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SUMMARY

A new algorithm to search for multiple patterns at the same time is presented. The algorithm is faster than
previous algorithms and can support a very large number — tens of thousands — of patterns. Several
applications of the multi-pattern matching problem are discussed. We argue that, in addition to previous
applications that required such search, multi-pattern matching can be used in lieu of indexed or sorted data
in some applications involving small to medium size datasets. Its advantage, of course, is that no additional
search structure is needed.
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1. Introduction
We solve the following multi-pattern matching problem in this paper: Let P = {p 1, p 2,...,pk} be a set of
patterns, which are strings of characters from a fixed alphabet Σ. Let T=t 1, t 2,...,tN be a large text, again
consisting of characters from Σ. The problem is to find all occurrences of all the patterns of P in T. For
example, the UNIX fgrep and egrep programs support multi-pattern matching through the -f option.

The multi-pattern matching problem has many applications. It is used in data filtering (also called
data mining) to find selected patterns, for example, from a stream of newsfeed; it is used in security appli-
cations to detect certain suspicious keywords; it is used in searching for patterns that can have several
forms such as dates; it is used in glimpse [MW94] to support Boolean queries by searching for all terms at
the same time and then intersecting the results; and it is used in DNA searching by translating an approxi-
mate search to a search for a large number of exact patterns [AG+90]. There are, of course, many other
applications.

Aho and Corasick [AC75] presented a linear-time algorithm for this problem, based on an automata
approach. This algorithm serves as the basis for the UNIX tool fgrep. A linear-time algorithm is optimal
in the worst case, but as the regular string-searching algorithm by Boyer and Moore [BM77] demonstrated,
it is possible to actually skip a large portion of the text while searching, leading to faster than linear algo-
rithms in the average case. Commentz-Walter [CW79] presented an algorithm for the multi-pattern match-
ing problem that combines the Boyer-Moore technique with the Aho-Corasick algorithm. The Commentz-
Walter algorithm is substantially faster than the Aho-Corasick algorithm in practice. Hume [Hu91]
designed a tool called gre based on this algorithm, and version 2.0 of fgrep by the GNU project [Ha93] is
using it. Baeza-Yates [Ba89] also gave an algorithm that combines the Boyer-Moore-Horspool algorithm
[Ho80] (which is a slight variation of the classical Boyer-Moore algorithm) with the Aho-Corasick algo-
rithm.

We present a different approach that also uses the ideas of Boyer and Moore. Our algorithm is quite
simple, and the main engine of it is given later in the paper. An earlier version of this algorithm was part of
the second version of agrep [WM92a, WM92b], although the algorithm has not been discussed in
[WM92b] and only briefly in [WM92a]. The current version is used in glimpse [MW94]. The design of
the algorithm concentrates on typical searches rather than on worst-case behavior. This allows us to make
some engineering decisions that we believe are crucial to making the algorithm significantly faster than
other algorithms in practice.

We start by describing the algorithm in detail. Section 3 contains a rough analysis of the expected
running time, and experimental results comparing our algorithm to three others. The last section discusses
applications of multi-pattern matching.
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2. The Algorithm

2.1. Outline of the Algorithm
The basic idea of the Boyer-Moore string-matching algorithm [BM77] is as follows. Suppose that the pat-
tern is of length m. We start by comparing the last character of the pattern against tm, the m’th character of
the text. If there is a mismatch (and in most texts the likelihood of a mismatch is much greater than the
likelihood of a match), then we determine the rightmost occurrence of tm in the pattern and shift accord-
ingly. For example, if tm does not appear in the pattern at all, then we can safely shift by m characters and
look next at t 2m; if tm matches only the 4th character of the pattern, then we can shift by m −4, and so on.
In natural language texts, shifts of size m or close to it will occur most of the time, leading to a very fast
algorithm. We want to use the same idea for the multi-pattern matching problem. However, if there are
many patterns, and we would like to support tens of thousands of patterns, chances are that most characters
in the text match the last character of some pattern, so there would be few if any such shifts. We will show
how to overcome this problem and keep the essence (and speed) of the Boyer-Moore algorithm.

The first stage is a preprocessing of the set of patterns. Applications that use a fixed set of patterns
for many searches may benefit from saving the preprocessing results in a file (or even in memory). This
step is quite efficient, however, and for most cases it can be done on the fly. Three tables are built in the
preprocessing stage, a SHIFT table, a HASH table, and a PREFIX table. The SHIFT table is similar, but
not exactly the same, to the regular shift table in a Boyer-Moore type algorithm. It is used to determine
how many characters in the text can be shifted (skipped) when the text is scanned. The HASH and PRE-
FIX tables are used when the shift value is 0. They are used to determine which pattern is a candidate for
the match and to verify the match. Exact details are given next.

2.2. The Preprocessing Stage
The first thing we do is compute the minimum length of a pattern, call it m, and consider only the

first m characters of each pattern. In other words, we impose a requirement that all patterns have the same
length. It turns out that this requirement is crucial to the efficiency of the algorithm. Notice that if one of
the patterns is very short, say of length 2, then we can never shift by more than 2, so having short patterns
inherently makes this approach less efficient.

Instead of looking at characters from the text one by one, we consider them in blocks of size B. Let
M be the total size of all patterns, M = k*m, and let c be the size of the alphabet. As we show in Section
3.1, a good value of B is in the order of logc2M; in practice, we use either B= 2 or B = 3. The SHIFT table
plays the same role as in the regular Boyer-Moore algorithm, except that it determines the shift based on
the last B characters rather than just one character. For example, if the string of B characters in the text do
not appear in any of the patterns, then we can shift by m −B+1. Let’s assume for now that the SHIFT table
contains an entry for each possible string of size B, so its size is |Σ | B. (We will actually use a compressed
table with several strings mapped into the same entry to save space.) Each string of size B is mapped
(using a hash function discussed later) to an integer used as an index to the SHIFT table. The values in the
SHIFT table determine how far we can shift forward (skip) while we scan the text. Let X = x 1

. . . xB be
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the B characters in the text that we are currently scanning, and assume that X is mapped into the i’th entry
of SHIFT. There are two cases:

1. X does not appear as a substring in any pattern of P
In this case, we can clearly shift m −B+1 characters in the text. Any smaller shift will put the last B
characters of the text against a substring of one of the patterns which is a mismatch. We store in
SHIFT [i ] the number m −B+1.

2. X appears in some patterns
In this case, we find the rightmost occurrence of X in any of the patterns; let’s assume that X ends at
position q of Pj and that X does not end at any position greater than q in any other pattern. We store
m − q in SHIFT [i ].

To compute the values of the SHIFT table, we consider each pattern pi = a 1a 2
. . . am separately.

We map each substring of pi of size B aj −B+1
. . . aj into SHIFT, and set the corresponding value to the

minimum of its current value (the initial value for all of them is m −B+1) and m −j (the amount of shifting
required to get to this substring).

The values in the SHIFT table are the largest possible safe values for shifts. Replacing any of the
entries in the SHIFT table with a smaller value will make less shifts and will take more time, but it will still
be safe: no match will be missed. So we can use a compressed table for SHIFT, mapping several different
strings into the same entry as long as we set the minimal shift of all of them as the value. In agrep, we
actually do both. When the number of patterns is small, we select B = 2, and use an exact table for SHIFT;
otherwise, we select B = 3 and use a compressed table for SHIFT. In either case, the algorithm is oblivious
to whether or not the SHIFT table is exact.

As long as the shift value is greater than 0, we can safely shift and continue the scan. This is what
happens most of the time. (In a typical example, the shift value was zero 5% of the time for 100 patterns,
27% for 1000 patterns, and 53% for 5000 patterns.) Otherwise, it is possible that the current substring in
the text matches some pattern in the pattern list. But which pattern? To avoid comparing the substring to
every pattern in the pattern list, we use a hashing technique to minimize the number of patterns to be com-
pared. We already computed a mapping of the B characters into an integer that is used as an index to the
SHIFT table. We use the exact same integer to index into another table, called HASH. The i’th entry of
the HASH table, HASH[i], contains a pointer to a list of patterns whose last B characters hash into i. The
HASH table will typically be quite sparse, because it holds only the patterns whereas the SHIFT table holds
all possible strings of size B. This is an inefficient use of memory, but it allows us to reuse the hash func-
tion (the mapping), thus saving a lot of time. (It is also possible to make the hash table a power of 2 frac-
tion of the SHIFT table and take just the last bits of the hash function.)

Let h be the hash value of the current suffix in the text and assume that SHIFT [h ] = 0. The value of
HASH [h ] is a pointer p that points into two separate tables at the same time: We keep a list of pointers to
the patterns, PAT_POINT, sorted by the hash values of the last B characters of each pattern. The pointer p
points to the beginning of the list of patterns whose hash value is h. To find the end of this list, we keep
incrementing this pointer until it is equal to the value in HASH [h+1] (because the whole list is sorted
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according to the hash values). So, for example, if SHIFT [h ] ≠ 0, then HASH [h ] = HASH [h+1] (because
no pattern has a suffix that hash to h). In addition, we keep a table called PREFIX, which will be described
shortly.

Natural language texts are not random. For example, the suffixes ‘ion’ or ‘ing’ are very common in
English texts. These suffixes will not only appear quite often in the text, but they are also likely to appear
in several of the patterns. They will cause collisions in the HASH table; that is, all patterns with the same
suffix will be mapped to the same entry in the HASH table. When we encounter such a suffix in the text,
we will find that its SHIFT value is 0 (assuming it is a suffix of some patterns), and we will have to exam-
ine separately all the patterns with this suffix to see if they match the text. To speed up this process, we
introduce yet another table, called PREFIX.

In addition to mapping the last B characters of all patterns, we also map the first B′ characters of all
patterns into the PREFIX table. (We found that B′ = 2 is a good value.) When we find a SHIFT value of 0
and we go to the HASH table to determine if there is a match, we check the values in the PREFIX table.
The HASH table not only contains, for each suffix, the list of all patterns with this suffix, but it also con-
tains (hash values of) their prefixes. We compute the corresponding prefix in the text (by shifting m −B′
characters to the left) and use it to filter patterns whose suffix is the same but whose prefix is different.
This is an effective filtering method because it is much less common to have different patterns that share
the same prefix and the same suffix. It is also a good ‘balancing act’ in the sense that the extra work
involved in computing the hash function of the prefixes is significant only if the SHIFT value is often 0,
which occurs when there are many patterns and a higher likelihood of collisions.

The preprocessing stage may seem quite involved, but in practice it is done very quickly. In our
implementation, we set the size of the 3 tables to 215 = 32768. Running the match algorithm on a near
empty text file, which is a measure of the time it takes to do the preprocessing, took only 0.16 seconds for
10,000 patterns.

2.3. The Scanning Stage
We now describe the scanning stage in more detail and give a partial code for it. The main loop of the
algorithm consists of the following steps:

1. compute a hash value h based on the current B characters from the text (starting with tm−B+1
. . . tm).

2. check the value of SHIFT[h]: if it is > 0, shift the text and go back to 1; otherwise, go to 3.

3. Compute the hash value of the prefix of the text (starting m characters to the left of the current posi-
tion); call it text_prefix.

4. Check for each p, HASH [h ] ≤ p <HASH [h+1] whether PREFIX[p] = text_prefix. When they are
equal, check the actual pattern (given by PAT_POINT[p]) against the text directly.

A partial C code for the main loop is given in Figure 1. The complete code is available by anonymous ftp
from cs.arizona.edu as part of the glimpse code (check the file mgrep.c in directory agrep).
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while (text <= textend) {
h = (*text<<Hbits)+(*(text-1)); /* The hash function (we use Hbits=5) */
if (Long) h = (h<<Hbits)+(*(text-2)); /* Long=1 when the number of patterns warrants B=3 */
shift = SHIFT[h]; /* we use a SHIFT table of size 215 = 32768 */
if (shift == 0) { /* ‘‘h = h & mask_hash’’ can be used here if HASH is smaller then SHIFT */

text_prefix = (*(text-m+1)<<8) + *(text-m+2);
p = HASH[h];

p_end = HASH[h+1];
while (p++ < p_end) { /* loop through all patterns that hash to the same value (h) */

if(text_prefix != PREFIX[p]) continue;
px = PAT_POINT[p];
qx = text-m+1;
while (*(px++) == *(qx++)); /* check the text against the pattern directly */
if (*(px-1) == 0) { /* 0 indicates the end of a string */

report a match
}
shift = 1;

}
text += shift;

}

Figure 1: Partial code for the main loop.

3. Performance

3.1. A Rough Analysis of the Running Time
We present an estimate for the running time of this algorithm assuming that both the text and the patterns
are random strings with uniform distribution. In practice, texts and patterns are not random, but this esti-
mate gives a rough idea about the performance of the algorithm. We show that the expected running time
is less than linear in the size of the text (but not by much).

Let N be the size of the text, P the number of patterns, m the size of one pattern, M =mP the total
size of all patterns, and assume that N ≥M. Let c be the size of the alphabet. We define the size of the
block used to address the SHIFT table as B=logc2M. The SHIFT table contains all possible strings of size
b, so there are cb = c logc2M ≤ 2Mc entries in the SHIFT table. The SHIFT table is constructed in time
O (M) because each substring of size B of any pattern is considered once and it takes constant time on the
average to consider it. We divide the scanning time into two cases. The first case if when the SHIFT value
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is non-zero; in this case a shift is applied and no more work needs to be done at that position in the text.
The second, and more complicated, case is when the SHIFT value is 0; in this case we need to read more of
the pattern and the text and consult the HASH table.

Lemma 1: The probability that a random string of size B leads to a shift value of i, 0≤ i ≤m −B+1, is
≤ 1/2m.

Proof: At most P = M/m strings lead to a SHIFT value of i for 0≤ i ≤m −B+1. But the number of all
possible strings of size B is at least 2M. So the probability of one random string to lead to a SHIFT value
of i is ≤ 1/2m. Notice that this is true for SHIFT value 0 as well.

Lemma 1 implies that the expected value of a shift is ≥m/2. Since it takes O (B) to compute one
hash function, the total amount of work in the cases of non-zero shifts is O (BN/m). The extra filtering by
the prefixes makes the probability of false hits extremely small. More precisely, let’s assume that B′ =B.
The probability that a given pattern has the same prefix and suffix as another pattern is < 1/M, which is
insignificant. Therefore, the amount of work for the case of shift value 0 is also O (B) unless there is actu-
ally a match (in which case we need to check the whole pattern taking time O (m)). Since shift value 0
occurs < 1/2m of the time (by lemma 1), the expected total amount for this step is also O (BN/m).

4. Experiments
In this section we present several experiments comparing our algorithm to existing algorithms and evaluat-
ing the effects of the number and size of patterns on the performance. Unless the patterns are very small or
there are very few of them, our algorithm is significantly faster. All experiments were conducted on a Sun
SparcStation 10 model 510, running Solaris. All times are elapsed times (on a lightly loaded system get-
ting more than 90% of the CPU) given in seconds; each experiment was performed 10 times and the aver-
ages are given (the deviations were very small). The text file we used for all experiments was a collection
of articles from the Wall Street Journal totaling 15.8MB. The patterns were words from the file (all pat-
terns appeared in the text).

Table 1 compares our algorithm, labeled agrep, against four other search routines: the original egrep
and fgrep, GNU-grep version 2.0 [Ha93], and gre, an older program written by Andrew Hume (which at
the time was the only program that could handle large number of patterns). The patterns were words of
sizes ranging from 5 to 15 with average size slightly above 6. The original egrep and fgrep could not han-
dle (or took too long for) more than few hundreds patterns.

In the second experiment, we measured the running times of agrep for different number of patterns
ranging from 1000 to 10,000. The running time is indeed improved once the number of patterns exceeds
about 8,000. The reason for that is very simple; it is related more to the way greps work rather than to the
specific algorithm. Agrep (and every other grep) outputs the lines that match the query. Once it is esta-
blished that a line should be output, there is no need to search further in that line. Above 8,000, the number
of patterns becomes so large, most lines are matched and matched early on. So less work is needed to
match the rest of the lines. We present this as an example of misleading performance measures; we prob-
ably would not have thought about this effect if the numbers had not actually gone down.
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# of patterns egrep fgrep GNU-grep gre agrep

10 6.54 13.57 2.83 5.66 2.22
50 8.22 12.95 5.63 9.67 2.93
100 16.69 13.27 6.69 11.88 3.31
200 42.62 13.51 8.12 14.38 3.87
1000 - - 12.18 23.14 5.79
2000 - - 15.80 28.36 7.44
5000 - - 21.82 38.09 11.61

Table 1: A comparison of different search routines on a 15.8MB text.
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Figure 2: A comparison of running times for different number of patterns.

In the third experiment, we measured the effect of the sizes of the minimum pattern (denoted by m in
the discussion on the algorithm). The larger m is the more chances of shifting there are, leading to less
work. We used 100 patterns for each case, with the average size being typically 1 more than the minimal
size. The graph matches quite well the curve of the function 1/(m −c), where c is a small constant such
that m −c is the average shift value.

We also measured the time used for preprocessing a large set of patterns (by running agrep and
GNU-grep on an empty text). The preprocessing for both programs are very fast up to 1000 patterns,
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Figure 3: The effect of the minimum pattern length on the running time.

taking on the order of 0.1 second (once the patterns are in the cache). For more patterns, GNU-grep
becomes slower (because of the added complexity of building tries); for 10,000 patterns, agrep takes about
0.17 seconds whereas GNU-grep requires about 0.90 seconds.

5. Additional Applications
In another project, to find all similar files in a large file system [Ma94], we needed a data structure to han-
dle the following type of searches. We had a large set of (typically 100,000 to 500,000) small records,
each identified by a unique integer. The main operation was to retrieve several records (typically 50-100,
but sometimes as high as 1000) given their identifiers. The data structure needed to be stored on disk, and
the operation above was triggered by the user. Searching for unique keywords is one of the most basic data
structure problems and there are many options to handle it; the most common techniques use hashing or
tree structures. But since we have to search many keywords at the same time, even with efficient hashing,
most of the pages will be fetched anyway. And if the data is fetched from disk anyway, multi-pattern
matching provides a very effective and simple solution. We stored the records as we obtained them
without sorting them or providing any other structure, putting one record together with its identifier per
line. Then we used agrep with the multi-pattern capabilities. The benefits of this approach are 1) no need
for any additional space for the data structure, 2) no need for preprocessing or organizing the data structure
(e.g., sorting), and 3) more flexible search; for example, the keywords can be any strings, Of course, if the
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total number of pages far exceeds the number of keywords that need to be searched, then other data struc-
tures will be better. But for small to medium size applications, this is a surprisingly good solution. We
believe that it can be used in a variety of similar situations. Another example is intersection problems. The
common method for finding all common records to two files is to sort both files and merge. With this
approach, there is no need to sort, and the preprocessing is done only on the small file.

Another applications is a general ‘‘match-and-replace’’ utility, called mar.2 Each pattern is associ-
ated with a replacement pattern. When a pattern is discovered it is replaced in the output by its replace-
ment. One subtle detail in the algorithm is that we now must shift by the length of the matched pattern
after it is discovered (instead of by 1) to avoid overlapping replacements. For example, if ‘war’ is replaced
by ‘peace’ and ‘art’ is replaced by ‘science’, and we shift by 1 after seeing ‘war’, we will replace ‘wart’ by
‘peacescience’. (Of course, there is also an option to require that only complete words are replaced.)
Since we can support thousands of patterns, mar can be used for wholesale translations (e.g., from English
to American) very fast.
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