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base types in  any byte order. USC requires stub parameters tha t  give the lengths of any var iable
length  a r ray a rguments. The code below copies one var iable length  character  a r ray to another. len
gives the cur ren t  length  of the a r rays.

void foo (len, str1, str2)
int len; /* Must be a native type */
char str1[len]; /* May be native or not */
char str2(1, 4, 4, <0>)[len];/* May be native or not */

{
str1 = str2;

}

Any USC stub tha t  conta ins a  var iable length  a r ray definit ion  as a  parameter  must  have a
na t ive in teger  parameter  whose name matches the name given  in  the a r ray definit ion .

USC suppor t s the in line qua lifier  found in  many C compilers. A USC stub decla red as in line
will genera te an  in line funct ion . In  addit ion  USC suppor t s the qua lifier m acro which  direct s USC to
produce a  C macro implementa t ion  of the specified stub. Curren t ly the qua lifier m acro may only be
used on  stubs return ing type void.

The stub tcphdr  defined in  F igure 1 shows how to define a  stub to copy a  TCP header  from net -
work format  to DecSta t ion  5000 na t ive format . The genera ted C code swaps bytes and rea ligns the
da ta . Less t radit iona l stubs can  a lso be genera ted. It  is often  usefu l to read and wr ite fields in to a  net -
work header  stored in  network format . A stub tha t  peeks in to a  TCP header  in  network format  and
returns the offset  field in  a  four  byte, big-endian , in teger  would be defined as follows:

int(4,4,4,<3,2,1,0>) tcpgetoff (net_hdr *hdr)
{
return hdr->off;

}

USC a lso provides for  in -place modifica t ion  of a  da ta  va lue. The pragma alias can  be used to
inform USC tha t  two parameters will be a liased every t ime the procedure is ca lled. To genera te a  stub
which  is in tended to do an  in -place t ransla t ion  of a  tcp header  one would use the following USC stub
definit ion :

void tcphdr(net_hdr *src, native_hdr *dest)
{
#pragma alias(src,dest)
*src = *dest;

}

The stub genera ted assumes tha t  the parameter dest is a liased with  the parameter src. On machines
where the layout  of network_hdr  and na t ive_hdr  a re the same no code will be genera ted. USC will
genera te cor rect  code if parameters to a  stub a re a liased regardless of the use of the a lias pragma.
However, such  code will not  be opt imal. Note tha t  on ly poin ters may be a liased in  th is way and
inplace conversion  between  two types with  differen t  lengths can  be dangerous.
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int a(4,4,4,<3..0>);

When descr ibing a  st ructure, the byte  orde r field must  be zero. USC der ives the actua l in for -
mat ion  from the annota t ions of the st ructure’s fields. This nota t ion  can  descr ibe any C a r ray type. For
example an  a r ray of 10 shor t s where each  shor t  is stored in  the last  two bytes of a  word could be
descr ibed as follows:

short a(2,4,4,<2,3>)[10];

The annota t ions found a fter  a  field name are iden t ica l to the annota t ions found a fter  a  var i-
able except  tha t  the th ird element  specifies the exact offse t  in  bytes from the beginning of the st ruc-
ture. Given  the offset  USC can  determine the a lignment  of any field in  a  st ructure from the a lignment
of the st ructure.

USC uses two separa te annota t ions to descr ibe bit -fields. Each  bit -field name is annota ted
with  the format  of the under lying in teger  type. If severa l bit -fields a re conta ined in  the same in teger
type they will have the same offset . After  the bit -field size specifier  another  annota t ion  specifies which
bit s in  the under lying in teger  make up the bit -field. This annota t ion  is ana logous to the previous one,
except  tha t  a ll of the va lues a re in  bit s ra ther  than  bytes and the offset  field must  be zero. Note tha t
the bit  order  of a  bit -field is descr ibed rela t ive to the byte order  of the under lying in teger  type. For
example two four  bit  bit -fields a r ranged in  the same byte in  lit t le-endian  bit  order  a t  offset  4 from the
beginning of a  st ructure would be defined as follows:

u_int x2(1,1,4,<0>):4(4,8,0,<4..7>),

off(1,1,4,<0>):4(4,8,0,<0..3>);

Note tha t  type annota t ions a re unrela ted to the host  USC genera tes stubs for. Thus it  is possi-
ble to genera te stubs for  an  In tel x86 which  conver t s a  type in  na t ive DEC C, VAX format  to na t ive gcc
SPARC format .

I.3) USC Type  Com patibility

The in t roduct ion  of da ta  layout  annota t ions in t roduces th ree dist inct  levels of type compat i-
bility in to USC. Two USC types a re type com patible if their  under lying ANSI C types a re st ructura lly
compat ible. Two USC types a re copy com patible if they a re type compat ible and their  annota t ions dif-
fer  on ly in  byte order ing. Two USC types a re iden tical if they a re type compat ible and have ident ica l
annota t ions.

I.4) USC Stu b de fi n ition s

Stubs a re defined in  USC as funct ions a re defined in  ANSI C. The user  defines the parameters
and return  va lue to a  stub exact ly as they would in  a  C funct ion  except  tha t  USC’s type system is
used. The body of USC stubs a re defined using a  rest r icted subset  of the ANSI C sta tement  grammar.
Only expression  sta tements and return  sta tements a re suppor ted. Sta tements a re defined using a
rest r icted subset  of the C expression  grammar. The key fea ture of th is expression  grammar  is tha t  it
works on  annota ted USC types. Thus assignments will cor rect ly conver t  va lues when  assign ing
between  to st ructures with  differen t  layouts.

In  the USC expression  grammar  component  select ion  (-> and .), a r ray subscr ipt ion([]), indi-
rect ion  (*), sizeof and address of (&) a re suppor ted on  a ll appropr ia te types. The assignment  opera t ion
is suppor ted between  a ll type compat ible USC types. Unlike C, assignment  between  a r ray types is
suppor ted. The type of a r ray indices and the type of the operands of the opera t ions addit ion(+), sub-
t ract ion(-), mult iplica t ion(*) and division(/) must  be iden t ica l to one of the na t ive base types given  in
the pragmas a t  the beginning of the USC program.

Parameters to USC stubs must  be either  poin ters to any USC type, or  a  type copy compat ible
to a  na t ive base type. The va lue returned by a  USC stub must  be type void, a  poin ter  to any USC type,
or  a  type copy compat ible to a  na t ive base type. Thus USC stubs can  take as parameters or  return
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Appe n dix  I) USC Lan gu age  De scription

I.1) USC Type  Syste m

The USC type system is a  subset  of the ANSI C type system with  a  few extensions. Given  the
specia l purpose na ture of USC only those ANSI C types which  a re commonly found in  network head-
ers were included in  the USC type system. As sta ted ear lier  the USC type system is simple and sup-
por t s the type void  and the base types char, short, in t, long, and enum . In  addit ion  USC suppor t s
structures and arrays of these base types, as well as bit-fields. Unions a re suppor ted, a lthough incom-
pletely as un ion  copies a re not  cur ren t ly a llowed. Poin ter  types a re on ly a llowed in  stub parameter
and return  va lue decla ra t ions. Poin ter  types a re used to pass da ta  by reference and to return  va lues
of the address of opera t ion . The typedef opera t ion  is suppor ted. USC does not  suppor t  floa t ing poin t
types, or  a rbit ra ry poin ter-based objects.

While C does not  suppor t  the decla ra t ion  of var iable length  a r rays, C programmers often  get
a round th is rest r ict ion  by a lloca t ing a r rays la rger  than  tha t  defined in  the type. To suppor t  th is the
USC type system is modified to a llow the user  to decla re a  var iable length  a r ray. Var iable length
ar rays may appear  standa lone or  as the last  element  of a  st ructure. A var iable length  a r ray is defined
as follows:

int a[name];

where n am e  is a  C var iable name. The name used in  the type definit ion  must  cor respond to
an  in teger  parameter  in  the USC stub definit ion . This parameter  is used to pass the actua l size of the
ar ray to the stub.

The USC type system differs from the ANSI C type system in  tha t  USC a llows differen t  enu-
mera t ions to define the same enumera t ion  constan t . This extension  is needed to a llow USC users to
define stubs which  conver t  between  enumera t ions with  differen t  va lues for  the same constan t .

I.2) USC Data  Layou t An n otation s

USC provides a  nota t ion  for  precisely defining the layout  of each  var iable passed to a  USC
stub. USC makes no assumpt ions about  the byte order  of any defined type. The input  file must  pre-
cisely specify the cor rect  byte-order  and offset  of every type. Pragmas a re used to in form USC of the
na t ive format  in  the compiler /host  combina t ion  tha t  will be used to compile and execute the genera ted
stub.

All USC annota t ions a re list s of four  proper t ies. The exact  proper t ies in  the list  is determined
by context . For  example, a  USC annota t ion  found a fter  a  var iable or  parameter  name is defined as fol-
lows:

int a(tsize, msize, alignment, byte order);

Where ts ize  is the number  of bytes needed to represen t  the da ta  type and m size  the number
of bytes the compiler  has a lloca ted to store th is da ta  type. ts ize  must  be less than  or  equa l to m size .
The a lignment  field is a  guaran tee to the compiler  tha t  the address of the annota ted var iable modulo
align m e n t  is equa l to zero. An a lignment  of 1 will a lways genera te cor rect  code. In  genera l the h igher
the a lignment  specified the bet ter  the code USC will genera te. It  is possible to specify an  a lignment
for  a  type tha t  is more rest r ict ive than  the a lignment  used by the compiler. The bye torde r field is
used to specify which  memory bytes, in  what  order, a re used to represen t  a  given  type. The syntax of
the byte  orde r field is a  comma-separa ted list  of ts ize  dist inct  in tegers between  0 and m size  -1
enclosed in  angle brackets(<1,2,3>). A range may be used to abbrevia te a  list  of in tegers. A range has
the form n ..m and is equiva len t  to the list  n , n+1, .. m if m > n . If n>m the range n ..m is equiva len t  to
the list  n , n -1, .. m. This list  is in terpreted as a  t ransformat ion  from the byte number  of the var iable to
the offset  of tha t  byte from the sta r t  of the var iable in  memory. The USC type annota t ion  for  a  4 byte
word a ligned big-endian  in teger  is:
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would be to in tegra te the USC annota t ions in to the C programming language direct ly. While USC
automates the genera t ion  of byte order  and a lignment  specified code the protocol wr iter  is st ill
responsible for  invoking tha t  code in  the cor rect  places in  the protocol implementa t ion . In  a  USC-
enhanced C the programmer  would only have to cor rect ly annota te any network da ta  - the compiler
would handle any conversions needed.

Exist ing presen ta t ion  layers a re recognized as the most  ser ious remain ing bot t leneck in  the
network da ta  pa th[1]. USC could provide the basis for  a  simpler  and much faster  presen ta t ion  layer
stub compiler. The cor rect  way to do th is would probably be to select  an  in termedia te form and wr ite a
layer  on  top of USC tha t  suppor t s the marsha ling of a rbit ra ry poin ter  based objects in to and out  of
network form. Such  a  USC based stub compiler  would be able to genera te stubs for  the en t ire C type
system with  a  per formance close to tha t  of a  simple da ta  copy in  most  common cases.

 6) Con clu s ion

We have designed and implemented a  stub compiler  tha t  is flexible enough to elimina te the
need for  the manual genera t ion  of byte order  and a lignment  dependent  code in  network software
implementa t ions. This stub compiler  is fast  enough tha t  users have no incent ive to bypass the stub
compiler. Perhaps most  impor tan t ly th is work shows tha t  presen ta t ion  layer  processing is not  in t r in -
sica lly slow and tha t  ca refu l applica t ion  of modern  compiler  t echniques can  produce stub compilers
tha t  genera te near ly opt imal code.
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and stores tha t  can  be done. For  example, on  a  Sparc, if the source da ta  is known to be a ligned on  2
byte boundar ies, then  da ta  can  be read in  chunks of 2 bytes. A chunk of da ta  which  is read or  wr it ten
is ca lled a bucket. The first  pass of the opt imizer  par t it ions the bit s of the source and dest ina t ion  in to
buckets.

USC t ransla tes the da ta  conversions in to a  ser ies of bit  assignments, which  may be one of
three types: pla in , sign , and zero. A pla in  bit  copy is the standard bit  i get s bit  j. A sign  bit  copy sign i-
fies tha t  bit  i get s bit  j, and tha t  bit  j is copied to more than  one bit  in  the dest ina t ion . This is used to
simplify cer ta in  sign  extension  opt imiza t ions. A zero bit  copy indica tes tha t  bit  j get s 0. This is used to
differen t ia te between  bit s in  the dest ina t ion  which  must  be zero, and bit s in  the dest ina t ion  which  can
have garbage left  in  them.

The in termedia te code is then  t ransformed in to a  ser ies of bucket  assignments of the form

out_i <- ((in_j << shift_1) & mask_1) | ((in_k << shift_2) & mask_2) | .

which  a re then  opt imized using a lgebra ic simplifica t ions. Then  the opt imizer  applies var ious peephole
opt imiza t ions and passes the simplified in termedia te code to the code genera tor, which  is responsible
for  genera t ing the C code using a  min imal number  of registers.

Unlike most  exist ing stub compliers (and most  manually genera ted stubs), USC will opt imize
across filed boundar ies in  st ructures. For  instance, if two shor t  fields may be cor rect ly copied as a  sin-
gle word, USC does so. The opt imizer  and code genera tor  a re specifica lly designed to be as genera l as
possible. The user  on ly needs to specify the na t ive byte order, register  size, and the types of load and
store opera t ions to genera te code for  a  new machine.

5.2) USIT: Th e  USC In fe re n ce  Tool

The cor rectness of a  USC stub is en t irely dependent  upon  the accuracy of the da ta  layout
annota t ions. For  headers in  network format  th is is genera lly not  a  problem because the precise da ta
layout  of the header  is included in  the standard and once a  USC type has been  defined for  tha t  layout
it  can  be used on  a ll host s and compilers. Get t ing the cor rect  layout  of the na t ive compiler  format  of a
network header  is another  mat ter. It  is ra rely specified by the compiler  documenta t ion  and it  changes
for  each  host /compiler  pa ir. Annota t ing such  types manually could be as er ror  prone and t ime con-
suming as wr it ing byte-swapping code by hand.

To elimina te th is problem we have wr it ten  the USC Inference Tool (USIT) to determine the
a lignment  and byte order  of na t ive var iables. USIT takes a  file conta in ing va lid C type and var iable
decla ra t ions without  any USC annota t ions and outputs a  USC progam with  those types and var iables
proper ly annota ted for  the loca l compiler /host  pa ir. USIT genera tes and runs a  C program to in fer  the
annota t ions.

5.3) Cu rre n t Lim itation s  an d Fu tu re  Work

USC assumes tha t  the machine in  quest ion  has 8 bit  bytes and the size of a ll types other  than
bit -fields a re mult iples of 8 bit  bytes in  length . USC a lso assumes tha t  a ll in tegers a re represen ted in
two’s complement  form. USC has not  been  tested on  word addressable machines; however, no major
difficult ies a re foreseen . As sta ted ear lier  USC cannot  be used to represen t ing dynamic encodings
such  as ASN.1/BER.

We plan  to extend USC to add suppor t  for  the C equa lity opera tor  (==) for  a ll types including
st ructured types. Protocols often  must  map some arbit ra ry key to some loca l sta te. This is often  done
using BCMP, which  can  have unpredictable resu lt s on  unpacked st ructures. The USC annota t ions
provide enough informat ion  to genera te cor rect  st ructure compar isons tha t  a re sta t ica lly opt imal. We
plan  to add a  pragma tha t  will a llow the user  to specify the order  in  which  to compare the bytes in  a
st ructure.

The extension  to USC tha t  would most  sign ificant ly improve the protocol wr it ing process



9

In  the previous test s the da ta  st ructure to be copied was a lways in  the cache. In  an  actua l pro-
tocol applica t ion  the a r r iving header  is ra rely in  the cache. To determine the poten t ia l effect  of cache
misses on  stub per formance we ran  modified test s on  the HP 735 for  stubs encoding the UDP and big
header. The HP 735 has a  256k direct  mapped cache. By stagger ing the headers to be copied a t  256
kilobyte in terva ls the test s cause a  cache miss on  every copy (four  per  round t r ip). The resu lt s of th is
test  a re given  in  Table 6. The USC main ta ins a  reduced but  sign ificant  per formance advantage over
the other  stub genera t ion  techniques even  when cache effect s a re included in  the test . Clear ly the per -
formance of XDR is st ill tota lly unacceptable. However  the per formance of ASN.1/BER stubs gener -
a ted by MAVROS is surpr isingly close to the per formance of the noth  stubs.

The fina l quest ion  is whether  or  not  the poten t ia l per formance ga in  in  header  marsha ling
code could a ffect  the measured per formance of actua l protocols. A rough est imate of the poten t ia l per -
formance effect s of using a  stub genera t ion  technique to marsha l headers can  be obta ined by compar-
ing the round t r ip encoding cost s for  the big header  to the round t r ip per formance of actua l protocol
implementa t ions. Table 7 gives the ra t io of the tota l t ime required to marsha l a  big header  four  t imes
to the round t r ip t ime recorded for  th ree differen t  protocol implementa t ions on  the Dec Sta t ion  5000/
200: Ult r ix user-to-user  UDP/IP  (1200 microsecond round t r ip), Mach  kernel-to-kernel UDP/IP  (800
microsecond round t r ip), and the RPC over  ATM protocol presen ted in  [10] (170 microsecond round
t r ip).

These resu lt s show tha t  for  standard protocol implementa t ions the per formance advantage of
USC over  n toh  stubs would probably be undetectable. However  USC might  produce detectable per for -
mance improvements when  used to marsha l headers of very ligh tweight  protocols. Clear ly, the cost  of
using heavyweight  stub compiler  such  as rpcgen  to genera te stubs for  82 bytes of network header
could have a  not iceable effect  on  standard protocols even  when running on  a  reasonably fast  machine.
For  very low la tency RPC implementa t ions the cost  of using such  stubs could domina te the rest  of the
implementa t ion .

5) Discu ss ion

5.1) USC Im ple m e n tation

USC genera tes code by min imizing loads and stores and doing a lgebra ic opt imiza t ions[1] to
the resu lt ing mask and sh ift  opera t ions. The opt imizer ’s first  pr ior ity is to min imize memory access.
The test  da ta  we’ve seen  suppor t s the asser t ion  tha t  memory access is the pr imary h indrance to effi-
cien t  stubs. The a lignments of source and dest ina t ion  a re used to determine the maximum sized loads

HP 735 ntoh usc rpcgen rpcgen-
opt

asn1/
ber

asn1/
opt

udp hdr 4.7 3.8 22 9 10 6.3

big hdr 37 16 212 165 46 19

Table 6: Cache Effects

Dec 5000
RTT usc ntoh rpcgen-

opt
asn1/
ber

1,200 usec 2% 6% 30% 16%

800 usec 3% 9% 45% 24%

170 usec 13% 42% 212% 114%

Table 7: Relative Costs
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gen  with  the opt imizer  enable. The UDP header  test  shows some sign ificant  improvement  bu t  the
opt imized stubs a re st ill an  order  of magnitude slower  than  USC genera ted stubs. The big header  test
shows only minor  improvement . The reason  for  th is is tha t  the XDR libra ry implements on ly four
macros tha t  the rpcgen  program uses to opt imize the conversion  of shor t s and longs in  XDR defined
st ructures. Unfor tuna tely the big header  conta ins char ’s and fixed length  opaque byte st r ings which
rpcgen  does not  opt imize. The th ird row of Table 4 gives the per formance of USC genera ted stubs tha t
encode the da ta  st ructures in to XDR format . These resu lt s clear ly show tha t  it  is the XDR/rpcgen
implementa t ion  ra ther  than  the XDR encoding scheme tha t  causes the poor  per formance of rpcgen .
Closer  examina t ion  of the XDR libra ry helps expla in  th is problem. The standard XDR libra ry incurs
a t  least  one procedure ca ll per  base type and another  procedure ca ll for  each  word of the encoded for -
mat . The poor  per formance of XDR stubs has been  noted by others[8][3].

Next  the per formance of the MAVROS[3] ASN.1 complier  was tested. As in  XDR the encoded
forms of the ASN.1 headers differ  grea t ly from the standard header  definit ions. In  addit ion  the big
header  was simplified by replacing the 6 byte Ethernet  address fields with  4 byte in tegers. The resu lt s
of th is t est  a re given  in  Table 5.

The first  row of the table gives the per formance of MAVROS stubs using the ASN.1/BER syn-
tax. The per formance of ASN.1/BER stubs is much worse than  tha t  of USC or  n toh  stubs bu t  is sign if-
ican t ly bet ter  than  XDR stubs (see Tables 2-4). Again  the quest ion  is whether  or  not  the poor  ASN.1
per formance is a  resu lt  of the ASN.1/BER syntax or  is simply a  funct ion  of MAVROS. For tuna tely
MAVROS suppor t s an  exper imenta l simplified ASN.1 encoding scheme. The last  row in  Table 5 gives
the resu lt s of using MAVROS to genera te stubs using the exper imenta l ASN.1 encoding format . These
stubs per form much bet ter  than  the ASN.1/BER stubs. The poor  ASN.1 per formance is clear ly caused
by the dynamic format  defined in  BER.

Note tha t  in  [3] the repor ted resu lt s on  th is new encoding format  were discouraging. There
are severa l possible explana t ions for  the discrepancy between  their  resu lt s and ours. The first  expla -
na t ion  is tha t  the test  cases used in  the paper  were la rge and complex da ta  st ructures tha t  require the
use of dynamica lly a lloca ted storage. While the paper  cla ims to have elimina ted th is bias by imple-
ment ing a  specia l version  of malloc there may have st ill been  sign ificant  malloc overhead. For  small
simple header  da ta  st ructures the ligh tweight  syntax is clear ly super ior. The second explana t ion
could be tha t  while MAVROS genera tes good code for  the ligh tweight  syntax it  does not  genera te
grea t  code. It  makes lit t le use of macros and st ill requires severa l procedure ca lls per  da ta  st ructure.

Sparc 1 Sparc 10 Dec 5000 486 HP 735

long udp big long udp big long udp big long udp big long udp big

rpcgen 20 64 679 4 16 148 15 51 462 10 39 372 5.7 19 198

rpcgen-opt 20 25 530 4 15 110 14 21 360 11 14 299 5.8 5.6 151

usc-xdr 1.7 6.5 77 0.5 0.7 9 1.0 1.2 13 0.5 0.7 7

Table 4: XDR Performance (usec)

Sparc 1 Sparc 10 Dec 5000 486 HP 735

long udp big long udp big long udp big long udp big long udp big

asn.1/ber 12 46 263 2.7 9 52 11 37 194 10 29 160 2.4 7.7 37

asn.1/opt 5 17 78 1 3.3 12 4.4 16 47 4 11 26 1 3.2 8.5

Table 5: ASN.1 Performance
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Surpr isingly USC appears to genera te bet ter  code than  gcc in  severa l cases. The reason  for
th is in  the UDP header  test  case is tha t  the USC program defining the UDP header  specified 4-byte
a lignment  and the compiler  assumed 2-byte a lignment . USC safely genera tes word loads and stores;
gcc must  genera te shor t  loads and stores. This opt imiza t ion  accura tely reflects typica l network code:
in  genera l the network UDP header  is four  byte a ligned in  packets and it  is easy to force the a lign-
ment  of the loca l instance of the UDP header  to a  four  byte boundary. The per formance of a  USC stub
which  copies a  two byte a ligned UDP header  is iden t ica l tha t  of st ructure copy. For  the big header  test
case on  the two Sparcs, gcc uses memcopy to copy the bytes, which  is apparen t ly in fer ior  to the
st ra igh t  in line code genera ted by USC for  da ta  st ructures of th is size(82 bytes). From th is t est  case we
conclude tha t  the per formance of USC is effect ively opt imal in  the degenera te case where no byte
swapping is required.

The second test  compares the per formance of USC genera ted stubs with  tha t  of manually gen-
era ted por table stubs implemented using the BSD ntoh  and h ton  funct ions to swap bytes where
needed. For  th is t est , the appropr ia te stubs were genera ted for  each  machine. For  big endian
machines such  as the Sparcs, and HP 735 no bytes a re swapped by the stubs. For  lit t le endian
machines such  the DecSta t ion  and the 486 bytes were swapped for  every field of the headers except  IP
and Ethernet  addresses. 1 The resu lt s of th is t est  case a re given  in  Table 3.

These resu lt s show tha t  the per formance of USC genera ted stubs is genera lly super ior  to n toh
stubs on  both  big endian  and lit t le endian  machines. The reason  for  th is difference on  big endian
machines is tha t  USC genera tes a  ser ies of word load and stores while the n toh  stubs load and store
each  field of the da ta  st ructure separa tely. The n toh  stubs use some ha lfword and byte loads and
stores for  the da ta  st ructures tested. When byte swapping is required (on  the Dec and In tel) USC
stubs a re a lso genera lly faster  than  n toh  stubs. The reason  for  th is is aga in  tha t  USC takes advantage
of knowing tha t  the headers a re four  byte a ligned. For  example, the USC genera ted code to swap the
bytes of a  UDP header  is given  below. The code swaps the bytes a  fu ll word a t  a  t ime.

r0 = *(int *)((char *)l_src + (0));

*((int *)((char *)l_dst + (0))) = (((r0 >> 8) & 0xff00ff) | ((r0 << 8) & 0xff00ff00));

r0 = *(int *)((char *)l_src + (4));

*((int *)((char *)l_dst + (4))) = (((r0 >> 8) & 0xff00ff) | ((r0 << 8) & 0xff00ff00));

Next , the per formance of stubs wr it ten  using the Sun  XDR libra ry was tested. Because the
XDR encoding format  encodes a ll in teger  types in  four  byte quant it ies the encoded UDP and big
header  da ta  st ructures a re longer  than  the na t ive da ta  st ructure. The resu lt s of th is t est  a re given  in
Table 4.

The first  row of Table 4 gives the per formance of stubs tha t  were genera ted by rpcgen  with  the
rpcgen  opt imizer  disabled. These resu lt s a re clear ly orders of magnitude worse than  either  the USC
stubs or  the n toh  stubs. The second row of Table 4 gives the per formance of stubs genera ted using rpc-

1. Because no calculations are performed on addresses it is common BSD practice to leave address in network byte order.

Sparc 1 Sparc 10 Dec 5000 486 HP 735

long udp big long udp big long udp big long udp big long udp big

ntoh 1.8 6.6 92 0.3 0.7 10 2.2 6.2 72 0.7 1.5 15 0.2 1.0 13

usc 1.8 4 31 0.3 0.6 4.5 1.7 3.5 22 1.0 1.2 13 0.2 0.4 3.5

Table 3: USC vs. ntoh (usec)



6

value of 0. A 0 Tsize field means tha t  the USC compiler  will determine the size of the st ructure it self.
This st ructure requires 22 bytes of storage, and is 4-byte a ligned.

F ield Decla ra t ions:

u_short sport (2, 2, 0, <0..1>),...;

Spor t  is a  field of the st ruct  na t ive_hdr. It  is a  lit t le-endian  2 byte shor t  tha t  occupies 2 bytes
of space, and is found a t  offset  0 (the th ird field’s va lue) from the sta r t  of the st ructure.

Bit -F ields:

u_int x2(1, 1, 4, <0>) : 4 (4, 8, 0, <4..7>),
off (1, 1, 4, <0>) : 4 (4, 8, 0, <0..3>);

x2 and off a re bit -fields tha t  occupy the same byte in  the st ructure, The first  tuple: (1, 1, 4,
<0>) decla res the under lying in teger  type with  respect  to which  the bit -field is defined. Not ice tha t
both  bit -fields a re decla red to have an  offset  of 4, so they a re found in  the same byte. After  the colon ,
unit s a re in  bit s. x2 is a  four-bit  bitfield, which  has size 4 bit s, and occupies 8 bit s. The offset  field of a
bit -field has no meaning, so it  is left  a t  zero. The last  field descr ibes the bit  order. The least  sign ificant
bit  is bit  4, with  respect  to the under lying in teger  type decla red for  x2.

In  addit ion  to the four  da ta  types shown in  th is example, USC can  handle a r rays, including
var iable length  a r rays, and unions. P lease refer  to Appendix I for  a  more in -depth  t rea tment  of the
USC syntax and semant ics of da ta  type and stub decla ra t ions.

4) Evalu ation

To eva lua te the per formance of USC we ran  a  ser ies of per formance test s compar ing USC gen-
era ted stubs with  stubs genera ted manually or  by other  stub genera tors. These test s were run  on  5
differen t  machines: a  SPARC 1, a  SPARC 10, a  DecSta t ion  5000/200, an  In tel 486, and an  HP 735.
The da ta  st ructures marsha led consisted of a  4 byte long, an  8 byte UDP header, and a  82 byte la rge
composite header  (ca lled big header ) const ructed by conca tena t ing an  Ethernet  header, an  IP  header,
a  TCP header, and an  ARP header. Big header  represen ts what  we consider  to be reasonable size for
a ll network headers a ffixed to a  single packet . Each  test  case marsha ls a  da ta  st ructure to and from
network form twice. This cor responds to a  complete round t r ip of a  protocol. All t est s were run  using
var ious versions of gcc. The test s were const ructed to ensure tha t  no usable da ta  was saved in  regis-
ters between  each  marsha ling. Unless otherwise noted a ll t est  da ta  was in  the machine’s cache.

The first  t est  compares the per formance of USC genera ted stubs to tha t  of the gcc implemen-
ta t ion  of st ructure copy. We defined USC stubs which  copy the th ree da ta  st ructures without  byte
swapping and compared the per formance of these stubs aga inst  the per formance of a  simple C assign-
ment  of the th ree da ta  st ructures. The resu lt s of th is t est  a re given  in  Table 2. Note in  Table’s 2
through 5 each  column is divided in to th ree sub-columns: the first  gives the per formance of a  stub
marsha ling a  long, the second a  stub marsha ling a  UDP header  and the th ird a  stub marsha ling a  big
header.

Sparc 1 Sparc 10 Dec 5000 486 HP 735

long udp big long udp big long udp big long udp big long udp big

scopy 1.8 6.6 49 0.3 0.6 7 0.5 2.2 12 0.4 0.8 8.6 0.2 0.9 3.5

usc 1.8 4 31 .3 .6 4.5 0.5 0.9 10 o.3 0.7 8.0 0.2 0.4 3.5

Table 2: USC vs. C structure copy (usec)
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u_int x2(1,1,4,<0>):4(4,8,0,<4..7>),
off(1,1,4,<0>):4(4,8,0,<0..3>);

u_long seq(4,4,5,<3..0>),
ack(4,4,9,<3..0>);

u_char flags(1,1,13,<0>);
u_short win(2,2,14,<1..0>),

sum(2,2,16,<1..0>),
urp(2,2,18,<1..0>);

} net_hdr(0,20,1,0);

/* a stub definition */

void tcphdr(net_hdr *src, native_hdr *dest)
{
*dest = *src;

}

Figure 1: The USC program tcp.USC.

A USC program consist s of a  ser ies of pragmas followed by type and stub definit ions. The
pragmas define the na t ive format  of a ll base types for  the compiler /machine combina t ion  tha t  USC
will genera te code for, in  th is case gcc compiling for  a  DECSta t ion  5000. The type net_hdr  is a  TCP
header1 in  big-endian  byte order  and is packed in to min imal space without  regard to the a lignment  of
any of it s fields. The type na t ive_hdr  is a  TCP header  in  lit t le-endian  byte order  with  a  st ructure pad-
ded so tha t  each  field is a ligned appropr ia tely. The stub tcphdr  takes a  TCP header  in  network format
and copies it  to a  TCP header  in  DECSta t ion  5000 format . Running USC on  the file tcp.usc will crea te
two files: t cp.c and tcp.h . t cp.c conta ins the host  and compiler-specific C implementa t ion  of the stub
tcphdr. t cp.h  conta ins a  prototype of the funct ion  tcphdr  or  a  macro implementa t ion  of tcphdr.

The code shown in  figure 1 is essen t ia lly C, with  addit iona l in format ion  tha t  precisely
descr ibes the da ta  layout  of the types defined. This in format ion  is encoded as a  tuple:

(tsize, msize, alignment/offset, byte order)

In  a  globa l type or  pragma decla ra t ion , the th ird field is in terpreted as the a lignment . To
descr ibe a  st ructure or  un ion  field, the th ird field is in terpreted as the offset . In  a ll decla ra t ions except
bit -fields, a ll numbers a re in  un it s of bytes, and in  bit -fields the un it s a re bit s. Tsize is the size of the
da ta  type (ie, a  4 byte in teger ) and msize is the actua l amount  of memory a lloca ted for  th is type (a  2
byte shor t  may actua lly occupy 4 bytes). Below we expla in  some example lines from figure 1:

Pragma Decla ra t ions:

#pragma long (4, 4, 4, <0..3>);

The pragma above defines the layout  of a  long on  the compiler /machine combina t ion  for  which
USC will genera te code. USC will t ake th is definit ion  to mean  tha t  longs a re 4 bytes long, require 4
bytes of storage, and a re a ligned on  4 byte boundar ies. The last  field, which  could a lso have been  wr it -
ten  <0, 1, 2, 3> , means tha t  the least  sign ificant  byte of a  long is a t  offset  0 from it s address, and the
most  sign ificant  byte is a t  offset  3 from it s address. In  other  words, longs a re lit t le-endian .

Globa l Type Decla ra t ions:

typedef struct tcp_native_hdr {
...
} native_hdr (0, 22, 4, 0);

A st ructure’s annota t ion  is simila r  to a  pragma decla ra t ion , except  tha t  byte order  field has a

1. Actually a minor variation of the tcp header format is used to better demonstrate the features of USC.
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Unfor tuna tely th is nota t ion  cannot  be used to descr ibe types encoded using a  dynamic format ;
a  format  where the encoding depends upon the run t ime va lue of a  var iable. For  example in  ASN.1/
BER format  the encoding of an  in teger  var ies in  size based upon the va lue of the in teger. Dynamic for -
mats a re very expensive to encode and decode: it  t akes a  min imum of 58 inst ruct ions to encode an
ASN.1/BER in teger [8] as apposed to 2 inst ruct ions for  most  sta t ica lly encoded in tegers. Dynamic for -
mats a re to our  knowledge only found in  in termedia te forms. All host s and compilers use sta t ic forms
to represen t  na t ive da ta . While USC’s inability to specify dynamic formats means tha t  it  cannot  be
used to read and wr ite headers in  ASN.1/BER format , it  a lso a llows USC to concent ra te on  the effi-
cien t  conversion  of the more common sta t ic formats.

USC uses modern  compiler  opt imiza t ion  techniques to genera te near ly opt imal C code. Opt i-
mized code is vita l for  th ree reasons. F ir st , modern  in ternet  protocol implementa t ions a re very effi-
cien t ; some TCP implementa t ions require on ly tens of inst ruct ions to process an  incoming packet [2].
A stub compiler  which  required hundreds of inst ruct ions to marsha l the TCP header  would domina te
the cost  of the protocol implementa t ion . Second, USC can  be used to genera te very small stubs to
access par t icu la r  fields in  headers. Genera t ing such  stubs is on ly usefu l if the genera ted code is very
efficien t . F ina lly, if programmers believe tha t  a  stub compiler  is genera t ing bad code they will simply
not  use it  where per formance is required.

USC assumes tha t  both  the source and dest ina t ion  of any stub a re in  cont iguous memory.
Some argument  marsha ling systems assume tha t  the encoded version  of a  da ta  type may be spread
across severa l dist inct  memory buffers. For  shor t  headers it  is much more efficien t  to copy a  header
broken  across two buffers in to cont iguous storage ra ther  than  checking the buffer  size before every
header  access.

3) Exam ple  USC Spe c ifi cation : TCP  He ade r

The syntax of a  USC program is a  subset  of the ANSI C syntax extended to a llow the user  to
annota te da ta  type definit ions with  byte order  and a lignment  in format ion . The user  uses th is syntax
to decla re type definit ions and funct ions which  manipula te va lues of these types. With  minor  excep-
t ions a  USC program st r ipped of it s annota t ions is a  va lid C program. Below is the USC program
tcp.usc.

/* define native DECSTATION base types */

#pragma long(4,4,4,<0..3>);
#pragma int(4,4,4,<0..3>);
#pragma short(2,2,2,<0..1>);
#pragma char(1,1,1,<0>);

/* tcp header in native DECSTATION format */

typedef struct tcp_native_hdr {
u_short sport(2,2,0,<0..1>),

dport(2,2,2,<0..1>);
u_int x2(1,1,4,<0>):4(4,8,0,<4..7>),

off(1,1,4,<0>):4(4,8,0,<0..3>);
u_long seq(4,4,8,<0..3>),

ack(4,4,12,<0..3>);
u_char flags(1,1,16,<0>);
u_short win(2,2,18,<0..1>),

sum(2,2,20,<0..1>),
urp(2,2,22,<0

} native_hdr(0,22,4,0);

/* tcp header in network format */

typedef struct tcp_net_hdr {
u_short sport(2,2,0,<1..0>),

dport(2,2,2,<1..0>);
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t ion  layer  stub compilers. Most  of these differences a re a  resu lt  of differences between  the header
marsha ling problem and the da ta  marsha ling problem. This sect ion  a t tempts to descr ibe and mot i-
va te each  of these differences.

The biggest  difference between  header  marsha ling and da ta  marsha ling is tha t  in  header
marsha ling the network formats for  headers a re fixed by the protocol definit ion  and near ly impossible
to change. Thus USC must  genera te stubs to pre-exist ing formats and because of th is USC has no
fixed in termedia te form. USC conver t s a  given  da ta  type in  one specified format  to another  specified
format . To marsha l a  TCP header  a  USC user  defines a  C st ructure to represen t  the TCP header  and
specify two formats for  tha t  da ta  st ructure: the loca l compiler /host  format  and the network format .
The user  would then  define USC stubs tha t  conver t  a  TCP header  in  one format  to another. USC
allows the user  to descr ibe near ly a rbit ra ry layouts of da ta  types and conversions between  them. In
cont rast , t radit iona l stub compilers conver t  da ta  to and from network form as follows. Sender  da ta , in
na t ive host /compiler  format , is conver ted in to a  network independent  format  for  t ransmission  to a
receiver  who will conver t  the independent  format  to it s na t ive host /compiler  format . The in termedia te
format  is genera lly fixed. Thus the stub compiler  need only know of the loca l host /compiler  format  and
the fixed in termedia te form. A fixed in termedia te form makes it  impossible to use a  stub compiler  to
genera te header  marsha ling code for  an  exist ing protocol such  as TCP.

The lack of a  fixed in termedia te form ra ises the quest ion  of coverage: exact ly what  da ta  for -
mats will be suppor ted by USC. Our  first  assumpt ion  was tha t  any network protocol would be wr it ten
in  C or  C++. Thus the USC type system is based upon the C type system. Because the types commonly
encountered in  header  marsha ling a re qu ite simple USC uses a  limited subset  of the C type system
tha t  does not  suppor t  poin ters. Table 1 gives the dist r ibu t ion  of da ta  types found in  the protocol head-
ers in  our  protocol libra ry. The only poin ters presen t  in  th is dist r ibu t ion  a re found in  Sun  RPC; a  pro-
tocol tha t  uses a  presen ta t ion  layer  stub compiler  to marsha l it s header1. In  addit ion  to being ra re,
poin ters a re difficult  and t ime consuming to marsha l and require sign ificant  amounts of storage man-
agement  and er ror  checking code.

Given  th is rest r ict ion  to simple C types, the quest ion  becomes what  formats of these types will
USC suppor t . We decided tha t  a t  a  min imum USC must  a llow a  user  to specify any da ta  format  found
on any actua l host /compiler  combina t ion . In  genera l the host  determines the da ta  represen ta t ion  of
the base types and the compiler  determines the a lignment  of da ta  in  composite types. The demise of
most  ones complement  and odd byte size a rch itecture implies tha t  a  rela t ively small set  of poten t ia l
da ta  formats will cover  a lmost  a ll modern  a rch itectures. However  as the C standard places very few
rest r ict ions on  the poten t ia l a lignment  of da ta  types so the a lignment  annota t ions in  USC must  be
flexible. Therefore we have defined a  nota t ion  (given  in  the Appendix) which  suppor t s the near ly a rbi-
t ra ry a lignment  of a  set  of simple base type.

1. Note tha t  USC can  marsha l Sun  RPC headers. USC one would t rea t  the Sun  RPC header  as ser ies of
simple C st ructures.

Type: Frequency:
shor t 34%
char 25%
int /long 23%
st ruct 7%
enumera ted 5%
bitfield 4%
array 1%
poin ter 1%

Table 1: Type Frequencies
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1) In trodu ction

Presenta t ion  layer  processing is becoming recognized as one of the last  remain ing per for -
mance bot t lenecks in  network software[2]. Presen ta t ion  layer  processing, a lso ca lled data m arshal-
ing, involves conver t ing user  da ta  between  differen t  host  formats. What  is less commonly understood
is tha t  the network code, it self, faces a  simila r  problem. Network software is r iddled with  code tha t
conver t s da ta  from one format  to another, the most  common example being reading and wr it ing head-
ers. We ca ll th is header m arshaling1.

There a re two common approaches to solving the header  marsha ling problem. One is to use
presenta t ion  layer  stub compilers to genera te header  marsha ling stubs. For  example, Sun  RPC uses
XDR[9], and the en t ire OSI protocol su ite uses ASN.1/BER[6][7]. A second approach  is to implement
header  marsha ling code by hand, perhaps with  the a id of simple macros such  as the n toh  su ite found
in  Unix. Both  of these approaches have sign ificant  problems. In  the former  case, the use of a  heavy-
weight  mechanism adversely effect s protocol la tency. In  the la t ter  case, manually genera ted code is
difficult  to wr ite because it  requires knowledge of deta ils about  the compiler  and host  a rch itecture.
This a lso tends to make the code non-por table. To make mat ters worse, one is likely to have to suppor t
severa l such  mechanisms on  any given  host .

This paper  in t roduces a  simple solu t ion  to the header  marsha ling problem. We have designed
and implemented a  new specia l-purpose stub compiler, ca lled USC (Universa l Stub Compiler ), tha t
au tomat ica lly genera tes stubs to conver t  a  C da ta  st ructure with  one user-defined format  to a  C st ruc-
ture with  another  user-defined format . USC combines the best  fea tures of manual and au tomat ic gen-
era t ion  of header  marsha ling code. In  summary USC:

• Automat ica lly genera tes code from a  concise specifica t ion .

• Genera tes near ly opt imal code. USC stubs a re as fast  or  faster  than  hand coded stubs and up
to 20 t imes faster  than  stubs genera ted by presen ta t ion  layer  stub compilers.

• Is protocol independent . USC can  be used to marsha l the headers for  most  exist ing protocols
including headers tha t  a re defined using some exist ing presen ta t ion  layer  formats.

• Provides near ly un limited access to network da ta . USC can  genera te stubs which  efficien t ly
peek in to the middle of a  la rge da ta  st ructure stored in  network format .

• Is easily por table. There a re no USC libra r ies, include files, or  ifdefs.

• Automat ica lly figures ou t  the a lignment  and byte order  of any C da ta  st ructure on  any C com-
piler.

While th is paper  concent ra tes on  the use of USC to solve the header  marsha ling problem. We
believe tha t  USC provides the basis for  an  efficien t  solu t ion  of the da ta  marsha ling problem. USC can
be viewed as a  h igh ly opt imized code genera tor  for  a  more complex presen ta t ion  layer  stub compiler.
Using USC to genera te the code to copy and byte swap simple composite types could resu lt  in  sign ifi-
cant  per formance improvements compared to t radit iona l presen ta t ion  layer  stub compilers.

The paper  is organized as follows: Sect ion  2 in t roduces the pr inciples under lying the design  of
USC and Sect ion  3 gives the syntax and semant ics of the USC stub definit ion  language. Sect ion  4
then  presen ts a  comprehensive eva lua t ion  of USC per formance. F ina lly, Sect ion  5 discusses severa l
issues ra ised by th is work, and Sect ion  6 offers some conclusions. A more thorough descr ipt ion  of the
USC language is given  in  Appendix I.

2) USC De s ign  P rin c ip le s

The basic design  of USC differs in  severa l cr it ica l ways for  the design  of t radit iona l presen ta -

1. Note we a lso include such  problems as reading and wr it ing the cont rol registers on  devices with  non-
na t ive byte orders as par t  of the header  marsha ling problem.
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