
14

base types in any byte order. USC requires stub parameters tha t give the lengths of any var iable
length a r ray a rguments. The code below copies one var iable length character a r ray to another. len
gives the cur ren t length of the a r rays.

void foo (len, str1, str2)
int len; /* Must be a native type */
char str1[len]; /* May be native or not */
char str2(1, 4, 4, <0>)[len];/* May be native or not */

{
str1 = str2;

}

Any USC stub tha t conta ins a var iable length a r ray definit ion as a parameter must have a
na t ive in teger parameter whose name matches the name given in the a r ray definit ion .

USC suppor t s the in line qua lifier found in many C compilers. A USC stub decla red as in line
will genera te an in line funct ion . In addit ion USC suppor t s the qua lifier m acro which direct s USC to
produce a C macro implementa t ion of the specified stub. Curren t ly the qua lifier m acro may only be
used on stubs return ing type void.

The stub tcphdr defined in F igure 1 shows how to define a stub to copy a TCP header from net -
work format to DecSta t ion 5000 na t ive format . The genera ted C code swaps bytes and rea ligns the
da ta . Less t radit iona l stubs can a lso be genera ted. It is often usefu l to read and wr ite fields in to a net -
work header stored in network format . A stub tha t peeks in to a TCP header in network format and
returns the offset field in a four byte, big-endian , in teger would be defined as follows:

int(4,4,4,<3,2,1,0>) tcpgetoff (net_hdr *hdr)
{
return hdr->off;

}

USC a lso provides for in -place modifica t ion of a da ta va lue. The pragma alias can be used to
inform USC tha t two parameters will be a liased every t ime the procedure is ca lled. To genera te a stub
which is in tended to do an in -place t ransla t ion of a tcp header one would use the following USC stub
definit ion :

void tcphdr(net_hdr *src, native_hdr *dest)
{
#pragma alias(src,dest)
*src = *dest;

}

The stub genera ted assumes tha t the parameter dest is a liased with the parameter src. On machines
where the layout of network_hdr and na t ive_hdr a re the same no code will be genera ted. USC will
genera te cor rect code if parameters to a stub a re a liased regardless of the use of the a lias pragma.
However, such code will not be opt imal. Note tha t on ly poin ters may be a liased in th is way and
inplace conversion between two types with differen t lengths can be dangerous.

13

int a(4,4,4,<3..0>);

When descr ibing a st ructure, the byte orde r field must be zero. USC der ives the actua l in for -
mat ion from the annota t ions of the st ructure’s fields. This nota t ion can descr ibe any C a r ray type. For
example an a r ray of 10 shor t s where each shor t is stored in the last two bytes of a word could be
descr ibed as follows:

short a(2,4,4,<2,3>)[10];

The annota t ions found a fter a field name are iden t ica l to the annota t ions found a fter a var i-
able except tha t the th ird element specifies the exact offse t in bytes from the beginning of the st ruc-
ture. Given the offset USC can determine the a lignment of any field in a st ructure from the a lignment
of the st ructure.

USC uses two separa te annota t ions to descr ibe bit -fields. Each bit -field name is annota ted
with the format of the under lying in teger type. If severa l bit -fields a re conta ined in the same in teger
type they will have the same offset . After the bit -field size specifier another annota t ion specifies which
bit s in the under lying in teger make up the bit -field. This annota t ion is ana logous to the previous one,
except tha t a ll of the va lues a re in bit s ra ther than bytes and the offset field must be zero. Note tha t
the bit order of a bit -field is descr ibed rela t ive to the byte order of the under lying in teger type. For
example two four bit bit -fields a r ranged in the same byte in lit t le-endian bit order a t offset 4 from the
beginning of a st ructure would be defined as follows:

u_int x2(1,1,4,<0>):4(4,8,0,<4..7>),

off(1,1,4,<0>):4(4,8,0,<0..3>);

Note tha t type annota t ions a re unrela ted to the host USC genera tes stubs for. Thus it is possi-
ble to genera te stubs for an In tel x86 which conver t s a type in na t ive DEC C, VAX format to na t ive gcc
SPARC format .

I.3) USC Type Com patibility

The in t roduct ion of da ta layout annota t ions in t roduces th ree dist inct levels of type compat i-
bility in to USC. Two USC types a re type com patible if their under lying ANSI C types a re st ructura lly
compat ible. Two USC types a re copy com patible if they a re type compat ible and their annota t ions dif-
fer on ly in byte order ing. Two USC types a re iden tical if they a re type compat ible and have ident ica l
annota t ions.

I.4) USC Stu b de fi n ition s

Stubs a re defined in USC as funct ions a re defined in ANSI C. The user defines the parameters
and return va lue to a stub exact ly as they would in a C funct ion except tha t USC’s type system is
used. The body of USC stubs a re defined using a rest r icted subset of the ANSI C sta tement grammar.
Only expression sta tements and return sta tements a re suppor ted. Sta tements a re defined using a
rest r icted subset of the C expression grammar. The key fea ture of th is expression grammar is tha t it
works on annota ted USC types. Thus assignments will cor rect ly conver t va lues when assign ing
between to st ructures with differen t layouts.

In the USC expression grammar component select ion (-> and .), a r ray subscr ipt ion([]), indi-
rect ion (*), sizeof and address of (&) a re suppor ted on a ll appropr ia te types. The assignment opera t ion
is suppor ted between a ll type compat ible USC types. Unlike C, assignment between a r ray types is
suppor ted. The type of a r ray indices and the type of the operands of the opera t ions addit ion(+), sub-
t ract ion(-), mult iplica t ion(*) and division(/) must be iden t ica l to one of the na t ive base types given in
the pragmas a t the beginning of the USC program.

Parameters to USC stubs must be either poin ters to any USC type, or a type copy compat ible
to a na t ive base type. The va lue returned by a USC stub must be type void, a poin ter to any USC type,
or a type copy compat ible to a na t ive base type. Thus USC stubs can take as parameters or return

12

Appe n dix I) USC Lan gu age De scription

I.1) USC Type Syste m

The USC type system is a subset of the ANSI C type system with a few extensions. Given the
specia l purpose na ture of USC only those ANSI C types which a re commonly found in network head-
ers were included in the USC type system. As sta ted ear lier the USC type system is simple and sup-
por t s the type void and the base types char, short, in t, long, and enum . In addit ion USC suppor t s
structures and arrays of these base types, as well as bit-fields. Unions a re suppor ted, a lthough incom-
pletely as un ion copies a re not cur ren t ly a llowed. Poin ter types a re on ly a llowed in stub parameter
and return va lue decla ra t ions. Poin ter types a re used to pass da ta by reference and to return va lues
of the address of opera t ion . The typedef opera t ion is suppor ted. USC does not suppor t floa t ing poin t
types, or a rbit ra ry poin ter-based objects.

While C does not suppor t the decla ra t ion of var iable length a r rays, C programmers often get
a round th is rest r ict ion by a lloca t ing a r rays la rger than tha t defined in the type. To suppor t th is the
USC type system is modified to a llow the user to decla re a var iable length a r ray. Var iable length
ar rays may appear standa lone or as the last element of a st ructure. A var iable length a r ray is defined
as follows:

int a[name];

where n am e is a C var iable name. The name used in the type definit ion must cor respond to
an in teger parameter in the USC stub definit ion . This parameter is used to pass the actua l size of the
ar ray to the stub.

The USC type system differs from the ANSI C type system in tha t USC a llows differen t enu-
mera t ions to define the same enumera t ion constan t . This extension is needed to a llow USC users to
define stubs which conver t between enumera t ions with differen t va lues for the same constan t .

I.2) USC Data Layou t An n otation s

USC provides a nota t ion for precisely defining the layout of each var iable passed to a USC
stub. USC makes no assumpt ions about the byte order of any defined type. The input file must pre-
cisely specify the cor rect byte-order and offset of every type. Pragmas a re used to in form USC of the
na t ive format in the compiler /host combina t ion tha t will be used to compile and execute the genera ted
stub.

All USC annota t ions a re list s of four proper t ies. The exact proper t ies in the list is determined
by context . For example, a USC annota t ion found a fter a var iable or parameter name is defined as fol-
lows:

int a(tsize, msize, alignment, byte order);

Where ts ize is the number of bytes needed to represen t the da ta type and m size the number
of bytes the compiler has a lloca ted to store th is da ta type. ts ize must be less than or equa l to m size .
The a lignment field is a guaran tee to the compiler tha t the address of the annota ted var iable modulo
align m e n t is equa l to zero. An a lignment of 1 will a lways genera te cor rect code. In genera l the h igher
the a lignment specified the bet ter the code USC will genera te. It is possible to specify an a lignment
for a type tha t is more rest r ict ive than the a lignment used by the compiler. The bye torde r field is
used to specify which memory bytes, in what order, a re used to represen t a given type. The syntax of
the byte orde r field is a comma-separa ted list of ts ize dist inct in tegers between 0 and m size -1
enclosed in angle brackets(<1,2,3>). A range may be used to abbrevia te a list of in tegers. A range has
the form n ..m and is equiva len t to the list n , n+1, .. m if m > n . If n>m the range n ..m is equiva len t to
the list n , n -1, .. m. This list is in terpreted as a t ransformat ion from the byte number of the var iable to
the offset of tha t byte from the sta r t of the var iable in memory. The USC type annota t ion for a 4 byte
word a ligned big-endian in teger is:

11

would be to in tegra te the USC annota t ions in to the C programming language direct ly. While USC
automates the genera t ion of byte order and a lignment specified code the protocol wr iter is st ill
responsible for invoking tha t code in the cor rect places in the protocol implementa t ion . In a USC-
enhanced C the programmer would only have to cor rect ly annota te any network da ta - the compiler
would handle any conversions needed.

Exist ing presen ta t ion layers a re recognized as the most ser ious remain ing bot t leneck in the
network da ta pa th[1]. USC could provide the basis for a simpler and much faster presen ta t ion layer
stub compiler. The cor rect way to do th is would probably be to select an in termedia te form and wr ite a
layer on top of USC tha t suppor t s the marsha ling of a rbit ra ry poin ter based objects in to and out of
network form. Such a USC based stub compiler would be able to genera te stubs for the en t ire C type
system with a per formance close to tha t of a simple da ta copy in most common cases.

 6) Con clu s ion

We have designed and implemented a stub compiler tha t is flexible enough to elimina te the
need for the manual genera t ion of byte order and a lignment dependent code in network software
implementa t ions. This stub compiler is fast enough tha t users have no incent ive to bypass the stub
compiler. Perhaps most impor tan t ly th is work shows tha t presen ta t ion layer processing is not in t r in -
sica lly slow and tha t ca refu l applica t ion of modern compiler t echniques can produce stub compilers
tha t genera te near ly opt imal code.

Re fe re n ce s

1. A. V. Aho, R. Seth i, and J . D. Ullman, Compilers: Pr inciples, Techniques, and Tools. Addison-
Wesley, 1986.

2. D. D. Clark and D. L. Tennenhouse, Architectura l Considera t ions for a New Genera t ion of
Protocols. In Proceedings of the SIGCOMM’ 1990.

3. D. D. Clark, V. J acobson , J . Romkey, and H. Sa lwen, An Analysis of TCP Processing Over-
head, IEEE Communica t ions Magazine, J une 1989.

4. C. Huitema and G. Chave, Measur ing the Per formance of an ASN.1 Compiler, INRIA.

5. C. Huitema and A. Doghr i, “A High Speed Approach for the OSI Presen ta t ion Protocol”, In H.
Rudin and R. Williamson, editors, Protocols for High-Speed Networks, E lsevier Science Pub-
lishers, May 1989. IFIP.

6. ISO 8824 Specifica t ion of Abst ract Syntax Nota t ion One.

7. ISO 8835 Specifica t ion of Basic Encoding Rules for Abst ract Syntax Nota t ion One.

8. H. Lin , Est imat ion of the Opt imal Per formance of ASN.1/BER Transfer Syntax. Computer
Communica t ions Review, J u ly, 1993.

9. R. G. Minnich , Mether-NFS: A Modified NFS Which Suppor t s Vir tua l Shared Memory, In the
Proceedings of the Dist r ibu ted and Mult iprocessor Systems (SEDMS IV) Conference, 1993.

10. Sun Microsystems, Inc., XDR: Externa l Data Representa t ion , 1987.

11. C. A. Thekka th and H. M. Levy, Limits to Low-Latency Communica t ion on High-Speed Net -
works, ACM Transact ions on Computer Systems, Volume 11 Number 2, May 1993.

10

and stores tha t can be done. For example, on a Sparc, if the source da ta is known to be a ligned on 2
byte boundar ies, then da ta can be read in chunks of 2 bytes. A chunk of da ta which is read or wr it ten
is ca lled a bucket. The first pass of the opt imizer par t it ions the bit s of the source and dest ina t ion in to
buckets.

USC t ransla tes the da ta conversions in to a ser ies of bit assignments, which may be one of
three types: pla in , sign , and zero. A pla in bit copy is the standard bit i get s bit j. A sign bit copy sign i-
fies tha t bit i get s bit j, and tha t bit j is copied to more than one bit in the dest ina t ion . This is used to
simplify cer ta in sign extension opt imiza t ions. A zero bit copy indica tes tha t bit j get s 0. This is used to
differen t ia te between bit s in the dest ina t ion which must be zero, and bit s in the dest ina t ion which can
have garbage left in them.

The in termedia te code is then t ransformed in to a ser ies of bucket assignments of the form

out_i <- ((in_j << shift_1) & mask_1) | ((in_k << shift_2) & mask_2) | .

which a re then opt imized using a lgebra ic simplifica t ions. Then the opt imizer applies var ious peephole
opt imiza t ions and passes the simplified in termedia te code to the code genera tor, which is responsible
for genera t ing the C code using a min imal number of registers.

Unlike most exist ing stub compliers (and most manually genera ted stubs), USC will opt imize
across filed boundar ies in st ructures. For instance, if two shor t fields may be cor rect ly copied as a sin-
gle word, USC does so. The opt imizer and code genera tor a re specifica lly designed to be as genera l as
possible. The user on ly needs to specify the na t ive byte order, register size, and the types of load and
store opera t ions to genera te code for a new machine.

5.2) USIT: Th e USC In fe re n ce Tool

The cor rectness of a USC stub is en t irely dependent upon the accuracy of the da ta layout
annota t ions. For headers in network format th is is genera lly not a problem because the precise da ta
layout of the header is included in the standard and once a USC type has been defined for tha t layout
it can be used on a ll host s and compilers. Get t ing the cor rect layout of the na t ive compiler format of a
network header is another mat ter. It is ra rely specified by the compiler documenta t ion and it changes
for each host /compiler pa ir. Annota t ing such types manually could be as er ror prone and t ime con-
suming as wr it ing byte-swapping code by hand.

To elimina te th is problem we have wr it ten the USC Inference Tool (USIT) to determine the
a lignment and byte order of na t ive var iables. USIT takes a file conta in ing va lid C type and var iable
decla ra t ions without any USC annota t ions and outputs a USC progam with those types and var iables
proper ly annota ted for the loca l compiler /host pa ir. USIT genera tes and runs a C program to in fer the
annota t ions.

5.3) Cu rre n t Lim itation s an d Fu tu re Work

USC assumes tha t the machine in quest ion has 8 bit bytes and the size of a ll types other than
bit -fields a re mult iples of 8 bit bytes in length . USC a lso assumes tha t a ll in tegers a re represen ted in
two’s complement form. USC has not been tested on word addressable machines; however, no major
difficult ies a re foreseen . As sta ted ear lier USC cannot be used to represen t ing dynamic encodings
such as ASN.1/BER.

We plan to extend USC to add suppor t for the C equa lity opera tor (==) for a ll types including
st ructured types. Protocols often must map some arbit ra ry key to some loca l sta te. This is often done
using BCMP, which can have unpredictable resu lt s on unpacked st ructures. The USC annota t ions
provide enough informat ion to genera te cor rect st ructure compar isons tha t a re sta t ica lly opt imal. We
plan to add a pragma tha t will a llow the user to specify the order in which to compare the bytes in a
st ructure.

The extension to USC tha t would most sign ificant ly improve the protocol wr it ing process

9

In the previous test s the da ta st ructure to be copied was a lways in the cache. In an actua l pro-
tocol applica t ion the a r r iving header is ra rely in the cache. To determine the poten t ia l effect of cache
misses on stub per formance we ran modified test s on the HP 735 for stubs encoding the UDP and big
header. The HP 735 has a 256k direct mapped cache. By stagger ing the headers to be copied a t 256
kilobyte in terva ls the test s cause a cache miss on every copy (four per round t r ip). The resu lt s of th is
test a re given in Table 6. The USC main ta ins a reduced but sign ificant per formance advantage over
the other stub genera t ion techniques even when cache effect s a re included in the test . Clear ly the per -
formance of XDR is st ill tota lly unacceptable. However the per formance of ASN.1/BER stubs gener -
a ted by MAVROS is surpr isingly close to the per formance of the noth stubs.

The fina l quest ion is whether or not the poten t ia l per formance ga in in header marsha ling
code could a ffect the measured per formance of actua l protocols. A rough est imate of the poten t ia l per -
formance effect s of using a stub genera t ion technique to marsha l headers can be obta ined by compar-
ing the round t r ip encoding cost s for the big header to the round t r ip per formance of actua l protocol
implementa t ions. Table 7 gives the ra t io of the tota l t ime required to marsha l a big header four t imes
to the round t r ip t ime recorded for th ree differen t protocol implementa t ions on the Dec Sta t ion 5000/
200: Ult r ix user-to-user UDP/IP (1200 microsecond round t r ip), Mach kernel-to-kernel UDP/IP (800
microsecond round t r ip), and the RPC over ATM protocol presen ted in [10] (170 microsecond round
t r ip).

These resu lt s show tha t for standard protocol implementa t ions the per formance advantage of
USC over n toh stubs would probably be undetectable. However USC might produce detectable per for -
mance improvements when used to marsha l headers of very ligh tweight protocols. Clear ly, the cost of
using heavyweight stub compiler such as rpcgen to genera te stubs for 82 bytes of network header
could have a not iceable effect on standard protocols even when running on a reasonably fast machine.
For very low la tency RPC implementa t ions the cost of using such stubs could domina te the rest of the
implementa t ion .

5) Discu ss ion

5.1) USC Im ple m e n tation

USC genera tes code by min imizing loads and stores and doing a lgebra ic opt imiza t ions[1] to
the resu lt ing mask and sh ift opera t ions. The opt imizer ’s first pr ior ity is to min imize memory access.
The test da ta we’ve seen suppor t s the asser t ion tha t memory access is the pr imary h indrance to effi-
cien t stubs. The a lignments of source and dest ina t ion a re used to determine the maximum sized loads

HP 735 ntoh usc rpcgen rpcgen-
opt

asn1/
ber

asn1/
opt

udp hdr 4.7 3.8 22 9 10 6.3

big hdr 37 16 212 165 46 19

Table 6: Cache Effects

Dec 5000
RTT usc ntoh rpcgen-

opt
asn1/
ber

1,200 usec 2% 6% 30% 16%

800 usec 3% 9% 45% 24%

170 usec 13% 42% 212% 114%

Table 7: Relative Costs

8

gen with the opt imizer enable. The UDP header test shows some sign ificant improvement bu t the
opt imized stubs a re st ill an order of magnitude slower than USC genera ted stubs. The big header test
shows only minor improvement . The reason for th is is tha t the XDR libra ry implements on ly four
macros tha t the rpcgen program uses to opt imize the conversion of shor t s and longs in XDR defined
st ructures. Unfor tuna tely the big header conta ins char ’s and fixed length opaque byte st r ings which
rpcgen does not opt imize. The th ird row of Table 4 gives the per formance of USC genera ted stubs tha t
encode the da ta st ructures in to XDR format . These resu lt s clear ly show tha t it is the XDR/rpcgen
implementa t ion ra ther than the XDR encoding scheme tha t causes the poor per formance of rpcgen .
Closer examina t ion of the XDR libra ry helps expla in th is problem. The standard XDR libra ry incurs
a t least one procedure ca ll per base type and another procedure ca ll for each word of the encoded for -
mat . The poor per formance of XDR stubs has been noted by others[8][3].

Next the per formance of the MAVROS[3] ASN.1 complier was tested. As in XDR the encoded
forms of the ASN.1 headers differ grea t ly from the standard header definit ions. In addit ion the big
header was simplified by replacing the 6 byte Ethernet address fields with 4 byte in tegers. The resu lt s
of th is t est a re given in Table 5.

The first row of the table gives the per formance of MAVROS stubs using the ASN.1/BER syn-
tax. The per formance of ASN.1/BER stubs is much worse than tha t of USC or n toh stubs bu t is sign if-
ican t ly bet ter than XDR stubs (see Tables 2-4). Again the quest ion is whether or not the poor ASN.1
per formance is a resu lt of the ASN.1/BER syntax or is simply a funct ion of MAVROS. For tuna tely
MAVROS suppor t s an exper imenta l simplified ASN.1 encoding scheme. The last row in Table 5 gives
the resu lt s of using MAVROS to genera te stubs using the exper imenta l ASN.1 encoding format . These
stubs per form much bet ter than the ASN.1/BER stubs. The poor ASN.1 per formance is clear ly caused
by the dynamic format defined in BER.

Note tha t in [3] the repor ted resu lt s on th is new encoding format were discouraging. There
are severa l possible explana t ions for the discrepancy between their resu lt s and ours. The first expla -
na t ion is tha t the test cases used in the paper were la rge and complex da ta st ructures tha t require the
use of dynamica lly a lloca ted storage. While the paper cla ims to have elimina ted th is bias by imple-
ment ing a specia l version of malloc there may have st ill been sign ificant malloc overhead. For small
simple header da ta st ructures the ligh tweight syntax is clear ly super ior. The second explana t ion
could be tha t while MAVROS genera tes good code for the ligh tweight syntax it does not genera te
grea t code. It makes lit t le use of macros and st ill requires severa l procedure ca lls per da ta st ructure.

Sparc 1 Sparc 10 Dec 5000 486 HP 735

long udp big long udp big long udp big long udp big long udp big

rpcgen 20 64 679 4 16 148 15 51 462 10 39 372 5.7 19 198

rpcgen-opt 20 25 530 4 15 110 14 21 360 11 14 299 5.8 5.6 151

usc-xdr 1.7 6.5 77 0.5 0.7 9 1.0 1.2 13 0.5 0.7 7

Table 4: XDR Performance (usec)

Sparc 1 Sparc 10 Dec 5000 486 HP 735

long udp big long udp big long udp big long udp big long udp big

asn.1/ber 12 46 263 2.7 9 52 11 37 194 10 29 160 2.4 7.7 37

asn.1/opt 5 17 78 1 3.3 12 4.4 16 47 4 11 26 1 3.2 8.5

Table 5: ASN.1 Performance

7

Surpr isingly USC appears to genera te bet ter code than gcc in severa l cases. The reason for
th is in the UDP header test case is tha t the USC program defining the UDP header specified 4-byte
a lignment and the compiler assumed 2-byte a lignment . USC safely genera tes word loads and stores;
gcc must genera te shor t loads and stores. This opt imiza t ion accura tely reflects typica l network code:
in genera l the network UDP header is four byte a ligned in packets and it is easy to force the a lign-
ment of the loca l instance of the UDP header to a four byte boundary. The per formance of a USC stub
which copies a two byte a ligned UDP header is iden t ica l tha t of st ructure copy. For the big header test
case on the two Sparcs, gcc uses memcopy to copy the bytes, which is apparen t ly in fer ior to the
st ra igh t in line code genera ted by USC for da ta st ructures of th is size(82 bytes). From th is t est case we
conclude tha t the per formance of USC is effect ively opt imal in the degenera te case where no byte
swapping is required.

The second test compares the per formance of USC genera ted stubs with tha t of manually gen-
era ted por table stubs implemented using the BSD ntoh and h ton funct ions to swap bytes where
needed. For th is t est , the appropr ia te stubs were genera ted for each machine. For big endian
machines such as the Sparcs, and HP 735 no bytes a re swapped by the stubs. For lit t le endian
machines such the DecSta t ion and the 486 bytes were swapped for every field of the headers except IP
and Ethernet addresses. 1 The resu lt s of th is t est case a re given in Table 3.

These resu lt s show tha t the per formance of USC genera ted stubs is genera lly super ior to n toh
stubs on both big endian and lit t le endian machines. The reason for th is difference on big endian
machines is tha t USC genera tes a ser ies of word load and stores while the n toh stubs load and store
each field of the da ta st ructure separa tely. The n toh stubs use some ha lfword and byte loads and
stores for the da ta st ructures tested. When byte swapping is required (on the Dec and In tel) USC
stubs a re a lso genera lly faster than n toh stubs. The reason for th is is aga in tha t USC takes advantage
of knowing tha t the headers a re four byte a ligned. For example, the USC genera ted code to swap the
bytes of a UDP header is given below. The code swaps the bytes a fu ll word a t a t ime.

r0 = *(int *)((char *)l_src + (0));

*((int *)((char *)l_dst + (0))) = (((r0 >> 8) & 0xff00ff) | ((r0 << 8) & 0xff00ff00));

r0 = *(int *)((char *)l_src + (4));

*((int *)((char *)l_dst + (4))) = (((r0 >> 8) & 0xff00ff) | ((r0 << 8) & 0xff00ff00));

Next , the per formance of stubs wr it ten using the Sun XDR libra ry was tested. Because the
XDR encoding format encodes a ll in teger types in four byte quant it ies the encoded UDP and big
header da ta st ructures a re longer than the na t ive da ta st ructure. The resu lt s of th is t est a re given in
Table 4.

The first row of Table 4 gives the per formance of stubs tha t were genera ted by rpcgen with the
rpcgen opt imizer disabled. These resu lt s a re clear ly orders of magnitude worse than either the USC
stubs or the n toh stubs. The second row of Table 4 gives the per formance of stubs genera ted using rpc-

1. Because no calculations are performed on addresses it is common BSD practice to leave address in network byte order.

Sparc 1 Sparc 10 Dec 5000 486 HP 735

long udp big long udp big long udp big long udp big long udp big

ntoh 1.8 6.6 92 0.3 0.7 10 2.2 6.2 72 0.7 1.5 15 0.2 1.0 13

usc 1.8 4 31 0.3 0.6 4.5 1.7 3.5 22 1.0 1.2 13 0.2 0.4 3.5

Table 3: USC vs. ntoh (usec)

6

value of 0. A 0 Tsize field means tha t the USC compiler will determine the size of the st ructure it self.
This st ructure requires 22 bytes of storage, and is 4-byte a ligned.

F ield Decla ra t ions:

u_short sport (2, 2, 0, <0..1>),...;

Spor t is a field of the st ruct na t ive_hdr. It is a lit t le-endian 2 byte shor t tha t occupies 2 bytes
of space, and is found a t offset 0 (the th ird field’s va lue) from the sta r t of the st ructure.

Bit -F ields:

u_int x2(1, 1, 4, <0>) : 4 (4, 8, 0, <4..7>),
off (1, 1, 4, <0>) : 4 (4, 8, 0, <0..3>);

x2 and off a re bit -fields tha t occupy the same byte in the st ructure, The first tuple: (1, 1, 4,
<0>) decla res the under lying in teger type with respect to which the bit -field is defined. Not ice tha t
both bit -fields a re decla red to have an offset of 4, so they a re found in the same byte. After the colon ,
unit s a re in bit s. x2 is a four-bit bitfield, which has size 4 bit s, and occupies 8 bit s. The offset field of a
bit -field has no meaning, so it is left a t zero. The last field descr ibes the bit order. The least sign ificant
bit is bit 4, with respect to the under lying in teger type decla red for x2.

In addit ion to the four da ta types shown in th is example, USC can handle a r rays, including
var iable length a r rays, and unions. P lease refer to Appendix I for a more in -depth t rea tment of the
USC syntax and semant ics of da ta type and stub decla ra t ions.

4) Evalu ation

To eva lua te the per formance of USC we ran a ser ies of per formance test s compar ing USC gen-
era ted stubs with stubs genera ted manually or by other stub genera tors. These test s were run on 5
differen t machines: a SPARC 1, a SPARC 10, a DecSta t ion 5000/200, an In tel 486, and an HP 735.
The da ta st ructures marsha led consisted of a 4 byte long, an 8 byte UDP header, and a 82 byte la rge
composite header (ca lled big header) const ructed by conca tena t ing an Ethernet header, an IP header,
a TCP header, and an ARP header. Big header represen ts what we consider to be reasonable size for
a ll network headers a ffixed to a single packet . Each test case marsha ls a da ta st ructure to and from
network form twice. This cor responds to a complete round t r ip of a protocol. All t est s were run using
var ious versions of gcc. The test s were const ructed to ensure tha t no usable da ta was saved in regis-
ters between each marsha ling. Unless otherwise noted a ll t est da ta was in the machine’s cache.

The first t est compares the per formance of USC genera ted stubs to tha t of the gcc implemen-
ta t ion of st ructure copy. We defined USC stubs which copy the th ree da ta st ructures without byte
swapping and compared the per formance of these stubs aga inst the per formance of a simple C assign-
ment of the th ree da ta st ructures. The resu lt s of th is t est a re given in Table 2. Note in Table’s 2
through 5 each column is divided in to th ree sub-columns: the first gives the per formance of a stub
marsha ling a long, the second a stub marsha ling a UDP header and the th ird a stub marsha ling a big
header.

Sparc 1 Sparc 10 Dec 5000 486 HP 735

long udp big long udp big long udp big long udp big long udp big

scopy 1.8 6.6 49 0.3 0.6 7 0.5 2.2 12 0.4 0.8 8.6 0.2 0.9 3.5

usc 1.8 4 31 .3 .6 4.5 0.5 0.9 10 o.3 0.7 8.0 0.2 0.4 3.5

Table 2: USC vs. C structure copy (usec)

5

u_int x2(1,1,4,<0>):4(4,8,0,<4..7>),
off(1,1,4,<0>):4(4,8,0,<0..3>);

u_long seq(4,4,5,<3..0>),
ack(4,4,9,<3..0>);

u_char flags(1,1,13,<0>);
u_short win(2,2,14,<1..0>),

sum(2,2,16,<1..0>),
urp(2,2,18,<1..0>);

} net_hdr(0,20,1,0);

/* a stub definition */

void tcphdr(net_hdr *src, native_hdr *dest)
{
*dest = *src;

}

Figure 1: The USC program tcp.USC.

A USC program consist s of a ser ies of pragmas followed by type and stub definit ions. The
pragmas define the na t ive format of a ll base types for the compiler /machine combina t ion tha t USC
will genera te code for, in th is case gcc compiling for a DECSta t ion 5000. The type net_hdr is a TCP
header1 in big-endian byte order and is packed in to min imal space without regard to the a lignment of
any of it s fields. The type na t ive_hdr is a TCP header in lit t le-endian byte order with a st ructure pad-
ded so tha t each field is a ligned appropr ia tely. The stub tcphdr takes a TCP header in network format
and copies it to a TCP header in DECSta t ion 5000 format . Running USC on the file tcp.usc will crea te
two files: t cp.c and tcp.h . t cp.c conta ins the host and compiler-specific C implementa t ion of the stub
tcphdr. t cp.h conta ins a prototype of the funct ion tcphdr or a macro implementa t ion of tcphdr.

The code shown in figure 1 is essen t ia lly C, with addit iona l in format ion tha t precisely
descr ibes the da ta layout of the types defined. This in format ion is encoded as a tuple:

(tsize, msize, alignment/offset, byte order)

In a globa l type or pragma decla ra t ion , the th ird field is in terpreted as the a lignment . To
descr ibe a st ructure or un ion field, the th ird field is in terpreted as the offset . In a ll decla ra t ions except
bit -fields, a ll numbers a re in un it s of bytes, and in bit -fields the un it s a re bit s. Tsize is the size of the
da ta type (ie, a 4 byte in teger) and msize is the actua l amount of memory a lloca ted for th is type (a 2
byte shor t may actua lly occupy 4 bytes). Below we expla in some example lines from figure 1:

Pragma Decla ra t ions:

#pragma long (4, 4, 4, <0..3>);

The pragma above defines the layout of a long on the compiler /machine combina t ion for which
USC will genera te code. USC will t ake th is definit ion to mean tha t longs a re 4 bytes long, require 4
bytes of storage, and a re a ligned on 4 byte boundar ies. The last field, which could a lso have been wr it -
ten <0, 1, 2, 3> , means tha t the least sign ificant byte of a long is a t offset 0 from it s address, and the
most sign ificant byte is a t offset 3 from it s address. In other words, longs a re lit t le-endian .

Globa l Type Decla ra t ions:

typedef struct tcp_native_hdr {
...
} native_hdr (0, 22, 4, 0);

A st ructure’s annota t ion is simila r to a pragma decla ra t ion , except tha t byte order field has a

1. Actually a minor variation of the tcp header format is used to better demonstrate the features of USC.

4

Unfor tuna tely th is nota t ion cannot be used to descr ibe types encoded using a dynamic format ;
a format where the encoding depends upon the run t ime va lue of a var iable. For example in ASN.1/
BER format the encoding of an in teger var ies in size based upon the va lue of the in teger. Dynamic for -
mats a re very expensive to encode and decode: it t akes a min imum of 58 inst ruct ions to encode an
ASN.1/BER in teger [8] as apposed to 2 inst ruct ions for most sta t ica lly encoded in tegers. Dynamic for -
mats a re to our knowledge only found in in termedia te forms. All host s and compilers use sta t ic forms
to represen t na t ive da ta . While USC’s inability to specify dynamic formats means tha t it cannot be
used to read and wr ite headers in ASN.1/BER format , it a lso a llows USC to concent ra te on the effi-
cien t conversion of the more common sta t ic formats.

USC uses modern compiler opt imiza t ion techniques to genera te near ly opt imal C code. Opt i-
mized code is vita l for th ree reasons. F ir st , modern in ternet protocol implementa t ions a re very effi-
cien t ; some TCP implementa t ions require on ly tens of inst ruct ions to process an incoming packet [2].
A stub compiler which required hundreds of inst ruct ions to marsha l the TCP header would domina te
the cost of the protocol implementa t ion . Second, USC can be used to genera te very small stubs to
access par t icu la r fields in headers. Genera t ing such stubs is on ly usefu l if the genera ted code is very
efficien t . F ina lly, if programmers believe tha t a stub compiler is genera t ing bad code they will simply
not use it where per formance is required.

USC assumes tha t both the source and dest ina t ion of any stub a re in cont iguous memory.
Some argument marsha ling systems assume tha t the encoded version of a da ta type may be spread
across severa l dist inct memory buffers. For shor t headers it is much more efficien t to copy a header
broken across two buffers in to cont iguous storage ra ther than checking the buffer size before every
header access.

3) Exam ple USC Spe c ifi cation : TCP He ade r

The syntax of a USC program is a subset of the ANSI C syntax extended to a llow the user to
annota te da ta type definit ions with byte order and a lignment in format ion . The user uses th is syntax
to decla re type definit ions and funct ions which manipula te va lues of these types. With minor excep-
t ions a USC program st r ipped of it s annota t ions is a va lid C program. Below is the USC program
tcp.usc.

/* define native DECSTATION base types */

#pragma long(4,4,4,<0..3>);
#pragma int(4,4,4,<0..3>);
#pragma short(2,2,2,<0..1>);
#pragma char(1,1,1,<0>);

/* tcp header in native DECSTATION format */

typedef struct tcp_native_hdr {
u_short sport(2,2,0,<0..1>),

dport(2,2,2,<0..1>);
u_int x2(1,1,4,<0>):4(4,8,0,<4..7>),

off(1,1,4,<0>):4(4,8,0,<0..3>);
u_long seq(4,4,8,<0..3>),

ack(4,4,12,<0..3>);
u_char flags(1,1,16,<0>);
u_short win(2,2,18,<0..1>),

sum(2,2,20,<0..1>),
urp(2,2,22,<0

} native_hdr(0,22,4,0);

/* tcp header in network format */

typedef struct tcp_net_hdr {
u_short sport(2,2,0,<1..0>),

dport(2,2,2,<1..0>);

3

t ion layer stub compilers. Most of these differences a re a resu lt of differences between the header
marsha ling problem and the da ta marsha ling problem. This sect ion a t tempts to descr ibe and mot i-
va te each of these differences.

The biggest difference between header marsha ling and da ta marsha ling is tha t in header
marsha ling the network formats for headers a re fixed by the protocol definit ion and near ly impossible
to change. Thus USC must genera te stubs to pre-exist ing formats and because of th is USC has no
fixed in termedia te form. USC conver t s a given da ta type in one specified format to another specified
format . To marsha l a TCP header a USC user defines a C st ructure to represen t the TCP header and
specify two formats for tha t da ta st ructure: the loca l compiler /host format and the network format .
The user would then define USC stubs tha t conver t a TCP header in one format to another. USC
allows the user to descr ibe near ly a rbit ra ry layouts of da ta types and conversions between them. In
cont rast , t radit iona l stub compilers conver t da ta to and from network form as follows. Sender da ta , in
na t ive host /compiler format , is conver ted in to a network independent format for t ransmission to a
receiver who will conver t the independent format to it s na t ive host /compiler format . The in termedia te
format is genera lly fixed. Thus the stub compiler need only know of the loca l host /compiler format and
the fixed in termedia te form. A fixed in termedia te form makes it impossible to use a stub compiler to
genera te header marsha ling code for an exist ing protocol such as TCP.

The lack of a fixed in termedia te form ra ises the quest ion of coverage: exact ly what da ta for -
mats will be suppor ted by USC. Our first assumpt ion was tha t any network protocol would be wr it ten
in C or C++. Thus the USC type system is based upon the C type system. Because the types commonly
encountered in header marsha ling a re qu ite simple USC uses a limited subset of the C type system
tha t does not suppor t poin ters. Table 1 gives the dist r ibu t ion of da ta types found in the protocol head-
ers in our protocol libra ry. The only poin ters presen t in th is dist r ibu t ion a re found in Sun RPC; a pro-
tocol tha t uses a presen ta t ion layer stub compiler to marsha l it s header1. In addit ion to being ra re,
poin ters a re difficult and t ime consuming to marsha l and require sign ificant amounts of storage man-
agement and er ror checking code.

Given th is rest r ict ion to simple C types, the quest ion becomes what formats of these types will
USC suppor t . We decided tha t a t a min imum USC must a llow a user to specify any da ta format found
on any actua l host /compiler combina t ion . In genera l the host determines the da ta represen ta t ion of
the base types and the compiler determines the a lignment of da ta in composite types. The demise of
most ones complement and odd byte size a rch itecture implies tha t a rela t ively small set of poten t ia l
da ta formats will cover a lmost a ll modern a rch itectures. However as the C standard places very few
rest r ict ions on the poten t ia l a lignment of da ta types so the a lignment annota t ions in USC must be
flexible. Therefore we have defined a nota t ion (given in the Appendix) which suppor t s the near ly a rbi-
t ra ry a lignment of a set of simple base type.

1. Note tha t USC can marsha l Sun RPC headers. USC one would t rea t the Sun RPC header as ser ies of
simple C st ructures.

Type: Frequency:
shor t 34%
char 25%
int /long 23%
st ruct 7%
enumera ted 5%
bitfield 4%
array 1%
poin ter 1%

Table 1: Type Frequencies

2

1) In trodu ction

Presenta t ion layer processing is becoming recognized as one of the last remain ing per for -
mance bot t lenecks in network software[2]. Presen ta t ion layer processing, a lso ca lled data m arshal-
ing, involves conver t ing user da ta between differen t host formats. What is less commonly understood
is tha t the network code, it self, faces a simila r problem. Network software is r iddled with code tha t
conver t s da ta from one format to another, the most common example being reading and wr it ing head-
ers. We ca ll th is header m arshaling1.

There a re two common approaches to solving the header marsha ling problem. One is to use
presenta t ion layer stub compilers to genera te header marsha ling stubs. For example, Sun RPC uses
XDR[9], and the en t ire OSI protocol su ite uses ASN.1/BER[6][7]. A second approach is to implement
header marsha ling code by hand, perhaps with the a id of simple macros such as the n toh su ite found
in Unix. Both of these approaches have sign ificant problems. In the former case, the use of a heavy-
weight mechanism adversely effect s protocol la tency. In the la t ter case, manually genera ted code is
difficult to wr ite because it requires knowledge of deta ils about the compiler and host a rch itecture.
This a lso tends to make the code non-por table. To make mat ters worse, one is likely to have to suppor t
severa l such mechanisms on any given host .

This paper in t roduces a simple solu t ion to the header marsha ling problem. We have designed
and implemented a new specia l-purpose stub compiler, ca lled USC (Universa l Stub Compiler), tha t
au tomat ica lly genera tes stubs to conver t a C da ta st ructure with one user-defined format to a C st ruc-
ture with another user-defined format . USC combines the best fea tures of manual and au tomat ic gen-
era t ion of header marsha ling code. In summary USC:

• Automat ica lly genera tes code from a concise specifica t ion .

• Genera tes near ly opt imal code. USC stubs a re as fast or faster than hand coded stubs and up
to 20 t imes faster than stubs genera ted by presen ta t ion layer stub compilers.

• Is protocol independent . USC can be used to marsha l the headers for most exist ing protocols
including headers tha t a re defined using some exist ing presen ta t ion layer formats.

• Provides near ly un limited access to network da ta . USC can genera te stubs which efficien t ly
peek in to the middle of a la rge da ta st ructure stored in network format .

• Is easily por table. There a re no USC libra r ies, include files, or ifdefs.

• Automat ica lly figures ou t the a lignment and byte order of any C da ta st ructure on any C com-
piler.

While th is paper concent ra tes on the use of USC to solve the header marsha ling problem. We
believe tha t USC provides the basis for an efficien t solu t ion of the da ta marsha ling problem. USC can
be viewed as a h igh ly opt imized code genera tor for a more complex presen ta t ion layer stub compiler.
Using USC to genera te the code to copy and byte swap simple composite types could resu lt in sign ifi-
cant per formance improvements compared to t radit iona l presen ta t ion layer stub compilers.

The paper is organized as follows: Sect ion 2 in t roduces the pr inciples under lying the design of
USC and Sect ion 3 gives the syntax and semant ics of the USC stub definit ion language. Sect ion 4
then presen ts a comprehensive eva lua t ion of USC per formance. F ina lly, Sect ion 5 discusses severa l
issues ra ised by th is work, and Sect ion 6 offers some conclusions. A more thorough descr ipt ion of the
USC language is given in Appendix I.

2) USC De s ign P rin c ip le s

The basic design of USC differs in severa l cr it ica l ways for the design of t radit iona l presen ta -

1. Note we a lso include such problems as reading and wr it ing the cont rol registers on devices with non-
na t ive byte orders as par t of the header marsha ling problem.

1

USC: A Un ive rsa l Stu b Com pile r1

Sean O’Malley, Todd Proebst ing, and Allen Brady Montz

TR 94-10

Abstract
USC is a new stub compiler which can be used to genera te stubs which per form a wide
var iety of da ta conversion opera t ions. USC is flexible and can be used in situa t ions
were previously on ly manually code genera t ion was possible. USC genera ted code is
up to 20 t imes faster than code genera ted by t radit iona l a rgument marsha ling
schemes such as ASN.1 and Sun XDR. This paper presen ts the design of USC and a
comprehensive set of exper iments designed to compare USC per formance with the
best manually genera ted code and t radit iona l stub compilers.

March 15, 1994

Depar tment of Computer Science
University of Ar izona

Tucson , AZ 85721

1. This work was supported by ARPA under the grant DABT63-91-C-0030.

