
A Fast and General Software Solution to Mutual Exclusion on
Uniprocessors

David Mosberger, Peter Druschel, and Larry L. Peterson 1
davidm,druschel,llp @cs.arizona.edu

TR 94-07

Abstract

This paper presents a technique to solve themutual exclusionproblem for uniprocessors purely in software.
The idea is to execute atomic sequences without any hardware protection and, in the rare case that the
atomic sequence is interrupted, to rollforward to the end of the sequence. The main contribution of
this paper is to discuss the OS-related issues of this technique and to demonstrate its practicality, both
in terms of flexibility and performance. It proposes a purely software-based technique that achieves
mutual exclusion without any memory-accesses. Experiments show that this technique has the potential
to outperform equivalent hardware mechanisms.

June 24, 1994

Department of Computer Science
The University of Arizona

Tucson, AZ 85721

1This work supported in part by ARPAContract DABT63-91-C-0030, by Digital Equipment Corporation, and Hewlett-Packard.



1 Introduction

Atomic sequences—a sequence of instructions that needs to execute without interference—are fundamental to con-
current programs, especially operating systems. For this reason, processor architectures generally provide primitive
operations, such as test-and-set and compare-and-swap, that can be used to implement the mutual exclusion re-
quired by atomic sequences. Due to the trend of implementing processors that are suitable for use in shared-memory
multiprocessors, however, these primitives have become quite expensive. For example, the Alpha architecture [Sit92]
provides a multiprocessor-safe load-linked/store-conditionally instruction that, even on a uniprocessor, takes over 100
cycles to move a 64 bit integer atomically between twomemory locations. This is slow and—without any doubt—it is
possible reduce this overhead significantly. Nevertheless, it shows that hardware primitives are designed and optimized
for the multiprocessor case.

On a uniprocessor, it is possible to implement atomic sequences by disabling interrupts, which are the only possible
source of interference1. Although an order of magnitude faster than load-linked/store-conditionally, operations for
disabling interrupts are usually privileged, meaning that they cannot be directly invoked by user processes. It is also
the case that support for hierarchical priority levels is more expensive than one might hope [SCB93].

Because of the limitations of these two hardware-based approaches to implementing atomic sequences, Bershad,
Redell, and Ellis have proposed a software-only implementation of mutual exclusion on uniprocessors [BRE92].
However, their solution is applicable only to simple atomic sequences—those that involve only one store to shared
memory. While this is sufficient to implement synchronization primitives that can in turn be used to construct higher-
level synchronization objects, the approach is still limited. First, when used to build lock-based synchronization
mechanisms, this approach is not appropriate for data-structures that are shared with interrupt handlers, as this code
cannot risk blocking. (In general, lock-based solutions introduce the complexity of deadlock.) Second, while it is
possible to create lock-free data-structures based on some of these primitives, it is well-known that this approach can
incur significant overheads, often requiring reference counts and/or shadow copies of shared objects [Mas92, Her93].

This paper describes an alternative software-based approach to implementing atomic sequences on uniprocessors.
Like the Bershad et al. solution, the idea is to address the only source of interference—interrupts. Unlike their
approach, which uses rollback (an atomic sequence that has been interrupted is rolled back to the beginning), our
solution uses rollforward (when an interrupt interferes with an atomic sequence, the interrupt handler arranges for the
sequence to be executed to the end before resuming interrupt processing). This approach can be used to implement
lock-free data structures efficiently and puts few restrictions on the code that can make up the atomic sequence. In
particular, the number of stores is practically unlimited. As the technique is purely software-based it can be used to
achieve mutual exclusion at any privilege level. This makes it equally well suited for implementation within the OS
kernel (e.g., for device drivers) and in user-level processes (e.g., to protect against asynchronous events such as Unix
signals [LMKQ88] or VMS Asynchronous System Traps [GS92]). Finally, even though this technique is not directly
applicable to multiprocessor synchronization, it is useful in constructing lock-free data-structures on machines that do
not have sufficiently powerful hardware-primitives [Ber93].

While the idea is straight-forward, there are several issues that make this technique non-trivial in an OS context.
In particular, it is necessary to address issues like interactions with the memory system, multiple address spaces, and
multiple trust domains. The main contributions of this paper is to explore this design space, and to quantify the
performance of specific points in that space.

The rest of the paper is organized as follows. Section 2 describes the issues involved in using rollforward as a
technique to achieve mutual exclusion. Section 3 then presents three concrete solutions and Section 4 compares the
performance of these implementations with several hardware-based mutual exclusion schemes. Finally, Section 5
identifies related work and Section 6 offers some concluding remarks.

1DMA by devices is not of concern here as device interfaces usually have there own synchronizationmechanisms.

1



2 Design Issues

The idea to use rollforwardas themechanism to ensure the atomic execution of any atomic sequence is straight-forward.
If an interrupt handler determines that it pre-empted an atomic sequence, it arranges to execute the sequence to the
end before proceeding with interrupt handling. The practicality of this mechanism therefore depends largely on the
potential for unwanted effects due to rollforward.

This section first lays out the design space for using rollforward as a technique to achieve mutual exclusion. Two
orthogonal dimensions are involved: the mechanism to register an atomic sequence and the mechanism to rollforward
an atomic sequence. A final subsection then examines the issues that impact the practicality of rollforward.

2.1 Registering Atomic Sequences

The first choice in designinga software-based atomicity scheme involves themechanism to register an atomic sequence.
Clearly, to perform a rollforward (or rollback), an interrupt handler must know about the ranges (extents) of code that
constitute atomic sequences. Many registration schemes are conceivable and we present only four possibilities in that
spectrum. The first two were previously suggested by Bershad et al. [BRE92]; we repeat them here for completeness.
We found that both approaches rather seriously limit the flexibility with which software mutual exclusion can be used.
The third and fourth approach rid these limitations at the cost of slightly higher overheads.

2.1.1 Designated Sequences

The first proposal in [BRE92] is to use designated instruction sequences to mark atomic sequences. This is also the
technique used in [MK87]. Designated sequences must not appear anywhere but in atomic sequences. An interrupt
handler can check whether the PC is inside an atomic sequence by matching the surrounding code according to a
set of templates. If a template matches, the interrupted handler concludes that it pre-empted an atomic sequence
and performs the appropriate recovery action. The advantage of designated sequences is that they do not incur any
overheads per execution of an atomic sequence, yet allow for inlining. The difficulty in using designated sequences
lies in finding code sequences that do not occur outside of atomic sequences. Also, matching templates against the
code in the vicinity of the saved PC can be time consuming.

The difficulty in finding designated sequences is ameliorated by the fact that with rollforward, the matching does
not need to be perfect. It is acceptable to mistakenly classify a code sequence as an atomic sequence as long as all
atomic sequences are detected (i.e., false hits are tolerable, missed hits are not). No harm is done by executing a
short piece of code needlessly. Of course, the probability of false hits should be small. Otherwise, the overheads
due to rollforward could negate the advantage of software-based mutual exclusion. Note that the same does not hold
for rollback, where the interrupted atomic sequence is restarted. Restarting a code sequence that in reality is not a
naturally restartable sequence may lead to unpredictable results. In this sense, designated sequences can be used more
readily with rollforward than with rollback.

2.1.2 Static Registration

The second approach is static registration. At program startup time, all atomic sequences are registered with the
interrupt system by specifying their starting addresses and lengths. As with designated sequences, there is no
registration overhead once the program is initialized. However, testing whether an interrupted process was executing
inside an atomic sequence can be rather expensive if many atomic sequences are registered. Proliferation on the
number of atomic sequences can be avoided by having only a single atomic sequence (such as test-and-set) which is
then used to build higher level synchronization objects. Limiting the number of atomic sequences unfortunatelymakes
it essentially impossible to inline atomic sequences. Even though there is no direct runtime cost per atomic sequence,

2



a hidden cost of a function call per atomic sequence has to be paid. Also, limiting the number of atomic sequences is
detrimental to the motivation for using rollforward—the desire for the flexibility it promises is the very reason for our
interest.

2.1.3 Dynamic Registration

A third approach is dynamic registration. A process notifies the interrupt system of an atomic sequence just before
entering it, executes it, and finally cancels the registration. This has the disadvantage of incurring an overhead every
time an atomic sequence is executed. On the positive side, it combines the advantages of designated sequences and
static registration. Inlining poses no problem. The extent of an atomic sequence can be computed at run time, so
even late forms of inlining, such as code synthesis [Mas92], work readily. Checking whether an atomic sequence
was interrupted is efficient as well. It involves no more than two comparisons: one to determine whether an atomic
sequence is registered and a second to check whether the sequence has finished execution already. (Depending on
implementation details, the second check may not be necessary.)

2.1.4 Hybrid Registration

A fourth approach is what we call hybrid registration. It is a combination of designated sequences and dynamic
registration. The hybrid scheme registers an atomic action just like the dynamic approach. However, after executing
an atomic sequence, the registration is not cancelled explicitly. Instead, a designated sequence is used to delineate the
end of the sequence. If a process is interrupted just a few instructions before reaching the designated sequence, the
interrupt handler will determine that it interrupted an atomic sequence and rollforward the remaining instructions. Just
as with (imperfect) designated sequences, there is a potential for false hits. However, we observed already that this is
harmless as long as the sequence rolled forward terminates quickly.

The advantage of this scheme is twofold: not having to cancel registrations explicitly saves at least one instruction
per atomic sequence, and registrations can be understood as hints. Extraneous “registrations” due to optimizations
are tolerable as long as they occur infrequently. Not explicitly cancelling a registration is just one optimization made
possible by the hint nature of registrations. As we will show in Section 3, exploiting this property can lead to a very
efficient registration scheme that does not involve any loads or stores to memory.

2.2 Rolling Forward Atomic Sequences

The second dimension involves how the interrupt handler regains control of the processor once it has reached the end
of the atomic sequence. We consider four possibilities.

2.2.1 Code Rewriting

An obvious solution is to rewrite the interrupted code by temporarily replacing thefirst instruction following the atomic
sequence with a jump to the interrupt handler. A nice property of code rewriting is that it has no overheads except in
the rare case of an interrupt interfering with an atomic sequence. It requires that instructions are located in a writable
segment of the address space. After modifying the code, coherency has to be established between data space (where
the new code is written to) and instruction space (where the new code will be executed from). Older processors that do
not employ separate instruction and data caches guarantee this automatically. On many modern processors, however,
this requires explicit cache flushing, which can be costly.

3



2.2.2 Cloning

In [ABLL91], a technique was proposed that avoids overheads per atomic sequence without requiring write access to
the code segment. The idea is to clone every atomic sequence. The original copy is left unmodified while the cloned
copy ends with an instruction that relinquishes control back to the interrupt handler. Given the short size of atomic
sequences, we do not believe that code growth due to cloningwould be a serious drawback. However, a difficultywith
this scheme is the need for an efficient mechanism to map a PC in the original atomic sequence into the corresponding
PC in the cloned copy of the atomic sequence. The interrupt handler has to perform this mapping in order to locate
the right cloned code given a PC pointing to any instruction in the interrupted sequence. This mapping problem is
aggravated if atomic sequences can be inlined.

A more subtle problem is that cloned code may be located at an address different from the original one. While it is
possible to write code that produces results that are a function of the address at which it is located at we do not expect
this to be a real problem for atomic sequences. More realistically, moving code might necessitate small changes in
the code in order to preserve overall semantics. For example, an address constant may suddenly no longer fit into an
instruction field. In the cloned sequence, such an instruction would have to be replaced by two or more instructions.
Clearly, this could make the mapping problem even more difficult.

2.2.3 Computed Jumps

Computed jumps provide an alternative solution. With this approach, every atomic sequence ends with a jump to
an address stored in some variable, say dest . Before the atomic sequence is entered, the address of the instruction
immediately following the atomic sequence is stored in dest . Thus, if the atomic sequence executeswithout interruption,
dest points to the instruction immediately after the jump and the jump acts as a “no operation” (NOP). Conversely, if
the atomic sequence is interrupted, the interrupt handler overwrites dest with the address of the instruction where it
wants to resume execution once the atomic sequence has finished. This scheme shouldwork on almost any imaginable
system. While widely and easily applicable, it has the disadvantage of adding a jump to every atomic sequence.

2.2.4 Controlled Faults

Sometimes it is more convenient for an interrupt handler to regain control via a fault (trap) instead of a jump. This is
particularly useful if the interrupt handler executes at a higher privilege level than the interrupted code. Just like with
computed jumps, an instruction is placed at the end of the atomic sequence that normally acts as a NOP. If properly
chosen, an interrupt handler can then changes the state of the system such that this “NOP” causes a fault during
rollforward. For example, in a system withmemory protection, a dummy read from a special page could be performed.
Normally, processes would have read access to that page. But before performing a rollforward, the interrupt handler
would remove read access from that page. When leaving the atomic sequence, the CPU will attempt to read from that
special page and cause an access violation fault. The access fault handler can then check whether a rollforward is in
progress, and if so, pass control back to the interrupt handler. Other kinds of faults that are easily exploited for this
purpose include unaligned memory access faults and division by zero faults. The only condition on the kinds of faults
that can be used for this purpose is that it must be possible to resume a process after taking such a fault. Any precise
fault guarantees this [HP90a].

2.3 Difficulties in Realizing Rollforward

There are two major difficulties in realizing rollforward. The first is how to ensure that a rollforward does not delay an
interrupt excessively. The second is how to deal with faults induced by a rollforward. We now consider each issue in
turn.

4



2.3.1 Limiting the Duration of a Rollforward

So far, we implicitly assumed that atomic sequences terminate quickly; i.e., they terminate within a given deadline
or, at least, do not lead to endless looping. If the interrupt handler can trust in the code being rolled forward, this is
generally not a problem because atomic sequences will be short. However, if there is a potential for malicious code
being rolled forward, more care has to be taken. In the worst case, blindly rolling forward any “atomic sequence” can
cause the system to lose interrupts in an unbounded fashion.

This could be handled by punishing such malicious code. For example, if an “atomic sequence” is found to execute
for longer than, say, one timer interrupt period, the corresponding address space could be terminated. A less drastic
method is possible in systems that support timer interrupts with very fine granularity. A “watchdog” timer could be
started before rolling forward the atomic sequence. If the atomic sequence has not finished by the time the watchdog
timer expires, the system simply resumes interrupt processing and therefore does not guarantee atomic execution of
the malicious “atomic sequence.” Yet another solution is to inspect the code before executing it. This is feasible as
long as the inspected code is not self-modifying (e.g., it is in a page that has execute, but not write permission). Note
that this restriction does not preclude the use of run-time generated code. Another quite reasonable restriction could
be to disallow any backward jumps or subroutine calls in atomic sequences. With these restrictions in place, checking
that a given sequence of instructions will terminate has a time complexity that is linear in the number of instructions.
Fortunately, many recent CPUs have regular instruction encodings such that it is efficient to analyze code prior to its
execution. In some cases it may also be possible to perform this check earlier than at interrupt time. It could be as
early as compilation time or as late as program startup time.

Note that the above considerations also apply if the registration technique has a potential for false hits. With false
hits, arbitrary code sequences may be mistakenly identified as atomic sequences. It is therefore necessary to check the
safety of the code before initiating a rollforward, even if there is trust.

2.3.2 Faults During Rollforward

The second major issue in using rollforward is that it may cause unexpected faults. Clearly, it would be unacceptable
to delay interrupt servicing excessively because a rollforward caused a page-fault. Similarly, it might be impossible to
rollforward an atomic sequence if it deterministically causes, for example, a division by zero fault. We therefore have
to impose the rule that atomicity of atomic sequences is guaranteed only for sequences that execute fault-free. Except
for page faults, guaranteeing fault-free execution is not very difficult in practice. Nevertheless, it should be pointed
out that there can be rather subtle sources of faults. For example, many architectures define a few instructions that are
subsettable. Implementations may choose to emulate such instructions in software to reduce hardware cost. Unless
the emulation is uninterruptible, atomic sequences should not contain such instructions.

We emphasize that page faults are often transparent. For a group of processes, page faults are only detectable if
one process might execute while another is suspended on a (shared) page miss. For example, in a traditional Unix
process sharing data with signal handlers, page faults are fully transparent. On the other hand, if several Unix processes
cooperate via shared memory, page faults are not transparent. If page faults are not transparent, they should be treated
just like interrupts. That is, a page fault in an atomic sequence will cause a rollforward. As a rollforward can cause
further page faults, the rollforward mechanism has to be re-entrant. It is important to keep this in mind while reading
the rest of this section.

Page faults can be either instruction or data page faults. Instruction page faults do not pose a problem as long
as none of the atomic sequences cross page boundaries. A page fault might occur right before starting the atomic
sequence, but once execution started, the page is guaranteed to stay resident up to the next pre-emption point, which in
the assumed environment, must be an interrupt. A similar trick can be applied to avoid data-page faults. Rollforward
is feasible as long as a given shared data object is fully contained in a single page. A process executing in an atomic

5



sequence might be pre-empted due to a page fault to a shared page. While being blocked waiting for the data page,
other processes might attempt to access the same page as well. This is not a problem because none of these processes
could have read or modified any shared state yet (otherwise they would have caused the page fault). When the shared
page finally arrives, the blocked processes can be resumed in any order.

While the one-page restriction is quite acceptable for the code of atomic sequences, it poses a serious limitation for
shared data objects. A more practical solutionmight be to avoid page faults in the first place. This is possible if shared
memory can be pinned. Pinned memory is never paged out by the virtual memory system and shared memory would
therefore always stay resident in physical memory. This is certainly a realistic solution for the parts of the kernel that
interact with interrupt handlers. There, page-faults must be avoided anyway, so this solution comes at no extra cost.
However, it is undesirable to allow user processes to pin down large amounts of memory.

Fortunately, other solutions exist that work well for user processes. For example, it is possible to add a “gate”
to every shared object. If the gate is open, atomic sequences accessing that object can be executed. If it is closed,
attempting to execute such an atomic sequence causes the process to be suspended until the gate is re-opened again.
This idea can be used in a straight-forward manner to deal with page faults: a gate is closed whenever a process
executing an atomic sequence causes a page fault on the gate’s shared object. It remains closed until the fault-causing
atomic sequence has terminated. This ensures proper operation in the case of an atomic sequence causing multiple
page faults. In essence, processes may execute independently, as long as they do not attempt to access a shared
object for which a page fault is pending. We believe this is a reasonable tradeoff between keeping overheads low and
minimizing the time processes are blocked due to page-faults of other processes. A gate can be implemented in many
different ways. One possibility would be to assign each shared object to a distinct memory segment (or set of pages,
in a paged memory system). Closing the gate could then be implemented as turning off read and write access to the
object’s memory segment (set of pages). Clearly, changing segment protection is a rather heavy-weight mechanism.
But it should be observed that these overheads arise only in response to page faults caused by atomic sequences. In
particular, in the normal case of no page faults, atomic sequences would not experience any additional overhead.

3 Implementation

This section describes three specific software mutual exclusion schemes using rollforward. Given the large design
space, the limitation to only three implementations is somewhat arbitrary. However, the three implementations have
unique features that make them worthwhile to highlight: the first uses the dynamic registration scheme and adds a
computed jump to every atomic sequence to allow an interrupt handler to regain control of the CPU after performing
a rollforward. It is the most obvious implementation, and is therefore easy to explain. It also serves as a benchmark
against which the other, more involved schemes, can be compared. The second is a slight variation of the first—instead
of a jump, a fault is used to provide the interrupt handler with the means of regaining control. This might be an
appropriate choice in situations where atomic sequences execute at a lower privilege level than the interrupt handler.
The third implementation uses the hybrid registration scheme and, like the first one, provides a jump to the interrupt
handler as the means to regain control after a rollforward. This implementation incurs the lowest overheads per atomic
sequence, and has the potential to outperform even the best hardware-based schemes.

3.1 Dynamic Registration Scheme With Jump (Dyn/Jump)

The most straight-forward dynamic registration scheme is shown below. First, variable destAddr is set to the address
of the instruction designated by label theEnd. To indicate that the process is executing an atomic sequence, inAS is
set to true. Then, the code of the actual atomic sequence is executed. Afterwards, inAS is reset to false and a jump to
the address stored in destAddr is performed. In the normal case, this will jump to label theEnd and therefore act as a

6



NOP. Notice that this implementation depends on the fact that word reads and writes execute atomically.

destAddr addressOf (theEnd)
inAS TRUE
atomic sequence
inAS FALSE
jump destAddr

theEnd:

If every atomic sequence is wrapped up in this manner, the state of variable inAS is an accurate indication of
whether a process is executing in an atomic sequence. An interrupt handler therefore has to read a single word to
check whether a rollforward is necessary. If so, the interrupt handler changes destAddr to point to an instruction in its
own code, restores the state of the interrupted process, and jumps to the saved PC. This causes the interrupted atomic
sequence to be executed to the end. The computed jump then transfers control back to the interrupt handler where it
reestablishes its own state and continues with the actual interrupt processing.

On a DEC Alpha, this produces the following code for an atomic sequence that increments variable sharedCounter.
As can be seen, an overhead of five instructions has to be paid per atomic sequence: two load address instructions,
two stores, and a jump instruction (overhead instructions are marked with an asterisk).

* lda r4, inAS # load address of inAS
* lda r1, theEnd # load address of theEnd into r1
* stl zero, (r4) # inAS <- TRUE (0 = TRUE)
lda r3, sharedCounter # load address of sharedCounter
ldl r2, (r3) # load value of sharedCounter
addl r2, 1, r2 # increment counter
stl r2, (r3) # store back new value

* stl r1, (r4) # reset inAS to FALSE (not 0 = FALSE)
* jmp (r1) # jump to address stored in r1

theEnd:

3.2 Dynamic Registration Scheme With Fault (Dyn/Fault)

The pseudo-code for the second implementation is given below. An asterisk denotes pointer dereferencing. The
instruction that potentially causes a fault is the dereferencing of pointer variable falseOrFault . Normally, this variable
points to a memory location holding value FALSE. Thus, in the absence of interference, the code sequence will reset
inAS to false after executing the atomic sequence. However, before performing a rollforward, an interrupt handler
changes falseOrFault to an unaligned address. This fault is intercepted by the interrupt handler and thus allows it
to regain control after a rollforward. Obviously, this implementation only works on machines that require aligned
memory accesses, as is the case for most RISC processors. After regaining control, the interrupt handler has to change
the state of the faulting process such that it will be able to resume execution. This is most easily done by resetting
inAS to false and advancing the saved PC to the address stored in destAddr (i.e., by skipping the faulting instruction).

destAddr addressOf (theEnd)
inAS TRUE
atomic sequence

theEnd: inAS falseOrFault

7



This implementationweakens the semantics of inAS in a rather subtleway: the fault-causing instruction is executed
before inAS is reset to false. This is done to keep the number of overhead instructions low and to avert the danger of
a compiler optimizing away the fault causing instruction. Unfortunately, this means that an interrupt handler has to be
more careful before initiating a rollforward. As before, it first checks whether inAS is true. In addition, it has to check
whether the saved PC of the interrupted process points to an instruction before label theEnd. Only if both conditions
hold should a rollforward be initiated. Otherwise, it could happen that a process is interrupted after dereferencing
falseOrFault but before storing false to inAS. If only inAS were used, the interrupt handler would initiate a rollforward.
However, the fault causing instruction has been executed already and the interrupt handler would not be able to regain
control of the CPU; the interrupt would be lost. For the second check to work properly, the atomic sequence must
not consist of any instructions beyond label theEnd. In practice, this means that function calls cannot be permitted in
atomic sequences.

The above pseudo-code can be optimized in several ways. For example, destAddr and inAS can be merged into a
single variable if there is a distinguished address that cannot be a valid instruction address (e.g., zero or an odd address).
For brevity, we omit the assembly code produced when applying this optimization. On the Alpha, the resulting code
has six overhead instructions: four loads and two stores.

3.3 Hybrid Registration Scheme With Jump (Hyb/Jump)

The pseudo-code for the hybrid registration scheme is given below:

destAddr addressOf (theEnd)
inAS TRUE
atomic sequence
jump destAddr

theEnd:

It is identical to the one for the Dyn/Jump implementation, except that the final assignment “inAS FALSE” ismissing.
This is possible because registration is only a hint. The above code guarantees that whenever executing an atomic
sequence, inAS will be true and destAddr will point to the end of the atomic sequence. The opposite is not necessarily
true. An interrupt handler first checks whether inAS is true. If it is, the interrupted process might have been executing
an atomic sequence. For this to be the case, the saved PC of the process has to point to an instruction before label
theEnd and destAddr must point to an instruction preceded by a jump instruction. If these conditions hold and the
code between the saved PC and theEnd is “safe” to execute (i.e., does not involve any endless loops etc.), the interrupt
handler will rollforward the interrupted code sequence.

As registration is only a hint, interesting optimizations can be applied. Like before, destAddr and inAS can be
merged into a single variable. In addition, it is now possible to allocate this merged variable into some register that is
well-known to the interrupt handler. The above pseudo-code can therefore be implemented without any memory load
or store operations and yet the well-known register has a special purpose only while executing in an atomic sequence.
Using a register also has the added benefit that code following the atomic sequence is likely to quickly overwrite the
value in that register. This has the effect of automatically cancelling the registration of the previous atomic sequence.
For this purpose, it is best if the register is frequentlyused (such as a compiler temporary) and—to reduce the probability
of false hits—if instruction addresses have values that are unlikely to occur in ordinary computations.

On the Alpha, the example to increment a shared counter translates to the code shown below. Notice that this
code has only two instructions beyond what is needed for the atomic sequence: a load address and a jump (again,
overhead instructions are marked with an asterisk). That is, no memory accesses are necessary to implement mutual

8



exclusion.2 This is probably close to the minimum instruction count overhead that any dynamic registration scheme
will ever have. In essence, the first load corresponds to a “disable interrupts” instruction and the jump corresponds to
an “enable interrupts” instruction.

* lda r1, theEnd # load address of theEnd into r1
lda r3, sharedCounter # load address of sharedCounter
ldl r2, (r3) # load value of sharedCounter
addl r2, 1, r2 # increment counter
stl r2, (r3) # store back new value

* jmp (r1) # jump to address stored in r1
theEnd:

Note that implementations that use a jump also admit the implementation of interrupt priority levels in a straight-
forward and efficient manner. One could encode the priority level at which the sequence executes in an integer that is
placed between jump instruction and label theEnd. An interrupt handler can check this word and perform a rollforward
only if the interrupt priority is not higher than that integer. It is interesting to observe that this works properly even
in the presence of false hits leading to extraneous rollforwards. The integer following the jump simply decreases the
probability of false hits. Except for a slight increase in code size and the associated cache effects, this is a zero cost
extension.

3.4 Summary

The three implementations presented above can be summarized according to efficiency and the flexibility they afford.
For completeness, we also include Bershad et al.’s rollback technique. The table is ordered according to increasing
flexibility. In general, the more flexible a solution, the higher the overheads it imposes. The only exception to this rule
is Dyn/Fault, which is more restrictive, yet has one overhead instruction more than Dyn/Jump.

Technique: Restrictions on Atomic Sequences:
Rollback: At most one store to shared memory.
Hyb/Jump: No backward jumps or function calls and limit on maximum code size.
Dyn/Fault: No function calls.
Dyn/Jump: No limitations.

4 Experimental Results

This section presents the performance of the three implementations introduced in the previous section. For comparison,
we also report on the performance of various hardware based schemes and of sigprocmask, the Unix user-level
equivalent of disabling interrupts. There are three performance parameters associated with a software-based mutual
exclusion scheme: (1) overhead per atomic sequence, (2) overhead per interrupt, and (3) overhead per rollforward. In
practice, the overhead per interrupt is minimal (typically an integer range check) and insignificant compared to the cost
of fielding an interrupt and switching context to the interrupt handler. We therefore do not report on this overhead.

2On the Alpha, the load address instruction is usually translated into a load instruction, but this is mainly due to a limitation of the OSF/1
assembler. There are other, potentially more efficient, schemes to load a 64 bit constant.

9



4.1 Overhead Per Atomic Sequence

Table 1 presents the overhead, measured in CPU cycles, that occurs with every execution of an atomic sequence.
It includes the execution time of everything that has to be done in addition to the actual atomic sequence in order
to guarantee atomicity. For a hardware-based scheme, this is typically the time to disable interrupts before entering
the atomic sequence and to re-enable interrupts after leaving the atomic sequence. For software-based schemes, this
includes dynamic registration overheads, for example. The hardware on which we obtained these results consisted
of a DEC 3000 Model 600 AXP workstation with an Alpha CPU operating at 175 MHz and an HP 9000/735 with
a PA-RISC 1.1 CPU operating at 99MHz [Sit92, HP90b]. All tests were small enough to fit in the cache and the
reported results are the execution times when running in the cache (i.e., with a “warm” cache). Both machines provide
timers with a resolution of a single CPU cycle. Measuring execution time via these timers adds up to 3 cycles. For
consistency, we did not account for this overhead in any of the measurements. The numbers reported are the mode of
the execution time histograms obtained after running each test 1000 times. In almost all the measurements, more than
995 samples had the value of the mode.

DEC Alpha HP PA-RISC 1.1
Technique NULL LIFO FIFO NULL LIFO FIFO

sigprocmask 1682 3045 3363 1787 3578 3590
Dyn/Fault 13 27 24 12 24 27
Dyn/Jump 9 16 13 11 21 27
Hyb/Jump 6 5 6 5 8 12

DI 4 3 4 4 5 12
CIPL 4 5 6 14 24 29
splx 44 89 88 30 63 73

PALcode 13 13 13 n/a n/a n/a
LL/STC n/a 118 118 n/a n/a n/a

Table 1: Overheads of Different Atomicity Schemes in Cycles

The first test program, NULL, is an empty atomic sequence. In theory, the overheads measured with this test
should be the constant that gets added to the execution time of any atomic sequence. However, the code implementing
atomicity interacts with the code implementing the atomic sequence. For example, the former may compete with the
latter for registers and/or cache memory. Thus, the effective overheads may be bigger than what is observed for an
empty atomic sequence. The opposite can occur as well: an empty atomic sequences causes the atomicity code that
runs before the atomic sequence and the one that runs afterwards to be executed back to back. This can result in
additional CPU stalls. In this case, the overheads for an empty atomic sequence would be pessimistic. With these
considerations in mind, we also timed two non-trivial test programs. They are simple as well, but realistic. Test
program LIFO measures the time to add an element to a singly-linked stack and to remove that same element again.
This code involves two atomic sequences. Test program FIFO measures the time to enqueue an element into an
empty, singly-linked queue and to dequeue that same element. It also involves two atomic sequences. In both cases,
care was taken to write the programs in such a way that the compiler’s optimizer could not take any shortcuts. For
these two programs, the overheads should be twice as high as those for the NULL program. When comparing the
numbers reported in the NULL column with those in the LIFO and FIFO columns, it becomes apparent that this simple
relationship does not hold; the interaction between the atomicity code and the actual atomic sequence is not negligible.

We measured the following mutual exclusion techniques:

10



sigprocmask: Using sigprocmask to disable signal SIGALRM before entering the atomic sequence and to restore the
old signal mask after leaving the atomic sequence.

Dyn/Fault, Dyn/Jump, Hyb/Jump: See Section 3. For the Dyn/Jump and Hyb/Jump implementations, the plain
version and the version encoding an interrupt priority level in the word following the jump instruction had the
same execution times, so we report only one number.

DI: Disabling all interrupts before entering an atomic sequence and enabling all interrupts after leaving it; i.e., this
scheme does not admit interrupt priority levels. The Alpha architecture does not support this. However, the
implementation described in [Dig92] provides the required facilities in a chip specific fashion. These low-level
facilities normally are not accessible to kernel-level software. The measurements therefore had to be performed
in a small stand-alone system. For the PA-RISC, the techniquewas measured in aMach kernel that was extended
with the test programs.

CIPL: Changing interrupt priority level via inlined code. The same comments as for DI apply.

splx: This is the same as CIPL except that it adds the overhead of a function call. That is, the code to change the
interrupt priority level is no longer inlined.

PALcode: The Alpha architecture defines a Privileged Architecture Library (PALcode). This library code is invoked
via traps and executes in privileged kernel mode with interrupts turned off [Sit92]. We did not have the
opportunity to implement the benchmarks as PALcode yet, but found that it takes at least 13 cycles just to invoke
PALcode and return immediately from it. It is not possible to inline PALcode.

LL/STC: TheAlpha architecture provides load-linked and store-conditionally instructions to implementmultiprocessor-
safe shared data structures. We did not implement our benchmarks using these instructions but note that a single
atomic word move between two memory locations already has the high cost of 118 cycles.

The data in Table 1 shows that the overhead of sigprocmask is two orders of magnitude higher than that of any of
the other software based mutual exclusion schemes. Even if rollforward were expensive, the software-based methods
using rollforward would likely be more efficient overall. The table also indicates that the rollforward approach is
highly competitive even when compared to hardware-based methods. On the Alpha, even though DI is slightly faster
and CIPL is about equally fast as Hyb/Jump, it should be stressed that the former two rely on CPU and system
implementation specific details that are likely to change frequently. The fastest architecturally defined hardware-based
method on the Alpha is to implement each atomic sequence as a separate PALcode function. As the data shows,
Hyb/Jump is at least twice as fast as PALcode. On the PA-RISC, Hyb/Jump performs even better. Only DI is slightly
faster while all other hardware-based techniques are slower by at least a factor of two.

Furthermore, it should be pointed out that many OS kernels use a function call to change the interrupt priority
level. As shown in row “splx,” this is rather expensive. Finally, as the last row indicates, a pair of load-linked/store-
conditionally instructions has a surprisingly high cost. Considering this and the rather long list of conditions under
which a store-conditionally is (almost) guaranteed to fail [Sit92], this does not appear to be an effective scheme to
provide atomicity in a uniprocessor (and it probably was not meant to be so).

4.2 Overhead per Rollforward

The overhead per rollforward consists of two components: the time to check whether it is safe to do a rollforward and
the time to activate and return from the rollforward (i.e., switch context to the interrupted process and regain control
of the CPU). The second component is difficult to measure in a meaningful way as its cost is highly dependent on
the details of an implementation. Fortunately, if the rollforward handling is placed early on in the interrupt handling,

11



switching context to the interrupted process involves saving and restoring only a minimal amount of processor state.
That is, if implemented properly, this overhead should quite small (compared to other interrupt-overheads). The
first component can be measured easily and its cost should remain comparable across different implementations and
systems. It is non-zero if either the interrupt system does not trust in the pre-empted code or if the mutual exclusion
scheme has the potential for “false hits” (i.e., an interrupted sequence can be mistakenly identified as an atomic
sequence).

A rollforward is safe if performing it will not take “too much time” (meet a certain deadline or, at least, not take
forever) and if it ends with an instruction that will return control of the CPU to the interrupt handler. It is a well-known
result that the halting problem for any universal language is undecidable. It is therefore necessary to restrict the code in
atomic sequences such that safety can be decided efficiently. This is achieved by limiting the maximum length of the
atomic sequence and imposing the rule that no branch is allowed unless it can be statically determined that it branches
forward and that it does not jump outside the atomic sequence. If the mechanism to relinquish control to the interrupt
handler relies on a well-known register (such as Dyn/Jump and Hyb/Jump), it is also necessary to ensure that the code
sequence does not attempt to modify the well-known register. If the registration technique has the potential for false
hits (e.g., Hyb/Jump), it is also necessary to disallow any uses of the well-known register. Otherwise, rolling forward
code that was mistakenly identified as an atomic sequence could produce an incorrect result. Finally, to avoid security
holes, the code should be rolled forward in the context of the interrupted process instead of the context of the interrupt
handler.

On the Alpha, we measured the worst-case time to check the safety of a code sequence. As described in the
previous paragraph, checking safety for the Hyb/Jump scheme represents the worst case, because it uses a well-known
register and it has the potential for false hits. During these measurements, the maximum length of an atomic sequence
was restricted to a conservative 32 instructions. For example, the atomic sequences in the above benchmark programs
are all shorter than 7 instructions when using the Hyb/Jump technique.

It is important to do measurements under realistic conditions. In particular, the memory system state greatly
influences the results. The DEC 3000/600 workstation has an 8KB instruction cache, an 8KB data cache, and a 2MB
unified secondary cache. Suppose an interrupt handler has to check the safety of the code starting at address A. Just
prior to the interrupt, the CPU was executing in that address range. It is therefore likely that the instructions around A
are in the instruction as well as in the secondary level cache (the latter is a superset of the primary caches). As programs
typically do not load data from the address range they are executing in, it is unlikely that any of the instructions around
A reside in the primary data cache. We chose to perform our measurements in exactly this scenario: the instructions
to be checked are all in the secondary cache but none of them are in the data cache.

Our measurements indicate that the overhead OR to check the safety of a sequence that is N instructions long is
bounded as follows:

OR 73 375 cyc + N 25 375 cyc

For example, checking the safety of a sequence that is 16 instructions long takes less than 480 cycles or, at a clock rate
of 175MHz, less than 2 7 s .

4.3 Overall Benefit of Software Mutual Exclusion

Software mutual exclusion is an optimistic approach. It attempts to improve overall performance by optimizing the
common case at the cost of the, hopefully, rare case. This implies that the optimistic approach may fail if the rare
case occurs more frequently than anticipated. We have not yet had the opportunity to perform macro experiments that
would provide this information. However, we can at least test the idea based on a simple execution model.

We assume an execution model in which interrupts occur at a fixed rate RI . Similarly, atomic sequences are
executed at a fixed rate RA and have a duration of DA cycles each. This is illustrated in Figure 1. If we assume

12



DA

t

I1/R

A1/R

interrupt interrupt

atomic
sequence

Figure 1: Model of operation.

that interrupts sample the interval 1 RA randomly, the probability of an interrupt pre-empting an atomic sequence is
RA DA. Suppose that the software mutual exclusion scheme has a fixed overhead of OS cycles per atomic sequence
and an overhead of OR cycles per rollforward. Note that we ignore the per interrupt overhead. This cost is so small
compared to the cost of fielding an interrupt and switching context that we believe this is justified (on the Alpha,
this overhead is roughly 20 instructions). Also, OR does not include the time spent executing in the atomic sequence
because a hardware-based scheme would have delayed the interrupt by thatmuch. On the other hand, the only overhead
associated with a traditional approach, such as disabling interrupts, is the one that arises per atomic sequence. We
denote this byOH. Given these definitions, it is easy to derive an equation for the maximum interrupt rate below which
the software-based approach is faster:

RI
OH OS

DA OR

Note that the right hand side is independent of the rate RA at which atomic sequences are executed. As RA increases, the
probability of interference—and with it the overhead—increases. However, because atomic sequences are executed
more frequently, the benefit of using a software-based mutual exclusion scheme increases as well. Overall, the increase
in overhead is balanced by an equal increase in benefit and the cross-over point remains the same.

For concreteness, we work out an example for the Alpha workstation using the Hyb/Jump implementation. As
reported in Table 1, OS is roughly 6 cycles when using the Hyb/Jump technique on the Alpha. Assume that the
maximum length of an atomic sequence is 32 instructions. As the Alpha can issue up to two instructions per cycle,
we conservatively assume an average execution rate of 1 instruction per cycle giving DA as 32 cycles. Of the 32
instructions, we assume that, on average, half of them have to be rolled forward. According to the measurements
presented in the previous subsection, it takes at most 480 cycles to check the safety of a code sequence that is 16
instructions long. Conservatively, we set OR 480 cycles. On the other side, the best architecturally defined
hardware-based scheme on the Alpha is PALcode [Sit92]. As shown in Table 1, the overhead per PALcode invocation
is at least 13 cycles. Optimistically,OH is 13 cycles. With these values, we have:

RI
OH OS

DA OR

13 cyc 6 cyc
32 cyc 480 cyc

456 10 6 cyc 1

At the machine’s clock-rate of 175MHz, this corresponds to an interrupt rate of approximately 80 kHz. Under the
given model, the software-based method therefore outperforms the hardware-based scheme with any but the most
severe interrupt loads.

13



5 RelatedWork

As mentioned in the introduction, Bershad et al. propose a software-based technique for mutual exclusion on unipro-
cessors [BRE92]. Their approach is based on rollback instead of rollforward. It also differs from our approach in
several more specific ways. First, their solution is limited to atomic sequences that contain only a single store to shared
memory, whereas our approach permits multiple stores. It is often more convenient, and in the end more efficient, to
implement shared data-structures via sequences that require multiple stores to shared memory (e.g., see [Mas92]).

Second, our approach supports efficient lock-free solutions, whereas the earlier solution was designed for a lock-
based scenario. We are interested in lock-free data-structures for four reasons: they can be used to share data with
interrupt handlers, there is no potential for deadlock, there is no locking overhead, and non-updating operations
can proceed and complete concurrently. This is in contrast to the motivation for using lock-free data-structures on
multiprocessors. There, as argued by Herlihy [Her93], the interest is founded mainly on the fault-tolerance properties
of lock-free data-structures.

Third, our hybrid registration scheme allows inliningof atomic sequences, whereas their static registration scheme
severely restricts the number of atomic sequences. The bottom line is that rollforward makes software-based mutual
exclusion a much more widely applicable technique.

Using rollforward to guarantee atomicity is not a new idea. For example, it has been used successfully in the
VAX runtime system of the Trellis/Owl language [MK87]. There, rollforward was implemented by emulating the
instructions from the point of interruption to the end of the atomic sequence. We do not believe that emulation is
feasible in the applications we envision. The complexity and overheads involved would be simply too big. Another
shortcoming is that the Trellis/Owlwork does not address any of the operating system issues raised by software mutual
exclusion. Being a language system, it is unclear whether the same techniques could be generalized to other languages
or supported in a language-independent manner.

Rollforward is also mentioned in [Ber93]. That work appears to dismiss rollforward as a practical solution for
two reasons: (a) execution of code on behalf of another thread and (b) page-faults. It is true that executing code on
behalf of another thread is difficult. However, we contend that it is feasible and efficient to let rollforward occur in
the preempted thread’s context simply by ensuring (e.g., via code-inspection) that it will relinquish control of the CPU
in a timely manner. We also discussed how page-faults can be handled. In particular, restricting code and data to be
(individually) contained in a single page is practical for the problem studied in [Ber93]. We would also like to point
out that with rollback it would be difficult to implement primitives that need to update multiple words atomically. For
example, a simple compare-and-swap2 operation that compares and conditionally updates two words is much easier
to implement with rollforward. In [Mas92], Massalin found this primitive to greatly simplify the implementation of
certain lock-free data-structures. There is good reason to belief that there are other multi-word operations that would
be useful for constructing lock-free data-structures. Rollforward gives the flexibility to do so.

Another system that employed rollforward is Scheduler Activations [ABLL91]. Unlike Trellis/Owl it does not use
rollforward to achieve mutual exclusion. Instead, it is used to avoid deadlock. Scheduler Activations use lock-based
synchronization. For performance and liveness reasons, it is undesirable to suspend a process while it is holding a
lock. One could either avoid this situation or recover from it. Scheduler Activations take the latter approach. That is,
whenever a process is suspended while holding a lock, it is rolled forward to the point where it releases the lock. Even
though the reason for rollforward is very different from achieving mutual exclusion, the implementation the authors
describe is not limited to Scheduler Activations. Unfortunately, the paper gives only a superficial treatment of the
issues involved with rollforward. It does not give any indications as to the cost or limitations of the technique.

Finally, [SCB93] presents a technique called optimistic interrupt protection. The idea is to use delayed (lazy)
evaluation to reduce the number of times that expensive interrupt level changing instructions have to be invoked.
What is interesting is that the implementation of this technique is one particular realization of the more general

14



rollforward technique. Due to the entirely different focus, that work makes no attempt to generalize the technique into
a synchronization mechanism that is useful at the user as well as kernel-level. As a matter of fact, the paper does not
make a connection between optimistic interrupt protection and rollforward.

6 Concluding Remarks

This paper describes a software-based approach to mutual exclusion on a uniprocessor. The approach uses rollforward
rather than rollback to recover when an atomic sequence is interrupted. Rollforward is more flexible than schemes
based on rollback in that it allows multiple stores. Atomic sequences with multiple stores can be used to construct
powerful “primitives” which, in turn, can be used to simplify the implementation of lock-free data-structures. Micro-
experiments show our approach to be as efficient as, and in many cases more efficient than, hardware-based mutual
exclusion mechanisms. We conclude this paper by making some observations about the mechanism.

First, we described that page faults present a more serious problem when using rollforward instead of rollback.
With rollback, page faults are a problem only if an interrupt handler needs to inspect the interrupted code in order to
determine whether it interrupted an atomic sequence [BRE92]. With rollforward, there is always a potential for a page
fault during rollforward. On the other hand, it is much easier to use designated sequences with rollforward because
false hits are tolerable. The Hyb/Jump techniques fully exploits this fact.

Second, even if a hardware-based mechanism is more efficient, a software-based methodmay be preferable because
it is equally applicable in unprivileged user-mode as in kernel-mode. This is particularly useful for software that must
execute efficiently in either environment, for example, OS servers that can be executed in either user space or the
kernel.

Third, the ability to inline atomic sequences is important. Many modern machines use direct-mapped caches.
Thus, every branch to a subroutine has the potential to evict cache lines due to collisions. For example, we reported the
PALcode invocation overhead on the Alpha as 13 cycles (see Section 4). However, in practice, this overhead is often
in the 30 cycle range due to cache effects (PALcode is located at an operating system fixed address and therefore not
inlinable). As the gap between memory system and CPU performance continues to grow [HP90a, Pri94], techniques
that yield good cache performance will become ever more important. Software-based methods that use designated
sequences, a dynamic, or a hybrid scheme to register atomic sequences can all be inlined easily.

Fourth, our experience is that rollforward is very practical. For example, all of our methods can be implemented
via a simple C pre-processor macro with the GNU C compiler. These macros take a single argument: a sequence of
instructions that should be executed atomically. As each macro presents the same interface, software implementing
atomic sequences can be written independently of which mutual exclusion scheme is used in the end. GNU C is
powerful enough to allow writing the macros in a manner that is safe even when code optimizations are applied. This
is a crucial feature. Without it, inlining of atomic sequences could not be done safely. Another demonstration of
practicality is that it is surprisingly easy to implement rollforward recovery in the context of Unix signal processing.
We used a slight variation of the Dyn/Jump technique to implement sigprocmask and its associated functions. Except
for a few details, the implementation provides Unix semantics at a fraction of the cost of the traditional implementation
involving a system call.3

Fifth, we enumerate a few applications of software-based mutual exclusion techniques using rollforward. As the
technique is non-blocking, it can be used to share data between interrupt handlers and normal kernel mode or even
user mode code. Also, it is directly applicable if page-faults are impossible (e.g., non-pageable part of an OS kernel)
or if page-faults are transparent (e.g., within single Unix process). As discussed in Section 2, there are a number of
ways to make rollforward work even if page-faults are not transparent. Once again, each solution provides a different

3The limitation of the user-level implementation of sigprocmask is that signal stacks cannot be handled properly. Also, for simplicity, no attempt
was made to emulate the semantics for signals that can stop a process (e.g., SIGTSTP, SIGTTOU, and SIGTTIN).

15



tradeoff between flexibility and performance. Finally, the applicationwhere this technique can be applied most readily
and extract the largest performance benefit is in Unix processes that frequently execute code that needs to be protected
from asynchronously executing signal handlers.

Finally, there are countless low-level issues that arise when implementing an interrupt handler that supports
software mutual exclusion. We conclude by mentioning just one. The question is whether a processor should disable
all interrupts when dispatching to a handler or just some of them. It is intuitive that the code that checks for and
initiates a rollforward is itself an atomic sequence. If a processor disables all interrupts before dispatching to this
code, there is no problem. However, if only some interrupts are disabled, it is necessary to guarantee the atomicity via
software. An interrupt handler could disable all remaining interrupts as quickly as possible, but this still leaves a small
window duringwhich an interrupt handler could be pre-empted. An interrupt-handler therefore has to check whether it
interrupted another handler and, if so, take the appropriate recovery action. While not extremely difficult, this is clearly
more complicated than if the number of outstanding interrupts were limited to one. For software mutual exclusion,
it is therefore desirable that the processor invokes an interrupt handler with all interrupts disabled. This is the case
for PA-RISC 1.1 but unfortunately not for an Alpha using either the VMS or OSF/1 PALcode. However, because
PALcode is easy to replace—it is copied from non-volatile memory to normal RAM at boottime—this deficiency is
easily corrected. As a matter of fact, it is even possible to move the software mutual exclusion part of an interrupt
handler entirely into PALcode. From an operating system perspective, it would then appear as if software mutual
exclusion were a part of the Alpha architecture.

References

[ABLL91] T.E. Anderson, B.N. Bershad, E.D. Lazowska, and H.M. Levy. Scheduler activations: Effective kernel
support for the user-level management of parallelism. In Symposium on Operating System Principles,
1991.

[Ber93] Brian N. Bershad. Practical considerations for non-blocking concurrent objects. In Proceedings of the
13th International Conference on Distributed Computing Systems, pages 264–273, May 1993.

[BRE92] Brian N. Bershad, David D. Redell, and John R. Ellis. Fast mutual exclusion for uniprocessors. In
Fifth Symposium on Architectural Support for Programming Languages and Operating Systems, pages
223–233. ACM, October 1992.

[Dig92] Digital Equipment Corporation. DECchip 21064-AA Microprocessor Hardware Reference Manual. Dig-
ital Press, Maynard, Massachusetts, first edition, October 1992. Order number EC-N0079-72.

[GS92] Ruth E. Goldenberg and Saro Saravanan. VMS for Alpha Platforms—Internals and Data Structures,
volume 1. DEC Press, Burlington, Massachusetts, prelimenary edition, 1992. Order number EY-L466E-
P1.

[Her93] Maurice Herlihy. A methodology for implementing highly concurrent data objects. ACM Trancsactions
on Programming Languages and Systems, 15(5):745–770, November 1993.

[HP90a] John L. Hennessey and David A. Patterson. Computer Architecture: A Quantitative Approach. Morgan
Kaufmann Publishers, Inc., Palo Alto, 1990.

[HP90b] Hewlett-Packard. PA-RISC 1.1 Architecture and Instruction Set Reference Manual. Hewlett-Packard,
Cupertino, California, first edition, November 1990. Part number 09740-90039.

16



[LMKQ88] Samuel J. Leffler, Marshall Kirk McKusick, Michael J. Karels, and John S. Quarterman. The Design and
Implementation of the 4.3BSD UNIX Operating System. Addison-Wesley, 1988.

[Mas92] Henry Massalin. Synthesis: An Efficient Implementation of Fundamental Operating System Services.
PhD thesis, Columbia University, New York, NY 10027, September 1992.

[MK87] J. Eliot B. Moss and Walter H. Kohler. Concurrency features for the Trellis/Owl language. In European
Conference on Object-Oriented Programming, number 276 in Lecture Notes in Computer Science, pages
171–180. Springer-Verlag, 1987.

[Pri94] Betty Prince. Memory in the fast lane. IEEE Spectrum, 31(2):38–41, February 1994.

[SCB93] Daniel Stodolsky, J. Bradley Chen, and Brian N. Bershad. Fast interrupt prioritymanagement in operating
system kernels. In Proceedings of the Second Usenix Workshop on Microkernels and Other Kernel
Architectures, pages 105–110. Usenix, September 1993.

[Sit92] Richard L. Sites, editor. Alpha Architecture Reference Manual. Digital Press, Burlington,Massachusetts,
1992. Order number EY-L520E-DP.

17


