base types in any byte order. USC requires stub parameters that give the lengths of any variable
length array arguments. The code below copies one variable length character array to another. len
gives the current length of the arrays.

void foo (len, strl, str2)

int len; /* Must be a native type */
char strl[len]; /* May be native or not */
char str2(1, 4, 4, <0>)[len];/* May be native or not */
{
strl = str2;
}

Any USC stub that contains a variable length array definition as a parameter must have a
native integer parameter whose name matches the name given in the array definition.

USC supports the inline qualifier found in many C compilers. A USC stub declared as inline
will generate an inline function. In addition USC supports the qualifier macro which directs USC to
produce a C macro implementation of the specified stub. Currently the qualifier macro may only be
used on stubs returning type void.

The stub tcphdr defined in Figure 1 shows how to define a stub to copy a TCP header from net-
work format to DecStation 5000 native format. The generated C code swaps bytes and realigns the
data. Less traditional stubs can also be generated. It is often useful toread and write fields into a net-
work header stored in network format. A stub that peeks into a TCP header in network format and
returns the offset field in a four byte, big-endian, integer would be defined as follows:

int(4,4,4,<3,2,1,0>) tcpgetoff (net _hdr *hdr)
{

return hdr->off;
}

USC also provides for in-place modification of a data value. The pragma alias can be used to
inform USC that two parameters will be aliased every time the procedure is called. To generate a stub
which is intended to do an in-place translation of a tcp header one would use the following USC stub
definition:

void tcphdr(net_hdr *src, native_hdr *dest)

{
#pragma alias(src,dest)
*src = *dest;

}

The stub generated assumes that the parameter dest is aliased with the parameter src. On machines
where the layout of network_hdr and native_hdr are the same no code will be generated. USC will
generate correct code if parameters to a stub are aliased regardless of the use of the alias pragma.
However, such code will not be optimal. Note that only pointers may be aliased in this way and
inplace conversion between two types with different lengths can be dangerous.
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int a(4,4,4,<3..0>);

When describing a structure, the byte order field must be zero. USC derives the actual infor-
mation from the annotations of the structure’ fields. This notation can describe any C array type. For
example an array of 10 shorts where each short is stored in the last two bytes of a word could be
described as follows:

short a(2,4,4,<2,3>)[10];

The annotations found after a field name are identical to the annotations found after a vari-
able except that the third element specifies the exact offset in bytes from the beginning of the struc-
ture. Given the offset USC can determine the alignment of any field in a structure from the alignment
of the structure.

USC uses two separate annotations to describe bit-fields. Each bit-field name is annotated
with the format of the underlying integer type. If several bit-fields are contained in the same integer
type they will have the same offset. After the bit-field size specifier another annotation specifies which
bits in the underlying integer make up the bit-field. This annotation is analogous to the previous one,
except that all of the values are in bits rather than bytes and the offset field must be zero. Note that
the bit order of a bit-field is described relative to the byte order of the underlying integer type. For
example two four bit bit-fields arranged in the same byte in little-endian bit order at offset 4 from the
beginning of a structure would be defined as follows:

u_int x2(1,1,4,<0>):4(4,8,0,<4..7>),
off(1,1,4,<0>):4(4,8,0,<0..3>);

Note that type annotations are unrelated to the host USC generates stubs for. Thus it is possi-
ble to generate stubs for an Intel x86 which converts a type in native DEC C, VAX format to native gcc
SPARC format.

1.3) USC Type Compatibility

The introduction of data layout annotations introduces three distinct levels of type compati-
bility into USC. Two USC types are type compatible if their underlying ANSI C types are structurally
compatible. Two USC types are copy compatible if they are type compatible and their annotations dif-
fer only in byte ordering. Two USC types are identical if they are type compatible and have identical
annotations.

1.4) USC Stub definitions

Stubs are defined in USC as functions are defined in ANSI C. The user defines the parameters
and return value to a stub exactly as they would in a C function except that USC’ type system is
used. The body of USC stubs are defined using a restricted subset of the ANSI C statement grammar.
Only expression statements and return statements are supported. Statements are defined using a
restricted subset of the C expression grammar. The key feature of this expression grammar is that it
works on annotated USC types. Thus assignments will correctly convert values when assigning
between to structures with different layouts.

In the USC expression grammar component selection (-> and .), array subscription([]), indi-
rection (*), sizeof and address of (&) are supported on all appropriate types. The assignment operation
is supported between all type compatible USC types. Unlike C, assignment between array types is
supported. The type of array indices and the type of the operands of the operations addition(+), sub-
traction(-), multiplication(*) and division(/) must be identical to one of the native base types given in
the pragmas at the beginning of the USC program.

Parameters to USC stubs must be either pointers to any USC type, or a type copy compatible
toa native base type. The value returned by a USC stub must be type void, a pointer toany USC type,
or a type copy compatible to a native base type. Thus USC stubs can take as parameters or return
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Appendix I) USC Language Description
I.1) USC Type System

The USC type system is a subset of the ANSI C type system with a few extensions. Given the
special purpose nature of USC only those ANSI C types which are commonly found in network head-
ers were included in the USC type system. As stated earlier the USC type system is simple and sup-
ports the type void and the base types char, short, int, long, and enum. In addition USC supports
structures and arrays of these base types, as well as bit-fields. Unions are supported, although incom-
pletely as union copies are not currently allowed. Pointer types are only allowed in stub parameter
and return value declarations. Pointer types are used to pass data by reference and to return values
of the address of operation. The rypedef operation is supported. USC does not support floating point
types, or arbitrary pointer-based objects.

While C does not support the declaration of variable length arrays, C programmers often get
around this restriction by allocating arrays larger than that defined in the type. To support this the
USC type system is modified to allow the user to declare a variable length array. Variable length
arrays may appear standalone or as the last element of a structure. A variable length array is defined
as follows:

int a[name];

where name is a C variable name. The name used in the type definition must correspond to
an integer parameter in the USC stub definition. This parameter is used to pass the actual size of the
array to the stub.

The USC type system differs from the ANSI C type system in that USC allows different enu-
merations to define the same enumeration constant. This extension is needed to allow USC users to
define stubs which convert between enumerations with different values for the same constant.

1.2) USC Data Layout Annotations

USC provides a notation for precisely defining the layout of each variable passed to a USC
stub. USC makes no assumptions about the byte order of any defined type. The input file must pre-
cisely specify the correct byte-order and offset of every type. Pragmas are used to inform USC of the
native format in the compiler/host combination that will be used to compile and execute the generated
stub.

All USC annotations are lists of four properties. The exact properties in the list is determined
by context. For example,a USC annotation found after a variable or parameter name is defined as fol-
lows:

int a(tsize, msize, alignment, byte order);

Where tsize is the number of bytes needed to represent the data type and msize the number
of bytes the compiler has allocated to store this data type. tsize must be less than or equal to msize.
The alignment field is a guarantee to the compiler that the address of the annotated variable modulo
alignment is equal to zero. An alignment of 1 will always generate correct code. In general the higher
the alignment specified the better the code USC will generate. It is possible to specify an alignment
for a type that is more restrictive than the alignment used by the compiler. The byetorder field is
used to specify which memory bytes, in what order, are used to represent a given type. The syntax of
the byte order field is a comma-separated list of tsize distinct integers between 0 and msize -1
enclosed in angle brackets(<1,2,3>). Arange may be used to abbreviate a list of integers. A range has
the form n..m and is equivalent to the list n,n+1, .. m if m > n.If n>m the range n..m is equivalent to
the list n,n-1, .. m. This list is interpreted as a transformation from the byte number of the variable to
the offset of that byte from the start of the variable in memory. The USC type annotation for a 4 byte
word aligned big-endian integer is:
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would be to integrate the USC annotations into the C programming language directly. While USC
automates the generation of byte order and alignment specified code the protocol writer is still
responsible for invoking that code in the correct places in the protocol implementation. In a USC-
enhanced C the programmer would only have to correctly annotate any network data - the compiler
would handle any conversions needed.

Existing presentation layers are recognized as the most serious remaining bottleneck in the
network data path[1]. USC could provide the basis for a simpler and much faster presentation layer
stub compiler. The correct way to do this would probably be to select an intermediate form and write a
layer on top of USC that supports the marshaling of arbitrary pointer based objects into and out of
network form. Such a USC based stub compiler would be able to generate stubs for the entire C type
system with a performance close to that of a simple data copy in most common cases.

6) Conclusion

We have designed and implemented a stub compiler that is flexible enough to eliminate the
need for the manual generation of byte order and alignment dependent code in network software
implementations. This stub compiler is fast enough that users have no incentive to bypass the stub
compiler. Perhaps most importantly this work shows that presentation layer processing is not intrin-
sically slow and that careful application of modern compiler techniques can produce stub compilers
that generate nearly optimal code.
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and stores that can be done. For example, on a Sparc, if the source data is known to be aligned on 2
byte boundaries, then data can be read in chunks of 2 bytes. A chunk of data which is read or written
is called a bucket. The first pass of the optimizer partitions the bits of the source and destination into
buckets.

USC translates the data conversions into a series of bit assignments, which may be one of
three types: plain, sign, and zero. A plain bit copy is the standard bit i gets bit j. A sign bit copy signi-
fies that bit i gets bit j, and that bit j is copied to more than one bit in the destination. This is used to
simplify certain sign extension optimizations. A zero bit copy indicates that bit j gets 0. This is used to
differentiate between bits in the destination which must be zero, and bits in the destination which can
have garbage left in them.

The intermediate code is then transformed into a series of bucket assignments of the form

out_i <- ((in_j << shift 1) & mask 1) | ((in_k << shift 2) & mask 2) | .

which are then optimized using algebraic simplifications. Then the optimizer applies various peephole
optimizations and passes the simplified intermediate code to the code generator, which is responsible
for generating the C code using a minimal number of registers.

Unlike most existing stub compliers (and most manually generated stubs), USC will optimize
across filed boundaries in structures. For instance, if two short fields may be correctly copied as a sin-
gle word, USC does so. The optimizer and code generator are specifically designed to be as general as
possible. The user only needs to specify the native byte order, register size, and the types of load and
store operations to generate code for a new machine.

5.2) USIT: The USC Inference Tool

The correctness of a USC stub is entirely dependent upon the accuracy of the data layout
annotations. For headers in network format this is generally not a problem because the precise data
layout of the header is included in the standard and once a USC type has been defined for that layout
it can be used on all hosts and compilers. Getting the correct layout of the native compiler format of a
network header is another matter. It is rarely specified by the compiler documentation and it changes
for each host/compiler pair. Annotating such types manually could be as error prone and time con-
suming as writing byte-swapping code by hand.

To eliminate this problem we have written the USC Inference Tool (USIT) to determine the
alignment and byte order of native variables. USIT takes a file containing valid C type and variable
declarations without any USC annotations and outputs a USC progam with those types and variables
properly annotated for the local compiler/host pair. USIT generates and runs a C program to infer the
annotations.

5.3) Current Limitations and Future Work

USC assumes that the machine in question has 8 bit bytes and the size of all types other than
bit-fields are multiples of 8 bit bytes in length. USC also assumes that all integers are represented in
two’s complement form. USC has not been tested on word addressable machines; however, no major
difficulties are foreseen. As stated earlier USC cannot be used to representing dynamic encodings
such as ASN.1/BER.

We plan to extend USC to add support for the C equality operator (==) for all types including
structured types. Protocols often must map some arbitrary key to some local state. This is often done
using BCMP, which can have unpredictable results on unpacked structures. The USC annotations
provide enough information to generate correct structure comparisons that are statically optimal. We
plan to add a pragma that will allow the user to specify the order in which to compare the bytes in a
structure.

The extension to USC that would most significantly improve the protocol writing process
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HP 735 ntoh usc rpcgen rpegen- asnl/ asnl/
opt ber opt
udp hdr 47 3.8 22 9 10 63
big hdr 37 16 212 165 46 19

Table 6: Cache Effects

In the previous tests the data structure to be copied was always in the cache. In an actual pro-
tocol application the arriving header is rarely in the cache. To determine the potential effect of cache
misses on stub performance we ran modified tests on the HP 735 for stubs encoding the UDP and big
header. The HP 735 has a 256k direct mapped cache. By staggering the headers to be copied at 256
kilobyte intervals the tests cause a cache miss on every copy (four per round trip). The results of this
test are given in Table 6. The USC maintains a reduced but significant performance advantage over
the other stub generation techniques even when cache effects are included in the test. Clearly the per-
formance of XDR is still totally unacceptable. However the performance of ASN.1/BER stubs gener-
ated by MAVROS is surprisingly close to the performance of the noth stubs.

P | e [ |
1,200 usec 2% 6% 30% 16%
800 usec 3% 9% 45% 24%
170 usec 13% 42% 212% 114%

Table 7: Relative Costs

The final question is whether or not the potential performance gain in header marshaling
code could affect the measured performance of actual protocols. A rough estimate of the potential per-
formance effects of using a stub generation technique to marshal headers can be obtained by compar-
ing the round trip encoding costs for the big header to the round trip performance of actual protocol
implementations. Table 7 gives the ratio of the total time required to marshal a big header four times
to the round trip time recorded for three different protocol implementations on the Dec Station 5000/
200: Ultrix user-to-user UDP/IP (1200 microsecond round trip), Mach kernel-to-kernel UDP/IP (800
microsecond round trip), and the RPC over ATM protocol presented in [10] (170 microsecond round

trip).

These results show that for standard protocol implementations the performance advantage of
USC over ntoh stubs would probably be undetectable. However USC might produce detectable perfor-
mance improvements when used to marshal headers of very lightweight protocols. Clearly, the cost of
using heavyweight stub compiler such as rpcgen to generate stubs for 82 bytes of network header
could have a noticeable effect on standard protocols even when running on a reasonably fast machine.
For very low latency RPC implementations the cost of using such stubs could dominate the rest of the
implementation.

5) Discussion
5.1) USC Implementation

USC generates code by minimizing loads and stores and doing algebraic optimizations[1] to
the resulting mask and shift operations. The optimizer’s first priority is to minimize memory access.
The test data we’ve seen supports the assertion that memory access is the primary hindrance to effi-
cient stubs. The alignments of source and destination are used to determine the maximum sized loads



Sparc 1 Sparc 10 Dec 5000 486 HP 735
long  udp big long  udp big long udp big long udp big long udp big
rpcgen 20 64 679 4 16 148 15 51 462 10 39 372 5.7 19 198
rpcgen-opt 20 25 530 4 15 110 14 21 360 11 14 299 5.8 5.6 151
usc-xdr 17 65 77 05 07 9 10 12 13 05 07 7

Table 4: XDR Performance (usec)

gen with the optimizer enable. The UDP header test shows some significant improvement but the
optimized stubs are still an order of magnitude slower than USC generated stubs. The big header test
shows only minor improvement. The reason for this is that the XDR library implements only four
macros that the rpcgen program uses to optimize the conversion of shorts and longs in XDR defined
structures. Unfortunately the big header contains char’s and fixed length opaque byte strings which
rpcgen does not optimize. The third row of Table 4 gives the performance of USC generated stubs that
encode the data structures into XDR format. These results clearly show that it is the XDR/rpcgen
implementation rather than the XDR encoding scheme that causes the poor performance of rpcgen.
Closer examination of the XDR library helps explain this problem. The standard XDR library incurs
at least one procedure call per base type and another procedure call for each word of the encoded for-
mat. The poor performance of XDR stubs has been noted by others[8][3].

Next the performance of the MAVROS[3] ASN.1 complier was tested. As in XDR the encoded
forms of the ASN.1 headers differ greatly from the standard header definitions. In addition the big
header was simplified by replacing the 6 byte Ethernet address fields with 4 byte integers. The results
of this test are given in Table 5.

Sparc 1 Sparc 10 Dec 5000 486 HP 735
long  udp big long  udp big long  udp big long  udp big long  udp big
asn.l/ber 12 46 263 27 9 52 11 37 194 10 29 160 24 7.7 37
asn.l/opt 5 17 78 1 33 12 44 16 47 4 11 26 1 32 8.5

Table 5: ASN.1 Performance

The first row of the table gives the performance of MAVROS stubs using the ASN.1/BER syn-
tax. The performance of ASN.1/BER stubs is much worse than that of USC or ntoh stubs but is signif-
icantly better than XDR stubs (see Tables 2-4). Again the question is whether or not the poor ASN.1
performance is a result of the ASN.I/BER syntax or is simply a function of MAVROS. Fortunately
MAVROS supports an experimental simplified ASN.1 encoding scheme. The last row in Table 5 gives
the results of using MAVROS to generate stubs using the experimental ASN.1 encoding format. These
stubs perform much better than the ASN.1/BER stubs. The poor ASN.1 performance is clearly caused
by the dynamic format defined in BER.

Note that in [3] the reported results on this new encoding format were discouraging. There
are several possible explanations for the discrepancy between their results and ours. The first expla-
nation is that the test cases used in the paper were large and complex data structures that require the
use of dynamically allocated storage. While the paper claims to have eliminated this bias by imple-
menting a special version of malloc there may have still been significant malloc overhead. For small
simple header data structures the lightweight syntax is clearly superior. The second explanation
could be that while MAVROS generates good code for the lightweight syntax it does not generate
great code. It makes little use of macros and still requires several procedure calls per data structure.



Surprisingly USC appears to generate better code than gecc in several cases. The reason for
this in the UDP header test case is that the USC program defining the UDP header specified 4-byte
alignment and the compiler assumed 2-byte alignment. USC safely generates word loads and stores;
gcc must generate short loads and stores. This optimization accurately reflects typical network code:
in general the network UDP header is four byte aligned in packets and it is easy to force the align-
ment of the local instance of the UDP header to a four byte boundary. The performance of a USC stub
which copies a two byte aligned UDP header is identical that of structure copy. For the big header test
case on the two Sparcs, gcc uses memcopy to copy the bytes, which is apparently inferior to the
straight inline code generated by USC for data structures of this size(82 bytes). From this test case we
conclude that the performance of USC is effectively optimal in the degenerate case where no byte
swapping is required.

The second test compares the performance of USC generated stubs with that of manually gen-
erated portable stubs implemented using the BSD ntoh and hton functions to swap bytes where
needed. For this test, the appropriate stubs were generated for each machine. For big endian
machines such as the Sparcs, and HP 735 no bytes are swapped by the stubs. For little endian
machines such the DecStation and the 486 bytes were swapped for every field of the headers except IP
and Ethernet addresses. ! The results of this test case are given in Table 3.

Sparc 1 Sparc 10 Dec 5000 486 HP 735
long udp big long udp big long udp big long udp big long udp big
ntoh 1.8 6.6 92 0.3 0.7 10 22 62 72 0.7 1.5 15 02 1.0 13
usc 1.8 4 31 03 0.6 45 1.7 35 22 1.0 12 13 02 04 35

Table 3: USC vs. ntoh (usec)

These results show that the performance of USC generated stubs is generally superior to ntoh
stubs on both big endian and little endian machines. The reason for this difference on big endian
machines is that USC generates a series of word load and stores while the ntoh stubs load and store
each field of the data structure separately. The ntoh stubs use some halfword and byte loads and
stores for the data structures tested. When byte swapping is required (on the Dec and Intel) USC
stubs are also generally faster than ntoh stubs. The reason for this is again that USC takes advantage
of knowing that the headers are four byte aligned. For example, the USC generated code to swap the
bytes of a UDP header is given below. The code swaps the bytes a full word at a time.

r0 = *(int *)((char *)1 src + (0));

*((int *)((char *)1 dst + (0))) = (((r0 >> 8) & OxffO0ff) | ((r0 << 8) & OXffO0£f£00));

r0 = *(int *)((char *)1_src + (4));

*((int *)((char *)1_dst + (4))) = (((r0 >> 8) & OXffO00ff) | ((r0 << 8) & Oxff00££00));

Next, the performance of stubs written using the Sun XDR library was tested. Because the
XDR encoding format encodes all integer types in four byte quantities the encoded UDP and big
header data structures are longer than the native data structure. The results of this test are given in
Table 4.

The first row of Table 4 gives the performance of stubs that were generated by rpcgen with the
rpcgen optimizer disabled. These results are clearly orders of magnitude worse than either the USC
stubs or the ntoh stubs. The second row of Table 4 gives the performance of stubs generated using rpc-

1. Because no calculations are performed on addresses it is common BSD practice to leave address in network byte order.



value of 0. A 0 Tsize field means that the USC compiler will determine the size of the structure itself.
This structure requires 22 bytes of storage, and is 4-byte aligned.

Field Declarations:

u_short sport (2, 2, 0, <0..1>),...;

Sport is a field of the struct native_hdr. It is a little-endian 2 byte short that occupies 2 bytes
of space, and is found at offset O (the third field’s value) from the start of the structure.

Bit-Fields:

u_int x2(1, 1, 4, <0>) : 4 (4, 8, 0, <4..7>),
off (1, 1, 4, <0>) : 4 (4, 8, 0, <0..3>);

x2 and off are bit-fields that occupy the same byte in the structure, The first tuple: (1, 1, 4,
<0>) declares the underlying integer type with respect to which the bit-field is defined. Notice that
both bit-fields are declared to have an offset of 4, so they are found in the same byte. After the colon,
units are in bits. x2 is a four-bit bitfield, which has size 4 bits, and occupies 8 bits. The offset field of a
bit-field has no meaning, so it is left at zero. The last field describes the bit order. The least significant
bit is bit 4, with respect to the underlying integer type declared for x2.

In addition to the four data types shown in this example, USC can handle arrays, including
variable length arrays, and unions. Please refer to Appendix I for a more in-depth treatment of the
USC syntax and semantics of data type and stub declarations.

4) Evaluation

To evaluate the performance of USC we ran a series of performance tests comparing USC gen-
erated stubs with stubs generated manually or by other stub generators. These tests were run on 5
different machines: a SPARC 1, a SPARC 10, a DecStation 5000/200, an Intel 486, and an HP 735.
The data structures marshaled consisted of a 4 byte long, an 8 byte UDP header, and a 82 byte large
composite header (called big header) constructed by concatenating an Ethernet header, an IP header,
a TCP header, and an ARP header. Big header represents what we consider to be reasonable size for
all network headers affixed to a single packet. Each test case marshals a data structure to and from
network form twice. This corresponds to a complete round trip of a protocol. All tests were run using
various versions of gcc. The tests were constructed to ensure that no usable data was saved in regis-
ters between each marshaling. Unless otherwise noted all test data was in the machine’ cache.

The first test compares the performance of USC generated stubs to that of the gcc implemen-
tation of structure copy. We defined USC stubs which copy the three data structures without byte
swapping and compared the performance of these stubs against the performance of a simple C assign-
ment of the three data structures. The results of this test are given in Table 2. Note in Table’s 2
through 5 each column is divided into three sub-columns: the first gives the performance of a stub
marshaling a long, the second a stub marshaling a UDP header and the third a stub marshaling a big
header.

Sparc 1 Sparc 10 Dec 5000 486 HP 735
long udp big long udp big long udp big long udp big long udp big
scopy 1.8 6.6 49 03 0.6 7 0.5 22 12 04 0.8 8.6 0.2 09 35
usc 1.8 4 31 3 .6 4.5 0.5 0.9 10 03 0.7 8.0 0.2 04 35

Table 2: USC vs. C structure copy (usec)



u_int x2(1,1,4,<0>):4(4,8,0,<4..7>),
off(1,1,4,<0>):4(4,8,0,<0..3>);

u_long seq(4,4,5,<3..0>),
ack(4,4,9,<3..0>);

u_char flags(1,1,13,<0>);

u_short win(2,2,14,<1..0>),
sum(2,2,16,<1..0>),
urp(2,2,18,<1..0>);

} net_hdr(0,20,1,0);

/* a stub definition */

void tcphdr(net_hdr *src, native_hdr *dest)

*dest = *src;

}

Figure 1: The USC program tcp.USC.

A USC program consists of a series of pragmas followed by type and stub definitions. The
pragmas define the native format of all base types for the compiler/machine combination that USC
will generate code for, in this case gcc compiling for a DECStation 5000. The type net_hdr is a TCP
header! in big-endian byte order and is packed into minimal space without regard to the alignment of
any of its fields. The type native_hdr is a TCP header in little-endian byte order with a structure pad-
ded so that each field is aligned appropriately. The stub tcphdr takes a TCP header in network format
and copies it toa TCP header in DECStation 5000 format. Running USC on the file tcp.usc will create
two files: tep.c and tep.h. tep.c contains the host and compiler-specific C implementation of the stub
tephdr. tep.h contains a prototype of the function tecphdr or a macro implementation of tcphdr.

The code shown in figure 1 is essentially C, with additional information that precisely
describes the data layout of the types defined. This information is encoded as a tuple:

(tsize, msize, alignment/offset, byte order)

In a global type or pragma declaration, the third field is interpreted as the alignment. To
describe a structure or union field, the third field is interpreted as the offset. In all declarations except
bit-fields, all numbers are in units of bytes, and in bit-fields the units are bits. Tsize is the size of the
data type (ie, a 4 byte integer) and msize is the actual amount of memory allocated for this type (a 2
byte short may actually occupy 4 bytes). Below we explain some example lines from figure 1:

Pragma Declarations:

#pragma long (4, 4, 4, <0..3>);

The pragma above defines the layout of a long on the compiler/machine combination for which
USC will generate code. USC will take this definition to mean that longs are 4 bytes long, require 4
bytes of storage, and are aligned on 4 byte boundaries. The last field, which could also have been writ-
ten <0, 1,2, 3>, means that the least significant byte of a long is at offset O from its address, and the
most significant byte is at offset 3 from its address. In other words, longs are little-endian.

Global Type Declarations:

typedef struct tcp native hdr {

} native hdr (0, 22, 4, 0);

A structure’s annotation is similar to a pragma declaration, except that byte order field has a

1. Actually a minor variation of the tcp header format is used to better demonstrate the features of USC.



Unfortunately this notation cannot be used to describe types encoded using a dynamic format;
a format where the encoding depends upon the runtime value of a variable. For example in ASN.1/
BER format the encoding of an integer varies in size based upon the value of the integer. Dynamic for-
mats are very expensive to encode and decode: it takes a minimum of 58 instructions to encode an
ASN.1/BER integer[8] as apposed to 2 instructions for most statically encoded integers. Dynamic for-
mats are to our knowledge only found in intermediate forms. All hosts and compilers use static forms
to represent native data. While USC’ inability to specify dynamic formats means that it cannot be
used to read and write headers in ASN.1/BER format, it also allows USC to concentrate on the effi-
cient conversion of the more common static formats.

USC uses modern compiler optimization techniques to generate nearly optimal C code. Opti-
mized code is vital for three reasons. First, modern internet protocol implementations are very effi-
cient; some TCP implementations require only tens of instructions to process an incoming packet[2].
A stub compiler which required hundreds of instructions to marshal the TCP header would dominate
the cost of the protocol implementation. Second, USC can be used to generate very small stubs to
access particular fields in headers. Generating such stubs is only useful if the generated code is very
efficient. Finally, if programmers believe that a stub compiler is generating bad code they will simply
not use it where performance is required.

USC assumes that both the source and destination of any stub are in contiguous memory.
Some argument marshaling systems assume that the encoded version of a data type may be spread
across several distinct memory buffers. For short headers it is much more efficient to copy a header
broken across two buffers into contiguous storage rather than checking the buffer size before every
header access.

3) Example USC Specification: TCP Header

The syntax of a USC program is a subset of the ANSI C syntax extended to allow the user to
annotate data type definitions with byte order and alignment information. The user uses this syntax
to declare type definitions and functions which manipulate values of these types. With minor excep-
tions a USC program stripped of its annotations is a valid C program. Below is the USC program
tep.usc.

/* define native DECSTATION base types */

#pragma long(4,4,4,<0..3>);
#pragma int(4,4,4,<0..3>);
#pragma short(2,2,2,<0..1>);
#pragma char(1,1,1,<0>);

/* tcp header in native DECSTATION format */

typedef struct tcp native hdr {
u_short sport(2,2,0,<0..1>),
dport(2,2,2,<0..1>);
u_int x2(1,1,4,<0>):4(4,8,0,<4..7>),
off(1,1,4,<0>):4(4,8,0,<0..3>);
u_long seq(4,4,8,<0..3>),
ack(4,4,12,<0..3>);
u_char flags(1,1,16,<0>);
u_short win(2,2,18,<0..1>),
sum(2,2,20,<0..1>),
urp(2,2,22,<0
} native hdr(0,22,4,0);

/* tcp header in network format */

typedef struct tcp net hdr {
u_short sport(2,2,0,<1..0>),
dport(2,2,2,<1..0>);



tion layer stub compilers. Most of these differences are a result of differences between the header
marshaling problem and the data marshaling problem. This section attempts to describe and moti-
vate each of these differences.

The biggest difference between header marshaling and data marshaling is that in header
marshaling the network formats for headers are fixed by the protocol definition and nearly impossible
to change. Thus USC must generate stubs to pre-existing formats and because of this USC has no
fixed intermediate form. USC converts a given data type in one specified format to another specified
format. To marshal a TCP header a USC user defines a C structure to represent the TCP header and
specify two formats for that data structure: the local compiler/host format and the network format.
The user would then define USC stubs that convert a TCP header in one format to another. USC
allows the user to describe nearly arbitrary layouts of data types and conversions between them. In
contrast, traditional stub compilers convert data to and from network form as follows. Sender data, in
native host/compiler format, is converted into a network independent format for transmission to a
receiver who will convert the independent format to its native host/compiler format. The intermediate
format is generally fixed. Thus the stub compiler need only know of the local host/compiler format and
the fixed intermediate form. A fixed intermediate form makes it impossible to use a stub compiler to
generate header marshaling code for an existing protocol such as TCP.

The lack of a fixed intermediate form raises the question of coverage: exactly what data for-
mats will be supported by USC. Our first assumption was that any network protocol would be written
in C or C++. Thus the USC type system is based upon the C type system. Because the types commonly
encountered in header marshaling are quite simple USC uses a limited subset of the C type system
that does not support pointers. Table 1 gives the distribution of data types found in the protocol head-
ers in our protocol library. The only pointers present in this distribution are found in Sun RPC; a pro-
tocol that uses a presentation layer stub compiler to marshal its header!. In addition to being rare,
pointers are difficult and time consuming to marshal and require significant amounts of storage man-
agement and error checking code.

Type: Frequency:
short 34%

char 25%
int/long 23%

struct 7%
enumerated 5%

bitfield 4%

array 1%

pointer 1%

Table 1: Type Frequencies

Given this restriction to simple C types, the question becomes what formats of these types will
USC support. We decided that at a minimum USC must allow a user to specify any data format found
on any actual host/compiler combination. In general the host determines the data representation of
the base types and the compiler determines the alignment of data in composite types. The demise of
most ones complement and odd byte size architecture implies that a relatively small set of potential
data formats will cover almost all modern architectures. However as the C standard places very few
restrictions on the potential alignment of data types so the alignment annotations in USC must be
flexible. Therefore we have defined a notation (given in the Appendix) which supports the nearly arbi-
trary alignment of a set of simple base type.

1. Note that USC can marshal Sun RPC headers. USC one would treat the Sun RPC header as series of
simple C structures.



1) Introduction

Presentation layer processing is becoming recognized as one of the last remaining perfor-
mance bottlenecks in network software[2]. Presentation layer processing, also called data marshal-
ing,involves converting user data between different host formats. What is less commonly understood
is that the network code, itself, faces a similar problem. Network software is riddled with code that
converts data from one format to another, the most common example being reading and writing head-
ers. We call this header marshalingl.

There are two common approaches to solving the header marshaling problem. One is to use
presentation layer stub compilers to generate header marshaling stubs. For example, Sun RPC uses
XDR[9], and the entire OSI protocol suite uses ASN.1/BER[6][7]. A second approach is to implement
header marshaling code by hand, perhaps with the aid of simple macros such as the ntoh suite found
in Unix. Both of these approaches have significant problems. In the former case, the use of a heavy-
weight mechanism adversely effects protocol latency. In the latter case, manually generated code is
difficult to write because it requires knowledge of details about the compiler and host architecture.
This also tends to make the code non-portable. To make matters worse, one is likely tohave to support
several such mechanisms on any given host.

This paper introduces a simple solution to the header marshaling problem. We have designed
and implemented a new special-purpose stub compiler, called USC (Universal Stub Compiler), that
automatically generates stubs to convert a C data structure with one user-defined format toa C struc-
ture with another user-defined format. USC combines the best features of manual and automatic gen-
eration of header marshaling code. In summary USC:

e Automatically generates code from a concise specification.

* Generates nearly optimal code. USC stubs are as fast or faster than hand coded stubs and up
to 20 times faster than stubs generated by presentation layer stub compilers.

e Is protocol independent. USC can be used to marshal the headers for most existing protocols
including headers that are defined using some existing presentation layer formats.

e Provides nearly unlimited access to network data. USC can generate stubs which efficiently
peek into the middle of a large data structure stored in network format.

e Is easily portable. There are no USC libraries, include files, or ifdefs.

e Automatically figures out the alignment and byte order of any C data structure on any C com-
piler.

While this paper concentrates on the use of USC to solve the header marshaling problem. We
believe that USC provides the basis for an efficient solution of the data marshaling problem. USC can
be viewed as a highly optimized code generator for a more complex presentation layer stub compiler.
Using USC to generate the code to copy and byte swap simple composite types could result in signifi-
cant performance improvements compared to traditional presentation layer stub compilers.

The paper is organized as follows: Section 2 introduces the principles underlying the design of
USC and Section 3 gives the syntax and semantics of the USC stub definition language. Section 4
then presents a comprehensive evaluation of USC performance. Finally, Section 5 discusses several
issues raised by this work, and Section 6 offers some conclusions. A more thorough description of the
USC language is given in Appendix I.

2) USC Design Principles

The basic design of USC differs in several critical ways for the design of traditional presenta-

1. Note we also include such problems as reading and writing the control registers on devices with non-
native byte orders as part of the header marshaling problem.
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