : : : : : : : : : : 61
5.1 The FT-SR Compiler : 61
5.2 The FT-SR Runtime System : 64

5.2.1 Pros and Cons of using the x-kernel : : : : : : : : : : : : : : : 75
5.3 Performance of FT-SR : 76
5.4 Implementation of FT-SR/Unix : 78
5.5 Summary : 80

CHAPTER 6: AN EVALUATION OF FT-SR : 81
6.1 Novelty and Universality of the Programming Model : : : : : : : : : : : 81
6.2 Suitability of Language for Systems Building : : : : : : : : : : : : : : : 83
6.3 Coherence of Language Design : 85
6.4 Salient features of the Implementation : : : : : : : : : : : : : : : : : : : 86
6.5 Language Design Alternatives : 87
6.6 Observed Deficiencies of FT-SR : 88
6.7 Summary : 90

CHAPTER 7: CONCLUSIONS : 91
7.1 Summary : 91
7.2 Future Work : 92

APPENDIX A: THE SR DISTRIBUTED PROGRAMMING LANGUAGE : : : : 95

APPENDIX B: A DISTRIBUTED BANKING SYSTEM : : : : : : : : : : : : : : 99

APPENDIX C: THE DYING PHILOSOPHERS PROBLEM : : : : : : : : : : : : 107

APPENDIX D: THE WORD GAME PROBLEM : : : : : : : : : : : : : : : : : : 113

REFERENCES : 121

9

LIST OF FIGURES

3.1 Fault-tolerant system structured using FS atomic objects : : : : : : : : : 34
3.2 Simple FS atomic object : 38
3.3 Outline of Lock Manager client : 38
3.4 Lock Manager with client monitoring : : : : : : : : : : : : : : : : : : : 40
3.5 Summary of FT-SR extensions : 43

4.1 Outline of dataManager resource : 46
4.2 StableStore resource : 48
4.3 System Startup in Resource main : 49
4.4 Resource main of the Dying Philosophers Problem : : : : : : : : : : : : 51
4.5 The philosopher resource. : 52
4.6 Specification of resource servant : 53
4.7 Process server of resource servant : : : : : : : : : : : : : : : : : : 54
4.8 Proc redistribForks of resource servant : : : : : : : : : : : : : 55
4.9 Main resource for the distributed word-game problem : : : : : : : : : : : 57
4.10 Specification of resource player of the word game : : : : : : : : : : : 58
4.11 Outline of process play : 59
4.12 Recovery code executed by resource player : : : : : : : : : : : : : : : 59

5.1 Yacc specification for the create statement : : : : : : : : : : : : : : : : : 62
5.2 Parse tree for group create statement with backups : : : : : : : : : : : : 63
5.3 Yacc specification for private capability variables : : : : : : : : : : : : : 63
5.4 Organization of the FT-SR runtime system : : : : : : : : : : : : : : : : : 65
5.5 Outline of function checkHeartBeats : : : : : : : : : : : : : : : : : 67
5.6 Outline of RFD functions that register monitor requests : : : : : : : : : : 69
5.7 Outline of runtime system primitive sr create group : : : : : : : : : 71
5.8 Outline of function sr create replica : : : : : : : : : : : : : : : : 73
5.9 Outline of Group Manager function sr replica failed : : : : : : : 74

6.1 Hierarchy of Fault-Tolerance Abstractions : : : : : : : : : : : : : : : : : 84

A.1 Bounded buffer resource : 98

10

11

LIST OF TABLES

5.1 Times (in msec) for RPC between resources : : : : : : : : : : : : : : : : 76
5.2 Times (in msec) for RPC involving groups : : : : : : : : : : : : : : : : 77
5.3 Times (in msecs) for resource and group creation : : : : : : : : : : : : : 78

12

13

ABSTRACT

This dissertation focuses on the area of improving programming language support
for constructing fault-tolerant systems. Specifically, the design and implementation of
FT-SR, a programming language developed for building a wide variety of fault-tolerant
systems, is described. FT-SR is based on the concurrent programming language SR and
is designed as a set of extensions to SR.

A distinguishing feature of FT-SR is the flexibility it provides the programmer in
structuring fault-tolerant software. It is flexible enough to be used for structuring systems
according to any of the standard fault-tolerance structuring paradigms that have been
developed for such systems, including the object/action model, the restartable action
paradigm, and the state machine approach. This is especially important in systems
building because different structuring paradigms are often appropriate for different parts
of the system. This flexibility sets FT-SR apart from other fault-tolerant programming
languages which provide language support for the one paradigm that is best suited for the
class of applications they choose to support. FT-SR, on the other hand, is suitable for
programming a variety of systems and applications.

FT-SR derives its flexibility from a programming model based on fail-stop atomic
objects. These objects execute operations as atomic actions except when a failure or
series of failures cause underlying implementation assumptions to be violated; in this
case, notification is provided. This dissertation argues that fail-stop atomic objects are
the fundamental building blocks for all fault-tolerant programs. FT-SR provides the
programmer with simple fail-stop atomic objects, and mechanisms that allow these fail-
stop atomic objects to be composed to form higher-level fail-stop atomic objects that
can tolerate a greater number of faults. The mechanisms for composing fail-stop atomic
objects are based on standard redundancy techniques. This ability to combine the basic
building blocks in a variety of ways allows programmers to structure their programs in a
manner best suited to the application at hand.

FT-SR has been implemented using version 3.1 of the x-kernel and runs standalone on
Sun 3s. The implementation is interesting because of the novel algorithms and optimiza-
tions used within the language runtime system.

14

CHAPTER 1

INTRODUCTION

With the use of computers permeating almost every aspect of everyday life, the
dependability of computer systems is becoming an increasingly important issue. In today’s
world, the failure of a computer system can be inconvenient at best and life-threatening
at worst. For example, the wide-spread inconvenience and loss of revenue that resulted
from the failure of the AT&T long distance telephone network on January 15 1990, was
caused by the inopportune failure of a single switching computer [Neu92]. In another
incident, the failure of a computer proved fatal for two patients undergoing radiation
therapy in Tyler, Texas, when the computer controlling the Therac-25 machine used in the
therapy failed and subjected the patients to a massive overdose of radiation [Jac90]. Many
more such examples of the deleterious effects of computer failures can be found in the
Inside Risks column, published monthly in the Communications of the ACM. Building
dependable computing systems, i.e. computers one can count on to provide correct service
whenever service is needed, is therefore of utmost importance.

Developing the software for a computer system is often the most complex aspect of
building the system. For reasons discussed later, this task becomes much more complex
if the system must be dependable. Software developers and programmers of depend-
able systems therefore need design and development tools to simplify this complex task.
Especially useful are tools in the form of good programming languages designed specif-
ically for building dependable systems. Such a language would support the techniques
commonly used to build dependable systems, be flexible enough for use in building a
variety of systems, and be efficiently implementable. This dissertation introduces one
such language, FT-SR, which has been designed expressly to support the development of
software for dependable systems.

1.1 Dependable System Construction—Principles and Techniques

This section describes the general principles that underlie the construction of any de-
pendable system or component; the application of these principles to building dependable
computing systems is described in the following section. All definitions in this section
are from [Lap91].

A system or component is defined as being dependable if reliance can justifiably be
placed on the service it delivers. The description of the service a system is expected to
provide is called its specification. If the delivered service deviates from the specification,
the system is said to have failed. A failure results from an error, which is the part of

15

16

the system state that is liable to cause a failure. The adjudged or hypothesized cause
of an error is a fault. To summarize, a failure is caused by an error, which in turn is a
manifestation of a fault. Note that an error does not necessarily lead to a failure. An error
may go unnoticed until it affects the behaviour of the system.

A system may be viewed as being built out of components that are bound together and
interact with each other. Each of these components may, in turn, be viewed as systems
that are composed of other components, and so on. This layered decomposition may be
continued until the components are so insignificant that decomposing them further is no
longer possible or interesting. In this view, each layer sees the failure of an underlying
component as an error, where the fault or cause of the error is the failure of the underlying
component. If the error causes this layer to fail, in turn the failure will similarly manifest
itself as a fault at the layer above it. This fault!error!failure sequence therefore repeats
itself, with the failure of each layer being perceived as a fault by the next higher layer.
The user of the system sees a failure only if this chain extends into the top-most layer
causing it, and thereby the entire system, to fail.

In this layered view of dependable systems, each layer or component must be designed
and built with the goal of eliminating all possible faults in that layer. The techniques
used to eliminate faults may be classified into fault-prevention techniques and fault-
removal techniques. Fault-prevention techniques aim at reducing the likelihood of a fault
occurring. These techniques include the use of quality components and the adoption of
good design practices. Fault-removal techniques detect and remove faults that have crept
into the system despite the use of fault-prevention techniques, before the system is put
into operation. Fault-removal techniques include formal verification and extensive testing
of components before they are put into service.

Even the most carefully designed and engineered system will suffer from faults after
being put into operation. Some faults are introduced into the system during its design,
and despite the use of fault-prevention and fault-removal techniques, remain undetected
until it is operational. These faults are called design faults. Faults may also be introduced
into the system during operation. These are typically caused by adverse environmental
conditions such as extreme temperatures, excessive vibration, electro-magnetic radiation,
etc., and are therefore called external faults.

A layer l of an operational system may fail because of its inability to cope with a
design fault within the layer or with an external fault. This failure manifests itself as an
operational fault in a layer m above it. If m fails as a result of this fault, it induces an
operational fault in a layer above it, which may in turn fail and induce an operational
fault in another layer. This chain of operational faults therefore starts at a layer that
failed because of its inability to cope with external or design faults and continues until
the topmost layer of the system, in which case the entire system fails, or until it reaches a
layer that can handle the fault. Each layer of a dependable system must therefore prevent
the creation and propagation of operational faults by removing or compensating for the
errors caused by design faults within the layer and operational faults induced by the failure
of underlying layers, before these errors cause a failure. The techniques used to correct

17

such errors in an operational system are called fault-tolerance techniques, and a system
or component that can continue to function correctly despite design and operational faults
is said to be fault-tolerant.

All fault-tolerance techniques depend on redundancy of one type or another. Redun-
dancy is anything extra in the system that would not be required if it did not have to
be fault-tolerant. There are three types of redundancy: state redundancy, information
redundancy, and time redundancy. State redundancy is where multiple copies of the state
of a component are maintained. If all the copies are active and identical, the redundancy is
said to be active. If one copy is active and the others passive, the redundancy is said to be
passive. The passive copies typically lag behind the active copy in time. For example, a
bank that maintains copies of customer accounts at a branch office and its data processing
center uses state redundancy. If the bank updates both copies of an account whenever
there is a change in the account status, the redundancy is active. If the bank updates the
copy at the branch office whenever there is a change but updates the data center’s copy
only at the end of each day, the redundancy is passive.

Information redundancy is where extra information is maintained in the system state
to correct errors. For example, information redundancy is used in the banking industry,
which requires that the amount on a cheque be written in both words and figures. Any
errors in writing the amount in figures on the cheque are resolved in favor of the value
written in words.

Time redundancy is the repeated execution of an operation. Time redundancy is
typically used to tolerate faults that are transient in nature. For example, an external fault
that goes away when the adverse environmental conditions subside is a transient fault.
Time redundancy is commonly used by facsimile machines that repeatedly try to transmit
a document until it is successfully received by the receiving machine.

Fault-tolerance techniques use redundancy to remove errors caused by faults before
they lead to failures or to prevent faults from causing errors. The techniques that remove
errors may be classified into backward error recovery, forward error recovery, and error
compensation schemes, based on their use of redundancy. Backward error recovery
schemes use passive state redundancy to maintain an error-free copy of the system state.
These schemes, on detection of an error in the active system state, replace it with the error-
free state. The system is then restarted from this state—an instance of time redundancy.
Both forward error recovery and error compensation schemes use information redundancy.
Forward error schemes use extra or redundant information in the system state to transform
an erroneous state to a new state from which the system can continue to operate correctly.
Error compensation schemes use redundant information to deduce the correct system state
from the erroneous state and use the deduced state to deliver correct service. Unlike
forward error recovery schemes, error compensation schemes do not attempt to transform
the erroneous system state into a correct state.

The fault-tolerance techniques that prevent faults from causing errors may also be clas-
sified, based on their use of redundancy, into fault masking schemes and fault-passivation
schemes. Fault masking schemes use active state redundancy to maintain multiple copies

18

of components. The results produced by the copies are voted upon; should one of the
copies fail and produce erroneous results, it is out-voted by the other copies and its
failure masked. Fault-passivation schemes typically use passive state redundancy; these
schemes detect layers or components that have failed and configure them out of the system
by switching to a passive copy of the component.

1.2 Dependable Computing Systems

Computer systems are made up of two major layers, the hardware layer and the software
layer, each of which may be further subdivided into layers. The fault-prevention, fault-
removal and fault-tolerance techniques described earlier apply to each of these layers.
Common fault-prevention techniques used in the hardware layers are the use of good
logic design tools to design circuits, the use of quality components to build the hard-
ware, and the use of air conditioning or heating to keep the hardware operating under
optimal climatic conditions. Examples of hardware fault-removal techniques are the use
of simulation to verify the circuits, rigorous testing of hardware components, and peri-
odic preventive maintenance of the operational system in order to remove faults before
they cause errors. Examples of hardware fault-tolerance techniques are the use of error
detection and correction codes, and instruction retry [Pra86].

Fault-prevention techniques commonly used in the design and development of soft-
ware layers are the use of top-down software design [Som92], structured program-
ming [DDH72], program verification [Gri81], software walk-throughs [Zie83], and soft-
ware development tools [Fis91]. All these techniques aim at systematizing the process of
software development by encouraging the use of an engineering approach in the design
and implementation of the software. The most common software fault-removal technique
is debugging by exhaustive testing. This technique attempts to exercise every execution
path in the system by testing it with diverse sets of inputs and by simulating a variety of
operating conditions.

Different fault-tolerance techniques are used in software systems to tolerate design
faults and operational faults. The techniques used to tolerate design faults, i.e. bugs in
the software, are called software fault-tolerance techniques. These techniques include
recovery block schemes [Ran75] and N-version programming [Avi85]. In the recovery
block scheme, programs are structured as a sequence of recovery blocks, which are
program structuring units like procedures, modules, blocks, etc.. Each recovery block has
associated with it an acceptance test and zero or more alternate blocks. The acceptance
test is a logical expression that is evaluated on exit from a block. If the program passes the
acceptance test, the alternate blocks are ignored and control passes to the next recovery
block. Otherwise, the process is restored to its state before it entered the block, and one
of the alternate blocks executed. The acceptance test is then applied, and a failure results
in yet another alternate block being tried. This continues until the program passes the
acceptance test or until all alternate blocks have been tried, in which case the recovery
block is regarded to have failed. The recovery block scheme is therefore based on passive

19

redundancy.
The N-Version programming scheme uses multiple versions of critical software com-

ponents developed independently to the same specification. All version are executed and
their results voted upon to determine the result of the computation. This scheme therefore
relies on active redundancy to tolerate design faults.

Software that can tolerate operational faults, i.e. failures of the underlying computing
platform, is called fault-tolerant software. It is important to distinguish fault-tolerant
software from software fault-tolerance; the former is the ability of a software layer to
cope with operational faults caused by failures of underlying layers, while the latter is the
ability of a software layer to cope with design faults in the layer itself. This dissertation
focuses exclusively on fault-tolerant software and the techniques used to build it.

Like all fault-tolerance techniques, techniques used to build fault-tolerant software
depend on redundancy of one form or another. There is, however, very little redundancy
available with a single processor system. In such a system, if the processor fails, everything
fails. On the other hand, distributed or network computer systems, which are collections
of processors connected by a communication network, have a natural redundancy that is
available for fault-tolerance. If a processor in such a system fails, other processors can
compensate for its failure. It is this inherent redundancy that makes distributed systems
obvious candidates for building dependable systems.

Writing software for distributed systems is, unfortunately, extremely difficult. Such
software has no single locus of control, has no consistent view of the entire system, and
must be able to handle completely asynchronous events. The problem becomes much
more difficult if the software must also be fault-tolerant. With failures, a part of the
executing program can suddenly fail and the rest of the software must be able to cope
with this failure. To make matters worse, it is impossible to predict when and where
these failures will occur. All these factors together make the development of fault-tolerant
software extremely difficult.

Numerous techniques have been developed to help simplify the task of developing
fault-tolerant software. These include the use of failure models, abstractions, and soft-
ware structuring paradigms. A failure model precisely characterizes assumptions about
the nature of failures suffered by a system or component. It simplifies the task of devel-
oping fault-tolerant software by limiting the kinds and number of failures with which the
programmer must anticipate and handle. Examples of common failure models are the fail-
silent or crash failure model [PVB+88], where a failed component stops without making
any erroneous state transitions, the omission failure model [ES86], where components
may not respond to some inputs, the timing failure model [CASD85], where components
may not respond to inputs in a timely manner, and the Byzantine failure model [LSP82],
where components can suffer arbitrary failures.

An abstraction is a definition of the properties of a system or a component, independent
of the details of its implementation. It is typically expressed in terms of the interface to the
component and the functionality it provides. Complex software systems are implemented
as layers of abstractions, where each abstraction builds on underlying abstractions. These

20

abstractions are implemented by separate program modules, which allows programmers to
tackle one small piece of a complex software system at a time, and allows different modules
to be developed concurrently by different programmers. Moreover, since interactions
between the modules are defined by the abstractions they implement, information flow
within the system is readily apparent. This greatly simplifies the debugging of the
system during its development and helps contain the effect of faults during its operation.
Abstractions, and the resulting modularization, have also been used for building fault-
tolerant domain specific systems, in which the systems can be configured to fit the needs
of a given application [HS93].

Software structuring paradigms facilitate the task of writing fault-tolerant software by
providing the programmer with standard ways of structuring this type of software. Three
such paradigms have been developed: the object/action paradigm, the restartable action
paradigm, and the replicated state machine paradigm. The object/action paradigm consists
of objects, which encapsulate data, and actions, which are threads of execution that modify
the data in one or more objects by invoking operations on objects. The paradigm ensures
that the consistency of the data is maintained despite failures. The object/action paradigm
is also called the transactional paradigm, and is useful for applications that must keep data
consistent.

The restartable action paradigm consists of a thread of execution called an action,
which can be restarted after a failure. The restarted action produces the same outputs that
would have been produced had there been no failures. This paradigm is most commonly
implemented by checkpointing schemes that allow processes to periodically save their
state on a permanent storage device and, on recovery from a failure, restart the process
from the last saved state. Even thought the restartable action paradigm is based on a single
thread of execution or process, it is useful for structuring systems consisting of interacting
processes.

The replicated state machine paradigm consists of state machines, which encapsulate
state variables and modify them only in response to commands. The values of these
variables are therefore uniquely determined by the sequence of commands received by
a state machine. Fault-tolerance is achieved by replicating state machines on different
machines and delivering all commands to all replicas in a consistent order. This paradigm
is essentially a formalization of active replication. It is commonly used to mask failures
in systems that must continue to deliver timely service despite failures.

Adequate programming language support can also greatly simplify the task of building
any software system, and fault-tolerant systems are no exception. Numerous languages,
extensions to existing languages, and language libraries have therefore been developed
to provide the programmer with mechanisms that support commonly used fault-tolerance
techniques. Examples of such languages include Argus [Lis85], Aeolus [LW85], and
Plits [EFH82] that were designed from the very outset as languages for fault-tolerant
programming; Arjuna [SDP91] and Avalon [HW87], designed as libraries to existing
languages; and finally Fault-Tolerant Concurrent C [CGR88], HOPS [Mad86], and the
languages described in [KU87], [KMBT92] and [SCP91], designed as fault-tolerance

21

extensions to existing programming languages.

1.3 FT-SR

This dissertation focuses on the area of improving programming language support for
constructing fault-tolerant systems. Specifically, the design and implementation of FT-SR,
a programming language developed for building a wide variety of fault-tolerant systems
is described. FT-SR is based on the concurrent programming language SR [AO93] and is
designed as a set of extensions to SR.

A distinguishing feature of FT-SR is the flexibility it provides the programmer in
structuring fault-tolerant software. It is flexible enough to be used for structuring systems
according to any of the standard fault-tolerance structuring paradigms introduced earlier.
This is especially important in systems building because different structuring paradigms
are often appropriate for different parts of the same system. It is this flexibility that sets
FT-SR apart from all the other fault-tolerant programming languages. Unlike FT-SR, other
languages target a certain class of applications, pick the program structuring paradigm
best suited to that class of applications, and provide language support for that structuring
paradigm. The domain of applicability of such languages is therefore limited. FT-SR, on
the other hand, is suitable for programming a variety of systems and applications.

FT-SR derives its flexibility from its programming model, which is based on fail-stop
atomic objects. This dissertation argues that fail-stop atomic objects are the fundamental
building blocks for all fault-tolerant programs. FT-SR provides the programmer with
simple fail-stop atomic objects, and mechanisms that allow these fail-stop atomic objects
to be composed to form higher-level fail-stop atomic objects that can tolerate a greater
number of faults or different kinds of faults. The mechanisms for composing fail-stop
atomic objects are based on the standard redundancy techniques discussed above. For
example, FT-SR provides mechanisms that allow the programmer to use active redundancy
to replicate a fail-stop atomic object to form a higher-level object that exports the same
set of operations, but is more fault-tolerant. This ability to combine the basic building
blocks in a variety of ways allows programmers to structure their programs in a manner
best suited to the application at hand.

FT-SR has been completely implemented. The implementation consists of two main
components: a compiler and a runtime system. Both the compiler and the runtime
system are implemented in C and borrow from the existing implementation of SR. The
compiler translates FT-SR code to C code, which is then linked with the runtime system.
The runtime system provides primitives for creating, destroying and monitoring objects
and object groups, handling failures of objects, restarting failed objects, invoking and
servicing operations, and a variety of other miscellaneous functions. The runtime system
is implemented using version 3.1 of the x-kernel [HP91]—an operating system kernel
designed for experimenting with communication protocols—and runs stand-alone on
Sun 3s. The implementation has also been ported to Unix.

22

1.4 Dissertation Outline

This dissertation is organized as follows. Chapter 2 describes in detail the different
structuring paradigms for fault-tolerant programs. Programming languages that support
each of these paradigms are also discussed and a case made for unifying these ideas into
a single programming language.

Chapter 3 presents the programming model underlying FT-SR. In particular, it defines
the notion of fail-stop atomic objects more precisely and shows how they can be used
to structure programs. The way in which FT-SR has been designed to support fail-stop
atomic objects is then described using simple example programs.

Chapter 4 shows how FT-SR can be used to build different kinds of systems. The
examples illustrate the use of different language mechanisms in different contexts that
result from the various fault-tolerance structuring paradigms.

Chapter 5 describes the implementation of FT-SR using the x-kernel. The compiler
and runtime system are described, and the pros and cons of using the x-kernel discussed.
The Unix port of this implementation is also described and finally some performance
numbers presented.

Chapter 6 evaluates the design and implementation of FT-SR. The strengths of the
programming model, language mechanisms and implementation are highlighted along
with some of the observed deficiencies of the langauge.

Chapter 7 makes some concluding remarks and presents some future research ideas
for FT-SR.

CHAPTER 2

FAULT-TOLERANT SOFTWARE

Software running on a dependable system must be fault-tolerant, i.e., it must continue
to deliver correct service despite the failure of the underlying computing platform. This
chapter describes the challenges faced by designers and programmers of fault-tolerant soft-
ware, the techniques used to simplify this difficult task, and the programming languages
that support these techniques.

Developing fault-tolerant software is an extremely difficult task for two main reasons.
First, faults can occur in any part of the system at anytime. This problem is compounded
by the fact that these faults can cause different system components to fail in different
ways. As a result, the designer of fault-tolerant software must anticipate every possible
failure and deal with its consequences. The second reason is that dependable systems are
often built using distributed computer systems. Therefore, the designer must also deal
with all the problems associated with distributed software, which include the difficulty
of managing concurrently executing threads of execution and dealing with inconsistent
views of the system at different sites.

To address these difficulties, techniques such as the use of failure models, abstractions,
and standard system structuring paradigms have been developed. Each of these techniques
is described in greater detail in the following sections. Numerous programming languages
have also been developed that support these techniques. Examples of such languages and
their support for the fault-tolerance techniques are also presented in this chapter.

2.1 Failure Models

A failure model specifies a designer’s assumptions about the nature of failures a system,
or component of a system, can suffer. It characterizes how a component will fail without
making any statement about the actual causes of the failure. A failure model therefore
limits the number and kinds of failures the system developer must anticipate and deal with
to a manageable amount. The result is a simplification of the design process.

Failure models have been developed for different layers of a computer system ranging
from the logic-gate layer to complex system components. The classical logic-gate level
failure model is the stuck-at failure model, where failures manifest themselves as inputs
or outputs of gates permanently “stuck” at logic 0 or logic 1 [AA86]. This fault-model
is used extensively in designing tests for circuits. The failure models for logic circuits,
which are composed of logic-gates, are formulated in terms of the values of the outputs
produced by the circuit. A common failure model for logic circuits is the fail-safe failure

23

24

model that assumes a circuit will never produce results that can cause failures in other
parts of the system [Toh86].

Failure models for more complex system components are often defined in terms of
the errors they produce in the output [Pow92]. Such errors can be classified along two
dimensions: value and timing. An output has a value error if the value or content of
the output is outside a specified range of values, while it has a timing error if it is
produced outside a specified range of times. Different failure models make assumptions
of different strengths about the types of value and timing errors that can occur. For
example, the strongest or most restrictive failure model assumes no value or timing errors,
i.e. components never fail. At the other extreme, the weakest or least restrictive failure
model assumes components can suffer from arbitrary value and timing errors. This
failure model is called the Byzantine failure model [LSP82]; it even allows for failure
scenarios where it might appear as if failed components are colluding with each other to
create a worst-case situation. Byzantine failures are used to model the components of
ultra-dependable systems, which must have an extremely low probability of failure.

Other useful failure models make assumptions about value and timing errors that lie
somewhere between the no failure and arbitrary failure assumptions. The fail-silent or
crash failure model [PVB+88] assumes that components fail by producing timing errors
where all outputs are infinitely delayed. Such components therefore behave correctly until
they fail and produce no output thereafter. The fail-silent failure model is most commonly
used to model processor failures. The omission [ES86] failure model also assumes no
value failures but allows timing failures where an occasional output is infinitely delayed.
These components therefore produce correct outputs on time or not at all. The omission
failure model includes the more restrictive crash model because a crash failure may be
viewed as an omission failure of all outputs after the time of failure. Omission failures
are used to model components like a network that occasionally drops packets. The
performance or late [CASD85] failure model also assumes no value failures but allows
timing errors where some outputs might be produced later than the specified range of
times. Outputs are therefore correct and on time, or correct but late. The performance
failure model includes the omission failure model because an omission failure may be
viewed as a timing failure where the output is infinitely late. Performance failures are
often used to model real-time systems.

Numerous variations of the above failure models have also been developed. For
example, the Byzantine failures with authentication failure model is a variant of the
Byzantine failure model where it is possible to verify the source of all messages exchanged
within the system [LSP82]. This added assumption greatly reduces the complexity of the
algorithms used in systems that assume Byzantine failures. The fail-stop failure model
is a variation of the crash failure model where the failure of a component is assumed
to be detectable by other functioning components [SS83]. This assumption allows other
components to differentiate between a failed component and one that is merely slow in
responding to inputs.

Since a failure model is merely an assumption about how a system or component

25

may fail, it can possibly be violated during system operation. The more restrictive the
failure model, i.e. the more assumptions it makes about failures, the higher the probability
that it will be violated. While this favours the use of less restrictive failure models, the
complexity of the algorithms used and the degree of redundancy needed to ensure correct
operation increases with less restrictive failure models. As a result, the choice of failure
models is a trade-off between the degree of dependability required of the system and the
complexity of the system. This trade-off is determined by the needs of the application: the
greater the dependability required, the greater the justification for the increased complexity
and cost of building the system. For example, the designer of a flight control computer
for a commercial airplane cannot justifiably use any failure model other than Byzantine
because of the lives that would be in jeopardy if the computer failed. On the other hand,
the designer of a typical commercial transaction processing systems would have a difficult
time justifying the use of anything less restrictive than the crash failure model. If fact, the
crash failure model is the most commonly used failure model because of its simplicity and
the empirical evidence that points towards a relatively low probability of it being violated
[Gra86b].

2.2 Abstractions

An abstraction is a definition of the properties of a system or a component, independent
of the details of its implementation. It is typically expressed in terms of the interface to
the component and the functionality it provides.

Abstractions simplify the design and implementation of complex software systems.
Such systems are designed as a hierarchy of abstractions, where each abstraction builds
on other simpler abstractions. Abstraction are implemented by separate units or modules,
which are developed independently. This is possible because inter-dependencies between
modules are limited to the abstractions they implement and not their implementation.

The use of abstractions and the resulting lack of implementation dependencies be-
tween modules has proven useful in building domain-specific software systems that are
configured to meet the needs of a given application [HS93]. This is done by configuring
the system with just those modules that are needed to provide the functionality required
by the application. This approach has also been used to dynamically re-configure systems
to meet the needs of changing applications [OP92].

Abstractions are particularly useful for building fault-tolerant software. The use of
appropriate abstractions to access the services provided by a module limits access to its
internal state by other modules. This helps contain the effect of failures; since modules do
not share state, errors in the state of a module cannot directly cause errors in the state of
other modules. The use of such self-contained modules also allows the software to isolate
failed modules and reconfigure the system accordingly. Failed modules can also be easily
replaced by other modules implementing the same abstraction.

Some commonly used abstractions for fault-tolerance have been formalized and are
often provided to programmers as standardized modules. An example of such an abstrac-

26

tion is that of stable storage [Lam81]. Stable storage is an idealized storage device that
suffers no failures and is unaffected by failures of other components of the system. Reads
and writes to a stable storage complete successfully or do not happen at all, and values
written to a stable storage survive all failures. Examples of other standard fault-tolerance
abstractions and the relationship between these abstractions can be found in [MS92].

2.3 Program Structuring Paradigms

All programs have a certain structure, which is determined by such factors as the appli-
cation, the interactions between program modules and their functional dependencies, and
the architecture of the underlying computing platform. Determining the structure that
is most appropriate for a given program is a difficult task, and the more complex the
program, the more difficult this task. Since fault-tolerant programs tend to be exceedingly
complex, certain standard program structuring techniques have been developed for these
programs. These techniques, called fault-tolerance program structuring paradigms, pro-
vide programmers with standard ways of structuring programs and abstractions that help
understand the interactions between modules in the program.

The most important fault-tolerant programming structuring paradigms are the ob-
ject/action model, the restartable action paradigm, and the replicated state machine ap-
proach. Since the vast majority of fault-tolerant programs use one or more of these
paradigms, understanding these paradigms is fundamental to understanding fault-tolerant
software. These paradigms and examples of systems supporting these paradigms are
therefore described in greater detail in the rest of this section.

2.3.1 The Object/Action Model

The object/action paradigm consists of objects and actions [Gra86a]. An object is a
passive entity that exports operations. Actions are threads of execution; they are active
and invoke operations on objects to carry out tasks. Actions are atomic, which means
they are unitary and serializable. The unitary property ensures that if an action completes
successfully, it has been carried out completely. If a failure occurs before the action
completes, then after recovery, the external effect of the action is as if it has successfully
completed or not been started at all. The serializable property ensures that if several
actions are carried out by concurrent processes, the result is always as if the individual
actions were carried out one at a time in some serial order. These properties have also been
called totality and serializability [Wei89], and recoverability and indivisibility [Lis85]. In
the database literature, atomic actions are referred to as transactions [BHG87]. The atomic
object/action paradigm is best suited for applications that manage persistent data whose
consistency must be maintained despite failures.

The unitary property of actions is implemented by a commit protocol [BHG87]. Such
a protocol ensures that when an action completes, either all objects affected by the action
commit the action or all abort the action. A commit installs the effects of the action while

27

an abort undoes its effects so it appears as if the action was never started. The two-phase
commit protocol is the best known commit protocol [Gra79].

The serializability property of actions is implemented by locking protocols. Locking
protocols prevent actions from interfering with one another by controlling access to shared
resources. The most common locking protocol is called two-phase locking [EGLT76].

TABS

TABS is an example of a system supporting the object/action model [SDD+85]. It is a
distributed transaction facility that supports the implementation of objects and actions in a
distributed system, in addition to standard abstractions such as processes and inter-process
communication. TABS supports user-specified objects that are implemented within server
processes; each such process controls access to one class of objects. Servers implement
locking, commit, and recovery protocols to ensure the atomicity of actions in the system.

The TABS programmer interface is implemented as a collection of three libraries:
the server library, which provides routines for shared/exclusive locking and logging, a
transaction management library, which provides routines for controlling the execution of
transactions, and a name server library, which provides services that map object names
to communication ports. Programmers use these library routines to implement classes
of servers for the objects in the system. Since the support provided by TABS is fairly
primitive, programmers must explicitly manage concurrency within servers by locking.

2.3.2 The Restartable Action Paradigm

A restartable action is a thread of execution that, when restarted after a failure, will
produce the same outputs had there been no failure [SS83]. Some actions are naturally
restartable and are called idempotent actions. For example, an action that copies a file
from one directory to another is an idempotent action; if it fails during execution it can be
restarted without any undesirable side-effects. Actions that are not naturally restartable
can usually be made restartable so long as the duplication of any external effects of the
action is not undesirable.

Restartable actions are used to program processors that suffer fail-stop failures. It is
assumed that these actions have access to stable storage in addition to the usual volatile
storage. They modify the contents of these storage devices and take them from an initial
state to a final state. If the processor fails during execution, the action is restarted on
a functioning processor. On restart, it executes recovery code that uses information on
the stable storage to restore the system to a state from which the action can continue to
execute to completion, taking it to the same final state it would have reached had there
been no failures.

Restartable actions are most commonly implemented by checkpointing schemes.
These schemes periodically save the entire state of an action on stable storage. If the
action fails, it can be restarted by restoring its state from the last available checkpoint.

28

Checkpointing schemes therefore implement the backward recovery technique described
in Chapter 1.

Even though restartable actions are described in terms of a single process executing
on one processor, the paradigm can be extended to systems of interacting processes in a
distributed system. The global state of such a system is a set of states, one from each
process [SMR88]. This global state can be checkpointed by individually checkpointing
each processes. However, the checkpointing and recovery of these processes must be
coordinated with each other to avoid situations where the restart of a failed process p

results in an inconsistent global system state and therefore requires the rollback of another
process q to a previous checkpoint. Such a situation can arise if process p had sent a
message to q between the time of its last checkpoint and point of failure. A rollback of p
to this checkpoint results in a situation where q has a message that, according to p’s new
state, has not yet been sent. This requires a rollback of q to a checkpoint taken before
it received the message. This may, in turn, require a third process r to be rolled back,
setting off a cascade effect that results in all processes being rolled back. This effect is
called the domino effect. A well-know technique used to prevent such a domino effect is
called conversations [Ran75]. Alternatively, message logging and replay techniques can
be used [JZ90, SW89, SY85].

UNICOS

UNICOS, an operating system for Cray machines derived from AT&T Unix System V, is
an example of a system that supports restartable actions using checkpointing [KK89]. In
addition to the standard Unix system calls, it provides two system calls for checkpointing
and restart: chkpnt and restart. chkpnt is used to checkpoint a process; it creates
a restart file containing the information needed to restore the process to execution at a
later time. restart accepts a restart file and restores the process to the stored state.
In addition to providing these system calls, UNICOS defines a new Unix signal called
SIGRECOVERY that is sent to a restarted process. This signal may be fielded by the
process and recovery code executed by the signal handler.

2.3.3 The Replicated State Machine Paradigm

In this paradigm, services are implemented by state machines. A state machine consists
of state variables, which encode its state, and commands that transform its state [Sch90].
Each command is implemented by a deterministic program and executes atomically with
respect to other state machine commands. As a result, the state of a machine and any out-
puts it produces are determined solely by the sequence in which it processes commands.
The availability of a service is increased by replicating the state machine implementing
the service and placing the replicas on different processors. To ensure that these replicas
make the same transitions, commands to the state machine are processed by all replicas
in the same order. The mechanism that delivers these commands therefore satisfies the

29

agreement and order properties. The agreement property guarantees all functioning repli-
cas receive every request and the order property guarantees all replicas receive commands
in the same relative order.

Most fault-tolerance schemes that involve replicating data or processing are based on
the replicated state machine paradigm. This paradigm allows systems to mask failures,
thereby alleviating the need for expensive error processing. This is especially important in
real-time systems that cannot afford the time needed for removing errors caused by faults.
The replicated state machine paradigm is also used by systems based on the Byzantine
failure model.

The replicated state machine paradigm is supported by systems like Circus [Coo85],
Consul [Mis92], Delta-4 [Pow91], and Isis [BSS91]. Among other things, these systems
provide the programmer with mechanisms that allow commands to be reliably delivered
to groups of processes in a consistent order.

Consul

Consul is a platform for building fault-tolerant distributed systems that are based on the
replicated state machine paradigm. It provides the services needed to implement the
state machine paradigm. These services include multicast services that reliably deliver
messages to a collection of processes, membership services that maintain a consistent
system-wide view of which processes are functioning and which are failed, and recovery
services that facilitate recovery of failed processes.

Consul is implemented as a collection of protocols, where each service is implemented
by one or more protocols. At the heart of Consul is the Psync group-oriented communica-
tion protocol [PBS89]. Psync allows a group of processes to exchange messages in a way
that explicitly preserves the consistent partial order of the messages. This partial order,
which is a variation of the happened before relation [Lam78], is represented in Psync
as a directed acyclic graph called the context graph. The other protocols within Consul
use Psync to implement the services they provide. These protocols typically query Psync
about the status of messages in the context graph and use the information to implement
their functionality. Examples of protocols that are provided by Consul include total-order,
semantic-dependent ordering, membership, and recovery.

2.4 Programming Language Support for Fault-Tolerance

Programming languages that support the failure models, abstractions, and structuring
paradigms for fault-tolerance can greatly ease the task of writing fault-tolerant programs.
Numerous such languages have been developed, some in the form of entirely new lan-
guages designed specifically for programming fault-tolerant software, some in the form
of extensions to existing languages and systems, and some in the form of libraries to ex-
isting languages. Examples of languages that were specifically designed for fault-tolerant

30

programming include Argus [Lis85], Aeolus [LW85] and Plits [Fel79, EFH82]. Exam-
ples of extensions to existing languages include Fault-Tolerant Concurrent C [CGR88],
HOPS [Mad86], and languages described in [KU87], [KMBT92] and [SCP91] which
extend Concurrent C [GR89], Modula-2, Ada [DoD83], Orca [BKT92] and SR respec-
tively. Finally, fault-tolerance library support for existing languages is provided by
Arjuna [SDP91] for C++, and Avalon [HW87] for C++, Common Lisp and Ada.

Different languages provide varying degrees of support for failure models, abstrac-
tions, and program structuring paradigms. They all assume the crash failure model and
provide the support necessary to handle crash failures. This support is usually in the
form of protocols and algorithms within the language runtime systems that are optimized
for crash failures. Support for abstractions is usually provided in the form of an object-
oriented programming model. In this model, abstractions are implemented by objects,
which are the basic units of encapsulation and modularization. HOPS and the languages
based on C++ are fully object oriented, while Aeolus, Argus, Plits, and the languages
based on Ada and SR provide for abstract data types and encapsulation.

The support for the fault-tolerance structuring paradigms is what really distinguishes
these languages. For example, the object/action model is supported by Aeolus, Argus,
Avalon, HOPS, Plits, and Arjuna. Specifically, the Aeolus language has been designed
to provide access to the synchronization and recovery features of Clouds [DLAR91],
a fault-tolerant distributed operating system based on objects and actions. Avalon is
a set of linguistic constructs designed to give programmers explicit control over the
processing of atomic actions. It allows them to test transaction serialization orders at
runtime and specify commit and abort operations. These capabilities allow programmers
to exploit the semantics of the applications to enhance efficiency, concurrency, and fault-
tolerance. HOPS allows the programmer to specify the concurrency control and recovery
mechanisms used by the language runtime system to implement atomic actions. For
example, the language allows the programmer to choose between the two-phase commit
protocol and timestamp ordering for concurrency control, and between logs and shadows
for recovery. Plits tags actions in the system with activity tags that are visible to the
programmer. Programmers use the activity tag associated with an action to tag the data
items it modifies. These tags, combined with language mechanisms that select data based
on their tag values, greatly simplify the task of writing concurrency control and commit
protocols. Finally, Argus allows the programmers to specify objects and the start and end
of actions. It is described in more detail in Section 2.4.1.

The replicated state machine paradigm is supported by HOPS and Fault-Tolerant Con-
current C. HOPS allows the programmer to associate a replication attribute with the objects
in the system. These attributes specify the type of replication desired: replication with
quorum, primary-backup replication, or standard replication. Fault-Tolerant Concurrent
C provides primitives that can be used to create and manage replicated processes. It is
described in greater detail in Section 2.4.2.

Support for the restartable action paradigm is usually provided in the form of op-
erating system calls for checkpointing and restarting processes. Checkpointing can be

31

made transparent to the programmer by having the language runtime system automatically
checkpoint programs at regular intervals. Such automatic checkpointing is however ex-
tremely complicated in a distributed program with concurrently executing threads because
of the need for checkpoints to be mutually consistent [RLT78]. Orca is an example of a
language that can automatically checkpoint executing programs. In particular, it provides
automatic checkpointing that works for programs that have a long compute phase during
which they do not interact with users or perform I/O. The mutual consistency of the
checkpoints is ensured by coordinating the checkpointing using a reliable broadcast based
algorithm.

Finally, the extensions to SR proposed in [SCP91] do not explicitly support any of
the structuring paradigms. The extensions do, however, provide an ordered multicast
mechanism that can be used to implement the replicated state machine paradigm. They
also allow the programmer to define variables as being “stable”; such variables are stored
on stable storage and therefore survive failures. This allows the programmer to implement
fine grained checkpointing, and hence, the restartable action paradigm.

Two of the above languages and systems, Argus and Fault-Tolerant Concurrent C
are described in detail in the remainder of this section. These languages support the ob-
ject/action and replicated state machine fault-tolerance structuring paradigms respectively,
and are representative of their class of languages.

2.4.1 Argus

Argus is an integrated programming language and system that supports the object/action
paradigm. It allows the programmer to specify objects and ensures that programmer-
defined actions are executed atomically. User specified objects in Argus are called
guardians, which also serve as units of encapsulation. Operations exported by a guardian
are called handlers. Actions may span multiple guardians and when an action commits,
changes to resources modified by the action are made permanent by all guardians involved
in the action. Actions can be aborted by the application program or by the system due to
a failure. All changes made by an aborted action are automatically undone by the system.
The programmer can associate exception handlers with actions; these exception handlers
can take appropriate action based on the cause of an abort.

A guardian runs on a single node and is lost if the node crashes. However, the state of
a guardian consists of both stable and volatile objects. Stable objects are stored on stable
storage and on recovery from a crash, the language runtime system recreates the guardian
and restores the stable objects. A programmer-defined recovery process is then started in
the guardian to recreate the volatile objects. Once the volatile objects are restored, the
guardian can resume background tasks and respond to new handler calls.

2.4.2 Fault-Tolerant Concurrent C

Fault-Tolerant Concurrent C (FTCC) is an extension to Concurrent C [GR89] that supports
the replicated state machine paradigm. FTCC allows the programmer to build replicated

32

state machines by replicating processes. Specifically, FTCC extends the Concurrent C
process creation statement to create multiple copies of a process on one or more processors.
The entire replicated process ensemble is identified by a single process identifier, with
calls using this identifier being delivered by the FTCC runtime system to all members
of the ensemble. A distributed consensus protocol in the runtime system ensures that all
replicas process messages in the same total order.

FTCC provides the programmer with the ability to detect process failures, where a pro-
cess is defined to have failed if all its replicas have been lost due to failures or explicitly de-
stroyed by the program. The programmer can ask to be synchronously or asynchronously
notified of such failures. Synchronous failure notification is provided by a fault expression
associated with the call statement that is executed if the call fails. Asynchronous failure
notification is provided by the built-in function c request death notice, which
takes two arguments: the identifier of a process to be monitored and a function to be
called by the runtime system when the process fails. This monitoring can be terminated
using the built-in function c cancel death notice, which takes a process identifier
as its argument.

2.5 Summary

This chapter described the difficulties associated with building fault-tolerant software
and techniques such as failure models, abstractions, and structuring paradigms used
to simplify this task. The programming languages that support these techniques were
then presented. It was noted that while all these languages had very similar kinds of
facilities to support failure models and abstractions, they differed considerably in their
support for the structuring paradigms. Almost every language chose to support one
paradigm and was therefore well suited for programming classes of applications that
conformed to that paradigm. Even languages that attempted to support more than one
structuring paradigm had extensive support for a paradigm and very rudimentary support
for the others. Support for a single-paradigm has been shown to be constraining in
many situations and is particularly inappropriate for constructing systems where different
structuring paradigms are appropriate for different levels of abstraction[Bal91]. FT-SR,
a language for constructing fault-tolerant systems that is introduced in the following
chapters, avoids this shortcoming by supporting equally well any of the fault-tolerance
structuring paradigms.

CHAPTER 3

FT-SR: PROGRAMMING MODEL AND LANGUAGE
DESCRIPTION

FT-SR has been designed to be a programming language versatile enough for building
a wide variety of fault-tolerant software systems. This versatility is derived from its
programming model, which allows the programmer a great deal of flexibility in structuring
systems. This chapter describes this programming model and the language mechanisms
of FT-SR that support the model.

3.1 The FT-SR Programming Model

The FT-SR programming model assumes that all fault-tolerant programs are composed of
fail-stop (FS) atomic objects. Such an object contains one or more threads of execution,
which implement a collection of operations that are exported and made available for
invocation by other FS atomic objects. These operations execute as atomic actions, i.e.,
they satisfy the unitary and serializability properties. However, as is always the case with
fault-tolerance, these properties can only be approximated by an implementation, i.e., they
can be only guaranteed relative to some set of assumptions concerning the number and
type of failures. For example, algorithms to realize the unitary property often rely on stable
storage in such a way that the failure of this abstraction can lead to unpredictable results.
Or, a series of untimely failures might exhaust the redundancy of an implementation built
using replication.

To account for cases such as these, the semantics of FS atomic objects include the
concept of failure notification. Such a notification is generated for a particular object
whenever a catastrophic failure occurs, where such a failure is defined to occur when
an object’s implementation assumptions are violated, or should the object be explicitly
destroyed from within the program. The status of an operation being executed when such
a failure notification occurs is indeterminate. Hence, the analogy to fail-stop processors
implied by the term “fail-stop atomic objects” is strong: in both cases, either the abstraction
is maintained (processor or atomic object) or notification is provided.

A fault-tolerant distributed system can be realized by a collection of FS atomic objects
organized along the lines of functional dependencies. For example, an FS atomic object
implementing the services of a transaction manager may use the operations exported
by another FS atomic object implementing the abstraction of stable storage. These
dependencies can be defined more formally using the depends relation given in [Cri91].
In particular, an FS atomic object u is said to depend on another object v if the correctness

33

34

lock
unlock

lock
unlock

withdraw
deposit

transfer

read
write

write
readread

write

startTransaction
prepareToCommit

read/write
commit

abortabort
commit

read/write
prepareToCommit

startTransaction

Host 2Host 1

Stable Storage

Stable Storage Stable Storage Lock ManagerLock Manager

Data ManagerData Manager

Transaction Manager

Figure 3.1: Fault-tolerant system structured using FS atomic objects

of u’s behavior depends on the correctness of v’s behavior. Thus, the failure of v may
result in the failure of u, which in turn can lead to the failure of other objects that depend
on u.

Increasing the dependability of a distributed system organized in this way is done
by decreasing the probability of failure of its constituent FS atomic objects using fault-
tolerance techniques based on the exploitation of redundancy. For example, an object
can be replicated to create a new FS atomic object with greater resilience to failures.
This replication can either be active, where the states of all replicas remain consistent, or
passive, where one replica is a primary and others remain quiescent until a failure occurs.
Or, an FS atomic object can contain a recovery protocol that would be executed upon
restart following a failure to complete the state transformation that was in effect when the
failure occurred. The applicability of each of these techniques depends on the details of
the system or the application being implemented.

As an example of how a typical fault-tolerant system might be structured using FS

35

atomic objects, consider the simple distributed banking system shown in Figure 3.1. Each
box represents an FS atomic object, with the dependencies between objects represented
by arrows. User accounts are assumed to be partitioned across two processors, with
each data manager object managing the collection of accounts on its machine. The user
interacts with the transaction manager, which in turn uses the data managers and a stable
storage object to implement transactions. The transaction manager acts as the coordinator
of the system; it decides if and when a transaction is to be committed and coordinates the
two-phase commit protocol [Gra79] that is used to ensure that all data managers involved
agree on the outcome of the transaction. Associated with the transaction manager is a
stable storage object, which it uses to log the progress of transactions in the system. The
data managers export operations that are used by the transaction manager to read and
write user accounts, and to implement the two-phase commit protocol. The stable storage
associated with each data manager is used to store the actual data corresponding to user
accounts, and to maintain key values that can be used to restore the state of the data
manager should a failure occur. The lock managers are used to control concurrent access.

To increase the overall dependability of the system, the constituent FS atomic objects
would typically be constructed using fault-tolerance techniques to increase their failure
resilience. For example, the transaction and data managers might use recovery protocols to
ensure that data in the system is restored to a consistent state following failure. Similarly,
stable storage might be replicated to increase its failure resilience. The failure notification
aspect of FS atomic objects is used to allow objects to react to the failures of objects upon
which they depend. If such a failure cannot be tolerated, it may, in turn, cause subsequent
failures to be propagated up the dependency graph. At the top level, this would be viewed
by the user as the catastrophic failure of the transaction manager and hence, the system.
Such a situation might occur, for example, should the redundancy being used to implement
stable storage be exhausted by an untimely series of failures. In Chapter 4, we illustrate
how the data manager and stable storage FS atomic objects from this example might be
implemented using FT-SR.

Fail-stop atomic objects and the associated techniques for increasing failure resilience
form a “lowest common denominator” that can be conveniently used to realize the seem-
ingly disparate programming paradigms proposed for fault-tolerant programming. For ex-
ample, consider the object/action model. A system built using the object/action paradigm
may be implemented using FS atomic objects. Objects in the system correspond to FS
atomic objects. An action corresponds to an abstract thread realized by the combination
of concrete threads in the FS atomic objects. This abstract thread may span multiple FS
atomic objects as a result of invocations made by concrete threads that are serviced by
concrete threads in other objects. Standard locking and commit protocols are used to
ensure the unitary and serializable nature of these actions across multiple objects. Viewed
as a whole, this system appears to the user as one FS atomic object exporting the set of
operations required by the application.

As a second example, consider the replicated state machine paradigm. State ma-
chines map directly to FS atomic objects. Commands to the state machine correspond

36

to invocations on an FS atomic object, with locking techniques being used to ensure that
the operation executions are atomic. A replicated state machine can be implemented by
replicating FS atomic objects and ensuring that all commands to the state machine result
in invocations on all replicas in a consistent order. Each ensemble of replicated FS atomic
objects forms a higher-level FS atomic object representing the fault-tolerant version of a
given state machine. The entire collection of such FS atomic objects can then be viewed
as a single FS atomic object that implements the entire system.

Finally, consider the restartable action paradigm. Restartable actions can be easily
implemented as threads executing in an FS atomic object that is restarted on a failure.
The recovery protocol that is executed when the failed object is restarted can be used to
restore the failed threads to a state from which they can execute to completion. The failure
notification that is generated when the FS atomic object fails allows other objects in the
system to learn of the failure and restart the failed object. Barring catastrophic failures that
cause the recovery protocol to fail or the failed object to not be restarted at all, operations
implemented by restartable threads will eventually complete successfully. In case of such
catastrophic failures, the system comprising the object will fail and a failure notification
generated. The entire system can therefore be viewed as a single FS atomic object.

The system shown in Figure 3.1 is an example of a system in which FS atomic
objects are used to implement different programming paradigms in different parts of the
system. Specifically, the transaction and data managers are built using the restartable
action paradigm, while the stable storage objects are built using the replicated state
machine approach. The user of the banking system sees the system as one implementing
the atomic object/action paradigm and interacts with it accordingly.

3.2 The FT-SR Language Description

The goal of FT-SR is to support the building of systems based on the FS atomic object
model and thus, by implication, the building of systems using any of the existing program-
ming paradigms. Given the need for flexibility, we do not provide these objects directly
in the language, but rather include features that allow them to be easily implemented. To
this end, the language has provisions for encapsulation based on SR resources, resource
replication, recovery protocols, synchronous failure notification when performing inter-
process communication, and a mechanism for asynchronous failure notification based
on a previous scheme for SR [SCP91]. Since our extensions are based on existing SR
mechanisms, a short overview of the language is provided in Appendix A; for further
details, see [AOC+88, AO93].

3.2.1 Simple FS Atomic Objects

Realizing much of the functionality of a simple FS atomic object—i.e., one not composed
of other objects or using any other fault-tolerance techniques—in SR is straightforward
since a resource instance is essentially an object in its own right. For example, it has the

37

appropriate encapsulation properties and is populated by a varying number of processes
that can function as threads in the FS atomic object model. SR operations are also very
similar to the operations defined by the model; they are implemented by processes and
can be exported for invocation by processes in other resource instances. Moreover, the
execution semantics of SR operations are already close to those desired for FS atomic
objects; the only additional property required is atomicity of operation execution in the
absence of catastrophic failures, which occur for simple objects when the resource instance
is destroyed due to failure or explicit termination. Ensuring atomicity therefore reduces
to ensuring serializability, which can easily be programmed in SR by, for example,
implementing each exported operation as a separate alternative in an input statement
repeatedly executed by a single process. Standard locking-based solutions that allow
more concurrency are also easy to implement in SR.

Figure 3.2 shows the outline of a simple FS atomic object that implements atomicity
by use of an SR input statement. The object is a lock manager that controls access to a
shared data structure implemented by some other resource. It exports two operations: a
get lock operation that is invoked by clients wishing to access the shared data structure
and a rel lock operation that clients invoke when they are done. If a client invokes
the get lock operation and the lock is available, a lock id is returned. If the lock is
unavailable, the client is blocked at the first guard of the input statement. The get lock
operation takes as its argument the capability of the invoking client. This capability is
used as a means of identifying the client.

The one aspect of simple FS atomic objects that SR does not support directly—and
hence the focus of our extensions in this area—is generation of a failure notification.
As mentioned earlier, for simple objects this occurs when the processor executing the
resource instance fails, or when the resource instance or its virtual machine is explicitly
destroyed from within the program. In Chapter 5, we discuss how this failure is detected
by the language runtime system, so here we concentrate on describing the mechanisms
that are provided to field this notification in other resource instances. These facilities
allow an abstract object to react to the failure of other objects on which it depends.

FT-SR provides the programmer with two different kinds of failure notification and
consequently, two different ways of fielding a notification. The first is synchronous with
respect to a call; it is fielded by an optional backup operation specified in the calling
statement. The second kind of notification is asynchronous; the programmer specifies a
resource to be monitored and an operation to be invoked should the monitored resource
fail. To understand the need for these two kinds of failure notification, consider what
might happen if the lock manager shown in Figure 3.2 or any of its clients fail. If the
lock manager fails, all clients that are blocked on its input statement will remain blocked
forever. Clients can use the FT-SR synchronous failure notification facility to unblock
themselves from the call and take some recovery action in the event of such a failure.
Figure 3.3 shows the outline of a client structured in this way. The statement of interest
is where the client makes a call invocation using a capability to the lock manager’s
get lock operation lock mgr cap.get lock. Bracketed with this capability is the

38

resource lock manager
op get lock(cap client) returns int
op rel lock(int; cap client)

body lock manager
var : : :variable declarations: : :

process lock server
do true ->
in get lock(client cap) and lock available() ->

: : :mark lock id as being held by client cap: : :
return lock id

[] rel lock(client cap, lock id) ->
: : :release lock: : :
return

ni
od

end lock server
end lock manager

Figure 3.2: Simple FS atomic object

resource client
op : : :

op : : :

body client()
var lock id: int
op mgr failed(cap client) returns int
...
lock id := call flock mgr cap.get lock, mgr failedg (myresource())
...

proc mgr failed(client cap) returns lock err
return LOCK ERR

end mgr failed
end client

Figure 3.3: Outline of Lock Manager client

39

capability to a backup operation mgr failed. This backup operation is invoked should
the call to lock mgr cap.get lock fail, where the call is defined to have failed if the
lock manager fails before it can reply to the call. In this example, the backup operation
mgr failed is implemented locally by the client, which we expect will be the most
common usage; in general, however, the backup operation can be implemented by any
resource. Note that the backup operation is called with the same arguments as the original
operation and, hence, must be type compatible with the original operation. Backup
operations can only be specified with call invocations; send invocations are non-blocking
and no guarantees can be made about the success or failure of such an invocation if the
resource implementing the operation fails. Both call and send invocations are guaranteed
to succeed in the absence of failures. Execution is blocked if a call fails and there is no
associated backup operation.

Consider now the inverse situation where a client of the lock manager fails. If the
client fails while it holds a lock, all other clients will be prevented from accessing the
shared data structure. The server can use the FT-SR asynchronous failure notification
facility to detect such a failure and release the lock, as shown in Figure 3.4. This figure
is identical to Figure 3.2 except for the monitor statement in the get lock operation
and the monitorend statement in the rel lock operation. The server uses the monitor
statement to enable monitoring of the client instance specified by the resource capability
client cap. If the client is down when the statement is executed or should it subse-
quently fail, the operation rel lock will be implicitly invoked by the language runtime
system with the client cap and lock id as arguments. Arguments to the operation
specified in the monitor statement are evaluated at the time the monitor statement is
executed and not when the failure occurs. Monitoring is terminated by the monitorend
statement, which also takes a resource capability as its argument (as shown in Figure 3.4)
or by another monitor statement that specifies the same resource. The ability to request
asynchronous notification has proven to be convenient in a variety of contexts [CGR88,
SCP91, BMZ92] and is in keeping with the inherently asynchronous nature of failures
themselves.

3.2.2 Higher-Level FS Atomic Objects

FT-SR provides mechanisms for supporting the construction of more fault-tolerant, higher-
level FS atomic objects using replication, and for increasing the resilience of objects to
failures using recovery techniques. The replication facilities allow multiple copies of an
FT-SR resource to be created, with the language and runtime providing the illusion that
the collection is a single resource instance exporting the same set of operations. The
SR create statement has been generalized to allow for the creation of such replicated
resources, which we call a resource group. For example, the statement

lock mgr cap := create (i := 1 to N) lock manager()
on vm caps[i]

40

resource lock manager
op get lock(cap client) returns int
op rel lock(int)

body lock manager
var : : :variable declarations: : :

process lock server
do true ->
in get lock(client cap) and lock available() ->

: : :mark lock id as being held by client cap: : :
monitor client cap send rel lock(client cap, lock id)
return lock id

[] rel lock(client cap, lock id) ->
: : :release lock if held by client cap: : :
monitorend client cap
return

ni
od

end lock server
end lock manager

Figure 3.4: Lock Manager with client monitoring

creates a resource group with N identical instances of the resource lock manager on
the virtual machines specified by the array of virtual machine capabilitiesvm caps. Both
the quantifier (i := 1 to N) and on clauses are optional. If they are omitted the
statement reverts to the semantics of the normal SR statement, which creates one instance
of the named resource on the current virtual machine.

The value returned from executing the create statement is a resource capability that
provides access to the operations implemented by the new resource(s). If a single resource
instance is created, the capability allows the holder to invoke any of the exported operations
in that instance as provided for in normal SR. If, on the other hand, multiple identical
instances are created, the capability is a resource group capability that allows multicast
invocation of any of the group’s exported operations. In other words, using this capability
in a call or a send statement causes the invocation to be multicast to each of the individual
resource instances that make up the group. All such invocations are guaranteed to be
delivered to the runtime of each instance in a consistent total order. This means, for
example, that if two operations implemented by alternatives of an input statement are
enabled simultaneously, the order in which they will be executed is consistent across all
functioning replicas. Moreover, the multicast is also done atomically, so that either all
replicas receive the invocation or none do. This property is guaranteed by the runtime
system given no greater than max sf simultaneous failures, where max sf is a parameter

41

set by the user at compile time. The combination of the atomicity and consistent ordering
properties means that an invocation using a resource group capability is equivalent to an
atomic broadcast [CASD85, MSMA90]. The results of a multicast call invocation are
collected by the runtime system, with only a single result being returned to the caller; since
FT-SR assumes processors with fail-silent semantics, returning the first result is sufficient
in this case.

In addition to this facility for dealing with invocations coming into a resource group,
provisions are also made for coordinating outgoing invocations generated within the group.
There are two kinds of invocations that can be generated by a group member. In some cases,
a group member may wish to communicate with a resource instance as an individual even
though it happens to be in a group. For example, this would be the situation if each replica
has its own set of private resources with which it communicates. At other times, the group
members might want to cooperate to generate a single outgoing invocation on behalf of the
entire group. To distinguish between these two kinds of communication, FT-SR allows a
capability variable to be declared as being of type private cap. Invocations made using a
private capability variable are considered private communication of the group member and
not co-ordinated with other invocations from group members. Invocations using regular
capability variables are, however, considered to be invocations from the entire group, so
exactly one invocation is generated in this case. The invocation is actually transmitted
when one of the group members reaches the statement, with later instances of the same
invocation being suppressed by the language runtime system. This invocation could, in
fact, be a multicast-type invocation as described above if the operation being invoked is
within another resource group (i.e., if the capability used in the statement is a resource
group capability). It should be noted that a private capability variable can be assigned to
a regular capability of the same type and vice versa; whether an invocation is private or
not is determined solely by the type of the variable used in making the invocation.

A resource group can also be configured to work according to a primary-backup
scheme [AD76]. In this scenario, invocations to the group are delivered only to a replica
designated as the primary by the language runtime, with the other replicas being passive.
This type of configuration is achieved by placing the op restrictor fprimaryg on the
declaration of operations in the group members that are to be invoked only if the replica
is the primary.

FT-SR also provides the programmer with the ability to restart a failed resource instance
on a functioning virtual machine. The recovery code to be executed upon restart is denoted
by placing it between the keywords recovery and end in the resource text. This syntax is
analogous to the provisions for initialization and finalization code in the standard version
of SR. A resource instance may be restarted either explicitly or implicitly. Explicitly, it is
done by the following statement:

restart lock mgr cap() on vm cap

42

This restarts the resource indicated by the capability lock mgr cap and executes any
recovery code that may be specified by the programmer. To restart an entire resource
group,

restart (i:=1 to N) lock mgr cap() on vm caps[i]

is used. The size of the reconstituted group can be different from the original. In both
cases, it is important to note that the restarted resource instance is, in fact, a re-creation of
the failed instance and not a new instance. This means, for example, that other resource
instances can invoke its operations using any capability values obtained prior to the failure.

Implicit restart is indicated by specifying backup virtual machines when a resource or
resource group is created. For example,

create lock mgr() on vm cap backups on vm caps array

creates an instance of the lock manager on the virtual machine specified by vm cap
and should this resource instance fail subsequently, it is restarted on one of the backup
virtual machines specified in vm caps array. The backups on clause may also be used in
conjunction with the group create statement; in this case, a group member is automatically
restarted on a backup virtual machine should it fail. This facility allows a resource group
to automatically regain its original level of redundancy following a failure.

Another issue concerning restart is determining when the runtime of the recovering
resource instance begins accepting invocations from other instances. In general, the
resource is in an indeterminate state while performing recovery, so we choose to begin
accepting messages only after the recovery code has completed. The one exception to
this is if the recovering instance itself initiates an invocation during recovery; in this
case, invocations are accepted starting at the point that particular invocation terminates.
This is to facilitate a system organization in which the recovering instance retrieves state
variables from other resources during recovery.

Finally, we note that the failure notification facilities described in the previous section
work with resource groups as one would expect. For such higher-level FS atomic objects,
a catastrophic failure occurs when all the replicas have been destroyed by failure or explicit
termination request(s), and there is no system guarantee of recreation. Thus, if a resource
is not persistent, a notification is generated once all replicas have been destroyed, while
for a persistent resource, a notification is generated once all replicas have been destroyed
and the list of backup virtual machines exhausted. In either case, the way in which the
notification is fielded is specified using backup operations or the monitor statement in the
same way as before.

43

FT-SR Extensions

Replication

Primary/BackupGroup Creation Private Comm

Recovery Failure Notification

Synchronous AsynchronousImplicit Explicit

primary capsgroup create stmnt. primary op. restrictor backup ops monitor stmnt.backup vms restart stmnt.

Figure 3.5: Summary of FT-SR extensions

3.3 Summary

The FT-SR programming model is based on FS atomic objects. Fault-tolerant programs
are built by constructing simple FS atomic objects and composing them to form higher
level FS atomic objects that are more fault-tolerant. The FT-SR programming language
supports this model by providing mechanisms for constructing FS atomic objects and for
composing them in a variety of different ways. These mechanisms are summarized in
Figure 3.5. As shown in the figure, these mechanisms fall into 3 categories: mechanisms
for replication, recovery, and failure notification. The mechanisms related to replication
are the group creation statement, primary operation restrictor, and private capability
variables. The mechanisms related to recovery include the specification of backups and
the restart statement for implicit and explicit restarts. Finally, the mechanisms for failure
notification are backup operations associated with call invocations and monitor statements.

Although FT-SR is basically SR with extensions for fault-tolerance, there are a few
features of SR that are not available to the FT-SR programmer because of their incompat-
ibility with the FT-SR programming model. One such feature is shared operations. SR
allows global components to declare operations that can be implemented by any resource
in the virtual machine. These operations are not associated with any particular resource
and therefore do not fit in with the FT-SR programming model, where the association
between resources and the operations they export is strong. In particular, the failure of a
resource while servicing a call to a shared operation will not result in a backup operation
being invoked because of the lack of a well-defined association between the operation and
the failed resource.

Another SR feature not available in FT-SR is the forward statement. This statement
allows an operation invocation to be forwarded to another operation of the same type for
execution. The forward statement is not included in FT-SR because of the implementa-
tion difficulties caused by its interaction with the synchronous failure handling facility.
Specifically, any implementation would have to keep the original invoker of the opera-

44

tion informed of the moves of the invocation, an expensive proposition. The cost and
complexity involved in doing so does not seem worthwhile, especially since the forward
statement is not commonly used in practice.

Finally, SR allows the programmer to associate scheduling expressions with the al-
ternatives of an input statement to provide additional control over the order in which
invocations are serviced. For example, a scheduling expression can be used by a resource
allocator implementing a shortest-job-next allocation scheme to service invocations in
increasing order of usage time requested [AO93]. Scheduling expressions override the
FT-SR guarantee that invocations are processed in a consistent order by members of a
replicated group. They must therefore be used with caution.

CHAPTER 4

PROGRAMMING WITH FT-SR

This chapter presents three examples that illustrate the versatility of the FT-SR pro-
gramming language. The first example implements the data manager and stable storage
of the distributed banking system described in Chapter 3. It illustrates the use of different
fault-tolerance structuring paradigms in different parts of a system. In particular, the data
manager uses the restartable action paradigm, the stable storage uses the replicated state
machine approach, and the system as a whole implements the object/action model. The
second example is a solution to the Dying Philosophers Problem, a fault-tolerant version
of the well-known Dining Philosophers problem. The solution adapts an existing solution
to the Dying Philosophers Problem and shows how FT-SR facilitates the modification of
existing programs to add fault-tolerance. The final example is a distributed word-game,
which also uses the replicated state machine paradigm for fault-tolerance, albeit in a
somewhat different way.

4.1 A Distributed Banking System

This section describes the implementation of the data manager and stable storage of the
distributed banking system of Chapter 3. As outlined there, the data manager implements
a collection of operations that provide transactional access to data items located on a stable
storage. The organization of the manager itself is based on the restartable action paradigm,
with key items in the internal state being saved on stable storage for later recovery in the
event of failure. The state machine approach is used to build stable storage.

The data manager controls concurrency and provides atomic access to data items on
stable storage. For simplicity, we assume that all data items are of the same type and are
referred to by a logical address. Stable storage is read by invoking its read operation,
which takes as arguments the address of the block being read, the number of bytes to be
read, and a buffer in which the values are to be returned. Data is written to stable storage
by invoking an analogous write operation, which takes as arguments the address of the
block being written, the number of bytes in the block, and a buffer containing the actual
values.

Figure 4.1 shows the specification and an outline of the body of such a data manager.
As can be seen in its specification, the data manager imports stable storage and lock
manager resources, and exports six operations: startTransaction, read, write,
prepareToCommit, commit, and abort. The operation startTransaction is
invoked by the transaction manager to access data held by the data manager; its arguments

45

46

resource dataManager
imports globalDefs, lockManager, stableStore
op startTransaction(tid: int; dataAddrs: addrList;

numDataItems: int)
op read(tid: int; dataAddrs: addrList; data: dataList;

numDataItems: int)
op write(tid: int; dataAddrs: addressList; data: dataList;

numDataItems: int)
op prepareToCommit(tid: int), commit(tid: int), abort(tid: int)

body dataManager(dmId: int; lmcap: cap lockManager;
ss: cap stableStore)

type transInfoRec = rec(tid: int;
transStatus: int;
dataAddrs: addressList;
currentPointers: intArray;
memCopy: ptr dataArray;
numItems: int)

var statusTable[1:MAX TRANS]: transInfoRec;
var statusTableMutex: semaphore

initial
initialize statusTable

: : :

monitor(ss)send failHandler()
monitor(lmcap)send failHandler()

end initial

: : :code for startTransaction, prepareToCommit,
commit, abort, read/write: : :

proc failHandler()
destroy myresource()

end failHandler

recovery
ss.read(statusTable, sizeof(statusTable), statusTable);
transManager.dmUp(dmId);

end recovery
end dataManager

Figure 4.1: Outline of dataManager resource

47

are a transaction identifier tid and a list of addresses of the data items used during the
transaction. read and write are used to access and modify objects. The two operations
prepareToCommit and commit are invoked in succession upon completion to, first,
commit any modifications made to the data items by the transaction, and, second, terminate
the transaction. abort is used to abandon any modifications and terminate the transaction;
it can be invoked at any time up to the time commit is first invoked. All these operations
exported by the data manager are implemented as procs; thus, invocations result in the
creation of a thread that executes concurrently with other threads. Finally, the data
manager contains initial and recovery code, as well as a failure handler proc that deals
with the failure of the lockManager and stableStore resources.

To implement the atomic update of the data items, the data manager uses the standard
technique of maintaining two versions of each data item on stable storage together with an
indicator of which is current [BHG87]. To simplify our implementation, we maintain this
indicator and the two versions in contiguous stable storage locations, with the indicator
being an offset and the address of the indicator used as the logical address of the item.
Thus, the actual address of the current copy of the item is calculated by taking the address
of the item and adding to it the indicator offset.

The data manager keeps track of all in-progress transactions in a status table. This
table contains for each active transaction the transaction identifier (tid), the status
(transStatus), the stable storage addresses of the data items being accessed by the
transaction (dataAddrs), the value of the indicator offset of each item (current-
Pointers), a pointer to an array in volatile memory containing a copy of the data items
(memCopy), and the number of data items being used in the transaction (numItems).
This table can be accessed concurrently by threads executing the procs in the body of
the data manager, so the semaphore statusTableMutex is used to achieve mutual
exclusion. New entries in this table also get saved on stable storage for recovery purposes.
Reads and writes during execution of the transaction are actually performed by the data
manager on versions of the items that it has cached in its local (volatile) storage.

The data manager depends on the stable storage and lock manager resources to im-
plement its operations correctly. As a result, it needs to be informed when they fail
catastrophically. The data manager does this by establishing an asynchronous failure
handler failHandler for each of these events in the initial code using the monitor
statement. When invoked, failHandler terminates the data manager resource, thereby
causing the failure to be propagated to the transaction manager.

The failure of the data manager itself is handled by recovery code that retrieves the
current contents of the status table from stable storage upon recovery. It is the responsibility
of the transaction manager to deal with transactions that were in progress at the time of the
failure; those for which commit had not yet been invoked are aborted, while commit
is reissued for the others. To handle this, the recovery code sends a message to the
transaction manager notifying it of the recovery.

The procs implementing the other data manager operations do not use any of the
FT-SR primitives specifically designed for fault-tolerant programming and are therefore

48

persistent resource stableStore
import globalDefs
op read(address: int; numBytes: int; buffer: charArray)
op write(address: int; numBytes: int; buffer: charArray)
op sendState(sscap: cap stableStore)
op recvState(objectStore: objList)

body stableStore
var store[MEMSIZE]: char

process ss
do true ->
in read(address, numBytes, buffer) ->
buffer[1:numBytes] := store[address:address+numBytes-1]

[] write(address, numBytes, buffer) ->
store[address, address+numBytes-1] := buffer[1:numBytes]

[] sendState(rescap) -> send rescap.recvState(store)
ni

od
end ss

recovery
send mygroup().sendState(myresource())
receive recvState(store); send ss

end recovery
end stableStore

Figure 4.2: StableStore resource

not shown here. They can however be found in Appendix B, which contains all the code
for the distributed banking system.

We now turn to implementing stable storage. One way of realizing this abstraction is
by using the state machine approach, that is, by creating a storage resource and replicating
it to increase failure resilience. Figure 4.2 shows such a resource; for simplicity, we
assume that storage is managed as an array of bytes.

Replica failures are dealt with by restarting the resource on another machine; this is
done automatically since stableStore is declared to be a persistent resource. The
recovery code that gets executed in this scenario starts by requesting the current state of
the store from the other group members. All replicas respond to this request by sending
a copy of their storage state; the first response is received, while the other responses
remain queued at the recvState operation until the replica is either destroyed or fails.
The newly restarted replica begins processing queued messages when it is finished with
recovery. Since messages are queued from the point that its sendState message was
sent to the group, the replica can apply these subsequent messages to the state it receives
to reestablish consistency with the state of the other replicas.

49

resource main
imports transManager, dataManager, stableStore, lockManager

body main
var virtMachines[3]: cap vm # array of virtual machine capabilities
var dataSS[2], tmSS: cap stableStore # capabilities to stable stores
lm: cap lockManager; # capability to lock manager
dm[2]: cap dataManager # capabilities data managers

virtMachines[1] := create vm() on HERSHEY
virtMachines[2] := create vm() on LUCIDA
virtMachines[3] := create vm() on BODONI # backup machine

create stable storage for use by the data managers and
transaction manager
dataSS[1] := create (i := 1 to 2) stableStore() on virtMachines

backups on virtMachines[3]
dataSS[2] := create(i := 1 to 2) stableStore() on virtMachines

backups on virtMachines[3]
tmSS := create (i := 1 to 2) stableStore() on virtMachines

backups on virtMachines[3]

create lock manager, data managers, and transaction manager
lm := create lockManager() on virtMachines[2]
fa i := 1 to 2 ->
dm[i] = create dataManager(i, lm, dataSS[i]) on virtMachines[i]

af
tm = create transManager(dm[1], dm[2], tmSS) on virtMachines[1]

end main

Figure 4.3: System Startup in Resource main

Stable storage could also be implemented as a primary-backup group by adding a
fprimaryg restriction to the read and write operations. The process ss would then
send the updated state to the rest of the group at the end of each operation by invoking a
recvState operation on the group. This operation would be implemented by extending
the input statement in ss to include this operation as an additional alternative.

The main resource that starts up the entire system is shown in Figure 4.3. Resource
main creates a virtual machine on each of the three physical machines available in the
system. Three stable storage objects are then created, where each such object has two
replicas and uses the virtual machine on “bodoni” as a backup machine. The two data
managers are then created followed by the transaction manager. Notice how the system is
created “bottom up,” with the objects at the bottom of the dependency graph being created
before the objects on which they depend. This way, each object can be given capabilities
to the objects on which it depends upon creation.

50

To summarize, the distributed banking system provides its users with transactional
access to their accounts. These transactions are implemented by transaction and data
managers, which are implemented using the restartable action paradigm. Finally, these
managers maintain permanent copies of data and logs on a stable storage constructed using
the replicated state machine approach. This example therefore demonstrates the ease with
which FT-SR can be used to program systems that use different structuring paradigms at
different levels.

4.2 The Dying Philosophers Problem

The dying philosophers problem is a fault-tolerant version of the dining philosophers
problem [Dij68]. In this scenario, philosophers sit around a table and alternate between
thinking and eating spaghetti. Each philosopher needs two forks to eat, but there are
only as many forks available as there are philosophers, with one fork between every two
philosophers. When a philosopher decides to eat, he acquires the forks to his immediate
left and right. If one or both are unavailable, the philosopher waits until the neighbor is
done using the fork. When a philosopher is done eating, both forks are released and the
philosopher goes back to thinking.

The dying philosophers problem is an extension of the dining philosophers problem
where philosophers may die at any time. When a philosopher dies, any forks in his posses-
sion are released and made available to other philosophers. Like the dining philosophers
problem, which models the resource allocation problem in distributed systems, the dying
philosophers problem models resource allocation in fault-tolerant distributed systems.

Solutions to the dying philosophers problem must ensure that resources are shared
fairly and that contenders for resources do not deadlock or starve. The solution presented
here is based on a solution to the dining philosophers problem proposed in [CM84a].
The solution associates with each philosopher a personal servant who manages the forks.
The servant negotiates for forks with the neighboring servants and when both forks are
acquired, passes them on to the philosopher. The servants are actually not necessary for
the solution but rather are useful as a way of separating the act of acquiring forks from
their actual use. For simplicity, we assume that the deaths of philosophers and servants
are linked so that the death of one implies the death of the other. Dead philosophers and
servants do not recover.

The FT-SR solution to the dying philosophers problem is derived from an SR solution
to the dining philosophers problem described in [AO93]. Since the SR solution is not
designed to be fault-tolerant, neither it nor the FT-SR adaptation are structured according
to any of the standard fault-tolerance paradigms. What this example illustrates then is the
ease with which some existing programs can be modified to make them fault-tolerant.

The FT-SR program consists of three resources: a philosopher resource, a ser-
vant resource, and a main resource. Philosopher resources and their associated servant
resources are uniquely identified by an integer between one and the number of philoso-
phers in the problem. This number also represents the position of the corresponding

51

resource main()
import philosopher, servant
var n: int
writes("how many philosophers? "); read(n)
var s[1:n]: cap servant
var forks[1:n]: int

create servants and philosophers
fa i := 1 to n !

s[i] := create servant(i, n)
af
create (i := 1 to n) philosopher(s[i], i) on machine[i]

give each servant capabilities to all other servants
fa i := 1 to n !

send s[i].links(s)
af

initialize each servant’s forks
forks[1] := 2; forks[n] := 0
forks[2 : n-1] := ([n-2] 1)
fa i := 2 to n-1 -> send s[i].forks(forks) af

end main

Figure 4.4: Resource main of the Dying Philosophers Problem

philosopher around the table. As shown in Figure 4.4, the main resource creates the
servant resources first and passes them their identity and the total number of philosophers.
The philosopher resources are then created as a replicated group. Each resource is passed
its unique identifier and a capability to its servant. Operation links of the servants is
then invoked with an array containing capabilities to all servants. Finally, array forks is
initialized with the number of forks assigned to each servant; that is forks[i] contains
the number of forks assigned to servant i. Notice that servant 1 gets two forks, servant n
gets none, and all others get one fork. This asymmetric distribution of forks ensures that
servants do not deadlock trying to acquire forks. Array forks is passed to the servant
using operation forks.

Figure 4.5 shows the philosopher resource. The actions of the philosopher are
implemented by the process phil. As in the general description above, philosophers
alternate between eating and thinking. When a philosopher is ready to eat, it acquires forks
from its servant by invoking the servant’s getforks operation. When the philosopher
is done eating, it returns the forks by invoking the servant’s relforks operation.

Of particular interest in the philosopher resource is the monitor statement, which
is used by the philosophers to monitor each other for failure. A naive implementation

52

resource philosopher
import servant

body philosopher(s: private cap servant; id: int)

monitor myresource() send mygroup().philDied(id)

process phil
do true !

s.getforks()
write("Philosopher", id, "is eating")
s.relforks()
write("Philosopher", id, "is thinking")

od
end

proc philDied(id)
send s.philDied(id)

end
end

Figure 4.5: The philosopher resource.

would have each of the n philosophers execute n� 1 monitor statements to monitor each
of the other philosophers. This effect can be achieved more easily, however, by using a
single monitor statement as shown. This statement, when executed by a group member
m, tells the system to monitor m and invoke the philDied operation of the group when
m fails. The failure of any philosopher therefore results in the philDied operation
of every other philosopher being invoked. Moreover, since invocations to the group are
consistently ordered, all philosophers learn of all failures in a consistent order. This
consistent ordering would be impossible to achieve using multiple monitor statements.
When a philosopher is notified of such a failure, it in turn informs its servant.

Figure 4.6 shows the specification of the servant resource. As described earlier,
operations getforks and relforks are invoked by the associated philosopher to
acquire and release forks. Operations needL and passL are invoked by the servant
on the left when it needs a fork or is passing one, respectively. needR and passR
are analogous operations invoked by the servant on the right. As seen earlier, the main
resource uses operations links and forks to give the servants capabilities to all other
servants and the initial distribution of forks, respectively.

Figure 4.7 shows process server of the servant resource, which implements most of
the functionality of the servant. It keeps track of the forks held by the servant and negotiates
for forks with server processes of other servants. The forks held by a servant are tracked
using variables numOwned, numHave, ownL, ownR, haveL, and haveR. numOwned
and numHave are integers that record, respectively, the number of forks owned by the

53

resource servant
operations invoked by associated philosopher
op getforks() fcallg, relforks() fcallg
op philDied(id: int) fsendg

operations invoked by neighboring servants
op needL() fsendg, needR() fsendg,

passL() fsendg, passR() fsendg

initialization operations invoked by main
op links(s[1:*]: cap servant),
forks(f[1:*]: int)

body servant(myid: int; n: int) separate

Figure 4.6: Specification of resource servant

servant and the number of forks currently held by the servant; the number of forks owned
are based on the original allocation in array forks but changes as philosophers fail and
their forks redistributed. ownL and ownR are booleans that are true if the servant owns a
left fork or a right fork, while haveL and haveR are booleans that are true if the servant
actually has possession of a left fork or a right fork. For example, a servant may own a
left fork, but not have it if the fork has been borrowed by its left neighbor. In this case,
the left neighbor would have a right fork but not own one.

Initially, servant 1 is assigned two forks and therefore has its variables numOwned
and numHave set to two, and both ownL and ownR set to true. Servant n is not assigned
any forks and therefore has numOwned and numHave set to zero, and both ownL and
ownR set to false. All other servants have numOwned and numHave set to one, haveL
set to false, and haveR set to true.

The main loop of processserver contains an input statement that handles invocations
from its philosopher and neighboring servants. Operation hungry acquires forks for its
philosopher; it determines the forks the servant is missing, and requests them by invoking
the needL or needR operations of the appropriate neighbors. When the requisite forks
have been obtained, the philosopher is allowed to eat. The servant then waits until the
philosopher is done eating. Boolean variables dirtyL and dirtyR are used to ensure
fairness. A fork is marked as being dirty as soon as its philosopher uses it. Servants
relinquish dirty forks to neighboring servants that request them, even if their philosopher
has also requested forks.

When a philosopher and its servant fail, the philDied operation of the other servants
is invoked by their respective philosophers. This operation calls a local proc redis-
tribForks with the identity of the failed philosopher and a boolean flag indicating
whether its philosopher is hungry or not. The following actions are performed in proc

54

process server
receive links(servants); receive forks(forkDist)
l := servants[((myid-2) mod n) + 1] # determine left neighbor
r := servants[(myid mod n) + 1] # determine right neighbor
numHave := numOwned := forkDist[myid]
if numOwned = 2 ->
ownR := true; haveR := true; ownL := true; haveL := true

[] numOwned = 1 ->
ownR := true; haveR := true; ownL := false; haveL := false

[] else ->
ownR := ownL := false; haveR := haveL := false

fi
dirtyL := dirtyR := false
do true ->

in hungry() ->
ask for forks I don’t have
if ˜haveR -> send r.needL() fi; if ˜haveL -> send l.needR() fi
do ˜(haveL and haveR) ->
in passR() ->
haveR := true; dirtyR := false; numHave++

[] passL() ->
haveL := true; dirtyL := false; numHave++

[] needR() st dirtyR ->
haveR := false; dirtyR := false
send r.passL(); send r.needL(); numHave--

[] needL() st dirtyL ->
haveL := false; dirtyL := false
send l.passR(); send l.needR(); numHave--

[] philDied(id) ->
redistribForks(id, true)

ni
od
let my philosopher eat; wait for it to finish
send eat(); dirtyL := dirtyR := true; receive relforks()

[] needR() -> # neighbor needs my right fork (its left)
if numHave <= 2 -> haveR := false; dirtyR := false fi
send r.passL(); numHave--

[] needL() -> # neighbor needs my left fork (its right)
if numHave <= 2 -> haveL := false; dirtyL := false fi
send l.passR(); numHave--

[] philDied(id) ->
redistribForks(id, false)

ni
od

end server

Figure 4.7: Process server of resource servant

55

proc redistribForks(id, philHungry)
var forksXferred: int

set cap of failed servant to null
servants[id] := null
transfer forks to servant on the right
fa i := 0 to n-1 st servants[((id +i) mod n) + 1] != null ->
forksXferred := forkDist[id]
forkDist[((id - 2 -i) mod n) + 1] +:= forksXferred
forkDist[id] := 0
exit

af

was it a neighbor of mine that died?
if id = ((myid - 2) mod n) + 1 ->
my left neighbor died: find new left neighbor
fa i := 1 to n-1 st servants[((myid - 2 - i) mod n) + 1] != null ->
l := servants[((myid - 2 - i) mod n) + 1]
exit

af
numOwned +:= forksXferred
numHave +:= forksXferred
if ownL and haveL -> haveL := true; numHave++ fi
if ownL and haveL -> haveL := false; numHave-- fi
if forksXferred = 1 ->
ownL := true; haveL := true; dirtyL := false

[] forksXferred >= 2 ->
if ownR and haveR -> send r.passL(); numHave-- fi
ownL := true; haveL := true; dirtyL := false
ownR := true; haveR := true; dirtyR := false

fi
[] id = (myid mod n) + 1 ->
my right neighbor died: find new right neighbor
fa i := 1 to n-1 st servants[((myid + i) mod n) + 1] != null ->

r := servants[((myid + i) mod n) + 1]
exit

af
if ownR and haveR -> haveR := true; numHave++ fi
if ownR and haveR -> haveR := false; numHave-- fi
if philHungry and haveR -> send r.needL() fi

fi
end redistribForks

Figure 4.8: Proc redistribForks of resource servant

56

redistribForks. First, the servant to the right of the failed philosopher is given the
forks held by the failed philosopher and its servant; it is now considered the owner of
these forks. Next, the servants to the left and right of the failed philosopher determine
their new right and left neighbors respectively, and all servants update their records to
reflect the change in system state.

Figure 4.8 shows the actual code for proc redistribForks. Since all servants
know how many forks are owned by each servant, the forks owned by the failed servant
are simply transferred to the servant to its right. However, some additional bookkeeping
is needed for the two neighbors of the failed servant. First, each needs to determine its
new neighbor. This is easily accomplished because the position of the servant around the
table is encoded by its unique identifier. Secondly, the numOwned and numHave counts
of the right neighbor are incremented by the number of forks transferred. The numHave
count of both neighbors is then adjusted to reflect forks they may have borrowed from
or lent to the failed resource. For instance, the right neighbor increments its numHave
count if it owns a left fork but does not have one, since this fork must have been borrowed
by the failed resource. Similar adjustments are made for forks borrowed from the failed
resource. The variables ownL, haveL, ownR, and haveR of the right neighbor are also
updated, depending on the number of newly acquired forks. If the philosopher on the left
is hungry and a right fork is needed, the servant resends it request for a right fork to its
new right neighbor.

If a servant ends up with more than two forks, the extra forks are lent to any neighbors
that need them. Since this servant no longer needs to borrow forks, the extra forks remain
with the neighbors. This ensures that forks claimed from dead servants are shared by all
servants.

A complete solution to the dying philosophers problem can be found in Appendix C.

4.3 A Distributed Word Game

The word game described here is a multi-player game that consists of a square grid of
letters and a list of words. Hidden in the grid are words from the list, oriented vertically
or horizontally. The object of the game is to find all the words from the list in the grid.

To solve the problem, each player picks a different word from the list and searches the
grid for that word. When it finds the word, it highlights the letters of the grid that form
the word, and goes on to search for the next word in the list that is not already claimed by
another player.

The fault-tolerant version of the distributed word-game assumes that players may die.
Since players search for words independently, other players need take no special action
when a player dies other than ensuring that any word held by the dead player is returned
to the list of available words. So long as at least one player is available, the game will
complete.

The solution presented here attempts to maximize the chances of completing the game
by creating different players on different machines. It also restarts failed players if a

57

resource main
import player

body main()
var playerCap: cap player
var vmCap[3]: cap vm

vmCap[1] := create vm() on HERSHEY
vmCap[2] := create vm() on LUCIDA
vmCap[3] := myvm()

playerCap := create (i := 1 to 2) player(i) on vmCap[i]
backups on vmCap[3]

send playerCap.start()
end main

Figure 4.9: Main resource for the distributed word-game problem

backup machine is available. The replicated state machine approach is used to ensure
that all players have a consistent view of the words that have been assigned to or found
by other players, so they do not duplicate each others efforts. This example differs from
the other examples of replicated state machines presented above because the replicas in
this case do not all perform identical tasks—different players search the grid for different
words. They do, however, maintain identical state information, which is updated only in
response to commands sent to the group.

The FT-SR program that solves the problem consists of two resources: a main
resource that creates the players and initiates the game, and a player resource that plays
the game. Figure 4.9 shows the main resource. It creates a two player group on two
different virtual machines and specifies a third virtual machine to be used as a backup for
restarting failed players. A player is assigned a unique identifier upon creation. Once the
players are created, the main resource starts the game by invoking the start operation
exported by the players.

Figure 4.10 shows the specification of the player resource. The start operation
initializes the screen used to display the progress of the game and the data structures used
by the players. The game is then started by creating a process that executes proc play.

The proc play implements the state machine that is used to ensure that all players
maintain a consistent view of the game. The state of the game is maintained in a table
that records the status of each word in the list. This status table records two kinds of
information. The first is the words that have been found, together with their position,
orientation, and identity of the player that found the word. The second is the identity
of the player searching for the word for each word under consideration. The other data
structures maintained by a player are the grid of letters and list of words, both of which
remain unchanged and therefore do not contain any state information.

58

resource player
const NUMWORDS := 11
const GRIDSIZE := 15
const MAXWORDLEN := 13
type statusType = [NUMWORDS][4] int
type gridType = [GRIDSIZE][GRIDSIZE] char
type wordsType = [NUMWORDS][MAXWORDLEN] char

op start()
op play(wordsType; gridType; statusType)
op getWord(int); # player wants a word
op foundWord(int; int; int; int; char); # player found a word
op playerDied(int); # player died
op sendState(cap player) # recovering player wants state
op getState(statusType) # receive state

body player(myid: int) separate;

Figure 4.10: Specification of resource player of the word game

Figure 4.11 shows the outline of proc play. Its main loop consists of an input
statement that is executed repeatedly until the game is completed. When a player needs
a new word, it invokes the getWord operation of the group with its identifier as an
argument. Every player, on receiving this message, searches its status table to find a word
that has neither been found in the grid nor is currently being searched for by another
player. When such a word is found, the status table is updated to mark the word as being
assigned to the player that invoked the operation. This player recognizes the invocation
as being its own, and proceeds to search the grid for the word. Note that this algorithm is
critically dependent on all players processing messages in a consistent order, as provided
for by the FT-SR group invocation mechanism.

When a player finds a word, it invokes the group’s foundWord operation with its
identity, the position of the word in the word-list, the co-ordinates in the grid where the
word was found, and the orientation of the word as arguments. All players, on receipt of
this message, update their status table to reflect the new information. They also highlight
the word on the grid being displayed on the screen. The player then invokes the getWord
operation to obtain a new word. The problem is solved when all words in the list have
been found.

Since players can fail during execution, all players monitor each other using a monitor
statement similar to the one described in the dying philosophers problem. When a player
fails, the system invokes the group playerDied. On receipt of this invocation, any
word held by the failed player is marked in the word status table as being available to
other players.

Failed players are automatically restarted if a backup virtual machine is available.

59

proc play(words, grid, wordStatus)
monitor myresource() send playerDied(me)
send mygroup().getWord(me)
do true ->
in getWord(id) ->

: : :Search array word status for available word: : :
: : :if word is found, mark word as being searched by player: : :
: : :if no word found, exit loop: : :
if id = me ->

: : :search for word: : :
send mygroup().foundWord(me, wnum, x, y, orient)
send mygroup().getWord(me)

fi

[] foundWord(id, wnum, x, y, orient) ->
: : :mark word wnum as found by player id at position x, y: : :
: : :highlight word on display: : :

[] playerDied(id) ->
: : :search wordStatus for word being searched by dead player: : :
: : :mark word as being available: : :

[] sendState(newPlayer) ->
send newPlayer.getState(wordStatus)

ni
od

end play

Figure 4.11: Outline of process play

recovery
send mygroup().sendState(myresource())
: : :initialize screen: : :
: : :initialize data structures : : :

receive getState(words, wordstatus)
: : :display current status of game : : :

send play(words, grid, wordstatus)
end recovery

Figure 4.12: Recovery code executed by resource player

60

Figure 4.12 shows the recovery code executed by a restarted player. It sends a message
to the group sendState operation, requesting a copy of the current state. It then re-
initializes the screen and local data structures, and waits for a copy of the state. The other
players, on receiving a request for state, send the recovering player the word status table
by invoking its getStatus operation. The recovering player then creates processplay
to resume playing. Process play then obtains a new word and proceeds to search the
grid.

The complete FT-SR program that solves the word-game problem can be found in
Appendix D. This program consist of approximately 260 lines of code. A Consul based
solution to the same problem consists of approximately 1850 lines of C code. This
striking difference in program size demonstrates the advantage of using a system based on
a high-level concurrent programming language over one based on a low-level sequential
language.

4.4 Summary

The examples presented in this chapter demonstrate the flexibility and expressiveness of
the FT-SR language. The distributed banking system shows that FT-SR is indeed flexible
enough for programming any of the standard fault-tolerance structuring paradigms. It
illustrates the use of the replicated state machine paradigm to build a stable storage
device, and the restartable action paradigm to build the data manager, which in turn
implements the object/action paradigm.

The dying philosophers problem shows that the FT-SR language mechanisms can also
be used to adapt existing programs for fault-tolerance. In this example, the flexibility of
the group operations simplify the implementation of the philosophers even though they
are not structured according to the replicated state machine paradigm. The expressiveness
of the monitor statement allows the use of a single monitor statement to detect the failure
of any of the philosophers in the system.

The word game is an example of a system that exploits the redundancy available
in a distributed system for increased performance and fault-tolerance. Such a system
continues to provide correct service even in the presence of failures, albeit with degraded
performance.

CHAPTER 5

IMPLEMENTATION AND PERFORMANCE

FT-SR has been implemented to run stand-alone on a network of Sun 3s. The imple-
mentation consists of two major components: a compiler and a runtime system, both of
which are written in C. The compiler generates C code, which is in turn compiled by a C
compiler and linked with the FT-SR runtime system. The runtime system provides prim-
itives for creating, destroying and monitoring resources and resource groups, handling
failures, restarting failed resources, invoking and servicing operations, and a variety of
other miscellaneous functions.

This chapter describes the details of the FT-SR implementation. Also described briefly
is the implementation of FT-SR/Unix, a Unix implementation of FT-SR.

5.1 The FT-SR Compiler

The FT-SR compiler is very similar to an existing SR compiler, which is to be expected
since FT-SR is syntactically close to SR. The compiler uses lex for lexical analysis
and yacc for parsing [Com86], and consists of about 16,000 lines of code. This section
describes the parts of the FT-SR compiler that implement each of the FT-SR extensions
to SR.

Monitor statement. The syntax of the monitor statement is described by the following
yacc specification:

monitor stmt: TK MONITOR expr TK SEND invocation;

where TK MONITOR and TK SEND are tokens that represent the keywords monitor and
send, respectively, expr describes an expression that evaluates to a resource or operation
capability, and invocation describes an operation invocation.

The C code generated for the monitor statement is very similar to that generated for
a send invocation. In both cases an invocation block, which encodes the identity of the
operation being invoked and its actual parameters, is generated and initialized. In addition,
the code generated for the monitor statement initializes the fields of the invocation block
that specify the resource or resource group being monitored. The generated code then
invokes the runtime system primitive sr monitor with the invocation block as its
argument.

61

62

create expr:
TK CREATE quantifiers opt rsrc cap call location opt backups opt;

restart stmt:
TK RESTART quantifiers opt rsrc cap call location opt backups opt;

rsrc cap call:
TK ID paren list;

location opt:
/* null */
| TK ON expr;

backups opt:
/* null */
| TK BACKUPS location opt;

Figure 5.1: Yacc specification for the create statement

Create and restart statements. The resource create and restart statements are very
similar, both in terms of their syntax and the code generated by the compiler. Figure 5.1
shows the yacc specification of these statements. In this specification, TK CREATE,
TK RESTART, TK ON, and TK BACKUPS are tokens that represent the keywords create,
restart, on and backups respectively, and TK ID is an identifier. The non-terminals
quantifiers opt, rsrc cap call, location opt, and backups opt de-
scribe an optional quantifier, a resource name or resource capability variable with pa-
rameters to be passed to the resource, an optional on clause, and an optional backups on
clause, respectively.

We describe here the code that is generated for the most general form of the create
statement, a group create statement with location and backup clauses. Figure 5.2 shows
a section of the parse tree for such a statement. When node BCREATE is encountered
during code generation, the subtree rooted at backup opt is visited and code generated
to collect all the backup virtual machine capabilities into an array. NodeGCREATE, which
is the right subtree of node BCREATE, is then visited. The code generated at this point
is a loop that allocates and initializes resource creation blocks for the resources in the
group and collects these creation blocks in an array. Resource creation blocks identify the
resource to be created, the virtual machine it is to be created on and the parameters to be
passed to the resource. The parameters that control execution of this loop come from the
quantifiers in the quantifiers opt subtree, while the body of the loop comes from the
create subtree. Finally, a call to the runtime system primitive sr create group is
generated with the resource identifier, size of the group, array of resource creation blocks,
size of the resource capability, and number of backup virtual machines as arguments.

63

backup_opt

quantifier_opt

rsrc_cap_call location_opt

BBCREATE

GCREATE

CREATE

Figure 5.2: Parse tree for group create statement with backups

capability def:
private opt TK CAP cap for;

private opt:
/* null */
| TK PRIVATE;

Figure 5.3: Yacc specification for private capability variables

Backup calls. The syntax of an FT-SR call invocation with backup operation is described
by the following yacc specification:

invocation:
TK LBRACE expr TK COMMA expr TK RBRACE paren list;

where TK LBRACE, TK COMMA, and TK RBRACE are tokens that represent a left-brace,
comma, and right-brace, respectively. Non-terminals expr and paren list describe
an expression that evaluates to an operation capability and a list of parameters.

The code generated is very similar to that generated for a call statement. The only
difference is that two invocation request blocks are generated to be passed as arguments
to the runtime system primitive sr invoke rather than one as with a normal call.

64

Private capability variables. Figure 5.3 shows the yacc specification for private ca-
pability variables. In the figure, TK CAP and TK PRIVATE are the keywords cap and
private respectively. The non-terminal cap for expands to a resource or operation
name or an operation type name.

When the FT-SR compiler encounters a capability variable declaration, it records in
the symbol table whether the variable is private or not. When the code for an invocation
is generated, the symbol table is checked to determine the kind of capability being used
and the invocation block tagged appropriately.

The primary operation restrictor and the monitorend statement have not been imple-
mented and are therefore not described here.

5.2 The FT-SR Runtime System

The FT-SR runtime system is implemented using version 3.1 of the x-kernel, a micro-
kernel framework for implementing communication protocols. The runtime system, not
counting the x-kernel, consists of 9600 lines of C code. The runtime system is linked with
the code generated by the FT-SR compiler to form an executable, which is then used to
boot all the processors in the system. At boot time, a processor is designated as being the
one on which program execution begins.

Figure 5.4 shows the organization of the FT-SR runtime system on a single processor.
As shown in the figure, each FT-SR virtual machine exists in a separate x-kernel user
address space. In addition to the user program, a virtual machine contains those parts of
the runtime system that create and destroy resources, route invocations to operations, and
manage intra-virtual machine communication. This user resident part accounts for about
85 percent of the runtime system. The remaining 15 percent resides inside the kernel
and is responsible for the creation and destruction of virtual machines and inter-virtual
machine communication.

Figure 5.4 also shows some of the important modules in both the kernel and user
resident parts of the runtime system, and the communication paths between them. The
kernel resident modules shown are the Communication Manager, the Virtual Machine
(VM) Manager, and the Processor Failure Detector (PFD). The communication manager
consists of multiple communication protocols that provide point-to-point and broadcast
communication services between processors. The VM Manager is responsible for creating
and destroying virtual machines, and for providing communication services between
virtual machines. The PFD is a failure detector protocol; it monitors processors and
notifies the VM manager when a failure occurs. The user space resident modules shown
in Figure 5.4 are the Resource Manager, the Group Manager, the Invocation Manager,
and the Resource Failure Detector (RFD). The Resource Manager is responsible for the
creation, destruction and restart of failed resources. The Group Manager is responsible
for the creation, destruction and restart of groups, restart of failed group members, and all
communication to and from groups. The RFD detects the failure of resources and group
members.

65

Kernel Space

User Space

VM Manager

Comm. Mngr.

VM 2VM 1

User Program

Grp. Mngr.

Invocation
 Mngr.

Resource
 Mngr.

RFD

User Program

Grp. Mngr.

Invocation
 Mngr.

Resource
 Mngr.

RFD

PFD

Figure 5.4: Organization of the FT-SR runtime system

The FT-SR runtime system, while similar in structure to that of standard SR, differs
significantly in terms of how its different constituent modules implement their function-
ality. The reasons for this difference are threefold. First, unlike SR, which implements its
own threads package within a Unix process, FT-SR uses threads provided by the x-kernel.
Therefore, while SR has complete control over its threads and can schedule them when
it deems safe, the FT-SR runtime has no control over when a thread is preempted and
another thread scheduled. This gives rise to numerous concurrency problems that have
to be dealt with within the FT-SR implementation. Second, the need to deal with failures
required large modifications to the SR runtime system, since it uses centralized control in
places and is written under the assumption that all parts of the distributed program will
always be available. The FT-SR runtime system cannot make such an assumption, and this
need to anticipate and deal with failures affects the design of almost every runtime system
module. Finally, in addition to the standard language features, the FT-SR runtime system
has to, of course, provide support for the fault-tolerance extensions. The implementation
of some of these extensions required new modules within the runtime system and at times
the re-design of other modules.

66

From the programmer’s viewpoint, there are two major aspects in which FT-SR differs
from SR: the support for using resources as FS atomic objects, and the support for various
fault-tolerance techniques. Accordingly, we focus in the remainder of this section on
describing those parts of the FT-SR language runtime system that provide this support. It
is worth keeping in mind that, since FT-SR is designed to support construction of fault-
tolerant systems, every effort has been made to keep the implementation as efficient as
possible. For example, whenever possible, the implementation takes advantage of the fact
that the processors can only suffer from fail-silent failures and that the maximum number
of simultaneous failures max sf is known a priori.

Failure detection and notification. Failure detection and notification is the single most
important difference between FS atomic objects and SR resources. Failure detection
is initiated in one of two ways: when a resource explicitly asks to be notified of a
failure using the monitor statement, or when the communication module of the runtime
system cannot complete an invocation and suspects a failure. Depending on how the
failure detection was initiated, the runtime system either notifies the user program of the
failure by generating an implicit invocation of the operation specified by the monitor
statement, or, if a backup operation has been supplied with an invocation, by forwarding
the invocation to the backup operation.

Failure detection in FT-SR is done at three levels: at the processor level by the PFD,
at the virtual machine level by the VM Manager, and at the resource level by the RFD.
The PFD at each processor monitors the other processors in the system and notifies the
local VM manager of any failures. The VM manager then maps these processor failures
to failures of virtual machines and notifies the RFD of these failures. The RFD in turn
maps virtual machine failures to resource failures and passes this information on to any of
the other runtime system modules that might have asked to be notified of the failure. To
detect the termination of a resource that is explicitly destroyed, the RFD sends a message
to its peer on the appropriate virtual machine asking to be notified when the resource
is destroyed. Similarly, a VM Manager can ask another VM Manager to send a failure
notification when a virtual machine is explicitly destroyed.

We now describe in detail the parts of the PFD, VM Manager, and RFD that are
involved in failure detection. The PFDs in the system constantly monitor all processors
for failures. To facilitate this, every PFD periodically broadcasts a heartbeat message,
which serves to inform the other PFDs that the sending processor is functioning. If no
heartbeats are received from a processor within a certain interval, the processor is assumed
to have failed. Two bitmaps are also used: a membership bitmap that records the local
view of which processors are functioning and which have failed, and a heartbeat
bitmap that records the receipt of heartbeat messages. Whenever a heartbeat is received
from a processor a corresponding bit in the heartbeat bitmap is set.

Changes in the status of a processor are detected by the PFD function checkHeart-
Beats, outlined in Figure 5.5. This function is invoked at regular intervals; the current

67

void checkHeartbeats(pstate)
PSTATE *pstate;
f

for (i = 0; i < NUM MACHINES; i++) f

if (!pstate->heartBeat[i])
/* haven’t heard a heartbeat from machine i in a while */
if (pstate->membership[i]) f

/* this machine was previously up and running */
pstate->membership[i] = FALSE; /* reset membership bit */
: : :notify VM Manager of failure: : :

g

else
if (!pstate->membership[i]) f

/* got a heartbeat from machine that was declared dead */
pstate->membership[i] = TRUE; /* set membership bit */

g

/* clear heartbeat bit */
pstate->heartBeat[i] = FALSE;

g

g

Figure 5.5: Outline of function checkHeartBeats

implementation uses an interval of about 3 heartbeat periods. For each processor in the
system, the function examines the corresponding bit of the heartbeat bitmap. If no heart-
beat has been recorded from that processor, and if the membership bitmap records the
processor as being functional, it is assumed to have failed. If the heartbeat bitmap records
a heartbeat from a processor and if the membership bitmap records the processor as having
failed, the processor is assumed to have recovered from that failure. The membership
bitmap is then updated to reflect the change in status of processors that have failed or
restarted. Finally, all bits of the heartbeat bitmap are cleared.

The heartbeat messages contain a copy of the membership bitmap of the sending
processor. A PFD, on receipt of the message, checks the state of its membership bit in
the message. If the bit has the processor marked as failed, the PFD aborts the system
and halts the processor. This is done in order to remedy situations where one or more
processors decide that a functioning processor has failed. For example, such a situation
can be caused by the failure of outgoing communication links from a processor.

The PFD also maintains a list of processors whose failure must be communicated to
the VM Manager on its machine. When a processor in this list fails, the VM Manager
is informed of the failure by means of an x-kernel control operation, which is a standard
x-kernel operation used to communicate information to a protocol.

The VM Manager maintains two mappings: a mapping from processors to the virtual

68

machines that would be lost if a processor fails, and a mapping from virtual machines to
the RFDs to be notified if a virtual machine is lost. On being informed of a processor
failure, the virtual machines lost due to the failure are determined from the first mapping.
For each virtual machine, the RFDs interested in its failure are determined and notified of
the failure by means of a control operation.

Each RFD maintains a mapping from virtual machines to the resources that would be
lost due to the failure of a virtual machine. It also maintains a monitor table that lists
the actions to be taken when a resource fails. Possible actions include the invocation
of a failure handler operation. On being notified of the failure of a virtual machine, the
resources lost due to the failure are determined. For each such resource, the corresponding
monitor table entry is examined to determine the action to be taken.

The entries in the monitor and mapping tables maintained by the RFD, VM Manager,
and PFD are created and initialized when an FT-SR monitor statement is executed. The
runtime primitivesr monitor is invoked with an invocation block for the failure handler
operation as its argument. Among other things, this invocation block contains the identity
of the resource to be monitored.

Monitoring is coordinated by the RFD on the processor that has the failure han-
dler and is known as the coordinating RFD. As a result, the monitor request is for-
warded to function sr reg monitor of the coordinating RFD, where a local function
sr local register is invoked to register the request in the monitor table. A new
table entry is created and the invocation block saved in the table. The local VM Manager
is then asked to monitor the virtual machine that has the resource to be monitored and the
resource is added to the table that maps virtual machine failures to resource failures.

The VM Manager determines the processor that has the virtual machine to be monitored
and asks the PFD for a failure notification should that processor fail. The monitored virtual
machine is added to the table that maps processor failures to virtual machine failures. The
RFD making the monitor request is then added to the table that maps virtual machines to
RFDs to be notified when the virtual machine fails.

The failure of a resource because of an explicit termination request rather than a pro-
cessor crash is detected co-operatively by the coordinating RFD and the RFD on the virtual
machine that has the resource, referred to as the remote RFD. The notification of such a fail-
ure is requested by the coordinating RFD by invoking functionsr req notification
of the remote RFD. In response to this request, a monitor table entry containing the address
of the coordinating RFD is created at the remote RFD. Similarly, the failure of a resource
because of its virtual machine being explicitly destroyed by the program is co-operatively
detected by the VM Managers on the processor containing the failure handler and the
processor containing the resource.

Figure 5.6 shows an outline of the RFD functions that register monitor requests.

Replication and Recovery. FT-SR provides two mechanisms for increasing failure
resilience: replication and recovery. For replication, the most interesting aspect of the

69

void sr reg monitor(ibp)
invb ibp; /* invocation block */
f

: : :

if ((handlervm = sr find vm(ibp->opc.rid)) != sr my vm) f

/* the failure handler is on a different vm--let it
take care of the monitoring.
/
: : :invoke sr reg monitor on vm that has handler: : :
return;

g

if (destvm != sr my vm) f

/* resource to be monitored is on a different VM. Ask RFD of that
VM to send a failure notification if the resource is destroyed.
/
: : :invoke sr req notification on vm that has resource: : :

g

/* failure handler is local--register monitor request locally */
sr local register(ibp);

g

void sr local register(ibp)
invb ibp; /* invocation block */
f

: : :

: : :ask VM manager for notification if vm containing resource fails: : :
: : :add resource to list of resources affected by failure of that vm: : :

/* make an entry in local monitor table */
: : :allocate table entry, set action code to INVOKE: : :
: : :save copy of invocation block : : :

g

void sr req notification(ibp)
invb ibp; /* invocation block */
f

: : :

/* make an entry in local monitor table */
: : :allocate table entry, set action code to NOTIFY: : :
: : :save vm id. to notify if resource is destroyed: : :

g

Figure 5.6: Outline of RFD functions that register monitor requests

70

implementation is managing group communication, since messages sent to a resource
group as a result of invocations have to be multicast and delivered to all replicas in a
consistent total order. The technique we use is similar to [CM84b, KTHB89, GMS89],
where one of the replicas is a primary through which all messages are funneled. Another
max sf replicas are designated as primary-group members, with the remaining being
considered ordinary members. Upon receiving a message, the primary adds a sequence
number and multicasts it to all replicas of the group. Only the replicas that belong to
the primary-group acknowledge receipt of the message. As soon as the primary gets
these max sf acknowledgements, it sends an acknowledgement to the original sender of
the message; this action is appropriate since the receipt of max sf acknowledgements
guarantees that at least one replica will have the message even with max sf failures. The
primary is also involved when messages are sent by the group as a whole, that is, when
group members use a capability that is not a private capability when making a invocation.
The runtime system suppresses such an invocation from all group members except the
primary. When the primary receives an acknowledgement that its invocation has been
received, it multicasts that acknowledgement to the other group members.

The Group Managers at each site are responsible for determining the primary and
the members of the primary-group set. Specifically, they maintain a list of all the group
members and keep track of which member is the primary, which belong the primary-group
set, and which are ordinary members. This list is ordered consistently at all sites based
on the order in which the replicas were specified in the group create statement. The first
replica of the list is then designated the primary and the next max sf as members of the
primary-group; the remaining replicas are ordinary members. The consistent ordering of
replicas ensures that all Group Managers will independently pick the same primary and
assign the same set of replicas to the primary-group set.

Figure 5.7 shows an outline of the runtime system primitive sr create group,
which is invoked by the code generated for a group create statement. It is analogous to the
resource creation primitive sr create resource and takes as arguments the identity
of the resource to be replicated, the number of replicas, an array of creation blocks for each
replica and backup, the size of the group capability variable returned by this primitive,
and the number of backups. A unique identifier is generated for the group and the creation
blocks initialized using the arguments to the resource creation primitive and the group
identifier. The first creation block, which is the creation block for the primary, is assigned
extra storage to hold a group capability. Runtime system functionsr create replica
is then invoked repeatedly, once for each replica and backup to be created. It takes as its
argument the array of creation blocks. Every time it is invoked, a different creation block
is marked as being current to identify the replica or backup being created.

Figure 5.8 shows an outline of function sr create replica. It is analogous to
the resource creation function sr create res and takes an array of creation blocks
as its argument. This array is searched for the creation block marked current, which
corresponds to the replica to be created. The virtual machine on which the resource is to
be created is determined from its creation block, and the creation request forwarded to

71

Ptr sr create group(rpatid, grpsize, crblist, rcapsize, numbackups)
int rpatid; /* resource pattern */
int grpsize; /* group size */
struct crb st crblist[]; /* array of creation blocks */
int rcapsize; /* size of group capability */
int numbackups; /* number of backups */
f

: : :determine group id.: : :

for (i = 0; i < grpsize + numbackups; i++) f

: : :fill in the rest of the creation block from the parameters: : :
if (i == 0)f

: : :init creation block of primary so it returns group cap: : :
g

if (i < grpsize)
/* creation block is for active group member */
crbp->type = CREATE CRB;

else
/* creation block is for a backup */
crbp->type = BACKUP CRB;

(Ptr)crbp = (Ptr)crbp + crbp->crb size; /* next creation block */
g

crbp->type = NULL CRB; /* null terminate list */

crbp = crblist;
while (crbp->type != NULL CRB) f

/* create replica using creation block marked current */
crbp->current = TRUE;
sr create replica(crblist);
crbp->current = FALSE;
(Ptr)crbp = (Ptr)crbp + crbp->crb size;

g

return grpCap;

Figure 5.7: Outline of runtime system primitive sr create group

72

that virtual machine. In the case of the primary replica, the remote virtual machine returns
a capability to the group after the primary is created.

The creation of a local replica is very similar to the creation of a local resource.
In addition to the actual creation of a resource instance, the group primary, primary-
group members, and ordinary group members are determined and array grpSta-
tus initialized with this information. Flag grpMember in the resource descriptor
of the local replica is also set to the status of the replica. Finally, the RFD function
sr callbck vmfail is invoked, once for each group member, asking for the Group
Manager function sr replica failed to be invoked if any of them fail.

The Group Managers are responsible for dealing with the failure of group members.
The action taken when a failure occurs varies, depending on whether the failed member
was the primary, a primary-group member, or an ordinary member. If the primary fails,
the first member of the primary-group is designated as the new primary. The designation
of a new primary or the failure of a primary-group member will cause the size of the
primary-group to fall below max sf. When this happens, ordinary members are added to
the primary-group to bring it up to max sf members. No special action is needed when
an ordinary member fails. If the resource from which the failed member was created
is declared as being persistent and backup virtual machines were specified in the create
statement, failed replicas are restarted on these backups. Restarted replicas join the group
as ordinary members.

Figure 5.9 shows an outline of functionsr replica failed of the Group Manager,
which is invoked when a group member fails. Whether the failed member was the
primary, primary-group member, ordinary member, or a backup is determined from array
grpStatus, which maintains the status of all group members. Based on this status,
control is transferred to the appropriate arm of a switch statement. If the failed replica
was a primary, a new primary is selected from the primary-group set. Control then flows
into the next arm of the switch, which handles the failure of primary-group members. In
this code, the next available ordinary group member or backup is promoted to the primary
group, and control flows to the next arm of the switch which handles the failure of an
ordinary group member. If a backup is available, it is made an ordinary group member.
A backup is activated by its Group Manager by invoking the runtime system function
sr activate bckup. This function simply creates a process to execute the recovery
code associated with the resource.

Supporting recovery involves: (1) restarting the resource instance, either as a result
of an explicit request or due to an automatic restart on a backup virtual machine and (2)
ensuring that the recovery code is executed. Resource restarts are handled by the runtime
system primitive sr restart resource. This is very similar to the runtime system
primitive sr create resource, which is used to create a resource. In fact, both
these primitives initialize a resource creation block and use the resource manager function
sr create res to actually create the resource. A flag in the resource creation block
indicates that the recovery code of the resource is to be executed on its creation.

73

void sr create replica(crblist)
struct crb st crblist[];
f

: : :

/* find creation block for replica to be created */
while (crbp->current != TRUE) f

replicaNum++;
(Ptr)crbp = (Ptr)crbp + crbSize;

g

/* compute the active group size and the total group size */
grpsize = crbp->grp size; totsize = grpsize + numBackups;

: : :if replica is to be created on a different VM,
invoke sr create replica on that vm. & wait for call to return.
For primary replica, copy group capability that is returned: : :

/* replica to be created locally */
: : :Allocate new resource instance descriptor and initialize it: : :

/* determine status of group member */
if (replicaNum == 0)
res->grpMember = RES GRP PRIMARY;

else if (replicaNum < grpsize)
if (replicaNum <= sr max sf)
res->grpMember = RES GRP PRIMGRP;

else
res->grpMember = RES GRP MEMBER;

else
res->grpMember = RES GRP BACKUP;

: : :allocate and intialize array grpStatus: : :
: : :create new process to execute initial code of resource: : :

/* ask to be informed when the other replicas fail */
crbp = (crb)crblist;
for (i = 0; crbp->type != NULL CRB; i++) f

: : :request sr replica failed be called if replica fails: : :
g

g

Figure 5.8: Outline of function sr create replica

74

int sr replica failed(callBackReg)
ReplicaCallbck *callBackReg;
f

: : :

/* take appropriate action based on what kind of replica failed */
switch (replicaStatus) f

case RES GRP PRIMARY:
/* primary replica failed */
: : :search for first primary group member: : :
: : :if no primary group member found, abort: : :

/* found a new primary */
res->grpStatus[i] = RES GRP PRIMARY;

if (res->replicaNum == i)
/* I am the new primary! Update my status flag */
res->grpMember = RES GRP PRIMARY;

case RES GRP PRIMGRP:
: : :search for first ordinary member to promote to primary-grp: : :
: : :if ordinary member found, promote it: : :
res->grpStatus[i] = RES GRP PRIMGRP; /* promote to primary-grp */

: : :if no ordinary member found, search for backups: : :
res->grpStatus[i] = RES GRP PRIMGRP; /* promote to primary-grp */
if (res->replicaNum == i) f

/* I am the new primary grp. member! */
if (res->grpMember == RES GRP BACKUP)

/* I used to be backup--activate myself */
sr activate bckup(res, replicaNum);

res->grpMember = RES GRP PRIMGRP; /* Update my status flag */
g

case RES GRP MEMBER:
: : :check if any backup can be made group members: : :
: : :if backup is found, make it a group member: : :
res->grpStatus[i] = RES GRP MEMBER; /* promote to group member */

if (res->replicaNum == i) f

/* I am the new group member! I was backup--activate myself */
sr activate bckup(res, replicaNum);
res->grpMember = RES GRP MEMBER; /* Update my status flag */

g

: : :if no backups were created decrement active group size by 1: : :
g

: : :primary replica invokes any failure handler for failed replica: : :

Figure 5.9: Outline of Group Manager function sr replica failed

75

5.2.1 Pros and Cons of using the x-kernel

FT-SR is implemented using the x-kernel because a bare machine implementation allows
the language to be used to build realistic fault-tolerant systems. A bare machine imple-
mentation is especially important for experimental purposes since systems can be tested
by actually crashing and restarting processors. Such an implementation also allows for a
better evaluation of the cost incurred by the different fault-tolerance mechanisms because
performance is not affected by operating system pecularities.

The use of the x-kernel greatly simplified the development of the many communica-
tion protocols that went into the FT-SR runtime system. The protocol development and
composition tools provided by the x-kernel allowed for the easy decomposition of the
runtime system into small modules or micro-protocols. Each of these modules could be
developed independently and then composed together to form the runtime system. This
modularization also allows the path of a message through the protocol stack to be deter-
mined dynamically on a per-message basis. This is used, for example, by the VM Manager
shown in Figure 5.4 to choose dynamically between a point-to-point communication pro-
tocol or a broadcast protocol within the CM, depending on whether the communication is
meant for all VM Managers or one particular VM Manager.

However, the use of the x-kernel to implement the FT-SR runtime system presented
some unique challenges as well. As mentioned earlier, the runtime system has no control
over the x-kernel process scheduler. This, combined with the fact that user level processes
in the x-kernel are pre-emptive, gives rise to a number of concurrency problems in the
runtime system. These concurrency problems are solved by using semaphores to protect
shared data structures. Unfortunately, semaphores operations in x-kernel user space are
expensive since they involve crossing into the kernel. For example, a P and V operation
on a semaphore together cost 120 microseconds. (For comparison, a procedure call on a
Sun 3 costs 3 microseconds.) Three such P and V operation pairs are needed for an RPC,
thereby adding 360 microseconds to the overall cost.

Another problem that arises from the lack of control over process scheduling is the
difficulty involved in determining the identity of the currently executing process. This
identity is used to access process specific information such as the resource to which it
belongs, and is maintained in an FT-SR process descriptor. This FT-SR process descriptor
is distinct from the process descriptor maintained by the x-kernel. However, the identity
of a process, and hence its FT-SR process descriptor, is maintained in the kernel process
descriptor. The identity of an executing process can therefore be determined only by
crossing into the kernel and examining the kernel process descriptor. Unfortunately, this
is an expensive operation that costs about 300 microseconds. An RPC involves 4 such
operations.

Finally, while the x-kernel proved to be an excellent platform for developing the
kernel-resident part of the runtime system, its support for user level programming is
woefully lacking. FT-SR was the first major user level software developed on the x-kernel
and therefore many bugs in the x-kernel support for user tasks were encountered. This,

76

Operation Time (msec)

RPC (same VM) 0.83
RPC (diff. VM, same processor) 6.36
RPC (diff. VM, diff. processors) 6.41

Table 5.1: Times (in msec) for RPC between resources

coupled with the fact that even primitive debugging tools like adb or gdb do not work with
user level code, made debugging of the system extremely difficult. A Unix based version
of FT-SR described in Section 5.4 solves this problem to a large extent.

5.3 Performance of FT-SR

In this section we report on the performance of some of the key features of FT-SR. Three
kinds of performance are reported: the cost of an RPC from one resource to another,
the cost of an RPC to and from a group and between groups, and the cost of resource
and resource group creation. Wherever appropriate, these timings are compared with the
corresponding timings for a standalone version of SR, Consul, and ISIS. The comparisons
with SR and Consul are particularly meaningful because, like FT-SR, these systems are
implemented using the x-kernel on bare Sun 3s.

Table 5.1 summarizes the times to do an RPC between two resources. The three
rows show, respectively, the time to do an RPC between two resources on the same
virtual machine, different virtual machines but the same processor, and different virtual
machines on different processors. As is to be expected, inter-VM RPCs are much more
expensive than an intra-VM RPC. A similar RPC in SR between two VMs on the same
processor costs 5.4 msecs. The overhead incurred due to the fault-tolerance built into
the FT-SR runtime system is therefore about 0.9 msecs per RPC, or about 17 percent.
The corresponding number reported for Psync, the group communication protocol that
forms the basis of Consul, is a round-trip time of 2.9 msecs for a 1 byte message. It must
be noted, however, that even an RPC without any parameters requires messages that are
much longer than a byte and involve much more processing. Moreover, FT-SR is much
more dynamic than Consul in terms of the lifetimes of operations that can be invoked and
the locations of resources exporting these operations, both of which greatly add to the
complexity and cost of an RPC.

Table 5.2 shows the cost of RPCs to and from resource groups. In the table, Column A
shows the cost of an operation when the invoker of the operation is on the same virtual
machine as the group primary. Column B shows the corresponding cost when the invoker
and the primary are on different processors, and therefore, different virtual machines. In
the group to group RPC, the time in Column A corresponds to the case where the primaries
of the two groups are on the same virtual machine and Column B to the primaries on virtual

77

From To Group Size A (msec) B (msec)

resource group 1 3.24 9.23
resource group 2 6.84 12.76
resource group 3 6.84 12.76
resource group 3 8.35 13.95

(max sf = 2)

group resource 3 7.19 7.90

group group 3 14 16

Table 5.2: Times (in msec) for RPC involving groups

machines on different processors. Except for the case noted in the table, the maximum
number of simultaneous failures, max sf , is set to 1.

Two interesting observations can be made from Table 5.2. First, the location of the
resource making the invocation with respect to the location of the group’s primary resource
has a tremendous impact on performance. Second, for groups of size larger than max sf
+ 1 the cost of a group invocation appears to be independent of the size of the group. The
explanation for both these observations lies in the the group communication algorithms
used by the runtime system. An RPC to a group can be decomposed into two parts: an
RPC from the caller to the group primary and the dissemination of the call to the rest
of the group. The cost of the dissemination is independent of the location of the caller.
However, as can be seen from Table 5.1, the cost of the RPC from the caller to the primary
depends heavily on whether they are on the same virtual machine or not. In fact, in all
four cases of resource to group communication shown in rows 1 through 4 of Table 5.2,
the difference between the times in Column B and Column A is about 5.5 msecs, which
is almost identical to the difference between the times for an RPC between resources on
two different processors and an intra-VM RPC.

For groups larger than max sf + 1, the cost of an invocation to the group is independent
of the size of the group. This is because only the primary replica and the max sf primary
group members are involved in an invocation to a group. The other members of the group
do not actively participate in the group invocation protocol and therefore do not have an
impact on its performance.

A comparison of Tables 5.1 and 5.2 shows that the cost of an RPC to a single
member group is about 41 percent larger than the cost of an RPC to a single resource.
This represents the overhead incurred due to group related operations such as message
sequencing. However, this seemingly large overhead is deceptive because the cost of an
RPC to a group of 2 or more members is less than the cost of two RPCs to each of them.

Invocations on groups are also supported by Consul and ISIS. In Consul, the difference
between the time an operation is invoked and its execution in a 3 replica system is 4.0

78

Operation Time (msecs)

Resource Creation:
same VM 2.6
diff. VM, same processor 8.8
diff. VM, diff. processors 8.4

Group Creation:
1 replica 10.0
2 replicas 20.0
3 replicas 30.0

Table 5.3: Times (in msecs) for resource and group creation

msecs. Note that unlike an RPC, this does not include a response to the invoker of the
operation. ISIS implements a causal broadcast which costs 9.66 msecs on Sun 4s for
a group of size three. Again, like Consul, this time does not include a response to the
invoker.

Table 5.3 shows the cost of the group and resource create statements. These times are
interesting because in addition to the cost of a resource creation, they reflect the cost of
restarting a resource since the actions taken on a restart are very similar to those taken on
a create.

Two interesting observations can be made from Table 5.3. First, the time to create a
resource on a virtual machine on a different processor is less than the time to create it on a
different virtual machine on the same processor. This is because of the added concurrency
available when processing is distributed over two processor. Secondly, the cost of creating
a resource group increases linearly with the size of the group. This is because the runtime
system create replicas in sequence and not in parallel.

The numbers presented in this section show that the performance of FT-SR is com-
parable with other systems that have been developed for building fault-tolerant systems.
We believe the small performance penalty incurred by FT-SR is greatly outweighed by
the benefits of using a higher-level distributed programming language to construct these
type of systems.

5.4 Implementation of FT-SR/Unix

This section describes the implementation of FT-SR/Unix, a version of FT-SR that runs
on Unix. Since the compiler for FT-SR/Unix is almost identical to that of FT-SR, we
limit the discussion to the runtime system of FT-SR/Unix. In the rest of this section,
FT-SR refers to the standalone implementation of FT-SR and FT-SR/Unix refers to the
Unix implementation.

79

The organization of the FT-SR/Unix runtime system is a blend of the runtime systems
of FT-SR and an existing Unix implementation of SR. Like the FT-SR runtime system, the
functionality of the runtime system is divided into two parts, one of which resides within
the virtual machines and the other in a separate execution-time manager called FT-SRX.
The virtual machines and FT-SRX are implemented as separate Unix processes.

The structure of a virtual machine is very similar to that of FT-SR. However, unlike
FT-SR, each virtual machine contains a thread-manager which creates, schedules, and
destroys threads within the virtual machine independent of the Unix scheduler. This
approach is similar to that used by SR.

The execution manager is based on the SR execution manager SRX. It is responsible
for creating and destroying virtual machines, keeping track of the location of virtual
machines, detecting the failure of nodes, and handling broadcast communication between
virtual machines. Unlike SRX, which is centralized, FT-SRX is fully distributed and
an instance of FT-SRX resides on every node in the system. This is essential because
the FT-SR/Unix runtime system must itself be fault-tolerant and therefore cannot have a
single point of failure.

The virtual machines in FT-SR/Unix communicate directly with each other using UDP,
and with their local instance of FT-SRX using TCP. The instances of FT-SRX on the
different nodes communicate with each other using UDP sockets. In each case these choice
of UDP or TCP was made on the basis of the guarantees made by these protocols, and
the corresponding guarantees made by the communication mechanisms in the standalone
version. This allows the protocols used by FT-SR to be used in FT-SR/Unix with little or no
modifications. For example, TCP guarantees ordered and reliable message delivery, which
is similar to the guarantees made by the kernel-call interface between virtual machines
and the VM Manager of FT-SR. UDP, on the other hand, makes no guarantees about order
and reliability and is therefore similar to the message delivery service provided by the
network used by FT-SR. Therefore, FT-SR protocols that expect reliable message delivery
use TCP in the FT-SR/Unix implementation, while those that are designed to handled
message losses use UDP.

When a virtual machine needs to communicate with another virtual machine,a message
is sent to the local FT-SRX asking for the port and host address of the destination virtual
machine. This information is then used to open a direct UDP connection between the two
virtual machines. If a virtual machine needs to broadcast a message, the message is sent
to its FT-SRX, which then broadcasts it to the instances of FT-SRX on the other nodes
and the other virtual machines on that node.

FT-SRX instances reside at well-know ports. This allows virtual machines and other
instances of FT-SRX to establish a connection easily with an instance of FT-SRX. This
also implies that only one instance of an FT-SRX can reside on a node, irrespective of
the number of FT-SR programs running on that node. Messages to and from FT-SRX are
therefore tagged with identifiers that identify the program sending the message.

The failure detection protocol implemented by the FT-SRX is very similar to the PFD
of FT-SR. In addition the functions of the PFD, it detects the explicit destruction of virtual

80

machines and notifies any virtual machines that might have asked to monitor the one that
was destroyed.

5.5 Summary

This chapter described details of the implementation of FT-SR on a network of standalone
Sun 3s. The implementation consists of two major components: a compiler and a runtime
system. The compiler is very similar to an existing SR compiler and therefore only the
parts that implemented the FT-SR extensions to SR were described.

The FT-SR runtime differs significantly from the SR runtime system for three reasons.
First, the x-kernel is used to manage threads instead of a custom threads package, second,
the runtime system itself has to be fault-tolerant, and finally, extra support is needed for
the FT-SR extensions to SR. The effect of these on the design of the runtime system was
described.

The two most interesting aspects of the runtime system—failure detection and no-
tification, and support for replication—were described in detail. The failure detection
scheme is interesting because it involves runtime system modules at different levels of the
system. The support for replication is interesting because of its novel use of max sf , the
maximum number of simultaneous failures allowed, to optimize a primary replica based
group invocation scheme.

The performance of the implementation was measured and the observed timings
presented. It was shown that the performance of FT-SR compares well with other systems
developed for building fault-tolerant systems. Moreover, the slight performance penalty
incurred by using FT-SR is outweighed by the benefits of using a high-level distributed
programming language.

Finally, FT-SR/Unix, a Unix based implementation of FT-SR was described. The
FT-SR/Unix implementation is a blend FT-SR and SR. The overall structure of the system
is similar to that of FT-SR but like SR, it implements its own threads package and exists
entirely within Unix user processes.

CHAPTER 6
AN EVALUATION OF FT-SR

This chapter is an evaluation of the design and implementation of the FT-SR program-
ming model and language. The strengths of the design and implementation are highlighted
along with some of the observed deficiencies of the language.

6.1 Novelty and Universality of the Programming Model

Many different programming models have been developed for fault-tolerant programming.
A distinguishing feature of these models is their varying degrees of support for system
structuring in general, and the standard fault-tolerance structuring paradigms in particular.
In this section we argue that the FT-SR programming model is novel in its approach to
system structuring and is at the same time universal in that it encompasses all the other
programming models.

The FT-SR programming model is novel for two reasons. First, it is based on fail-
stop atomic objects, which we believe to be the fundamental building blocks of fault-
tolerant systems. The use of FS atomic objects therefore greatly simplifies the design
and implementation of such systems. The second reason is that the model describes the
mechanisms used to structure fault-tolerant systems rather than dictates policies. These
mechanisms may then be used by programmers to implement a policy of their choosing.

The FT-SR programming model captures the fundamental principles of fault-tolerant
programming in the form of fail-stop atomic objects. Recall that a fail-stop atomic
object implements a collection of operations that are exported and made available for
invocation by other FS atomic objects. These operations execute as atomic actions unless
a catastrophic failure occurs, in which case a failure notification is generated. Ideally, a
fault-tolerant system as a whole behaves as an FS atomic object: commands to the system
are executed atomically or a failure notification is generated. This assures users of the
system that, unless a failure notification is generated, their commands have been correctly
processed and any results produced can be relied upon. Such a system is much easier to
design and implement if each of its components are in turn implemented by FS atomic
objects. Since the failure of any component is detectable, other components do not have to
implement complicated failure detection schemes or deal with the possibility of erroneous
results produced by failed components. These components may in turn be implemented
by other FS atomic objects, and this process continued until the simplest components of
the system are implemented by simple FS atomic objects. At each level, the guarantees
made by FS atomic objects simplify their composition to form other more complex FS
atomic objects.

81

82

The FT-SR programming model is also unique in that it specifies the mechanisms used
to structure FS atomic objects but does not set any policies that limit the programmer to
any one program structure. This allows the programmer to decide on the program structure
best suited for the application and structure the program accordingly. This approach is very
different from those taken by other systems that dictate what the program structure ought
to be and restrict the programmer to that structure. For example, Argus supports only the
object/action paradigm and therefore all Argus programs must be structured according to
this paradigm. Even the HOPS programming model, which like the FT-SR model attempts
to provide the programmer with greater flexibility, provides programmers a fixed set of
policies to choose from. For instance, the programmer can choose between the two-phase
commit protocol and timestamp ordering for concurrency control, and between logs and
shadows for recovery.

The fundamental nature of the FT-SR programming model is evidenced by the obser-
vation that all three standard program structuring paradigms, the object/action model, the
restartable action paradigm, and the replicated state machine approach, really implement
the atomicity property of FS atomic actions. In other words, systems structured according
to any of these paradigms satisfy the unitary and serializability properties. This is obvi-
ously the case with a system structured according to the object/action model. A system
structured according to the restartable action paradigm satisfies the unitary property be-
cause commands to such a system always complete. A failure may delay the execution of
a command, but execution will eventually be restarted and completed. The serializability
property must be ensured by the application for any execution to be meaningful. A system
structured according to the replicated state machine approach also satisfies the unitary
property by ensuring that command execution always completes. Command execution
is not affected by failures because of the active redundancy used by these systems. The
serializability property is ensured by ensuring that commands are executed in the same
sequence at each processor.

The universality of the FT-SR programming model is demonstrated by the fact that
systems constructed using the standard program structuring paradigms can also be con-
structed using FS atomic objects. For example, in a system using the object/action model,
objects map directly to FS atomic objects and actions to abstract threads realized by a
combination of concrete threads in the FS atomic objects. In a system using the replicated
state machine approach, state machines map directly to FS atomic objects and commands
to invocations on these objects. Finally, restartable actions map to threads executing in
an FS atomic object that is restarted on a failure.

The FT-SR programming model goes a step beyond other programming models that
support one or more of the above structuring paradigms by making provisions for catas-
trophic failures. For example, the object/action model and the restartable action paradigm
assume the existence of stable storage that never fails. Similarly, the replicated state
machine approach assumes that the number of failures suffered by the system will not
exceed the number of replicas. The FT-SR programming model recognizes that these
assumptions can be violated, leading to a catastrophic failure and the generation of a

83

failure notification. This allows other components of the system to react to the failure and
take appropriate recovery action, or at the very least, shut down the system gracefully.

The usability of the FT-SR programming model is greatly enhanced by virtue of it
being supported by a high-level concurrent programming language. This simplifies the
construction of fault-tolerant distributed systems by allowing for the seamless integration
of the distribution and fault-tolerance aspects of these systems. This is in contrast to
systems like ISIS whose fault-tolerance model is supported by C, which is fundamen-
tally a sequential programming language and is therefore not conducive to distributed
programming.

6.2 Suitability of Language for Systems Building

The experience gained from building a variety of fault-tolerant systems leads us to believe
that FT-SR does indeed provide the right level of abstraction needed in a language designed
for building systems. We argue this point further by comparing the mechanisms and
abstractions provided by FT-SR with the various abstractions commonly used for fault-
tolerance, and showing that the FT-SR abstractions form a “lowest common denominator”
that can be used to implement any of the other abstractions.

The various structuring paradigms that have been developed for fault-tolerant dis-
tributed systems provide the programmer with techniques and abstractions for the problem
being solved. The relationship between these abstractions and the mechanisms provided
by FT-SR can be illustrated by arranging them in a hierarchy based on the dependency
relationship [MS92]. A version of this hierarchy is shown in Figure 6.1, where circles rep-
resent abstractions, rectangles represent mechanisms provided by FT-SR, and the labeled
boxes at the bottom represent the portions of the FT-SR runtime system that implement
these language mechanisms. At the top of the hierarchy are objects and actions. These
depend directly on restartable actions, which are needed to implement protocols like the
two-phase commit protocol in which failed processes must recover to complete success-
fully. These restartable actions, in turn, depend on two other abstractions: idempotent
actions and replicated state machines. Idempotent actions are used to implement schemes
like intentions lists to install a set of changes to data on a stable storage device [Lam81].
The stable storage itself may be implemented using the replicated state machine paradigm,
as was shown in Chapter 4. Finally, the mechanisms and runtime modules in FT-SR are
at the base of the hierarchy.

The horizontal line in Figure 6.1 divides functionality implemented within the FT-SR
runtime system from that implemented by the FT-SR programmer. Different languages
have chosen to draw this line at different levels, representing different trade-offs between
the power and flexibility of the abstraction implemented by the langauge—the higher the
line, the greater the power of the abstraction but lower its flexibility. Languages like
Argus, draw this line at the very top of the hierarchy, providing programmers with the
power of the atomic/action model but limiting them to that one model. Languages that
support process checkpointing draw the line at restartable actions but programmers still

84

Time

Redundancy

Obj. State

Redundancy

Simple FS Atomic Objects

System

Runtime

FT-SR

Program

Application

Fail. Handlers Primary Op. Restriction

Group Creation

(Replicated State Machines,

FT-SR

Recovery Sections

Failure Recovery

Subsystem

Failure Detection

Subsystem

Object Mgmt.

Subsystem

Group Mgmt.

Subsystem

Stable Storage

(Commit Protocols)

Objects/Actions

Restartable Actions

Idempotent Actions

 Primary/Backup Schemes)

(Intentions List)

Backup machines

Figure 6.1: Hierarchy of Fault-Tolerance Abstractions

have the option of implementing the more powerful object/action model if required by the
application. Languages like FTCC, which provide support for replication, draw this line
even lower. They do not, however, usually provide support for restarting failed operation
and cannot, therefore, be used to build anything but replicated objects. By drawing this
line even lower, FT-SR allows programmers to implement any of the abstractions provided
by other langauges.

The level of abstraction provided by a language has implications on the ease with
which it can be used to build systems. A higher level of abstraction greatly simplifies
the construction of systems that conform to that abstraction but can result in inefficient
solutions when used to build systems that must be forced to conform to the abstraction
[Bal91]. On the other hand, a low level abstraction can be used to efficiently build a
wider range of systems because it can be used to implement the high-level abstraction
best suited for the system. Of course, this means the programmer is saddled with the task
of implementing one or more levels of abstraction.

We argue that FT-SR provides an appropriate level of abstraction for building systems.
Its mechanisms are primitive enough to give the programmer the ability to build all other
abstractions, yet powerful enough to be able to do so with relative ease. Such flexibility

85

allows FT-SR to be used for a variety of different applications and system architectures.
The primitive nature of the mechanisms also allows them to be efficiently implemented,
an important consideration for a systems programming language.

6.3 Coherence of Language Design

The fault-tolerance mechanisms of FT-SR are designed with two important considerations
in mind. The first is that the mechanisms be orthogonal so that any interplay between these
mechanisms not result in unexpected behavior. The second consideration is that, whenever
possible, these mechanisms use or form natural extensions to existing SR mechanisms.
These considerations preserve the semantic integrity of the language and at the same time
keep it relatively simple and therefore, easy to understand and use. We illustrate this point
with several examples.

Recall that FT-SR provides mechanisms for failure detection, failure handling, restarts,
and replication, all of which can be meaningfully combined to achieve different effects.
For example, the failure detection and handling operations work uniformly well with
groups and individual resources. Both the monitor statement and the invocation statement
with backup work with groups just as they do with resources. In either case a failure
notification is generated when no resource or resource group member is available to
handle invocations.

Similarly, restart operations can be used to restart entire groups, group members, or
individual resources. In every case, programmer-specifiedrecovery code that is associated
with the resource is executed, and identical rules are used to determine when the restarted
resource starts accepting new invocations. Moreover, the explicit restart of a resource or
resource group behaves just like an automatic restart except that it gives the programmer
greater control on the placement of the restarted resource and the arguments with which
it is restarted.

In addition, since group capabilities are identical to resource capabilities, all invoca-
tions that work with resources also work with resource groups. Therefore, in addition to
the normal invocation operations, group operations may be specified as failure handlers
in monitor statements and backup operations in call invocations. The indistinguishability
of resource groups and resources extends to invocations from a group—it is impossible to
tell if an invocation originated from a group or an individual resource.

Finally, a group consisting of one member is identical to an individual resource. For
example, private capability variables, when used by an individual resource, are identical
to regular capability variables because in this situation all capability variables are private
by default. Also, the primary restrictor has no effect when used by an individual resource
since it can be considered as being the primary member of a group of size one.

The orthogonality of the FT-SR fault-tolerance mechanisms keeps the language small
and therefore easy to learn and use. Orthogonality allows a small set of mechanisms to be
combined in different ways to achieve different effects. The lack of restrictions or special

86

cases governing this combination of mechanisms eliminates any programming pitfalls
that can snare a novice programmer.

The second aspect of language coherence is that wherever possible, the fault-tolerance
mechanisms of FT-SR are integrated into existing SR mechanisms. For example, the
group create statement is a natural extension of the SR resource create statement, both in
terms of its syntax and semantics. Furthermore, the primary restrictor is similar to the
existing send and call operation restrictors, while the specification of a resource recovery
section is similar to that of its final section. Finally, a failure handler is essentially an
operation that is invoked as a result of a failure and is therefore expressed using existing
language mechanisms.

The integration of the FT-SR mechanisms into existing SR mechanisms serves two
purposes: one, it keeps the language small, and two, the fault-tolerance aspects of the
language blend in with its concurrency aspects, leading to a logically and aesthetically
integrated design.

6.4 Salient features of the Implementation

The most noteworthy feature of the FT-SR implementation is that it runs on stand-alone
machines. This allows the language to be used to build realistic fault-tolerant systems,
which can then be tested by actually crashing processors. Similar systems such as Rajdoot
and ISIS are implemented on Unix, where crashes can only be simulated by explicitly
killing processes. A standalone implementation also allows for a better evaluation of
the cost incurred by the different fault-tolerance mechanisms because performance is not
affected by operating system peculiarities.

Another novel feature of FT-SR is the optimization of the algorithms within the runtime
system based on max sf , the maximum number of simultaneous failures the system can
suffer. It is because of this optimization that the cost of an invocation to a group is
dependent only on max sf and not the size of the group. This is especially significant in
light of the observation that a max sf value of one is sufficient for most systems [Gra86b].
This gives FT-SR a considerable advantage over systems such as ISIS where the cost of
an invocation grows linearly with the size of the group.

FT-SR also uses an interesting variation of the primary replica approach to sequence
invocations to a group. Other systems like Orca that use similar schemes also implement
expensive distributed election protocols to elect a new primary when the current primary
fails. With these protocols, the time to elect a new primary increases with the number
of replicas. This is generally undesirable because replication is often used by systems
that cannot afford the time necessary to deal with failures. FT-SR solves this problem by
using a scheme that does not involve a distributed election. Moreover, the new primary is
selected from a group of max sf replicas that maintain the same state information as the
primary and can therefore take over the task of a primary on short notice.

87

6.5 Language Design Alternatives

The design of FT-SR has evolved over the course of this research. The current design is the
result of having considered and tried many different alternatives. This section describes
some of these design alternatives considered and the reasons that led to the current design.

The language feature that underwent the greatest number of changes is the ability to
differentiate between group invocations, which are invocations made by a group member
on behalf of the group, from individual invocations, which are invocations made by a
group member as an individual. The current version of FT-SR uses, of course, private
capability variables to distinguish between the two. However, an early version introduced
three new statements, gcall, gsend, and gcreate, which were group versions of the call,
send, and create statements. The group versions of the statements were used for group
invocations or to create resources as a group while the regular versions were used to
make individual invocations and to create resources as an individual. This approach had
the advantage of being extremely flexible but suffered from two disadvantages: (1) the
common case of group members making group invocations required the use of the special
group statements and (2) the design required the addition of three new keywords to the
language.

The disadvantages of the above approach led to a redesign of the group operations. The
special group versions of invocation and create statements were abandoned and instead
a new keyword owns introduced. This was akin to the keyword imports and was used
to import resources that group members communicated with using individual invocations
instead of group invocations. The name of the resource rather than the actual resource
instance being communicated with was therefore used to decide on the kind of invocation
generated. This design had the advantage of having one uniform set of invocation and
create statements that could be used in all situations, but suffered from a serious lack of
flexibility. Specifically, if a resource was declared as being owned, it was impossible for
group members to make a group invocation to any instance of that resource. For example,
it was impossible to build a system where group members made group invocations to a
stable storage used by the entire group, as well as individual invocations to a private stable
storage.

The current design—where programmers can specify private capability variables—
combines the flexibility of the first design and the better integration with existing language
mechanisms offered by the second. In addition, the common case where invocations made
by a group member are group invocations is the default action.

The other language mechanism that underwent significant change was the ability to
specify the automatic restart of a failed resource on backup virtual machines. In the
current implementation this is specified by means of a backups on clause associated
with the create statement. Earlier versions of the language used a keyword persistent to
specify the automatic restart of a resource. That is, such a resource was declared as being
a persistent resource in the specification of the resource. Backup virtual machines were
then separately specified by listing extra virtual machines in the resource create statement.

88

For example, the statement

create persRes() on vmArray

was used to create a persistent resource persRes on the virtual machine specified by
the first element of the array vmArray. The virtual machines specified by the remaining
elements of the array were then used as backups. The group create statement was similar,
with any extra elements in the array of virtual machine capabilities used as backups.

This design had the disadvantage that the automatic restart was specified in a com-
pletely different place from the specification of backup virtual machines. In other words,
the create statement alone did not specify if the resource being created was to be auto-
matically restarted; rather this information had to be pieced together from the resource
specification and the create statement. The number of backup virtual machines specified
was also not obvious from the create statement. We believe that the current design, where
a backup on clause is used to specify automatic restarts and backup virtual machines,
overcomes the problems with the first design and at the same time obviates the need for
keyword persistent.

Another alternative considered for the group create statement was the use of implicit
iterators to specify replication and to pass different arguments to different replicas. In this
approach, if a group is created and an actual argument is an array whose dimensionality
is one higher than the dimensionality of the corresponding formal, this array is implicitly
iterated. For example, consider a resource res that takes a single integer as a parameter.
A group consisting of n instances of res would be created by

create res(intArray) on vmArray

where intArray is an array of n integers and vmArray an array of n virtual machine
capabilities. Since the dimensionality of the argument intArray is one higher than that
expected for resource res, a group creation is implied. Array intArray is then implic-
itly iterated with replica i being created with element intArray[i] as its argument. As
with the current design, backups were specified by means of a backups on clause. This
design was abandoned because of the complexity of implicit iteration. It also suffered
from the disadvantage that both the create statement and the resource specification had
to examined to determine if a single instance or a replicated group was being created.
Moreover, it could not be used to create groups of resources that take no arguments.

6.6 Observed Deficiencies of FT-SR

In this section we present some of the deficiencies of FT-SR based on our experience and
on the experience of graduate students who used the language in an advanced course on
fault-tolerance.

89

Of all the features of FT-SR, the group create statement seemed to present the most
problems for users. They were caught unawares by a subtlety in its implementation
semantics, which caused programs to fail when the statement was encountered. Two
reasons underlie this problem: one, replicas in a group are created one at a time; and two,
like resource creation in SR, further execution of the creating process blocks until the
initial thread of the resource returns. Hence, if the initial thread of the first replica never
returns, subsequent replicas never get created. When this happens, the first or primary
replica starts executing and finds the system in an inconsistent state where all other replicas
are missing even though there have been no failures. This inconsistency causes group
operations to fail, often resulting in the failure of the entire program.

This problem can be solved by changing the implementation to create replicas in
parallel. Clearly, such an implementation would be more in keeping with users intuition
about the statement. It would also be fairly easy to realize because of the multi-threaded
nature of the implementation.

A second problem that was frequently encountered was the need to duplicate resource
initialization code in the recovery section. This problem arises because programs often
need to re-initialize local variables on recovery from a failure to the same values they had
originally. One such example can be see in the distributed word game program shown in
Appendix D. An obvious solution to this problem would be to have the compiler generate
code to re-initialize constants on recovery, with variables that need such re-initialization
being declared as constants. Another possible solution is the use of a single initial/recovery
block with the ability to determine at runtime if the block was being executed as a result
of a create or restart.

We also noticed a strong temptation to write fault-tolerant programs by implementing
a centralized solution and then replicating critical resources. While this made program
development much easier, it often resulted in solutions that could have been implemented
much more efficiently by a decentralized program. This is because what might have
been relatively inexpensive local invocations in a program that was structured to be
decentralized from the start were instead implemented by much more expensive group
invocations.

Another problem was that the strong typing of FT-SR made the development of
general-purpose resources extremely difficult and often led to inelegant solutions. For
example, the stable storage resource shown in Appendix B exports two kinds of read and
write operations, each of which operates on data of different types. A much more elegant
solution would have read and write operations that operated on arrays of bytes, with all
other data types coerced into arrays of bytes. Such a solution would also allow the stable
storage resource to be re-used by other programs. The strong typing of FT-SR also makes
it difficult to develop resource libraries.

The failure notification mechanisms of FT-SR, while adequate for most purposes,
would be more useful if integrated with a general exception handling mechanism. This is
based on the observation that operations can fail due to one of two reasons: (1) the failure
of the resource implementing the operation, or (2), an application specific exceptional

90

condition that prevents the operation from completing. In the current version of the
language, the mechanisms used to signal and handle these two kinds of failures are
completely disjoint. The first is signaled by the FT-SR failure notification mechanisms
and handled by backup operations or failure handlers, while the second is signaled using
error codes returned by operations and handled by standard conditional execution. The
use of a general exception handling mechanism would allow programmers to use one
uniform mechanism to handle the failure of an operation, irrespective of the cause of the
failure, thereby resulting in programs that are easier to write and understand.

6.7 Summary

In this chapter the distinguishing features of the FT-SR programming model were high-
lighted. It was argued that this model is novel for two reasons: one, it is based on FS
atomic objects, the fundamental building blocks of fault-tolerant systems, and two, it
provides the programmer with a great deal of flexibility in structuring systems. It was
shown that the use of FS atomic objects can simplify the design and implementation
of fault-tolerant systems. It was also shown that the structuring flexibility provided by
the model allows the programmer to structure systems in a manner best suited for the
application.

The principles that were used to design the FT-SR language features that implement
the programming model were then described. It was shown that these mechanisms are
orthogonal in terms of functionality and can be meaningfully combined to achieve different
effects. This orthogonality, together with the lack of restrictions on combining different
mechanisms, keeps the language small and easy to learn and use.

The suitability of these mechanisms for systems building was then evaluated. It was
shown that the abstractions implemented by these mechanisms form a lowest common
denominator that could be used to implement any of the other abstractions developed for
fault-tolerance.

The evolution of these language mechanisms was then described. The various design
alternatives that were considered and the reasons the eventually led to the current design
were presented.

Finally, some of the observed deficiencies of the language were described and wherever
possible, solutions to these problems presented.

CHAPTER 7

CONCLUSIONS

7.1 Summary

This dissertation has described the design and implementation of FT-SR, a programming
language for building fault-tolerant distributed systems. The distinguishing feature of
FT-SR is the flexibility it provides the programmer in structuring fault-tolerant systems,
allowing it to be used to build a variety of different types of systems.

A case for such a language was made in Chapter 2. It was shown that the main
difference between the languages developed for fault-tolerant programming lay in their
support for the different fault-tolerance structuring paradigms. Most of these languages
support one of the structuring paradigms and even languages that attempt to support
more typically have extensive support for a paradigm and very rudimentary support for
the others. Support for a single paradigm is however inappropriate in a language for
constructing systems where different structuring paradigms are appropriate for different
levels of abstraction. FT-SR was therefore designed to be able to support equally well any
of the fault-tolerance structuring paradigms. The development of such a multi-paradigm
language for fault-tolerant programming can be viewed as analogous to the evolution of
standard distributed programming languages, which have progressed from languages such
as CSP [Hoa78] and Concurrent Pascal [BH75] that support only a single synchronization
paradigm to those such as SR, Dislang [LL81], Pascal-FC [BD88], and StarMod [Coo80]
that support multiple approaches.

FT-SR derives its flexibility from its programming model, which was described in
Chapter 3. The model is based on FS atomic objects, which form the basic building block
of all fault-tolerant systems. In this model, programs are realized as collections of FS
atomic objects, organized along the line of functional dependencies. FS atomic objects
are constructed by composing together other FS atomic objects. This composition is
based on redundancy techniques and results in FS atomic objects with a greater resilience
to failures. The actual redundancy techniques used, and hence the resulting program
structure, depends on the details of the system or the application being implemented.

The FT-SR language mechanisms that implement this programming model were also
described in Chapter 3. These mechanisms fall into three categories: mechanisms for
replication, recovery, and failure notification. The use of these mechanisms was illustrated
using several simple examples.

The ease with which FT-SR can be used to implement different kinds of fault-tolerant
systems was demonstrated in Chapter 4. The distributed banking system illustrated the
use of FT-SR in building systems that employ different structuring paradigms in different

91

92

parts of the system. The dying philosophers problem showed how FT-SR facilitates the
modification of existing programs to add fault-tolerance. The distributed word game
showed the use of redundancy for increased performance and fault-tolerance.

The implementation of FT-SR was described in Chapter 5. The most interesting
aspect of the implementation is its use of max sf , the maximum number of simultaneous
failures the system can suffer, to optimize runtime system algorithms. The benefits of
this optimization are apparent in the performance of the FT-SR group operations. Unlike
other systems, the cost of these operations is dependent only on the value of max sf and
not the size of the group. Typically, the value of max sf is much smaller than the size of
the group, giving FT-SR a considerable advantage over other systems.

The timings measured for some FT-SR operations were also presented in Chapter 5.
A comparison of some of these timings with corresponding numbers from a standalone
implementation of SR shows the execution overhead of fault-tolerance to be about 17
percent when no failures occur. However, FT-SR compares well with systems like Consul
and Isis, also developed for building fault-tolerant systems. The slight performance
penalty incurred by using FT-SR instead of these systems is outweighed, in our view, by
the benefits of using a high-level distributed programming language.

Finally, the design and implementation of FT-SR was evaluated in Chapter 6. It
was argued that the FT-SR programming model was novel in its use of FS atomic objects.
These objects capture the fundamental principles of fault-tolerant programming and hence
their use as building blocks of a fault-tolerant system can simplify its design and imple-
mentation. The model was also shown to be universal in that it encompasses the models
supported by the other languages developed for fault-tolerant programming.

The design of the FT-SR language mechanisms was also revisited. These mechanisms
were shown to form an orthogonal set that can be can be freely combined in different
ways to achieve different effects. It is because of this orthogonality that FT-SR consists of
a relatively small number of extensions to SR and yet is expressive enough to implement
a wide variety of systems. The evolution of the design of some of these mechanisms was
also described.

Finally, some of the observed deficiencies of the language, based on the experience
gained from using the language, were described along with possible solutions.

7.2 Future Work

This research can be extended in many different directions. These include refining the
design and implementation of FT-SR itself, adding support for different failure models,
and exploring programming language support for real time fault-tolerant systems.

The design of FT-SR is by no means complete. Some of the deficiencies of the language
that were discovered by experience gained from using the language were described in
Chapter 6. Much more such experience is needed to be able to really validate the design
and implementation of FT-SR.

93

In order to gain more experience with FT-SR, it must be made more accessible to
users by being available on many different commonly used platforms. The current
implementation is based on version 3.1 of the x-kernel, which only runs on Sun 3s. FT-
SR/Unix was a first step in making FT-SR available on a widely used platform. It also
served to demonstrate the relative ease with which FT-SR can be implemented on other
platforms. Particularly useful would be an implementation based on version 3.2 of the
x-kernel. Such an implementation would run unchanged both standalone on the Mach
micro-kernel and as a Unix application. It would have the added advantage of having
only one version of the software to maintain instead of the two versions that are currently
maintained.

Another area of future research is the addition of support for different failure models.
FT-SR currently assumes that processors suffer only from crash failures and algorithms
used within the language runtime are optimized for this failure model. Support for other
failure models model would allow FT-SR to be used to build a wider variety of systems.
For example, support for the Byzantine failure model will allow FT-SR to be used to build
ultra-dependable systems. Ideally, the semantics of the language mechanisms would be
independent of the underlying failure model, allowing programmers to develop programs
without consideration of the underlying failure model. The failure model would then be
specified during compilation, at which time the runtime system modules optimized for
that failure model would be linked in. These failure model based optimizations would
complement the existing optimizations based on the maximum number of simultaneous
failures the system can suffer.

Finally, programming language support for real-time fault-tolerant systems is an area
that is ripe with research opportunities. Both real-time systems and fault-tolerant systems
are in themselves extremely difficult to program and the problem is much worse with
real-time fault-tolerant systems. An interesting idea to explore would be the extension
of the FT-SR notion of a catastrophic failure to the time domain, with an eye towards
designing an integrated set of mechanisms to deal with timing and processor failures. It
would also be interesting to study the timing guarantees that can be made by the different
fault-tolerance structuring paradigms and their suitability in real-time systems.

94

APPENDIX A

THE SR DISTRIBUTED PROGRAMMING LANGUAGE

An SR program consists of one or more resources. These resources can be thought
of as patterns from which resource instances are created dynamically. Each resource is
composed of two parts: an interface portion which specifies the interface of the resource
and a body, which contains the code to implement the abstract object. The specification
portion contains descriptions of objects that are to be exported from this resource—made
available for use within other resources—as well as the names of resources whose objects
are to be imported. Of primary importance are the declaration of operations—actions
implemented by sequences of statements that can be invoked. These declarations specify
the interface of those operations that are available for invocation from other resources.
For example,

op example1(var x: int; val y: bool)

declares an operation, example1, that takes as arguments an integer x that is passed
with copy-in/copy-out (var) semantics and a boolean y that is copy-in only (val). Result
parameters (res) are also supported, as are operations with return values.

The declaration section in the resource body together with its specification define the
objects that are global to the resource, i.e., accessible to any process within the resource.
All of the usual types and constructors are provided. In addition, there are capability
variables. Such a variable functions either as a pointer to all operations in a resource
instance (a resource capability), or as a pointer to a specific operation within an instance
(an operation capability). A variable declared as a resource capability is given a value
when a resource instance is created, while an operation capability is given a value by
assigning it the name of an operation or from another capability variable. Once it has a
value, such variables can be used to invoke referenced operation(s), as described later.

The resource instances comprising a given program may be distributed over multiple
virtual machines, which are abstract processors that are mapped to physical machines in
the network. A resource instance is created and placed on a virtual machine using the
following:

res cap := create res name(arguments) on virtual machine cap

95

96

Execution of this statement creates an instance of the resource res name on the vir-
tual machine specified by the virtual machine capability virtual machine cap and
assigns a capability to the newly created resource to the capability variable res cap.

An operation is an entry into a resource. An SR operation has a name, and can have
parameters and return a result. There are two different ways to implement an operation:
as a proc or as an alternative in an input statement. A proc is a section of code whose
format resembles that of a conventional procedure:

proc opname(parameters) returns result
op body

end

The operation body op body consists of declarations and statements. Like a procedure,
the declarations define objects that are local to the operationopname. Unlike a procedure,
though, a new process is created, at least conceptually, each time opname is invoked.
It is possible to get standard procedure-like semantics, however, depending on how the
proc is invoked (see below). The process terminates when (if) either its statement list
terminates or a return is executed.

An operation can also be implemented as an alternative of an input statement. An input
statement implementing a collection of operations opname1, opname2, : : :, opname

n
has

the following form:

in opname1(parameters) -> op body1
2 opname2(parameters) -> op body2

: : :

2 opname
n
(parameters) -> op body

n

ni

A process executing an input statement is delayed until there is at least one alternative
opname

i
for which there is a pending invocation. When this occurs, one such alternative is

selected non-deterministically, the oldest pending invocation for the chosen alternative is
selected, and the corresponding statement list is executed. The input statement terminates
when the chosen alternative terminates.

An operation is invoked explicitly using a call or send statement, or is implicitly called
by its appearance in an expression. The explicit invocation statements are written as

call op denotation(arguments)
send op denotation(arguments)

97

where the operation is denoted by a capability variable or by the operation name if the
statement is in the operation’s scope. An operation can be restricted to being invoked only
by a call or a send by appending a fcallg or fsendg operation restrictor to the declaration
of the operation.

Execution of a call terminates once the operation has been executed and a result, if
any, returned. Its execution is thus synchronous with respect to the operation execution.
Execution of a send statement is, on the other hand, asynchronous: a send terminates
when the target process has been created (if a proc), or when the arguments have been
queued for the process implementing the operation (if an input statement). Thus, the
effects of executing the various combinations of send/call and proc/in are described by
the following table.

Invocation Implementation Effect
call proc procedure call
send proc process creation
call in rendezvous
send in asynchronous message passing

To illustrate how the individual pieces of the language fit together, consider the
implementation of a bounded buffer shown in Figure A.1. Two operations are exported
from this resource: deposit and fetch; deposit places a value in the next available
slot if one exists, while fetch returns the oldest value from the buffer. A depositing
process is delayed should the buffer be full. Similarly, a fetching process is delayed
whenever the buffer is empty. Note also that the resource has a parameter size; its
value determines the number of slots in the buffer. The use of resource parameters in
this way allows instances to be created from the same pattern, yet still vary to a certain
degree. Finally, note the single input statement to implement both the deposit and fetch
operations, and the use of a send statement in the initialization code to initiate the main
(parameterless) proc buff loop. Creating a process in this manner is so common that
the keyword process can be used instead of proc as an abbreviation for the send in the
resource initialization code and corresponding op declaration.

98

resource buffer
op fetch() returns value: int
op deposit(val newvalue: int)

body buffer(size: int)
var first, last: int := 0, 0
var slot[0:size - 1]: int

initial
send buff loop()

end

proc buff loop()
do true ->
in deposit(newvalue) and first != (last + 1) % size ->
slot[last] := newvalue
last := (last + 1) % size

2 fetch() returns value and first != last ->
value := slot[first]
first := (first + 1) % size

ni
od

end
end

Figure A.1: Bounded buffer resource

APPENDIX B

A DISTRIBUTED BANKING SYSTEM

The following is a complete FT-SR program implementing the distributed banking
system described in Chapter 3. It consists of four components: global component glob-
alDefs and resources dm, statbleStore, and main, all of which are described in
Chapter 4.

global globalDefs
const MEMSIZE := 50

const MAX TRANS := 6

const MAX TRANS DATA := 5

list of machines
const BODONI := 22

const HERSHEY := 28

const LUCIDA := 48

type transInfoRec = rec (

tid : int
transStatus : char
dataAddrs[1 :MAX TRANS DATA] : int
currentPtrs[1 :MAX TRANS DATA] : int
memCpy[1 :MAX TRANS DATA] : int
numItems : int)

end globalDefs

99

100

resource dm
import globalDefs; stableStore
op startTrans(tid : int; dataAddrs[1 : �] : int; numItems : int)
op dmRead(tid : int; dataAddrs[1 : �] : int; var data[1 : �] : int; numItems :

int)
op dmWrite(tid : int; dataAddrs[1 : �] : int; data[1 : �] : int; numItems : int)
op prepareToCommit(tid : int)
op commit(tid : int)
op abort(tid : int)

body dm(dmId : int; ss : cap stableStore)
var statusTable[1 :MAX TRANS+1] : transInfoRec
var currPtr : int
var buffer[1 : 2] : int
sem statusTableMutex := 1

op failHandler()

initialize stable store
fa i := 1 to 10 by 3 !

buffer[1] := 1

buffer[2] := i � 10

ss.dataWrite(i; 2; buffer)
af
monitor (ss) send failHandler()

initialize statusTable
fa i := 1 to MAX TRANS !

statusTable[i].transStatus := ’E’
ss.logWrite(i; statusTable[i])

af

proc startTrans(tid; dataAddrs; numItems)
var t := MAX TRANS + 1

P(statusTableMutex)
fa i := 1 to MAX TRANS st statusTable[i].transStatus = ’E’ !

t := i; exit
af
if t > MAX TRANS !

write("out of slots in transaction table")
V(statusTableMutex)
return

fi

...acquire locks here...

statusTable[t].transStatus := ’A’
statusTable[t].tid := tid
statusTable[t].numItems := numItems

101

fa i := 1 to numItems !

statusTable[t].dataAddrs[i] := dataAddrs[i]
ss.dataRead(dataAddrs[i]; 1; buffer)
currPtr := buffer[1]
statusTable[t].currentPtrs[i] := currPtr
ss.dataRead(dataAddrs[i]+currPtr; 1; buffer)
statusTable[t].memCpy[i] := buffer[1]

af
V(statusTableMutex)

write status table entry onto stable store
ss.logWrite(t; statusTable[t])

end startTrans

proc dmRead(tid; dataAddrs; data; numItems)
var t := MAX TRANS + 1

find transaction in status table
fa i := 1 to MAX TRANS st statusTable[i].tid = tid !

t := i; exit
af
if t > MAX TRANS !

write("dmRead: cannot find transaction in transaction table")
return

fi

fa i := 1 to numItems; j := 1 to statusTable[t].numItems
st dataAddrs[i] = statusTable[t].dataAddrs[j] !

data[i] := statusTable[t].memCpy[j]
next

af
end dmRead

proc dmWrite(tid; dataAddrs; data; numItems)
var t := MAX TRANS + 1

find transaction in status table
fa i := 1 to MAX TRANS st statusTable[i].tid = tid !

t := i; exit
af
if t � MAX TRANS !

write("dmWrite: cannot find transaction")
return

fi

fa i := 1 to numItems; j := 1 to statusTable[t].numItems
st dataAddrs[i] = statusTable[t].dataAddrs[j] !

statusTable[t].memCpy[j] := data[i]

102

next
af

end dmWrite

proc prepareToCommit(tid)
var t := MAX TRANS + 1

var nonCurrCopy : int

find transaction in status table
fa i := 1 to MAX TRANS st statusTable[i].tid = tid !

t := i; exit
af
if t � MAX TRANS !

write("prepareToCommit: cannot find transaction")
return

fi

write modified objects to the "non�current" copy
fa i := 1 to statusTable[t].numItems !

nonCurrCopy := statusTable[t].dataAddrs[i] +

statusTable[t].currentPtrs[i] mod 2 + 1

buffer[1] := statusTable[t].memCpy[i]
ss.dataWrite(nonCurrCopy; 1; buffer)

af
end prepareToCommit

proc commit(tid)
var t := MAX TRANS + 1

find transaction in status table
fa i := 1 to MAX TRANS st statusTable[i].tid = tid !

t := i; exit
af
if t � MAX TRANS !

write("commit: cannot find transaction in transaction table")
write("commit: transaction must have committed")
return

fi

if statusTable[t].transStatus = ’A’ ! # not yet committed
set current pointers to point to other copy of data
fa i := 1 to statusTable[t].numItems !

buffer[1] := statusTable[t].currentPtrs[i] mod 2 + 1

ss.dataWrite(statusTable[t].dataAddrs[i]; 1; buffer)

af
statusTable[t].transStatus := ’D’

103

fi
if statusTable[t].transStatus = ’D’ ! # cleanup

ss.logWrite(t; statusTable[t])
unlock objects....

statusTable[t].transStatus := ’E’
ss.logWrite(t; statusTable[t])

fi
end commit

proc abort(tid)
var t := MAX TRANS + 1

find transaction in status table
fa i := 1 to MAX TRANS st statusTable[i].tid = tid !

t := i; exit
af
if t � MAX TRANS !

write("abort: cannot find transaction in transaction table")
return

fi

statusTable[t].transStatus := ’E’ # abandon transaction
end abort

proc failHandler()
destroy myresource()

end failHandler

recovery
write("dm restarting")
fa t := 1 to MAX TRANS !

ss.logRead(t; statusTable[t])
af

end recovery
end dm

104

resource stableStore
import globalDefs
op dataRead(address : int; numwords : int; var buffer[1 : �] : int)
op dataWrite(address : int; nuwords : int; buffer[1 : �] : int)
op logRead(logEntryNum : int; var logEntry : transInfoRec)
op logWrite(logEntryNum : int; logEntry : transInfoRec)
op sendState(sscap : cap stableStore)
op recvState(dataStore[1 : �] : int; logStore[1 : �] : transInfoRec);

body stableStore(memsize :int)
var dataStore[1 :memsize] : int
var logStore[1 :MAX TRANS] : transInfoRec
op ss()

proc ss()
do true !

in dataRead(addr; numwords; buff) !

buff[1 :numwords] := dataStore[addr :addr+numwords�1]

dataWrite(addr; numwords; buff) !
dataStore[addr :addr+numwords�1] := buff[1 :numwords]

logRead(entryNum; logEntry) !
logEntry := logStore[entryNum]

logWrite(entryNum; logEntry) !
logStore[entryNum] := logEntry

sendState(rescap) !
send rescap.recvState(dataStore; logStore)

ni
od

end ss

recovery
send mygroup().sendState(myresource())
receive recvState(dataStore; logStore); send ss()

end recovery
end stableStore

105

resource main
import globalDefs; stableStore; dm

body main()
var vmcap[1 : 3] : cap vm
var sscap : cap stableStore

write("res. main starting")
vmcap[1] := create vm() on HERSHEY
vmcap[2] := create vm() on LUCIDA
vmcap[3] := create vm() on BODONI

sscap := create(i:= 1 to 2) stableStore(MEMSIZE) on vmcap[i] backups on
vmcap[3]

create dm(1; sscap) on vmcap[1] backups on vmcap[2 : 3]

end main

106

APPENDIX C

THE DYING PHILOSOPHERS PROBLEM

The following is a complete FT-SR program implementing the dying philosophers
problem described in Chapter 4. It consists of three resources: a main, philopher,
and servant. A detailed description of these resources can also be found in Chapter 4.

resource main()
import philosopher; servant
var n; t : int
writes("how many philosophers? "); read(n)
writes("how many sessions per philosophers? "); read(t)
var s[1 :n] : cap servant
var forks[1 :n] : int
var machine[1 :n] : cap vm

create servants and philosophers
fa i := 1 to n !

s[i] := create servant(i; n)
af
create (i := 1 to n) philosopher(s[i]; i; t) on machine[i]

give each servant capabilities to all other servants
fa i := 1 to n !

send s[i].links(s)
af

#initialize each servant’s forks
forks[1] := 2; forks[n] := 0

forks[2 : n�1] := ([n�2] 1)

fa i := 2 to n�1 !

send s[i].forks(forks)
af

end main

107

108

resource philosopher
import servant

body philosopher(s : private cap servant; id; t : int)
op philDied(id : int)

monitor myresource() send philDied(id)
process phil

fa i := 1 to t !

s.getforks()
write("Philosopher"; id; "is eating") # eat
s.relforks()
write("Philosopher"; id; "is thinking") # think

af
end

proc philDied(id)
send s.philDied(id)

end

end

109

resource servant
operations invoked by associated philosopher
op getforks() fcallg; relforks() fcallg;
op philDied(id : int) fsendg;

operations invoked by neighboring servants
op needL() fsendg; needR() fsendg;

passL() fsendg; passR() fsendg;

initialization operations invoked by main
op links(s[1 : �] : cap servant);

forks(f[1 : �] : int)
body servant(myid : int; n : int)

var ownL; ownR; haveL; haveR; dirtyL; dirtyR : bool
var l; r : cap servant
var servants[1 :n] : cap servant
var forkDist[1 :n] : int
var numOwned; numHave : int
op hungry() fsendg; eat() fsendg;
op redistribForks(id : int; hungry : bool) fcallg;

proc getforks()
send hungry() # tell server philosopher is hungry
receive eat() # wait for permission to eat

end getforks

process server
receive links(servants)
receive forks(forkDist)
l := servants[((myid�2) mod n) + 1]

r := servants[(myid mod n) + 1]

numHave := numOwned := forkDist[myid]
if numOwned = 2 !

ownR := true; haveR := true
ownL := true; haveL := true

numOwned = 1 !

ownR := true; haveR := true
ownL := false; haveL := false

else !

ownR := ownL := false; haveR := haveL := false
fi
dirtyL := dirtyR := false
do true !

in hungry() !

ask for forks I don’t have:
ask right neighbour for its left fork
ask left neighbour for its right fork
if �haveR ! send r.needL() fi

110

if �haveL ! send l.needR() fi
do � (haveL and haveR) !

in passR() !
haveR := true; dirtyR := false; numHave++

passL() !
haveL := true; dirtyL := false; numHave++

needR() st dirtyR !

haveR := false; dirtyR := false
send r.passL(); send r.needL(); numHave��

needL() st dirtyL !

haveL := false; dirtyL := false
send l.passR(); send l.needR(); numHave��

philDied(id) !
redistribForks(id; true)

ni
od
let my philosopher eat; wait for it to finish
send eat(); dirtyL := true; dirtyR := true
receive relforks()

needR() !
neighbour needs my right fork (its left)
if numHave � 2 ! haveR := false; dirtyR := false fi
send r.passL(); numHave��

needL() !
neighbour needs my left fork (its right)
if numHave � 2 ! haveL := false; dirtyL := false fi
send l.passR(); numHave��

philDied(id) !
redistribForks(id; false)

ni
od

end server

proc redistribForks(id; philHungry)
var forksXferred : int

set cap of failed servant to null
servants[id] := null
transfer forks to servant on the right
fa i := 0 to n�1 st servants[((id +i) mod n) + 1] 6= null !

forksXferred := forkDist[id]
forkDist[((id � 2 �i) mod n) + 1] + := forksXferred
forkDist[id] := 0

exit
af

was it a neighbor of mine that died?

111

if id = ((myid � 2) mod n) + 1 !

my left neighbor died: find new left neighbor
fa i := 1 to n�1

st servants[((myid � 2 � i) mod n) + 1] 6= null !

l := servants[((myid � 2 � i) mod n) + 1]

exit
af
numOwned + := forksXferred
numHave + = forksXferred
if ownL and �haveL ! haveL := true; numHave++ fi
if �ownL and haveL ! haveL := false; numHave�� fi
if forksXferred = 1 !

ownL := true; haveL := true; dirtyL := false
forksXferred � 2 !

if �ownR and haveR ! send r.passL(); numHave�� fi
ownL := true; haveL := true; dirtyL := false
ownR := true; haveR := true; dirtyR := false

fi

id = (myid mod n) + 1 !

my right neighbor died: find new right neighbor
fa i := 1 to n�1 st servants[((myid + i) mod n) + 1] 6= null !

r := servants[((myid + i) mod n) + 1]

exit
af
if ownR and �haveR ! haveR := true; numHave++ fi
if �ownR and haveR ! haveR := false; numHave�� fi
if philHungry and �haveR ! send r.needL() fi

fi
end redistribForks

end servant

112

APPENDIX D

THE WORD GAME PROBLEM

The following is a complete FT-SR program implementing the word game problem
described in Chapter 4. It consists of two resources: a main resource and a player
resource, both of which are described in detail in Chapter 4.

resource player
const NUMWORDS := 11

const GRIDSIZE := 15

const MAXWORDLEN := 13

type statusType = [NUMWORDS][4] int
type gridType = [GRIDSIZE][GRIDSIZE] char
type wordsType = [NUMWORDS][MAXWORDLEN] char
op play(wordsType; gridType; statusType)
op start() # start game
op getWord(int); # player id wants word
op foundWord(id : int; wordNum : int; xcoord : int; ycoord : int; orient :

char);
op playerDied(id : int); # player id died
op sendState(cap player) # recovering player wants state
op getState(statusType) # get state

body player(myid : int)

var grid : gridType := (

(’K’;’E’;’R’;’N’;’E’;’L’;’R’;’R’;’E’;’C’;’O’;’V’;’E’;’R’;’Y’);
(’B’;’C’;’S’;’Z’;’F’;’R’;’E’;’L’;’A’;’T’;’I’;’V’;’I’;’T’;’Y’);
(’Y’;’I’;’P’;’E’;’F’;’G’;’H’;’I’;’J’;’K’;’L’;’M’;’N’;’O’;’P’);
(’P’;’E’;’R’;’F’;’O’;’R’;’M’;’A’;’N’;’C’;’E’;’M’;’N’;’O’;’C’);
(’B’;’C’;’O’;’E’;’F’;’G’;’H’;’I’;’J’;’K’;’L’;’M’;’N’;’O’;’O’);
(’B’;’C’;’T’;’E’;’F’;’N’;’T’;’G’;’V’;’Q’;’O’;’B’;’D’;’A’;’M’);
(’B’;’C’;’O’;’E’;’F’;’M’;’E’;’M’;’B’;’E’;’R’;’S’;’H’;’I’;’P’);
(’B’;’C’;’C’;’E’;’F’;’G’;’H’;’O’;’J’;’K’;’L’;’M’;’N’;’O’;’U’);
(’D’;’X’;’O’;’T’;’P’;’S’;’Y’;’N’;’C’;’M’;’A’;’V’;’K’;’I’;’T’);
(’B’;’C’;’L’;’E’;’R’;’G’;’H’;’V’;’J’;’F’;’R’;’M’;’C’;’A’;’E’);
(’B’;’C’;’E’;’E’;’I’;’G’;’H’;’I’;’J’;’U’;’I’;’P’;’M’;’X’;’R’);
(’B’;’C’;’R’;’E’;’D’;’G’;’H’;’I’;’J’;’S’;’Z’;’M’;’N’;’U’;’S’);
(’C’;’O’;’N’;’V’;’E’;’R’;’S’;’A’;’T’;’I’;’O’;’N’;’W’;’Y’;’P’);
(’B’;’C’;’E’;’E’;’F’;’G’;’H’;’I’;’J’;’A’;’N’;’M’;’N’;’E’;’Q’);
(’B’;’C’;’L’;’E’;’W’;’O’;’R’;’K’;’S’;’T’;’A’;’T’;’I’;’O’;’N’))

var words : wordsType := (

113

114

(’P’;’R’;’O’;’T’;’O’;’C’;’O’;’L’;’nn’;’nn’;’nn’;’nn’;’nn’);
(’P’;’R’;’I’;’D’;’E’;’nn’;’nn’;’nn’;’nn’;’nn’;’nn’;’nn’;’nn’);
(’R’;’E’;’L’;’A’;’T’;’I’;’V’;’I’;’T’;’Y’;’nn’;’nn’;’nn’);
(’P’;’E’;’R’;’F’;’O’;’R’;’M’;’A’;’N’;’C’;’E’;’nn’;’nn’);
(’C’;’O’;’M’;’P’;’U’;’T’;’E’;’R’;’S’;’nn’;’nn’;’nn’;’nn’);
(’M’;’E’;’M’;’B’;’E’;’R’;’S’;’H’;’I’;’P’;’nn’;’nn’;’nn’);
(’C’;’O’;’N’;’V’;’E’;’R’;’S’;’A’;’T’;’I’;’O’;’N’;’nn’);
(’A’;’R’;’I’;’Z’;’O’;’N’;’A’;’nn’;’nn’;’nn’;’nn’;’nn’;’nn’);
(’K’;’E’;’R’;’N’;’E’;’L’;’nn’;’nn’;’nn’;’nn’;’nn’;’nn’;’nn’);
(’W’;’O’;’R’;’K’;’S’;’T’;’A’;’T’;’I’;’O’;’N’;’nn’;’nn’);
(’R’;’E’;’C’;’O’;’V’;’E’;’R’;’Y’;’nn’;’nn’;’nn’;’nn’;’nn’))

wordStatus: array of size NUMWORDS X 4.
Col 1. records id. of player that found or is working on the word
(0 = word not assigned to any player);
cols. 2 and 3 record the x and y co�ords of the word in the grid;
col. 4 records the orientation of the word (1 = vert.l; 2 = hor.)
var wordStatus : statusType := ([NUMWORDS] ([4] 0))

var i; x; y : int
var wnum; wordlen : int
var found : bool
var orient : char
var me : int

screen initalization functions
external init screen() returns int # initialize screen
external passGridElem(int; int; char) returns int # init grid
external passWordElem(int; int; char) returns int # init wordlist

display functions
external displayGrid() returns int # display grid
external displayWordList() returns int # display wordlist
external displayWord(int; int) returns int # highlight word in list
external clearWord(int; int) returns int # unhighlight word
external displayFind(int; int; char; int) returns int #highlight grid

proc start()
me := myid
init screen()
fa row := 1 to GRIDSIZE; col := 1 to GRIDSIZE !

passGridElem(row; col; grid[row][col])
af
displayGrid()
fa row := 1 to NUMWORDS; col := 1 to MAXWORDLEN !

passWordElem(row; col; words[row][col])
af
displayWordList()
monitor myresource() send mygroup().playerDied(me)
send play(words; grid; wordStatus)

115

end start

proc play(words; grid; wordStatus)
send mygroup().getWord(me)
do true !

in getWord(id) !

i := 1;

do i � NUMWORDS and wordStatus[i][1] 6= 0 !

i++

od
if i > NUMWORDS !

next
else !

wordStatus[i][1] := id
fi
wnum := i
displayWord(id; wnum)
if id = me !

search for word
wordlen := 0;

do words[wnum][wordlen + 1] 6= ’nn’ !

wordlen++

od

check rows
found := false
fa row := 1 to GRIDSIZE;

col := 1 to GRIDSIZE�wordlen
st not found !

found := true
fa letter := 1 to wordlen

st grid[row][col+letter]
6= words[wnum][letter] !

found := false
af
if found !

x := row
y := col + 1

orient := ’h’
fi

af

check columns
if not found !

fa col := 1 to GRIDSIZE;
row := 0 to GRIDSIZE�wordlen
st not found !

found := true
fa letter := 1 to wordlen

st grid[row+letter][col]

116

6= words[wnum][letter] !
found := false

af
if found !

x := row + 1

y := col
orient := ’v’

fi
af

fi

if not found !

write("�panic� word "; wnum; " not in grid!")
else !

found word
send mygroup().foundWord(me; wnum; x; y; orient)
send mygroup().getWord(me)

fi
fi

foundWord(id; wnum; x; y; orient) !
if wordStatus[wnum][1] = id and wordStatus[wnum][4] = 0 !

wordStatus[wnum][1] := id
if orient = ’v’ !

wordStatus[wnum][4] := 1

orient = ’h’ !

wordStatus[wnum][4] := 2

fi
wordStatus[wnum][2] := x
wordStatus[wnum][3] := y
displayFind(x; y; orient; wnum)

fi

playerDied(id) !
fa i := 1 to NUMWORDS

st wordStatus[i][1] =id and wordStatus[i][4] = 0 !

wordStatus[i][1] := 0

clearWord(id; i)
af

sendState(playercap) !
send playercap.getState(wordStatus)

ni
od

end play

recovery
var grid : gridType := (

(’K’;’E’;’R’;’N’;’E’;’L’;’R’;’R’;’E’;’C’;’O’;’V’;’E’;’R’;’Y’);
(’B’;’C’;’S’;’Z’;’F’;’R’;’E’;’L’;’A’;’T’;’I’;’V’;’I’;’T’;’Y’);

117

(’Y’;’I’;’P’;’E’;’F’;’G’;’H’;’I’;’J’;’K’;’L’;’M’;’N’;’O’;’P’);
(’P’;’E’;’R’;’F’;’O’;’R’;’M’;’A’;’N’;’C’;’E’;’M’;’N’;’O’;’C’);
(’B’;’C’;’O’;’E’;’F’;’G’;’H’;’I’;’J’;’K’;’L’;’M’;’N’;’O’;’O’);
(’B’;’C’;’T’;’E’;’F’;’N’;’T’;’G’;’V’;’Q’;’O’;’B’;’D’;’A’;’M’);
(’B’;’C’;’O’;’E’;’F’;’M’;’E’;’M’;’B’;’E’;’R’;’S’;’H’;’I’;’P’);
(’B’;’C’;’C’;’E’;’F’;’G’;’H’;’O’;’J’;’K’;’L’;’M’;’N’;’O’;’U’);
(’D’;’X’;’O’;’T’;’P’;’S’;’Y’;’N’;’C’;’M’;’A’;’V’;’K’;’I’;’T’);
(’B’;’C’;’L’;’E’;’R’;’G’;’H’;’V’;’J’;’F’;’R’;’M’;’C’;’A’;’E’);
(’B’;’C’;’E’;’E’;’I’;’G’;’H’;’I’;’J’;’U’;’I’;’P’;’M’;’X’;’R’);
(’B’;’C’;’R’;’E’;’D’;’G’;’H’;’I’;’J’;’S’;’Z’;’M’;’N’;’U’;’S’);
(’C’;’O’;’N’;’V’;’E’;’R’;’S’;’A’;’T’;’I’;’O’;’N’;’W’;’Y’;’P’);
(’B’;’C’;’E’;’E’;’F’;’G’;’H’;’I’;’J’;’A’;’N’;’M’;’N’;’E’;’Q’);
(’B’;’C’;’L’;’E’;’W’;’O’;’R’;’K’;’S’;’T’;’A’;’T’;’I’;’O’;’N’))

var words : wordsType := (

(’P’;’R’;’O’;’T’;’O’;’C’;’O’;’L’;’nn’;’nn’;’nn’;’nn’;’nn’);
(’P’;’R’;’I’;’D’;’E’;’nn’;’nn’;’nn’;’nn’;’nn’;’nn’;’nn’;’nn’);
(’R’;’E’;’L’;’A’;’T’;’I’;’V’;’I’;’T’;’Y’;’nn’;’nn’;’nn’);
(’P’;’E’;’R’;’F’;’O’;’R’;’M’;’A’;’N’;’C’;’E’;’nn’;’nn’);
(’C’;’O’;’M’;’P’;’U’;’T’;’E’;’R’;’S’;’nn’;’nn’;’nn’;’nn’);
(’M’;’E’;’M’;’B’;’E’;’R’;’S’;’H’;’I’;’P’;’nn’;’nn’;’nn’);
(’C’;’O’;’N’;’V’;’E’;’R’;’S’;’A’;’T’;’I’;’O’;’N’;’nn’);
(’A’;’R’;’I’;’Z’;’O’;’N’;’A’;’nn’;’nn’;’nn’;’nn’;’nn’;’nn’);
(’K’;’E’;’R’;’N’;’E’;’L’;’nn’;’nn’;’nn’;’nn’;’nn’;’nn’;’nn’);
(’W’;’O’;’R’;’K’;’S’;’T’;’A’;’T’;’I’;’O’;’N’;’nn’;’nn’);
(’R’;’E’;’C’;’O’;’V’;’E’;’R’;’Y’;’nn’;’nn’;’nn’;’nn’;’nn’))

var wordstatus : statusType

me := myid
send mygroup().sendState(myresource())

init screen()
fa row := 1 to GRIDSIZE; col := 1 to GRIDSIZE !

passGridElem(row; col; grid[row][col])
af
displayGrid()
fa row := 1 to NUMWORDS; col := 1 to MAXWORDLEN !

passWordElem(row; col; words[row][col])
af
displayWordList()
receive getState(wordstatus)
fa i := 1 to NUMWORDS

st wordstatus[i][1] 6= 0 and wordstatus[i][4] 6= 0 !

word has been found
displayWord(wordstatus[i][1]; i)
if wordStatus[i][4] = 1 !

displayFind(wordstatus[i][2]; wordstatus[i][3]; ’v’; i)
else !

displayFind(wordstatus[i][2]; wordstatus[i][3]; ’h’; i)

118

fi
af
send play(words; grid; wordstatus)

end recovery
end player

119

resource main
import player

body main()
const HERSHEY := 28

const LUCIDA := 48

var playerCap : cap player
var vmCap[4] : cap vm
vmCap[1] := create vm() on HERSHEY
vmCap[2] := create vm() on LUCIDA
vmCap[3] := myvm()

playerCap := create (i := 1 to 2) player(i) on vmCap[i] backups on
vmCap[3]

send playerCap.start()
end main

120

121

REFERENCES

[AA86] Jacob A. Abraham and Vinod K. Agarwal. Test generation for digital
systems. In Dhiraj K. Pradhan, editor, Fault-Tolerant Computing: Theory
and Techniques, chapter 1, pages 1–94. Prentice-Hall, 1986.

[AD76] Peter A. Alsberg and John D. Day. A principle for resilient sharing of
distributed resources. In Proceedings of Second International Conference
on Software Engineering, pages 562–570, October 1976.

[AO93] Gregory R. Andrews and Ronald A. Olsson. The SR Programming Lan-
guage: Concurrency in Practice. The Benjamin/Cummings Publishing
Company, 1993.

[AOC+88] Gregory R. Andrews, Ronald A. Olsson, Michael A. Coffin, Irving Elshoff,
Kelvin Nilsen, Titus Purdin, and Gregg Townsend. An overview of the
SR language and implementation. ACM Transactions on Programming
Languages and Systems, 10(1):51–86, January 1988.

[Avi85] Algirdas Aviẑienis. The N-version approach to fault-tolerant software.
IEEE Transactions on Software Engineering, SE-11(12):1491–1501, De-
cember 1985.

[Bal91] Henri E. Bal. A comparative study of five parallel programming languages.
In Proceedings of EurOpen Conference on Open Distributed Systems, May
1991.

[BD88] A. Burns and G. Davies. Pascal-FC: A language for teaching concurrent
programming. ACM SIGPLAN Notices, 23(1):58–66, January 1988.

[BH75] Per Brinch Hansen. The programming language Concurrent Pascal. IEEE
Transactions on Software Engineering, SE-1(2):199–206, June 1975.

[BHG87] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concur-
rency Control and Recovery in Database Systems. Addison-Wesley Series
in Computer Science. Addison-Wesley Publishing Company, 1987.

[BKT92] Henri E. Bal, M. Frans Kaashoek, and Andrew S. Tanenbaum. Orca: A lan-
guage for parallel programming of distributed systems. IEEE Transactions
on Software Engineering, 18(3):190–205, March 1992.

122

[BMZ92] Peter A. Buhr, Hamish I. MacDonald, and C. Robert Zarnke. Synchronous
and asynchronous handling of abnormal events in the �System. Software—
Practice and Experience, 22(9):735–776, September 1992.

[BSS91] Kenneth Birman, Andre Schiper, and Pat Stephenson. Lightweight causal
and atomic group multicast. ACM Transactions on Computer Systems,
9(3):272–314, August 1991.

[CASD85] Flaviu Cristian, Houtan Aghili, Ray Strong, and Danny Dolev. Atomic
broadcast: From simple message diffusion to Byzantine agreement. In
Digest of Papers, The Fifteenth International Symposium on Fault-Tolerant
Computing, pages 200–206. IEEE Computer Society, June 1985.

[CGR88] R.F. Cmelik, N.H. Gehani, and W. D. Roome. Fault Tolerant Concurrent
C: A tool for writing fault tolerant distributed programs. In Digest of Pa-
pers, The Eighteenth International Symposium on Fault-Tolerant Computing,
pages 55–61. IEEE Computer Society, IEEE Computer Society Press, June
1988.

[CM84a] K. M. Chandy and J. Misra. The drinking philosophers problem. ACM
Transactions on Programming Languages and Systems, 6(4):632–646, Oc-
tober 1984.

[CM84b] Jo-Mei Chang and N.F. Maxemchuk. Reliable broadcast protocols. ACM
Transactions on Computer Systems, 2(3):251–273, August 1984.

[Com86] Computer Systems Research Group, Computer Science Division, Univer-
sity of California, Berkeley. Unix Programmer’s Manual: Supplementary
Documents 1, April 1986.

[Coo80] Robert P. Cook. *MOD—a language for distributed programming. IEEE
Transactions on Software Engineering, SE-6(6):563–571, November 1980.

[Coo85] Eric C. Cooper. Replicated distributed programs. In Proceedings of the
Tenth ACM Symposium on Operating Systems Principles, pages 63–78. ACM
SIGOPS, December 1985.

[Cri91] Flaviu Cristian. Understanding fault-tolerant distributed systems. Com-
munications of the ACM, 34(2):56–78, February 1991.

[DDH72] Ole-Johan Dahl, Edsger Wybe Dijkstra, and Charles Antony Richard Hoare.
Structured Programming. A.P.I.C. studies in data processing; no. 8. Aca-
demic Press, 1972.

[Dij68] E. W. Dijkstra. Cooperating sequential processes. In F. Genuys, editor,
Programming Languages, pages 43–112. Academic Press, New York, 1968.

123

[DLAR91] Partha Dasgupta, Richard J. LeBlanc, Mustaque Ahamad, and Umakishore
Ramachandran. The Clouds distributed operating system. Computer,
24(11):34–44, November 1991.

[DoD83] U.S. Department of Defense. Reference Manual for the Ada Programming
Language. Washington D.C., 1983.

[EFH82] C.S. Ellis, J.A. Feldman, and J.E. Heliotis. Language constructs and support
systems for distributed computing. In ACM Symposium on Principles of
Distributed Computing, pages 1–9. ACM SIGACT-SIGOPS, August 1982.

[EGLT76] K.P. Eswaran, J.N. Gray, R.A. Lorie, and I.L. Traiger. The notions of
consistency and predicate locks in a database system. Communications of
the ACM, 19(11):624–633, November 1976.

[ES86] Paul D. Ezhilchelvan and Santosh K. Shrivastava. A characterisation of
faults in systems. In Proceedings of the Fifth Symposium on Reliability in
Distributed Software and Database Systems, pages 215–222, January 1986.

[Fel79] Jerome A. Feldman. High level programming for distributed computing.
Communications of the ACM, pages 353–368, June 1979.

[Fis91] Alan S. Fisher. CASE: Using Software Development Tools. Wiley profes-
sional computing. Wiley, New York, 2 edition, 1991.

[GMS89] Hector Garcia-Molina and Annemarie Spauster. Message ordering in a
multicast environment. In Proceedings of the 9th International Conference
on Distributed Computing Systems, pages 354–361, June 1989.

[GR89] N. H. Gehani and W.D. Roome. The Concurrent C Programming Lan-
guage. Silicon Press, Summit, NJ, 1989.

[Gra79] James N. Gray. Notes on data base operating systems. In R. Bayer,
R.M. Graham, and G. Seegmuller, editors, Operating Systems, An Advanced
Course, chapter 3.F, pages 393–481. Springer-Verlag, 1979.

[Gra86a] James N. Gray. An approach to decentralized computer systems. IEEE
Transactions on Software Engineering, SE-12(6):684–692, June 1986.

[Gra86b] Jim Gray. Why do computers stop and what can be done about it. In
Proceedings of the Fifth Symposium on Reliability in Distributed Software
and Database Systems, pages 3–12, January 1986.

[Gri81] David Gries. The Science of Programming. Texts and monographs in
computer science. Springer-Verlag, New York, 1981.

124

[Hoa78] C. A. R. Hoare. Communicating sequential processes. Communications
of the ACM, 21(8):666–677, August 1978.

[HP91] Norman C. Hutchinson and Larry L. Peterson. The x-Kernel: An architec-
ture for implementing network protocols. IEEE Transactions on Software
Engineering, 17(1):64–76, January 1991.

[HS93] Matti A. Hiltunen and Richard D. Schlichting. An approach to constructing
modular fault-tolerant protocols. Technical Report TR 93-10, Department
of Computer Science, The University of Arizona, Tucson, Arizona 85721,
1993.

[HW87] Maurice P. Herlihy and Jeannette M. Wing. Avalon: Language support
for reliable distributed systems. In Digest of Papers, The Seventeenth
International Symposium on Fault-Tolerant Computing, pages 89–94. IEEE
Computer Society, IEEE Computer Society Press, July 1987.

[Jac90] Jonathan Jacky. Inside risks: Risks in medical electronics. Communica-
tions of the ACM, 33(12):138, December 1990.

[JZ90] D. Johnson and W. Zwaenepoel. Recovery in distributed systems using
optimistic message logging and checkpointing. Journal of Algorithms,
pages 462–491, 1990.

[KK89] Brent A. Kingsbury and John T. Kline. Job and process recovery in a
UNIX-based operating system. In Proceedings of the 1989 Winter USENIX
Technical Conference, pages 355–364, 1989.

[KMBT92] M. Frans Kaashoek, Raymond Michiels, Henri E. Bal, and Andrew S. Tanen-
baum. Transparent fault-tolerance in parallel Orca programs. In Pro-
ceedings of the USENIX Symposium on Experiences with Distributed and
Multiprocessor Systems (SEDMS III), pages 297–311, March 1992.

[KTHB89] M. Frans Kaashoek, Andrew S. Tanenbaum, Susan Flynn Hummel, and
Henri E. Bal. An efficient reliable broadcast protocol. Operating Systems
Review, 23(4):5–19, October 1989.

[KU87] John C. Knight and John I. A. Urquhart. On the implementation and use of
Ada on fault-tolerant distributed systems. IEEE Transactions on Software
Engineering, SE-13(5):553–563, May 1987.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558–565, July 1978.

125

[Lam81] Butler W. Lampson. Atomic transactions. In B.W. Lampson, M. Paul, and
H.J. Seigert, editors, Distributed Systems—Architecture and Implementation,
chapter 11, pages 246–265. Springer-Verlag, 1981. Originally vol. 105 of
Lecture Notes in Computer Science.

[Lap91] Jean-Claude Laprie. Dependability: Basic Concepts and Terminology,
volume 4 of Dependable Computing and Fault-Tolerant Systems. Springer-
Verlag, 1991.

[Lis85] Barbara Liskov. The Argus language and system. In M. Paul and H.J.
Siegert, editors, Distributed Systems: Methods and Tools for Specification,
Lecture Notes in Computer Science, Volume 190, chapter 7, pages 343–430.
Springer-Verlag, Berlin, 1985.

[LL81] C.-M. Li and M.T. Liu. Dislang: A distributed programming lan-
guage/system. In Proceedings of the 2nd International Conference on
Distributed Computing Systems, pages 162–172, 1981.

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine gener-
als problem. ACM Transactions on Programming Languages and Systems,
4(3):382–401, July 1982.

[LW85] Richard J. LeBlanc and C. Thomas Wilkes. Systems programming with
objects and actions. In The 5th International Conference on Distributed
Computing Systems, pages 132–139, Denver, Colorado, May 1985. IEEE
Computer Society.

[Mad86] Hari Madduri. Fault-tolerant distributed computing. Scientific Honey-
weller, Winter 1986-87:1–10, 1986.

[Mis92] Shivakant Mishra. Consul: A Communication Substrate for Fault-Tolerant
Distributed Programs. PhD thesis, Department of Computer Science, Uni-
versity of Arizona, Tucson, Arizona, 1992. Also available as techical report
92-06.

[MS92] Shivakant Mishra and Richard D. Schlichting. Abstractions for construct-
ing dependable distributed systems. Technical Report TR 92-19, Depart-
ment of Computer Science, University of Arizona, Tucson, AZ 85721, 1992.

[MSMA90] P.M. Melliar-Smith, Louise E. Moser, and Vivek Agrawala. Broadcast
protocols for distributed systems. IEEE Transactions on Parallel and Dis-
tributed Systems, 1(1):17–25, January 1990.

[Neu92] Peter G. Neumann. Inside risks: Avoiding weak links. Communications
of the ACM, 35(12):146, December 1992.

126

[OP92] Sean W. O’Malley and Larry L. Peterson. A dynamic network architecture.
ACM Transactions on Computer Systems, 10(2):110–143, May 1992.

[PBS89] Larry L. Peterson, Nick C. Buchholz, and Richard D. Schlichting. Preserv-
ing and using context information in interprocess communication. ACM
Transactions on Computer Systems, 7(3):217–246, August 1989.

[Pow91] D. Powell, editor. Delta-4: A Generic Architecture for Dependable Dis-
tributed Computing. Springer-Verlag, 1991.

[Pow92] David Powell. Failure mode assumptions and assumption coverage. In
Digest of Papers, The Twenty Second International Symposium on Fault-
Tolerant Computing, pages 386–395, July 1992.

[Pra86] D. K. Pradhan, editor. Fault-Tolerant Computing: Theory and Techniques,
volume 1 and 2. Prentice-Hall, 1986.

[PVB+88] D. Powell, P. Verissimo, G. Bonn, F. Waeselynck, and D. Seaton. The
Delta-4 approach to dependability in open distributed computing systems.
In Digest of Papers, The Eighteenth International Symposium on Fault-
Tolerant Computing, pages 246–251, June 1988.

[Ran75] B. Randell. System structure for software fault tolerance. IEEE Transac-
tions on Software Engineering, SE-1(2):220–232, June 1975.

[RLT78] B. Randell, P.A. Lee, and P.C. Treleaven. Reliability issues in computing
system design. ACM Computing Surveys, 10(2):123–166, 1978.

[Sch90] Fred B. Schneider. Implementing fault-tolerant services using the state
machine approach: A tutorial. ACM Computing Surveys, 22(4):299–319,
December 1990.

[SCP91] Richard D. Schlichting, Flaviu Cristian, and Titus D. M. Purdin. A lin-
guistic approach to failure-handling in distributed systems. In Algirdas
Avižienis and Jean-Claude Laprie, editors, Dependable Computing and
Fault-Tolerant Systems, Vol. 4: Dependable Computing for Critical Ap-
plications, pages 387–409. Springer-Verlag, Wien and New York, 1991.

[SDD+85] Alfred Z. Spector, Dean Daniels, Daniel Duchamp, Jeffrey L. Eppinger, and
Randy Pausch. Distributed transactions for reliable systems. In Proceed-
ings of the Tenth ACM Symposium on Operating Systems Principles, pages
127–146, 1985.

[SDP91] Santosh K. Shrivastava, Graeme N. Dixon, and Graham D. Parrington. An
overview of the Arjuna distributed programming system. IEEE Software,
8(1):66–73, January 1991.

127

[SMR88] S.K. Shrivastava, L.V. Mancini, and B. Randell. On the duality of fault tol-
erant system structures. In G. Goos and J. Hartmanis, editors, Experiences
with Distributed Systems: Lecture Notes in Computer Science, Volume 309,
pages 19–37. Springer-Verlag, Berlin, 1988.

[Som92] Ian Sommerville. Software Engineering. International computer science
series. Addison-Wesley, Reading, Massachussetts, fourth edition, 1992.

[SS83] Richard D. Schlichting and Fred B. Schneider. Fail-stop processors: An ap-
proach to designing fault-tolerant computing systems. IEEE Transactions
on Computing Systems, 1(3):222–238, August 1983.

[SW89] A. P. Sistla and J. L. Welch. Efficient distributed recovery using message
logging. In Proceedings of the Eighth Annual ACM Symposium on Princi-
ples of Distributed Computing, pages 223–238, August 1989.

[SY85] R. Strom and S. Yemini. Optimistic recovery in distributed systems. ACM
Transactions on Computer Systems, 3(3):204–226, August 1985.

[Toh86] Yoshihiro Tohma. Coding techniques in fault-tolerant, self-checking, and
fail-safe circuits. In Dhiraj K. Pradhan, editor, Fault-Tolerant Computing:
Theory and Techniques, chapter 5, pages 336–415. Prentice-Hall, 1986.

[Wei89] William E. Weihl. Using transactions in distributed applications. In Sape
Mullender, editor, Distributed Systems, pages 215–235. Addison-Wesley
Publishing Company, ACM Press, New York, New York, 1989.

[Zie83] Carol A. Ziegler. Programming System Methodologies. Prentice-Hall,
Englewood Cliffs, New Jersey, 1983.

