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Abstract

Most implementations of logic programming languages treat input and output arguments to proce-

dures in a fundamentally asymmetric way: input values are passed in registers, but output values are

returned in memory. In some cases, placing the outputs in memory is useful to preserve the opportunity

for tail call optimization. In other cases, this asymmetry can lead to a large number of unnecessary mem-

ory references and adversely a�ect performance. When input/output modes for arguments are known it

is often possible to avoid much of this unnecessary memory tra�c via a form of interprocedural register

allocation. In this paper we discuss how this problem may be addressed by returning output values in

registers where it seems pro�table to do so. The techniques described have been implemented in the jc

system, but are also applicable to other moded logic programming languages, such as Parlog, as well as

languages like Prolog when input/output modes have been determined via data
ow analysis.
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1 Introduction

In the Warren Abstract Machine (WAM), which is used as the basis for a large number of implementations

of Prolog and other logic programming languages, there is a fundamental asymmetry in the treatment of the

input and output values of a procedure: input values are passed in argument registers, while output values are

returned in memory. The reason for this is clear in the context of Prolog, for which the WAM was originally

designed: Prolog procedures do not, in general, have any notion of input and output arguments, and a

particular argument to a procedure can be an input argument in one invocation and an output argument

in another. Because of this, it is simplest to pass all arguments into a procedure in registers, with each

uninstantiated variable|usually corresponding to an output argument|passed by reference, as a pointer to

the cell occupied by that variable. An output value is returned by binding an uninstantiated variable to a

value, i.e., by writing to the corresponding memory location.

While this scheme is simple and works in general, it may incur unnecessary overheads. To see this,

consider the following procedure to compute the factorial of a given number:

:- mode fact(in, out).

fact(0, 1).

fact(N, F) :- N > 0, N1 is N-1, fact(N1, F1), F is N*F1.

At each level of recursion, the variable F1, which corresponds to the output argument of the recursive call,

is allocated a slot in the stack frame (which must be initialized as an unbound variable), and a pointer to

the slot is passed into the recursive call. When the call returns, the value of F1 is retrieved from memory,

used to compute the expression N*F1, and the result stored back into memory. This sequence of events is

repeated all the way up the chain of recursion. This leads to two sources of overhead: a space overhead

because environments on the stack must allocate space for the output variables of procedures, and a time

overhead because of the increased memory tra�c. It is not di�cult to see that the repeated loads and

stores of the output argument in the example above are not necessary: it can be computed into a register at

each level of recursion and returned in that register. Indeed, since implementations of functional languages

typically put the return value of a function in a (hardware) register (see, for example, [5, 13]), the behavior

described above can be a source of performance disadvantage for logic programming languages compared

to functional languages. Finally, since the number of procedure returns at runtime must be equal to the

number of procedure calls, the bene�ts of reducing the cost of procedure returns, in particular via careful

management of registers, can be signi�cant.

It is obvious that knowledge about which arguments of a procedure are output arguments is necessary

for this optimization to be carried out. For languages such as Parlog [6] this information is available from

user annotations. For other logic programming languages, this information may be obtained via data
ow

analysis (e.g., see [8] for mode analysis of Prolog programs, [21, 23] for mode analysis of FGHC programs).

However, a number of other issues must also be addressed in order to carry out the kind of interprocedural

register allocation discussed in the fact/2 example above, including how the merits of alternative output

placements should be compared, and how output placement decisions interact with the ability to carry out

tail call optimization. The remainder of the paper discusses these and related issues and describes how they

have been addressed in the context of jc, a sequential implementation of a variant of Janus [12].1 However,

the techniques we have developed are not peculiar to Janus in any way, and are applicable also to other

logic programming languages where mode information about procedure arguments is available. To minimize

1An alpha release of the system is available by anonymous ftp from ftp.cs.arizona.edu, �le janus/jc/jc-2.0.tar.
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syntactic hurdles for the reader, we will use a Prolog-like syntax for our examples, with input and output

arguments of procedures indicated by mode declarations as in the fact/2 example above.

2 Output Value Placement: Implementation Considerations

There are a variety of implementation concerns which interact with output value placement. If an output

placement algorithm is chosen na��vely, the overhead of extra work induced by unfortunate placements can

overwhelm any bene�ts of returning values in registers. Some of those concerns are considered here.

2.1 Interactions with Tail Call Optimization

While program performance can be improved signi�cantly by returning output values in registers rather than

in memory, the situation is complicated by the interaction of this optimization with tail call optimization

(TCO). This optimization collapses procedure returns when the last body goal is a call, immediately followed

by a procedure return. By replacing this tail call with a jump to the called procedure and re-using the caller's

frame, one avoids a redundant return and frame allocation. The interaction problem is illustrated by the

following example.

Example 2.1 Consider a predicate p/3 de�ned by the following clause:

:- mode p(in, out, out).

p(X,Y,Z) :- q(0,X,Z,Y).

Suppose that q/4 has the mode q(in,in,out,out), and that in a call q(U,V,Z,Y) the output Z is returned

in register 1 while Y is returned in register 2. Suppose also that in a call p(X,Y,Z) the output Y is returned in

register 2 and Z in register 3. Because the output placement for q/4 does not match that of p/3, additional

code must be inserted in the clause above to move the output Z from register 1 (where it is returned by q/4)

to register 3 (where it has to be returned by p/3), and the implementation of this clause has the form:

p(X,Y,Z) :- q(0,X,Z,Y), hcode to move Z from register 1 to register 3i.

It is evident that the implementation of this clause cannot take advantage of tail call optimization on the

goal q(0,X,Y,Z). 2

Notice that the problem illustrated in this example arises whenever the output placement of the head

of a clause di�ers from that of a tail call in the clause: in the example above, the same problem would

have arisen if q/4 had returned its outputs in registers while p/3 returned its outputs in memory in the

traditional manner, or vice versa. The cost of this \de-optimization" must be weighed against the expected

savings accruing from returning output values in registers when deciding whether or not the outputs of a

procedure should be returned in registers.2 In general, if output arguments are returned in registers, then it

is impossible to avoid deoptimizing some tail calls in some clauses, regardless of what approach is taken for

output register assignment and code generation. The problem is illustrated by the following example:

2However, the cost of this de-optimization may not be as bad as one might expect: our experimentally-determined cost

model, summarized in Table 1, suggests that the cost of sacri�cing a tail call optimization where an environment has already

been allocated (Ctn) is between 15% less and 25% more than total time cost of returning a value in memory, including the cost

of initialization, assignment, and loading the value (Cp + Ca + Cl). Losing a tail call where an environment must be allocated

(Cta) costs only 45% to 60% more than the cost of returning the value in memory.
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Example 2.2 Consider a procedure de�ned by the clauses

:- mode p(out, out).

p(X,Y) :- q(X,Y).

p(X,Y) :- q(Y,X).

It is not di�cult to see that if either p/2 or q/2 returns either of its outputs in registers, at least one of the

clauses de�ning p/2 will have to give up tail call optimization. 2

2.2 Interactions with Procedure Suspension

Committed choice languages such as Parlog [6], GHC [22], and Janus [19] typically require that if a procedure

activation cannot make progress because its inputs are not adequately instantiated, it should suspend until

its inputs are available. Many modern Prolog systems also provide facilities whereby an activation can be

made to suspend until certain of its arguments become instantiated. Since a procedure that suspends cannot

return an output value, it is necessary to take such suspension behavior into account when considering

whether to return output values in registers. As an example, consider the following clause:

p(X,Y) :- q(X,Z), Y is Z+X.

Suppose that the procedure q/2 has the mode q(in, out), and we choose to return the output Z of the

call q(X,Z) in a register r. If the execution of this call suspends, then it is necessary to ensure that r

is set to a value that causes the computation Y is Z+X to suspend as well. Moreover, the suspension

structure for the goal Y is Z+X has to be set up in such a way that this computation is resumed when

the computation of q(X,Z) eventually computes a value for Z. This can complicate handling procedure

suspension and resumption considerably. For example, it is possible to augment the code for q/2 so that on

suspension, it creates an unbound variable on the heap and returns a reference to it in register r, but this

complicates the implementation of assignment: it becomes necessary to distinguish between an activation

that has not suspended (in which case an output value computed in a register can simply be passed along),

and one where a suspension has occurred (in which case the output value must be stored into memory where

other code is looking for it; this may block tail call optimization). One can imagine various baroque schemes

for dealing with these problems; it was not clear to us that the complications and runtime overhead incurred

were justi�ed by the bene�ts of returning in registers the output values of procedures that may suspend,

especially given the already high cost of suspension and resumption. For this reason, we have chosen to

return output values of a call to a procedure p in registers only if all of the computation underneath that call

can be guaranteed to not suspend: such calls are said to be transitively non-suspending. Since the suspension

behavior of a particular call depends on its arguments, we create two copies of candidate procedures: one

that can be guaranteed to not suspend and may return its outputs in registers, and another that may or

may not suspend and returns its outputs in memory in the traditional way. At compile time, calls are routed

to one or the other of these copies, depending on the results of suspension analysis (see Section 5.1). If the

analysis determines that only one of these versions is used, only that version is kept.

3 Output Value Placement Methods

A variety of placement algorithms exist, each with its own advantages and disadvantages. We will discuss

several of these methods in turn, using them both as examples to highlight features that are to be sought or
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avoided, and to introduce various components of the cost model we will ultimately use to choose a placement

for return values.

3.1 Homogeneous Placements

The simplest way to assign output value locations is to choose one �xed form of return, and use it throughout

the program. This obviates the need to make complicated decisions about the best location to hold a

return value, thereby speeding and simplifying compilation, possibly at the expense of run-time performance.

Several homogeneous schema are plausible.

3.1.1 Memory

The classical place to return output values is in memory. As noted above, returning a value in memory is

necessary in the absence of mode information, or when the suspension behavior of a procedure cannot be

predicted. A homogeneous memory return scheme has the added advantage of never preventing a tail call

optimization, since one memory location is as good as any other, and no moves to preferred locations need

be inserted.

The disadvantage of returning values in memory is exempli�ed by the factorial program discussed in

Section 1: the processor will store a value into memory, only to reload it immediately on return to the caller.

The cost of returning a value in memory can be broken down into several components:

� allocating space for the return value on the stack or heap;

� preparing the return value slot (storing an \uninitialized variable" marker);

� at the callee, dereferencing the variable before assignment;

� assigning the value into memory; and

� loading it from memory again at the use-point.

For a homogeneous return scheme, the time taken to allocate space for a variable is not a major concern,

since space can be reserved in the activation record of the clause which uses the value. In the case of

the heterogeneous schemes examined below, the cost of allocation becomes signi�cant when a disagreement

in return location prevents tail call optimization, resulting in allocation of a previously unnecessary stack

frame. For the purpose of comparing relative costs between alternatives when determining how an output

value should be returned, the cost of allocating a new environment in this way is best absorbed by the cost

of losing tail call optimization.

There are three reasons for initializing the return location by storing within it some special marker that

indicates that it contains an uninitialized variable: �rst, for the correct working of general-purpose uni�cation

routines; second, so that garbage collection routines can recognize every item on the heap; and third, for

concurrent implementations which might attempt to access the value before it has been computed. This

initialization is usually slightly more expensive than a simple register-to-memory store, since some sort of

tagging operation must be performed on the value to be stored.

Dereferencing a pointer chain to reach the �nal unassigned memory slot involves, in most cases, simply

looking at the storage slot to ensure it contains the uninitialized marker (rather than a binding to another

variable), but in the general case it can require unbounded dereferencing. It is relatively expensive, never-

theless, since it requires at least a load from memory, a test, and a conditional branch. In our cost model,
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we combine the cost of determining the address and performing the store into one parameter, because the

two correspond to one virtual machine instruction. The load of the value at the point of its use corresponds

to a simple memory load.

There are other cases where simple memory stores and loads are required, such as when saving a value

across a procedure call. We separate these two costs into two parameters, because reading and writing

memory may require di�erent overheads, especially on shared or distributed memory parallel architectures

(due to overhead of memory-consistency mechanisms), but even on sequential uniprocessors like the Sparc

(see the discussion in Section 6.1).

For each assignment of a return value into memory, we must do two memory writes (the initialization and

the eventual assignment) and at least one memory read (for dereferencing), and possibly other operations

such as tagging and untagging; in addition, there will be a read at the use point which might otherwise be

avoided. Since memory operations can be expensive, and having the value in memory is often unnecessary,

it is natural to consider returning all values in registers instead.

3.1.2 Fixed Register Placement

The simplest way to assign registers to output values is to adopt a �xed mapping from outputs to registers.

For example, we may use a convention similar to that used for the input arguments, with the �rst output

argument being returned in register 1, the second in register 2, and so on. While simple, this scheme has

the problem that it may require additional data movement to get the output values into the registers where

they are needed. This is illustrated by the following example.

Example 3.1 Consider the following procedure, taken from a program to compute and evaluate Chebyshev

polynomials:

:- mode cheb(in,in,out,out).

cheb(0,_,Y1,Y2) :- Y1=1, Y2=0.

cheb(1,X,Y1,Y2) :- Y1=X, Y2=1.

cheb(N,X,Y1,Y2) :- N > 1, N1 is N-1, cheb(N1,X,Z1,Z2), c1(X,Z1,Z2,Y1,Y2).

The third and fourth arguments of cheb/4 are output arguments. Suppose that we use the convention that

the �rst output argument of a procedure is returned in register 1, the second in register 2, and so on. In

this case, this means that in the literal cheb(N,X,Z1,Z2) in the body of the recursive clause, the value of

Z1 is returned in register 1 while that of Z2 is returned in register 2. However, given the parameter passing

convention of the WAM, the call c1(X,Z1,Z2,Y1,Y2) requires that Z1 should be in register 2 and Z2 in

register 3. Thus, two additional register-to-register moves are necessary at each level of recursion to set up

the arguments to the next call correctly. 2

In most functional languages, where a function has only a single value, this scheme does not su�er from

the problem of sometimes being unable to use tail call optimization. Even in functional languages where

a function may return multiple values, such as Common Lisp, the simplicity of this scheme makes it the

approach of choice: for example, the S-1 CommonLisp implementation returns up to 8 numeric output values

in registers reserved for that purpose [3]. Unfortunately, this scheme interferes with tail call optimization in

the presence of any of a number of features that are common in logic programming languages:
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1. If a procedure can have more than one output argument, then returning output values in registers may

sometimes require that TCO be sacri�ced. This is illustrated by Example 2.2.

2. If a procedure uses partially instantiated structures, then tail call optimization may preclude returning

output values in registers, and vice versa. This is illustrated by the following example:

Example 3.2 Consider the following procedure:

:- mode p(out).

p([a|X]) :- q(X).

The execution of this procedure creates a partially instantiated structure [a|X] and then calls q/1,

which �lls in the value of X. If q/1 returns the value of X in a register, it is necessary to add an explicit

store instruction at the end of the clause for p/1 to ensure that the cons cell created by p has the

correct values. If p/1 wants to return (a pointer to) its output in a register, it is necessary to add an

explicit load instruction at the end of its clause. In either case, tail call optimization is lost. 2

3. If it is possible for procedure activations to suspend because of under-instantiated inputs, and suspend-

able procedures return their outputs in memory (as discussed in Section 2.2), then returning output

values in registers may require inserting code to wait for the tail call to resume and compute a value,

which is then placed into a register. This code insertion will block TCO.

3.1.3 Varied Register Placements

Many of the problems noted in the �xed scheme are a result of the rigidity of register assignment (and

the ensuing need to move values to the desired location, as in Example 3.1). A natural extension is to

consider choosing the appropriate return register to avoid as many of those moves as possible, by seeing

where the value will be needed by calling procedures. We did not examine homogeneous varied schemes of

this sort directly because (i) they require estimation of execution frequencies to determine which of several

use points is the most important to satisfy, hence become much more complicated than a �xed scheme;

(ii) choosing a return location for one procedure may require recomputation of preferred locations for a

previously assigned procedure (especially in the presence of non-trivial strongly connected components in

the call graph), resulting in an iterative computation which may not reach a �xpoint; and (iii) there are still

cases, such as that in Example 2.2, where no homogeneous register return scheme will preserve opportunities

for tail call optimization. This last problem is avoided by adopting a heterogeneous output placement

method, which allows di�erent procedures to return values in either memory or registers, depending on their

callers. The machinery involved in our method of deciding whether to use memory or register for the return

location naturally extends to indicate which register will require the fewest additional moves, addressing the

�rst concern as well. By applying the heterogeneous scheme in a bottom-up order (assigning return locations

to the most frequently executed and highest saving candidates �rst), we avoid the second problem's concern

with recomputing locations while preserving good savings overall.

3.2 Heterogeneous Assignments

Perhaps the best-known heterogeneous return location assignment is that used in the Aquarius Prolog

compiler, and described by Van Roy in [24]. The Aquarius scheme can be considered a �xed register

heterogeneous method, in which all return values of non-suspending procedures are candidates for being

returned in a register, and are removed from candidacy (placed into memory) when some condition is no

longer met. Candidates that survive the winnowing process are then returned in the register in which
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the unassigned variable pointer would have been passed. This �xed assignment avoids the need to re-visit

previously assigned procedures as the candidacy of return values from called procedures changes, as would

be required with the policy described in Section 3.1.2.

An output variable is removed from candidacy if its de�nition point in a procedure body appears before

any call in the body, since calls may destroy register contents. This condition is su�cient for a correct

heterogeneous scheme, but is too permissive because it allows register returns which will require additional

moves to ensure proper placements, potentially blocking tail call optimization. It is also somewhat stronger

than necessary, since if the last call in the body is followed by an in-line computation (which precludes tail

call optimization), the value of the variable can be saved in the activation record and restored to a register

after the last procedure call in the clause body, potentially removing the initialization and dereference costs

from the assignment. The loss of opportunities for tail call optimization is reduced by adding two additional,

independent conditions:

� If the de�nition point for a procedure output is in a tail call, and the argument position of the value in

the callee di�ers from that of the caller, return in memory rather than deoptimize the last call to move

the value between registers. This a�ects the candidacy of the linked arguments in both the caller and

the callee.

� If the last goal of a body is a call which has candidate outputs that are not candidate outputs of the

caller, the tail call must be deoptimized to store the extra return values into memory. In the case

where the called procedure is \fast" (essentially, a leaf procedure) the extra return values are removed

from candidacy in the called procedure to avoid this deoptimization.

These conditions reduce the number of times that a tail call optimization is blocked, but do not eliminate

them. The �rst of these two conditions is designed to address the permissivity of the basic rule, by retaining

opportunities for TCO. Unfortunately, the �xed register return policy conspires with this condition to force

memory placements for many outputs, because of position disagreements in tail calls.

The Aquarius method does not take into account frequency of execution, and may unwittingly choose to

return values in memory in a frequently called procedure in order to retain a tail-call optimization opportunity

in a rarely called one. Nor does it consider relative costs of losing a tail call optimization versus storing

values into memory: the overhead of preparing memory slots and dereferencing chains can make the two

costs fairly close. Van Roy's analysis of this method indicated that approximately one third of all outputs

can be converted to register placement with this scheme. Our implementation of the method in jc con�rms

good speedups for small programs, but shows only a negligible improvement over homogeneous memory for

more complicated programs where few outputs satisfy the restrictions for register placement (see Tables 2

and 3).

4 An Algorithm for Output Value Placement

The discussion of the previous section suggests that a good return location assignment should have the

following characteristics: (i) it should be heterogeneous, so as to avoid both losing tail call optimization

opportunities and excess memory accesses; (ii) it should be varied in register assignment, so that values are

placed in registers where they will be needed next; (iii) it should take into account the expected frequency

of execution of various procedures, so that rarely executed code is not optimized at the expense of frequently

executed code; and (iv) it should be parameterized for the costs of certain primitive operations, so that it

can be implemented in compilers for a variety of architectures which can have drastically di�erent memory
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subsystem behaviors. This section describes an algorithm we have developed that has these characteristics

and that has been implemented in the jc system [12]. It assumes that information about input/output

modes, possible suspension behavior for procedures, and relative execution frequencies for procedures and

clauses has been obtained separately; see Section 5. The algorithm has two passes: the �rst pass assigns

costs to various output locations based on the amount of work that would have to be done if those locations

were chosen without assuming anything about placements in other procedures, and the second pass does a

bottom-up assignment, choosing at each point the (apparently) best return location while avoiding tail call

deoptimizations that would overwhelm the bene�ts of previous choices.

4.1 Pass 1: Determining Output Location Costs

For the �rst pass, we want to �nd the costs associated with each potential return location for each output

value of a procedure without assuming anything about other procedures. This involves looking at two

program points separately: the point following a de�ning call where the returned value is used, and the

point in a clause where a return value is de�ned.

Output values are de�ned either by calls or via explicit assignment operations;3 de�nitions by calls

ultimately are grounded in assignment operations. Assignments compute the value to be assigned into a

register, and we assume that the local code generator can arrange to place the value in any speci�ed register

without incurring additional cost. We follow the terminology of Van Roy [24] and classify body goals as

either survive goals, which preserve the contents of registers, or non-survive goals, which can destroy the

contents of registers. If a clause body contains a non-survive goal following a de�nition into a register, the

value of that register has to be saved over the non-survive goals and restored at the clause end, possibly

preventing tail call optimization.

The �rst pass of the algorithm associates a vector of cost information, indexed by potential placement

(memory and registers), with each output of a particular procedure. The costs are incremental, in the

sense that they characterize the additional expense of choosing a particular location over the best case,

and distributed, in the sense that they associate the components of a cost induced by choosing a particular

location with the program point at which the cost is paid.

Example 4.1 Consider the following code:

:- mode p(out, out). :- mode q(out). :- mode r(out).

p(A, B) :- q(A), r(B). q(A) :- A = 3. r(A) :- A = 4.

Assume that p/2 is to return its �rst value (A) in a register. Because calls are non-survive goals, A must

be saved into memory across the call to r/1. If q/1 returns its value in a register, then this causes an

incremental cost of one load and save within p/2. If the value is returned from q/1 in memory, p/2 adds the

cost of allocating and initializing a memory slot for the value, then loading the value again at the end. The

cost of doing the actual assignment into memory is associated with the assignment statement in q/1. No

matter where q/1 returns its value, the tail call to r/1 cannot be optimized, because the return result of q

must be reloaded afterwards.

On the other hand, if p/2 is to return its value in memory, then it has been passed a pointer to a

memory location by some ancestor: the program point where that location was reserved accrued the cost

3In general, variables are given bindings via uni�cation, but since we assume a moded language, this degenerates to

assignment.
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Parameter Description Typical Value

cc cc -O4

Cx Move a value from one register to another 1 1

Cs Store a value from a register into memory 441 238

Cl Load a value from memory into a register 158 89

Ca Dereference a pointer and assign a register into memory 594 374

Cp Initialize an unassigned variable slot 417 283

Cta Call and return instead of jump, plus environment allocation 1683 1204

Ctn Call and return instead of jump, no environment allocation 1015 922

Table 1: Parameters to cost model (values in microseconds, on a SPARC)

of allocation and initialization. If q/1 returns its value in a register, then p/2 incurs the cost of doing the

pointer dereference and assignment after control returns from q/1. If q/1 returns its value in memory, then

p/2 incurs no additional cost at all, since the cost of doing the assignment is attached to q/1. 2

Costs associated with a particular program point are multiplied by the estimated execution frequency of

the clause in which the point occurs, so that we get an estimate of the overall time spent by the program as

a whole due to the choice of a particular return location.

It is important to point out that the costs associated with deoptimizing a tail call are incurred only once

for each clause, no matter how many potential decisions might separately force this deoptimization. For

example, the code in Example 3.2 may block TCO for two reasons: q/1 returning its value in a register,

or p/1 returning its value in a register. Either is su�cient to block TCO and incur the corresponding

cost, but the cost should not be charged twice if both conditions hold. Therefore, rather than add tail call

deoptimization costs into the cost arrays now, we simply set, for each potential output placement for a clause,

a 
ag that indicates whether choosing that location for that value will prevent a tail call optimization in that

clause. In the second pass, tail call opportunities are further constrained as return locations are assigned

in other procedures, and the 
ags are updated accordingly. At the �nal assignment for a particular output

in the second pass, the cost of losing a tail call opportunity is added exactly once for each placement that

would force such a loss where the opportunity existed before.

4.1.1 Cost Considerations at Use Point

The costs of preparing for and using a returned value depend on the contexts of the de�nition and use in

a clause body. At a particular call site that de�nes a variable, there are several possible places for the use

of that variable: (i) in a body goal following the de�nition point, (ii) in a body goal prior to the de�nition

point, or (iii) returned from the function. There is also the potential that it is not used at all, or that it is

used multiple times in di�erent ways. We consider each of these cases in turn.

Consider the following sequence of body goals:

g(~t ):- p1; d(: : : ; x; : : :); p3; u(: : : ; x; : : :); p5: (1)

where the pi encapsulate zero or more body goals (survive or non-survive), d is a procedure call which de�nes

some variable x, and u is either a procedure call or an expression which uses the value of x computed in the

call d.
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� If u is an expression and p3 contains no non-survive goals, then d can return x in any register, and it

will be available for use in u at no additional cost. For memory returns, the cost is that of preparing a

memory space for d to assign into, and loading the memory value back into a register for use at u. We

summarize this using the following notation, where ri refers to (any arbitrary) register i, M refers to

memory, and the cost parameters are as described in Table 1 (see Section 6.1 for a description of the

values in the table):

ri : 0 M : Cp +Cl

� If u is a call and p3 contains no non-survive goals, then the returned value x will be passed to u in

the register corresponding to its argument position, say rk, known at analysis time. If d returns x in

register rk, the cost is zero. If it returns x in a register ri, where i 6= k, the cost is that of moving a

value from one register to another. If d returns x in memory, the cost is the same as in the previous

case, since the load can be made into the desired register.

rk : 0 ri(i6=k) : Cx M : Cp +Cl

� If p3 contains non-survive goals, then the return value must be saved over those goals, no matter where

the value is returned. The incremental cost for memory over registers is that of initialization, and the

cost of any register is a store (the store for memory is accounted for at the de�nition point).

ri : Cs M : Cp

These exhaust the cases where the value is used following its de�nition point. It is also possible that

the value is \used" prior to the de�nition point. This case is restricted for the situation we are considering,

because de�nedness analysis (see Section 5.2) must have determined that the actual value will not be required

before it is de�ned. However, the variable which is being de�ned may have been encapsulated into a structure

prior to the call, and the structure then independently returned from the procedure and referenced later (see

Example 3.2). If the de�nition is into memory, then nothing need be done, since the appropriate location in

the structure will be �lled at the assignment point. However, if the de�nition is into a register, code must

be inserted following the de�ning call to move that value into the appropriate memory location within the

structure. As such, if the de�ning call is the last body goal, register return locations will prevent tail call

optimization, potentially incurring an additional Ct cost in the second pass.

The �nal case is where the value is not used elsewhere in the body, but is returned through the head as

an argument. This case corresponds to a chained de�nition rather than a proper use, and is ignored in the

de�nition point analysis below, for reasons described there.

If none of the above cases occur, the computed value is not used. We assume that programs that compute

inaccessible values are relatively rare, so do nothing to recognize and handle this case. However, it is possible

that a value is both used and returned, or is used multiple times. The split of the �rst phase of the algorithm

by considering use and de�nition points separately allows values that are both used and returned to be

handled correctly: the costs for the �rst use are computed above, and the costs for the return are handled

by the de�nition case below. We do not attempt to account for multiple uses of a value in a clause, taking

into account only the �rst use; our experience suggests that this does not pose a problem in practice.
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4.1.2 Cost Considerations at De�nition Point

A de�nition point for a value looks like:

g(: : : ; x; : : :) :� p1; d(: : : ; x; : : :); p2: (2)

where x is an output of g, d is an assignment to x or a procedure call with x in an output position, and

the pi are again zero or more body goals. If x is to be returned in memory, one of the inputs to g is a

pointer to its storage cell. If p1 contains any non-survive goals, this pointer must be saved across them in

the activation record, so memory costs an additional Cs+Cl. (We assume that non-survive goals in non-tail

position induce a frame allocation to save information such as return location, so there is no incremental

cost for allocating the storage space).

If d de�nes the value by an assignment statement, then we assume the value to be assigned is computed

into a register, and it doesn't matter which one, so we can arrange for it to be computed into whichever

register is most useful. As such, returning a value in any register costs nothing, unless there is a non-survive

goal in p2, in which case the value must saved and reloaded, potentially deoptimizing a last call. If the value

is returned in memory, the cost is that of dereferencing the variable chain and performing the store (Ca).

ri : 0 or Cs + Cl M : Ca

If d de�nes the value by a call, then the cost of each return location depends on where the de�ning

call returns the value. Since this information isn't available yet and no alternative seems more likely than

another, we do nothing in this case, adding in what costs we can in the �nal pass where some of the callee

return locations will have already been assigned.

4.2 Pass 2: Choosing Output Locations

At the end of the �rst pass, we have de�ned all the costs that are independent of particular output value

placements. We can now visit each procedure in turn, and assign to each output the location that yields the

smallest incremental cost to the program as a whole.

As noted previously, �xing a choice for one procedure a�ects the optimal choice for another (e.g., in tail

calls). One way to avoid the di�culties that arise from this is to use an iterative approach, going back to

reconsider previous decisions when an assignment that might a�ect them is made. It is not immediately clear

that such iteration will reach a �x-point. We have opted for a greedy approach, making each assignment only

once and living with the consequences, but avoiding the worst of the problem by ordering the assignments

to capture the biggest potential savings �rst.

To that end, we assign output locations to procedures in decreasing order of frequency. We start by

augmenting the 
ags originally de�ned in the �rst pass that indicate that particular output placements will

cause a tail call deoptimization. Each clause of the procedure is examined: any output de�ned prior to a

potentially optimizable tail call will cause a loss of TCO if it is returned in a register, so register placements

for all such outputs are tagged as preventing this optimization. We can also take advantage of the fact that

other procedures may have already determined their output placements. Therefore, if a clause ends in a

tail call to a procedure whose outputs have already been assigned, the 
ags are updated to indicate loss

of optimization for mismatched locations that will require cleanup code to move values. When we have a

tail call to an unassigned procedure, we have no way of telling which locations will eventually cause loss of

optimization, so leave the 
ags unmodi�ed.
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The cost for assigning a particular output of the procedure to a particular location is initially set to the

cost computed in the �rst pass. For each clause that has the potential for a tail call optimization, each

location that would prevent that optimization gets an additional cost corresponding to the expense of losing

the opportunity, scaled by the frequency of the clause. Furthermore, for each tail call from an already-placed

procedure, placements which would force a deoptimization in the caller incur the corresponding tail call

optimization loss cost. Costs corresponding to loss of TCO come in two 
avors: one where the calling clause

had already allocated an environment (e.g., for a previous call), and one where an environment was not

already allocated but must be to preserve the caller's return address over the unoptimized tail call. The

appropriate cost can be determined for a particular clause at compile time, and is scaled by the execution

frequency of the caller's clause.

Within a particular procedure, there may be multiple outputs, each of which has a choice of return

locations. The assignments for these outputs can also interfere, for example when an assignment of a

particular register to one output at a small savings prevents use of that register for another output, incurring

an overwhelming cost for the next best choice. To lessen the e�ect of this interference, we look for the output

value whose minimum cost location is the most expensive amongst all minimum cost output placements:

assigning any other output's location will certainly not decrease this output's minimum cost, and may well

increase it if the assignment prevents the corresponding location from being chosen when the output is �nally

assigned. In the case of ties between locations, memory is chosen over registers of the same cost because

memory will less-often destroy a tail call opportunity. This assignment is then set: tail calls that must be

followed by cleanup code resulting from the assignment are marked as no longer potential sites for tail call

optimization (so the corresponding costs are not charged multiple times), and the search and assignment is

repeated until all outputs have an assigned location.

Assuming that p is an upper bound on the number of output arguments of any procedure in the program,

the complexity of the �rst pass is O(p(S+C)) and the second pass O((1+p2)(S+C)), where S is the number

of call sites in the program and C is the number of clauses. Hence, the algorithm is essentially linear in the

size of the program.

4.3 Additional Optimizations

The cost model described above can be augmented in several subtle ways, to work around other aspects of

the compiler that might interfere with a particular choice but weren't considered above.

Consider the following clause body:

:- mode p(out), q(in, out), r(in, in).

: : :, p(Op), q(Iq,Oq), r(Op,Oq),: : :

where the output of p/1 is not used in q/2, so must be saved across it. If the value of Iq is not needed after

the call to q/2, the stack slot that held it across p/1 can be re-used to hold Op, saving the cost of allocating

and initializing a stack slot for it. If p/1 returns Op in the same register as q/2 wants to receive Iq, then Iq

must be loaded into a temporary, Op saved into the old stack slot, and Iq moved into Op's old register. We

can take this extra work into account in the placement scheme by adding the cost of a register-to-register

move to this register when considering the best location for p/1; this will often cause it to chose another

register that would otherwise be the same cost.

The components of the cost model can also be decomposed further, to yield a �ner distinction between
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programs. For example, in the case where an output value is a structure with pointer elements (such as

a list), the assignment operation includes a \make-safe" operation, which ensures that the referents of the

structure are in long-lived storage rather than local (stack) space, so the returned value will point to valid

data. This can be accounted for by increasing the cost of assignment in those cases where it is known that

the value being assigned is a structure.

Both of these optimizations have been implemented in the system described in the remainder of the

paper.

5 Output Value Placement in jc

We have implemented the output value placement algorithm described above in the jc system [12], a se-

quential implementation of a variant of Janus [19, 12]. The algorithm assumes that information about

input/output modes, suspension behavior, and relative execution frequencies has been computed separately,

and also that machine-level costs for various low-level operations have been supplied. The program-dependent

information is obtained from unannotated user code through several compiler analyses which are described

in this section. The method used for obtaining system-speci�c cost parameters is described in section 6.

5.1 Suspension Analysis

The suspension analysis used|a more accurate name might be \non-suspension analysis", since we are

interested primarily in identifying procedure calls that can be guaranteed to not suspend|proceeds in two

phases. The �rst phase is a demand analysis that determines, for each procedure, the extent to which the

input arguments have to be instantiated to guarantee that no guard will have to suspend (i.e., each guard will

succeed or fail). The second phase uses this demand information to iteratively propagate information about

groundness,4 and determines which calls are transitively non-suspending. The analysis depends heavily on

the fact that jc is a sequential implementation where the body literals in a clause are executed in their

textual left-to-right order; it is easy to generalize this to the situation where for each clause in a program

there is a �xed partial order over the body literals that speci�es the order in which they are executed.

There are two kinds of information propagated during analysis: which calls are guaranteed to not suspend,

and which variables in a clause can be guaranteed to be ground at any program point. Initially, all calls are

assumed to be non-suspending. Analysis begins with the most general goals for the exported procedures.

The essential idea is to proceed as follows: when analyzing a call to a procedure, the literals in the body of

each clause for the called procedure are processed from left to right, propagating the set of variables in the

clause that can be guaranteed to be ground at di�erent program points. Initially, the set of variables that

must be ground just before the body is executed is determined by examining the guard of the clause (since if

the guard suspends, the body will not be executed). As the analysis progresses, it identi�es calls that might

have to suspend because not all of the actual parameters are su�ciently instantiated to meet the demand

(computed during the �rst phase of analysis) of the called procedure. When a call is identi�ed as being

potentially suspending, our estimate of the set of ground variables at the point immediately after that call

has to be updated. This now has the e�ect that other calls that use the values produced by this call have to

be reanalyzed to determine whether they may now have to suspend (as a special case, assignment actions in

the body of the caller may have to suspend because their inputs are inadequately instantiated). Proceeding

in this way, the set of variables that can be guaranteed to be ground at the program point following the last

4The ideas underlying this analysis are to a great extent independent of the abstract domain, and it is not di�cult to see

how it can be adapted to other abstract domains, e.g., one of types. We restrict ourselves to groundness here in part because

it is simpler to describe, and in part because that is what is currently implemented.
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literal in the clause is used to determine which output arguments of the call can be guaranteed to be ground

when execution returns to the caller. This information is then used to update the set of ground variables at

the point immediately following the call in the caller's body. The analysis proceeds iteratively in the expected

way, using extension tables to guarantee termination (see, for example, [10]), until there is no change to any

of the information inferred. Details are omitted due to space constraints. It is straightforward to show, by

induction on derivation lengths, that if a call to a procedure in a program can suspend at runtime, it will be

identi�ed as potentially suspending by this algorithm. It is possible that better results might be obtained

using an analysis that handles suspension and resumption of goals more carefully (see, for example, [16]),

but at this point the precision of our analysis seems acceptable.

5.2 De�nedness Analysis

Transitive non-suspension of a particular call is not a su�cient condition for the compiler to convert that

call to a version which returns values in registers. The problem is that until a value has been written to the

register, the contents of that register are unde�ned. This makes it necessary to avoid any situation where

the value of a variable is returned in a register by the procedure that generates it, but where the variable

may be read|viz., the contents of the corresponding register used|before its value has been written to

the register. This is handled using a data
ow analysis, called de�nedness analysis, to determine that values

being returned in registers can be guaranteed to not be unde�ned at any use point. Let producer (X) denote

the goal that generates the value of a variable X in a clause and Consumers(X) the set of goals that use the

value of X, then X can be returned in a register if the following conditions hold:

1. neither producer(X) nor any procedure called by it uses X before assigning a value to it;

2. producer(X) completes execution before any of the calls in Consumers(X) start executing; and

3. producer(X) can be guaranteed to assign an initialized value to X (since otherwise X may contain

garbage even though it may have been assigned to).

Assume that we are given a partial order on the body literals of each clause that speci�es, at compile time,

the order in which they will be executed: in jc, this is simply the textual left-to-right order. To approximate

Condition 1, we compute which of the variables appearing in a call may be used during the execution of

that call (this involves a simple traversal of the program) and require that neither producer (X) nor any

procedure called by it should use X. This is somewhat stronger than necessary, but does not seem to cause

any problems in practice. It is not di�cult to de�ne a data
ow analysis so that producer (X) is allowed to

use X as long as a value is assigned to it beforehand, but our implementation does not currently do this. To

verify that Condition 2 holds, we require that (i) producer(X) precedes every goal in Consumers(X), and

(ii) producer(X) as well as every goal called by it can be guaranteed to not suspend: the �rst requirement

ensures that producer(X) begins executing before any goal in Consumers(X), while the second ensures that,

given the control strategy of jc, producer (X) will �nish execution before any of the goals in Consumers(X)

begins executing. Information about non-suspension is obtained from the data
ow analysis described in

Section 5.1. Condition 3 can be veri�ed using a simple data
ow analysis over a two-point abstract domain

fde�ned, unde�nedg that is very similar to that of Section 5.1.

5.3 Estimating Execution Frequencies

Static execution frequencies of procedures in a program are compile-time projections of the expected number

of times that a given procedure or clause will executed in a single invocation of the program. These projections
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can then be used to decide which procedures are the most likely to bene�t from optimizations, and which

can be \sacri�ced" for a greater speedup overall. It is important to note that the purpose of these estimates

is not really to predict accurately how many times a branch will be executed or a procedure called, but

to guide optimization decisions by giving (possibly conservative) relative execution frequencies for di�erent

program fragments. In fact, our algorithm is not very sensitive to execution frequency estimates: tests

using our algorithm but assuming the same frequency for all clauses and procedures indicated a loss of only

2 percentage points o� the overall improvements for both the tuning and timing tests listed in Section 6.

Our current implementation estimates execution frequencies by examining the call graph of the program,

assuming that loops will execute some �xed number of times and branches have an equal probability of being

taken, and assigning each procedure a frequency based on its loop depth and branch position. The details of

our method are given in Appendix A. For a discussion of related techniques used in compilers for traditional

languages, see [2, 15, 17, 25, 26]; techniques for estimating execution frequencies of logic programs from their

call graph structure are discussed in [9, 20]. An alternative is to pro�le the program on sample inputs to

estimate execution frequencies, e.g., see [11].

6 Tuning and Testing the Model

With the analysis results from the previous subsections, the algorithm of Section 4 can be implemented. As

noted in Table 1, there are seven parameters to the cost model, which are system and compiler speci�c, on

which the algorithm depends. Before using the location assignment algorithm, appropriate values must be

found for these parameters on a given system. This is done by an iterative process on a small set of test

programs. After parameters have been chosen that yield good behavior on the tuning programs, the model

must be checked against other programs to verify that a projection of its performance is generalizable.

To avoid the tedium of implementing an assembly-level back end, and to increase portability across

architectures, jc translates Janus programs into C [1] text, which is then compiled by the system C compiler.

Tuning and performance evaluation were done experimentally, by compiling Janus programs with various

location assignment policies, and measuring the time taken to execute a query with the resulting executable.

Timing tests were done on a Sun IPX (40MHz SPARC) with 32Mb physical memory, running SunOS 4.1.1,

using the gettimeofday(2) system call to obtain microsecond-resolution measurements of execution time, with

the testing being the only active process. For each benchmark program, a SPARC executable was created

which ran a test query one hundred times and gave as its result the shortest measured query execution time.

Queries were designed to be able to execute in a single timeslice with no system interruptions; taking the

minimum measurement avoids bias when one or more query runs nonetheless happened to be interrupted.

Each experiment consisted of running each policy for each test program once, resulting in an execution time

for each test and policy pair; the order of execution was random within an experiment to avoid systemic bias

from disk and memory cache e�ects. Five of these experiments were performed. The numbers in the tables

were formed by normalizing the execution times for a given benchmark to the homogeneous memory return

policy result for that experiment, and taking the geometric mean of the �ve experiments; the global results

are the geometric mean over all normalized tests. The system was tested using the Sun C compiler bundled

with SunOS 4.1.1, with no optimizations and with -O4 optimizations.

6.1 Tuning the Model

Several steps are taken to tune the model for a particular system. A suite of Janus programs are translated

to C code, and the C code is modi�ed to provide a minimal pair of contrasting programs, which di�er exactly

by some parameter to be measured|e.g., for Ctn, a tail call is replaced by a call-and-return sequence. These
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programs are then compiled with the C compiler and optimization levels for which we want parameters, and

the di�erence between the pairs written to a �le which can be read by the jc compiler when a program is

being compiled using the given C compiler.

The numbers given in Table 1 were generated on the test architecture in this way. The values given are

the median of �ve runs of each pair; the spread across the runs is generally less than 5�sec, so the results

are reproducible.

An alternative method of estimating the cost of a virtual machine instruction, which is initially plausible,

is to count the machine-level instructions which emulate it. This becomes quite complicated when the

emulation sequence involves jumps which may or may not be taken. On modern architectures the e�ect of

pipelines, multi-level caches, and other hardware optimizations conspire to make such estimations very bad

predictors of actual behavior at runtime, even when only straightline emulation code is involved. This is

borne out by the results in table 1, where the cost of moving a register to memory (Cs) is about 2.7 times

the cost of loading a register from memory (Cl), although both map to single machine instructions, and the

actual instructions measured involve the same hardware register and memory locations. Of course, the time

to execute an instruction depends strongly on the context in which it appears|hence the di�erence in speed

between cc and cc -O4 (although the instructions corresponding to the loads and stores are essentially the

same, the compiler moved the load and store with respect to surrounding instructions, presumably to avoid

pipeline stalls). The vagaries of experimental analysis of systems notwithstanding, the primary evidence for

the acceptability of a method is the performance achieved when using the resulting numbers: as seen below,

our estimations perform very well.

After an initial set of parameters is generated, a tuning set of small benchmarks whose performance is

strongly dependent on return location assignment is then run with the di�erent assignment policies described

in Section 3, along with our algorithm using these initial estimates for the costs. Since most of the tuning

benchmarks are small and the procedures in them have only one or two return values, the policies tend to

cover the possibilities for return locations (modulo speci�c registers), so it is reasonable to say that policy

that results in the fastest execution time for a benchmark is close to the optimal one for that benchmark.

There are also a few larger benchmarks in the tuning set to help catch situations where the performance of

the small benchmarks does not extend to larger programs.

We then examine the performance of these di�erent location assignments, and look more closely at the

cases where our algorithm does not produce the empirically best assignment of output locations. If there are

gross errors, this is usually due to our algorithm choosing memory over register or vice-versa, rather than

choosing the wrong register. By tracing the cost assignments made by the algorithm (available through a

compiler option), it is possible to �nd places where the wrong location was chosen, but the correct one would

be chosen if one or two cost parameters were slightly adjusted. The benchmarks can then be re-run, and the

process repeated until the parameters result in the best decision in as many cases as possible.

Table 2 indicates performance results for the tuning benchmarks on a Sun IPX for homogeneous memory

returns, the �xed register return scheme described in Section 3.1.2, the Aquarius algorithm adumbrated in

Section 3.2, and our algorithm, using the parameter estimations given in Table 1, all implemented in the jc

compiler and available through compiler options. The schemes are normalized with respect to homogeneous

memory returns, with the relative execution time of the fastest policy highlighted by bold text. Following

each performance number is a letter which indicates the overall placement chosen for this benchmark: if

two columns share the same letter, the algorithms resulted in the same policy (for example, for the nr-1

benchmark our algorithm chose the same assignment as the Aquarius algorithm). The letter is \m" if the
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Benchmark Sun cc, no opt Sun cc -O4

Name Our Algorithm Fixed Reg. Aquarius Our Algorithm Fixed Reg. Aquarius

array qs-1 0.8941 (a) 0.8973 (b) 0.9971 (c) 0.8641 (a) 0.8626 (b) 0.9900 (c)

array qs-2 0.9019 (a) 0.9028 (b) 0.9991 (m) 0.8666 (a) 0.8715 (b) 1.0004 (m)

binomial-1 0.6704 (a) 0.6860 (b) 1.0000 (m) 0.7000 (a) 0.7049 (b) 0.9999 (m)

combB-1 0.9983 (a) 1.3085 (b) 1.0000 (m) 0.9912 (a) 1.3234 (b) 1.0006 (m)

dnf-1 0.9917 (a) 0.9923 (a) 0.9938 (b) 0.9865 (a) 0.9865 (a) 1.0025 (b)

dnf-2 1.0003 (a) 1.0000 (a) 1.0000 (m) 0.9854 (a) 0.9815 (a) 0.9996 (m)

dotprodB-1 1.0010 (a) 1.2271 (b) 1.0001 (m) 1.0004 (a) 1.2226 (b) 1.0001 (m)

fact2-1 0.6534 (a) 0.6709 (b) 1.0003 (m) 0.6988 (a) 0.7033 (b) 1.0056 (m)

fact3-1 0.9979 (a) 0.9986 (a) 0.9986 (b) 0.9998 (a) 1.0000 (a) 0.9998 (b)

fact3-2 0.9869 (a) 0.9953 (a) 1.0047 (b) 1.0014 (a) 1.0000 (a) 1.0067 (b)

�b-1 0.6003 (a) 0.6304 (b) 1.0003 (m) 0.5578 (a) 0.5662 (b) 0.9991 (m)

hanoi-1 0.8686 (a) 0.8814 (b) 0.9334 (c) 0.8495 (a) 0.8585 (b) 0.9295 (c)

lclocal-1 0.9949 (m) 1.2703 (a) 1.0000 (m) 0.9909 (m) 1.2671 (a) 0.9993 (m)

list qs-1 0.9697 (a) 1.2929 (b) 0.9697 (c) 0.9564 (a) 1.3210 (b) 0.9569 (c)

list qs-2 0.9714 (a) 1.2878 (b) 0.9707 (c) 0.9575 (a) 1.3294 (b) 0.9570 (c)

long1-1 0.5194 (a) 0.5185 (a) 0.5748 (b) 0.5377 (a) 0.5351 (a) 0.5551 (b)

nr-1 1.0000 (a) 1.5594 (b) 1.0016 (a) 1.0007 (a) 1.6142 (b) 1.0018 (a)

nr-2 0.9991 (m) 1.5498 (a) 1.0000 (m) 0.9986 (m) 1.6105 (a) 1.0000 (m)

pascalB-1 0.9901 (a) 1.2571 (b) 1.0007 (m) 0.9817 (a) 1.3158 (b) 1.0038 (m)

queen-1 0.8760 (a) 0.9150 (b) 1.0007 (m) 0.8942 (a) 0.9179 (b) 1.0004 (m)

short-1 0.4910 (a) 0.4878 (a) 0.5490 (b) 0.5210 (a) 0.5152 (a) 0.5348 (b)

short2-1 0.5065 (a) 0.5073 (a) 0.5291 (b) 0.5222 (a) 0.5229 (a) 0.5332 (b)

tak-1 0.5795 (a) 0.6110 (b) 0.6115 (c) 0.5174 (a) 0.5200 (b) 0.5236 (c)

Global 0.8217 0.9212 0.9004 0.8189 0.9205 0.8915

Table 2: Tuning test results for various policies, normalized to homogeneous memory

Benchmark Sun cc, no opt Sun cc -O4�

Name Our Algorithm Fixed Reg. Aquarius Our Algorithm Fixed Reg. Aquarius

bessel-1 0.9147 (a) 0.9089 (b) 0.9996 (m) 0.8772 (a) 0.8780 (b) 1.0027 (m)

cheb-1 0.4775 (a) 0.5042 (b) 0.9999 (m) 0.4492 (a) 0.4396 (b) 1.0049 (m)

deriv-1 1.0271 (m) 1.1132 (a) 1.0000 (m) 1.0212 (m) 1.1077 (a) 1.0000 (m)

disj2-1 0.7815 (a) 0.7889 (b) 0.8963 (c) 0.7593 (a) 0.7837 (b) 0.8839 (c)

factsq-1 0.9891 (a) 0.9818 (a) 0.9939 (m) 0.9924 (a) 0.9848 (a) 0.9939 (m)

list qs2-1 1.0002 (m) 1.1805 (a) 0.9997 (m) 0.9497 (a) 1.1613 (b) 0.9996 (m)

merge-1 0.9949 (m) 1.4365 (a) 1.0000 (m) 0.9838 (m) 1.5946 (a) 0.9964 (m)

prime1-1 0.9984 (a) 1.2634 (b) 1.0003 (m) 1.0024 (a) 1.2718 (b) 1.0000 (m)

queenk-1 0.9348 (a) 0.9362 (a) 0.9648 (b) 0.9507 (a) 0.9526 (a) 0.9739 (b)

Global 0.8817 0.9745 0.9833 0.8646 0.9672 0.9832

Table 3: Performance evaluation test results
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policy coincides with homogeneous memory. Where there are two versions of the same benchmark, the �rst

includes the time taken to construct the input (e.g., the list to be reversed, for nr-1); this may increase the

number of opportunities to return values in registers.

Examination of the results indicate that with the initial parameter set, our algorithm picks the best

tested placement in 18 or 19 of the 21 test cases, depending on the level of C compiler optimization. In

the remaining cases, the Aquarius algorithm picks a better placement, but by at most 0.15% of the memory

execution time. As such, there seems to be no value in tuning the parameters further for these two back-ends:

the parameter generation suite yields an excellent starting point.

6.2 Testing the Tuned Model

The performance of an algorithm on simple benchmarks for which it may have been tuned is no indication of

what sort of performance we can expect on other and more complicated programs. Therefore, after tuning

was completed, a separate set of benchmarks which tended to be more complicated were run with the same

policies, and the results analyzed.

Table 3 gives the results of various policies using the same performance model and compiler options as

in Table 2 (cc was unable to compile disj2 using -O4 optimizations, due to the size of the intermediate

�les used by the compiler, so the results for that benchmark are using -O). These results show that the

cost-based policy described here, with appropriate parameters, does very well on a variety of programs

that it wasn't tuned to handle. Table 4 summarizes the absolute execution time of each benchmark for

homogeneous memory and our algorithm, and the performance improvement that our algorithm yields over

memory, along with the fraction of output values that were placed in registers by our algorithm (e.g., of 11

outputs of non-suspending procedures in pascalB-1, 5 were placed in registers and the rest in memory).

(The overall improvement summary is an arithmetic average of the individual speedups, so is slightly lower

than the geometric averages given in Tables 2 and 3). Notice that the performance improvements can be

quite substantial for programs where outputs can, in fact, be returned in registers (e.g., fib-1, fact2-1,

binomial-1); for programs that spend a large portion of their time in tail-recursive procedures constructing

lists of values (nr-1, list qs-1), returning outputs in registers is not as bene�cial, and our method less-often

chooses to return those values in registers. Note that, even though our algorithm may occasionally choose

to give up tail call optimization in order to put output values in registers, no program does signi�cantly

worse than the traditional approach of returning outputs via memory using our scheme. Overall, we �nd

that our algorithm for output placement produces an average performance improvement of about 12{18%,

depending on compiler and benchmarks|this compares favorably with execution time reductions that have

been reported for optimizations that are recognized as e�ective within the compiler construction community,

such as procedure inlining (12% [7], 10% [4]), register allocation (20% [18]), and loop-invariant code motion

(13% [18]).

7 Conclusions

While most implementations of logic programming languages return the output arguments of procedures via

memory, this can be a source of unnecessary overhead and can cause a performance degradation. Returning

outputs in registers is an attractive alternative, but the situation is complicated by the fact that this may

lead to a loss of tail call optimization. In this paper, we examined a variety of plausible schemes for returning

output arguments, and gave an algorithm for output argument placement that uses cost estimates for various

alternatives, weighted by execution frequency estimates, to determine a \good" output location assignment

for each procedure in a program. Our experiments indicate that for programs where the outputs are best
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Benchmark Time to Execute Improvement Fraction Outputs

Memory Our Alg. (%) In Registers

array qs-1 2721:2 2351:4 13:59 8 = 8

array qs-2 2707:8 2346:6 13:34 7 = 7

binomial-1 6220:8 4354:6 30:00 9 = 9

combB-1 974:6 966:0 0:88 2 = 4

dnf-1 563:2 555:6 1:35 3 = 3

dnf-2 560:8 552:6 1:46 2 = 2

dotprodB-1 3637:6 3639:2 �0:04 2 = 5

fact2-1 2267:4 1584:4 30:12 2 = 2

fact3-1 869:6 869:4 0:02 2 = 2

fact3-2 148:4 148:6 �0:13 2 = 2

�b-1 2161:2 1205:6 44:22 2 = 2

hanoi-1 377:4 320:6 15:05 4 = 4

lclocal-1 286:0 283:4 0:91 0 = 2

list qs-1 793:2 758:6 4:36 3 = 5

list qs-2 776:6 743:6 4:25 2 = 4

long1-1 687:4 369:6 46:23 3 = 3

nr-1 569:2 569:6 �0:07 1 = 3

nr-2 567:4 566:6 0:14 0 = 2

pascalB-1 633:4 621:8 1:83 5 = 11

queen-1 516:2 461:6 10:58 4 = 8

short-1 275:6 143:6 47:90 3 = 3

short2-1 270:8 141:4 47:78 2 = 2

tak-1 674:2 348:8 48:26 1 = 1

Over all tune 15:7 73.4%

bessel-1 1170:8 1027:0 12:28 13 = 13

cheb-1 2065:8 928:0 55:08 5 = 5

deriv-1 104:0 106:2 �2:12 0 = 1

disj2-1 2216:4 1682:8 24:08 16 = 19

factsq-1 132:0 131:0 0:76 2 = 2

list qs2-1 1871:2 1777:0 5:03 1 = 4

merge-1 111:0 109:2 1:62 0 = 1

prime1-1 412:0 413:0 �0:24 2 = 7

queenk-1 1034:0 983:0 4:93 3 = 3

Over all test 11:3 76.4%

Table 4: Absolute performance (�sec) using cc -O4�
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returned in memory, this algorithm usually makes the right decisions, and the performance of the resulting

code is no worse than that of the traditional scheme for returning outputs via memory; for programs where

registers can be used advantageously for output arguments, our algorithm produces code that is signi�cantly

faster than the traditional scheme. Although our algorithm can take advantage of additional information

such as frequency estimates (see Section 5.3) to yield even better speedups, the bulk of the improvement

arises from careful preservation of opportunities to return values in registers and use of cost estimates for

di�erent alternatives, resulting in code that is frequently better than any homogeneous return policies or the

heterogeneous policy used in the Aquarius compiler.
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A Estimating Execution Frequencies

Static execution frequencies of procedures in a program are compile-time projections of the expected number

of times that a given procedure or clause will executed in a single invocation of the program. These projections

can be used to decide which procedures are the most likely to bene�t from optimizations, and which can

be \sacri�ced" for a greater speedup overall. It is important to note that the purpose of these estimates

is not really to predict accurately how many times a branch will be executed or a procedure called, but

to guide optimization decisions by giving (possibly conservative) relative execution frequencies for di�erent

program fragments. For a discussion of this issue in the context of compilers for traditional languages, see

[2, 15, 17, 25, 26]; techniques for estimating execution frequencies of logic programs from their call graph

structure are discussed in [9, 20]. An alternative is to pro�le the program on sample inputs to estimate

execution frequencies: as the results of Gorlick and Kesselman [11] indicate, the overhead for this approach

is also small.

Our implementation estimates execution frequencies by examining the call graph of the program, assum-

ing that loops will execute some �xed number of times and branches have an equal probability of being

taken, and assigning each procedure a frequency based on its loop depth and branch position. In the case

of a committed-choice logic language, call graphs are in the form of an OR/AND tree, where OR-nodes

represent procedures, and have as their children nodes that represent the clauses that de�ne the procedure.

Clause nodes have as children the nodes for each procedure that the clause calls. The e�ect of the OR/AND

tree is that on entering a procedure node only one of the children (clauses) will be chosen and executed,

while for the chosen clause node all the children (called procedures) will be executed in turn.

We assume for simplicity a single-rooted call graph, with a root node representing the entry point to

the program, which has as its clauses nodes whose sole children are the externally visible procedures of the

program. The OR/AND call graph is then computed and used to partition the procedures into strongly

connected components (SCCs) [14]: sets of procedure nodes which are mutually reachable through the call

graph.

For a given procedure node, we assume that each clause has a priori equal probability of being chosen.

To handle the case of recursion, we assume an input of size L (some integral value), i.e., estimate that the

depth of recursion is L.

We start by assigning each clause a frequency based on the assumption that its parent procedure is called

once. De�ne the fanout of a clause as the number of distinct procedure-disjoint acyclic execution paths from

itself to its parent procedure through the OR/AND tree without leaving its SCC. Fanout captures a measure

of \recursivity" of a given clause:

Example A.1 Consider the following procedures p/2 and q/2:

p (A, R) :- test0 (A), R is 1.

p (A, R) :- test1 (A), q (A-1, R).

p (A, R) :- test2 (A), p (A-1, R1), p (A-1, R2), R is R1+R2.

q (A, R) :- p (A, R1), R is R1 / 2.

p/2 and q/2 form a strongly connected component. The �rst clause of p/2 is a base case, with fanout 0: if

chosen, it cannot be reached again. The second clause has fanout 1, since it calls q/2, whose sole clause calls
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p/2 once. The third clause has fanout 2, since if chosen, p/2 will be called twice. The single clause of q/2

has fanout 1. 2

Considering each procedure in turn, let n0 be the number of clauses with fanout 0 (the bases of recursion),

n1 be the number with fanout 1 (simple execution chains), and n2 be the number with fanout exceeding

one (execution trees); let nc represent the total number of clauses. If a clause has fanout 0, we assign it

frequency 1=nc, on the assumption that each clause is chosen with equal probability. If a clause has fanout

1, we assume that there is a simple loop present which will execute this clause (or another single-recursive

clause in the same procedure) L times for the single external input, and hence we give it weight L=nc (scaling

the input size L by the probability n1=nc that some fanout 1 clause will be taken on the original entry, and

distributing the result over all fanout 1 clauses). We also add 1=nc to a \base weight" b, which characterizes

the number of times a base clause is executed because a recursive one was chosen (by the rationale that

this clause is chosen with probability 1=nc, and choosing this clause eventually causes one base clause to be

executed to ground the recursion).

For clauses with fanout k > 1, we assume that the procedure is using divide-and-conquer on the size L

input, and thus (for simplicity) that the execution tree will be a full k-ary tree of depth d = dlogk Le. The

interior nodes of this execution tree are recursive clauses: we assume for the sake of simplicity that they are

further invocations of this clause or another with the same fanout. The leaf nodes of the tree correspond to

base clauses. Therefore, for such a clause, we add (kd�1 � 1)=(k � 1)nc to its weight (scaling the number of

interior nodes by probability of initial choice as above), and kd�1=nc to b for the base clauses.

After computing the initial weights for the clauses, b is distributed equally amongst the base clauses of

the procedure. Having assigned each clause an execution frequency based on this assumption, it is necessary

to propagate that information through to generate unconditional frequencies. We start by assigning each

procedure a weight (initially 0) measuring the estimated number of times that procedure is called in an

average execution of the program. We also give each SCC a count of the number of calls to procedures

in that SCC from clauses outside it. Form a set T of nodes all of whose callers have already been visited

and hence whose basic frequency has been set; initially, this is the singleton root node, whose weight is

one. While T is not empty, remove from it an arbitrary node n. For each clause of n, multiply the clause

frequency by the frequency of its parent procedure n, and for each procedure p called from that clause and

in a di�erent SCC, add the resulting frequency to p. Furthermore, decrement the count of external calls for

p's SCC: when the count becomes 0, all external callees of nodes in the SCC have been considered. At this

point, the e�ect of the externally-induced internal calls is propagated within the SCC|this ensures that all

nodes in the SCC receive some non-zero weight even if not all of them are called from outside the SCC. Then

the components of the SCC are added to T . When all clauses of a node have been updated, the weight of

the node itself is rede�ned to be the sum of the weights of its clauses.

In the most common case, procedures rarely have clauses with fanout exceeding one, nor recursive clauses

with di�erent fanouts. Nontrivial SCCs|i.e., those with more than one procedure, such as Example A.1|are

also rare. In the absence of such unusual cases, the numbers generated by the above algorithm are intuitively

reasonable for the input size assumed, and in their presence the results are not unbelievable; however, it is

the trends inferred by comparing relative frequencies that are most useful for analysis, rather than the raw

projected frequencies.

Example A.2 Consider the following implementation of quicksort on lists:
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:- mode q (in, out).

q(A,^B) :- list(A) | qsort(A,^B,[]).

:- mode qsort (in, out, in).

qsort([X|L],R0,R) :- split(L,X,L1,L2), qsort(L2,R1,R), qsort(L1,R0,[X|R1]).

qsort([],R1,R) :- R1=R.

:- mode split (in, in, out, out).

split([X|L],Y,L1,L2) :- X =< Y, L1 = [X|LL], split(L,Y,LL,L2).

split([X|L],Y,L1,L2) :- X > Y, L2 = [X|LL], split(L,Y,L1,LL).

split([],X,L1,L2) :- L1 = [], L2 = [].

All strongly connected components are trivial, because no two procedures are mutually accessible. The

fanouts, weights for SCCs considered in isolation, and weights for each procedure and clause assuming one

entry into q/2 are in the table below.

Proc:Clause Fanout Base Weight Clause Uncond. Weight Proc Weight

q/2:1 0 1 1 1

qsort/3:1 2 2d�2 � 1=2 2d�2 � 1=2 2d�1

qsort/3:2 0 2d�2 + 1=2 2d�2 + 1=2

split/3:1 1 L=3 L(2d�1 � 1)=6 (2d�1 � 1)(2L+ 1)=6

split/3:2 1 L=3 L(2d�1 � 1)=6

split/3:3 0 1 2d�2 � 1=2

In the �rst pass, the sole clause of q/1 has weight 1, since it is a base for its strongly connected component.

The �rst clause of qsort/3 has fanout 2, and is given weight (2d�1 � 1)=2: probability 1=2 of executing it,

times the number of interior nodes of a full binary tree of height d = dlog2Le. The base clause for qsort/3

gets weight (1=2)+2d�2: probability 1=2 of being chosen, plus probability 1=2 times the number of recursion

bases resulting from choosing the �rst clause. split/4 gets L=3 for its �rst two clauses, and 1 for the last.

Assuming that the sole entry point is through q/2, procedure and sole clause for q/2 get weight 1. The

clauses of qsort/3 are multiplied by this weight. 2

In other programs, such as Fibonacci, clauses have a fanout exceeding one without using a divide-and-

conquer approach to the input; hence, the projected frequency is far lower than the real (exponential)

frequency. However, simple analysis does not reveal this, and using an exponential frequency estimation

such as Lk generally results in wildly inaccurate projections for the more common divide-and-conquer{style

programs, yielding suboptimal choices in decisions based on the frequency estimation.

23



B Extended Example

This appendix contains an extended example of the analysis performed by our algorithm on a relatively
non-trivial program: one which computes the number of solutions to the nqueens problem. The program to

be analyzed is:

% N Queens program

:- export queen/2.

:- mode queen (in, out).

queen(N,M) :- gen(N,L), queen(L,[],[],[],A), count(A,M).

% Generate list of legitimate placements

:- mode queen (in, in, in, in, out).

queen([C|Cs],NCs,L,S2,S0) :- queen (Cs,[C|NCs],L,S2,S1), check(L,C,1,NCs,Cs,L,S1,S0).

queen([],[],L,S1,S0) :- S0 = [L|S1].

queen([],[_|_],L,S1,S0) :- S0 = S1.

% Check validity of placement

:- mode check (in, in, in, in, in, in, in, out).

check([],C,D,NCs,Cs,L,S1,S0) :- append(NCs,Cs,Ps), queen(Ps,[],[C|L],S1,S0).

check([P|_],C,D,NCs,Cs,L,S1,S0) :- P-C = D, S0 = S1.

check([P|_],C,D,NCs,Cs,L,S1,S0) :- C-P = D, S0 = S1.

check([P|Ps],C,D,NCs,Cs,L,S1,S0) :- P-C =\= D, C-P =\= D, check(Ps,C,D+1,NCs,Cs,L,S1,S0).

% Append first list to second

:- mode append (in, in, out).

append([],X,Y) :- Y=X.

append([A|B],X,Y) :- Y=[A|Z], append(B,X,Z).

% Generate the initial list of placements

:- mode gen (in, out).

gen(N,L) :- gen(0,N,L).

:- mode gen (in, in, out).

gen(K,N,L) :- K >= N, L=[].

gen(K,N,L) :- K < N, L=[K|Ls], gen(K+1,N,Ls).

% Compute length of a list

:- mode count (in, out).

count(L,N) :- count(L,0,N).

:- mode count (in, in, out).

count([],M,N) :- N = M.

count([_|Xs],M,N) :- count(Xs,M+1,N).

The call graph of the program appears in Figure 1. Rectangular nodes denote procedures; their oval

children are the clauses for the procedures. Edges connecting procedures to clauses (the dotted edges) are

labelled with the estimated frequency of the clause, under an assumption that loops are executed 10 times

(L = 10 in the algorithm described in Appendix A). The frequency of a particular procedure as a whole

appears in parentheses in the label of the box enclosing the procedure and its clauses.
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Figure 1: Call graph of queen.j
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Consider the analysis for count/3. We start with all costs 0. As shown in the program text and the call

graph, the procedure has two call sites: one in count/2, and one in the second clause of count/3. In both

cases, the output argument is not used in the remainder of the clause (because the call site is a tail call), so

the use-point analysis does not change the cost vector.

The de�nition point analysis looks at both clauses in turn. For the �rst clause, there is an assignment,

since this clause grounds the recursion. Since this clause has weight 1, we add Ca to the cost vector entry for

a memory return. In the second clause, the de�nition is through a call, so we don't change the cost vectors.

For queen/5, there are three call sites, one each in queen/2, check/8, and queen/5. In queen/2, the

output of the call (A) will be used in the �rst argument to a succeeding call. Therefore, we add Cp + Cl to

the cost of choosing memory, and Cx to the cost of all registers except r0. The call site in check/8 is a tail

call, so no changes are made for that, but the output S1 for the site in queen/5 is used in the 7th argument

position of the following call to check/8. Therefore, memory gets 2:333(Cp+Cl) and all registers except r6

get 2:333Cx.

Each clause of queen/5 has a de�nition point for the output S0. For the �rst clause, the de�nition

point (call to check/8) follows a non-survive goal, the call to queen/5. Therefore, 2:333(Cs + Cl) is added

to memory to account for saving the pointer to the storage slot over the call. Again, we can make no

assumptions about the return location chosen by check/8. The remaining two clauses ground the recursion,

so add 1:667Ca to memory.

The last procedure we will look at in depth is append/3, which is called from both check/8 and itself.

The site in check/8 passes its output Ps in r0 to the following call to queen/5: memory gets an additional

0:833(Cp +Cs), and registers other than r0 get 0:833Cx.

The recursive call site in clause 2 of append/3 is more interesting, and somewhat subtle. The output Z

of the call is assigned in a tail call, but we notice that if the output is returned in a register, the tail call

must be deoptimized to store Z into the list which is being returned from the caller. Note that if the tail call

can be optimized, this clause does not need an environment allocation. Therefore, all register locations are

assigned 4:167(Cta � Cp), to account for deoptimizing the tail call, but not needing to initialize the return

location for the assignment. (The subtraction of Cp is an implementation-speci�c optimization: requirement

of transitive non-suspension and lack of a garbage collector in jc ensures that the cons cell will not be

accessed by anybody until the value Z has been computed and stored in it, so the other reasons described in

Section 3.1.1 for initializing storage cells are unnecessary.)

In the �rst clause of append/3, the de�nition site grounds the recursion, so adds 0:833Ca to memory. In

the second clause, the output Y is de�ned in an assignment prior to a call, so memory requires an additional

4:167Ca. Registers must be saved over the call, so cost a store-and-load (4:167(Cs+Cl)), and also mark the


ag indicating that register returns will force a tail call deoptimization.

The other procedures are treated similarly. The cost vectors for all outputs after the �rst pass of the

algorithm, using the frequency estimations in Figure 1 and parameters for cc from Table 1, are given in

Table 5.

With basic cost estimates gathered, the second pass of the algorithm can proceed to place outputs

in preferred locations. Tracing through our example procedures, the highest frequency is associated with

count/3. Although the second clause has a tail call, because it is to itself and passes the value through

directly, there is no worry about deoptimizing the call to move values about. The lowest cost choice is then
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Output Mem r0 r1 r2 r3 r4 r5 r6 r7

count/3 N 594.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

gen/3 L 3564.0 9325.0 9325.0 9325.0 9325.0 9325.0 9325.0 9325.0 9325.0

queen/5 S0 5294.3335 2.3333 3.3333 3.3333 3.3333 3.3333 3.3333 1.0 3.3333

append/3 Y 3449.166 7770.83 7771.67 7771.67 7771.67 7771.67 7771.67 7771.67 7771.67

check/8 S0 697.1667 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

gen/2 L 575.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

count/2 N 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 5: Cost vectors after �rst pass of algorithm

taken, and the output N is placed in register r0.

For queen/5, the �rst clause has a tail call to check/8, but this procedure has a lower frequency, and

hasn't been assigned yet. Therefore, although we want queen/5 to return its value wherever check/8 returns

its value (to preserve the tail call), we don't know what this preferred location is. The cost vector remains

unmodi�ed, and since no other tail calls interfere with the costs, the lowest cost location r6 is chosen.

For append/3, recall that in pass 1 we marked all non-memory locations as forcing a deoptimization of

the tail call in clause 2. Therefore, all register locations receive an additional cost of 4:167Cta � 7013, on

top of their values in Table 5. This makes the lowest cost be memory, which is appropriate for structure

returns such as this.

The last interesting choice made in the second pass is in the assignment of location to S0 for check/8.

First, there is a tail call in clause 1 to queen/5, which must be deoptimized unless SO is returned in r6|this

adds 0:833Ctn to all other locations. Also, there is a tail call to check/8 in queen/5, and the same agreement

must be present there, adding 2:333Ctn to the other locations. As a result, r6 is chosen, preserving both tail

calls.

The cost vectors used for the �nal placement are shown in Table 6.

Output Mem r0 r1 r2 r3 r4 r5 r6 r7

count/3 N 594 4 0 0 0 0 0 0 0

gen/3 L 3564 17740 17740 17740 17740 17740 17740 17740 17740

queen/5 S0 5294.33 2.33333 3.33333 3.33333 3.33333 3.33333 3.33333 1 3.33333

append/3 Y 3449.17 14783.3 14784.2 14784.2 14784.2 14784.2 14784.2 14784.2 14784.2

check/8 S0 3911.33 3214.17 3214.17 3214.17 3214.17 3214.17 3214.17 0 3214.17

gen/2 L 575 1683 1684 1684 1684 1684 1684 1684 1684

count/2 N 1683 1015 2698 2698 2698 2698 2698 2698 2698

Table 6: Cost vectors after �nal pass of algorithm
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