
Constructing a Configurable
Group RPC Service

Matti A. Hiltunen Richard D. Schlichting

TR 94-28

Constructing a Configurable Group RPC Service

Matti A. Hiltunen Richard D. Schlichting

TR 94-28

Abstract

Current Remote Procedure Call (RPC) services implement a variety of semantics, with many of
the differences related to how communication and server failures are handled. The list increases
even more when considering group RPC, a variant of RPC often used for fault-tolerance where
an invocation is sent to a group of servers rather than one. This paper presents an approach to
constructing group RPC in which a single configurable system is used to build different variants
of the service. The approach is based on implementing each property as a separate software
module called a micro-protocol, and then configuring the micro-protocols needed to implement
the desired service together using a software framework based on the x-kernel. The properties
of point-to-point and group RPC are identified and classified, and the general execution model
described. An example consisting of detailed pseudocode for a modular implementation of a group
RPC service is given to illustrate the approach. Dependency issues that restrict configurability are
also addressed.

October 18, 1994

Department of Computer Science
The University of Arizona

Tucson, AZ 85721

This work supported in part by the Office of Naval Research under grant N00014-91-J-1015.

1 Introduction

Remote Procedure Call (RPC) [Nel81, BN84] is a communication abstraction designed to simplify the
writing of distributed programs. With RPC, a request for service from a client to a server process is
structured to give synchronization semantics at the client similar to normal procedure call. Numerous
examples of different RPC services and implementations exist, including Firefly RPC [SB90], Alphorn
[AGH 91], lightweight RPC [BALL90], Peregrine [JZ93], and SUPRA-RPC [Sto94]. Among the
commercial RPC packages released have been Courier from Xerox [Xer81], Sun RPC [Sun88], Netwise
RPC from Novell Netware, NCA from Apollo [Apo89], and DCE RPC.

On the surface, the semantics of RPC seem very simple, yet the reality is that there are subtleties
and variations. For example, there are many ways to define how an RPC service deals with server and
communication failures. The set of options grows even more when considering group RPC, a variant
of RPC often used for fault-tolerance where the request is sent to a group of servers rather than one. For
example, there are numerous ways to define how requests are ordered at a server, and how the multiple
replies to a given request are collated for return to the client. Making choices in each of these cases
gives a different variant of RPC. This explains at least in part why so many RPC systems have been
defined and implemented: since each system typically realizes one and only one set of semantics, a
new system is built whenever different semantics are called for by the application requirements.

In this paper, we present an alternative approach in which a single, configurable system is used
to construct different variants of RPC. In our approach, a user begins by analyzing the requirements
of the application with respect to the different types of properties realized by RPC. They then select
the desired variant of each type. For example, they might select at least once semantics to deal with
failures [Spe82] and orphan termination to deal with orphaned computations [Shr83]. Finally, software
modules calledmicro-protocols [HS93, BS94], each of which implements a single selected property, are
configured together using a software framework based on the x-kernel [HP91]. The approach assumes
an asynchronous distributed system, where the underlying communication system can experience both
omission and performance failures, and where sites can experience crash failures.

Many of the properties for which multiple variants exist are related to failure handling and fault-
tolerance, so we deal exclusively here with these aspects of RPC. Other issues, although important, are
beyond the scope of this paper. These include stub generation and heterogeneity [Sun88, Gib87, HS87,
Apo89, TB90, WSG91], binding [BN84, LT91, BALL90], performance or performance optimizations,
[PA88, RST89, SB90, BALL90], and security issues [Bir85].

2 Properties of RPC Services

2.1 Point-to-point RPC

The properties of RPC can be classified into categories as follows.

Failure semantics specify what guarantees are given to the client about the execution of the server
procedure, both when the call returns successfully and when the call returns unsuccessfully. The
two properties are unique execution, which states that the server procedure is not executed
more than once, and atomic execution, which states that the server procedure is either executed
completely or not at all.

Call semantics specify the synchrony of the client call. A call is synchronous if the client thread
is blocked until the call to the server is finished, while a call is asynchronous if the client thread

1

returns immediately. In the latter case, the RPC system may include another system call that
allows the thread to retrieve results later. Although synchronous is most commonly used, a
number of systems provide an asynchronous option as well [ATK91, LS88, WNF90].

Orphan handling semantics specify how orphans—that is, server computations associated with
clients that have failed—are dealt with. Orphans not only waste computing resources, but may
also interfere with new calls issued by a recovered client. Options for dealing with orphans
include interference avoidance, where the orphans finish their computation before the recovered
client is allowed to issue new requests, and orphan termination, where orphans are terminated
upon detection [Shr83, PS88].

Communication semantics specify properties about the communication between the client and
server. Here, we concentrate on reliable communication, which can be implemented by message
acknowledgements and retransmissions. Of course, if the reliability guarantees provided by
the underlying communication layer are strong enough, then the RPC layer may not need to
implement reliability. Furthermore, an application builder might choose not to have this property
for other reasons, e.g., efficiency or cost.

Termination semantics specify the guarantees that are given about termination of a call. Due to
communication and server failures, the client site may retry a call an arbitrary number of times.
Bounded termination states that a call always terminates and the client thread returns within a
bounded, specified time. If the server has not responded by the deadline, the call returns with an
indication of failure.

We point out that our classification of failure semantics subsumes more traditional distinctions,
which can be summarized as follows [PS88]. At least once guarantees that if the invocation terminates
normally, the remote procedure has been executed one or more times, and if it terminates abnormally, no
conclusion is possible [Spe82]. Exactly once guarantees that if the invocation terminates normally, the
remote procedure has been executed exactly one time, and if it terminates abnormally, no conclusion
is possible other than that it has not been executed more than once. At most once is the same as
“exactly once” if the invocation terminates normally, while if the invocation terminates abnormally, the
execution of the remote procedure is guaranteed to be atomic, i.e., either completely executed or not at
all [LS83]. In our classification, each of these semantics can be realized as some combination of the
unique and atomic execution properties, as illustrated in Figure 1.

Unique execution Atomicity of procedure execution
At least once NO NO
Exactly once YES NO
At most once YES YES

Figure 1: Failure semantics as combinations of properties

2.2 Group RPC

Group RPC is any RPC service where the request is sent to more than one server—i.e., a server group—
using either multicast or point-to-point communication. Group RPC has numerous applications. For

2

example, it can be used to implement replicated servers to increase availability of the service in the
event of failures, to implement parallel computation, or to improve response time. Examples of group
or multicast RPC include [Coo85, YJT88, CGR88, WZZ93, Che86, SS90, Mar86, Coo90].

For brevity, in this paper we consider only one-to-many group RPC, in which one client uses RPC
to invoke a procedure implemented by a server group. The semantics of group RPC are identical to
ordinary RPC when considering the call, orphan handling, communication, and termination semantics
discussed above. However, group RPC also includes the following.

Ordering semantics specify the order in which concurrent calls are executed by different members
of the server group. FIFO ordering guarantees that all calls issued by any one client are executed
in the same order by all group members, while total order guarantees that all calls are executed
in the same total order. Other variants such as partial or causal order have also been defined.

Collation semantics specify how responses from the multiple members of the group are combined
before being returned to the client. Different possibilities include return any reply, return all
replies, or return the result of a function that maps all replies into one result (e.g., average). Of
course, any of these alternatives can be described as a function, so we take the general approach
of having the user provide the desired collation function at initialization time.

Failure semantics are defined as above, but must be augmented given more than one server. In
particular, different combinations of the failed and successful executions must be considered.

RPC

Synchronous Asynchronous

ONE ALL

Acceptance
....

Membership
Semantics

FIFO
Order Order

Total....No
Order

Bounded
Termination

Unbounded
Termination

Unique
Execution

Non-Unique
Execution Execution

Atomic
Execution

Non-Atomic

Collation

Communication
ReliableUnreliable

Communication

Ignore orphans
Avoid orphan
interference

Terminate
Orphans

Figure 2: Semantic properties of group RPC

As noted, the failure semantics become much more complicated with multiple servers. Specifically,
we must now consider how many servers must succeed in order for the group RPC to be considered
successful, a property we term its acceptance semantics. Possibilities range from requiring successful
execution at only one server to successful execution at all servers. Note that the concept of “all” is not
trivial. For example, if we assume the server group has a fixed membership and that all sites eventually

3

recover, a response will be forthcoming from all servers if the client waits long enough. On the other
hand, the client might not want to wait for recovery, but is willing to settle for the responses from
all servers that are still functioning. Dealing with site failure and recovery in this way constitutes the
membership semantics.

Figure 2 summarizes the properties of group RPC and by implication, point-to-point RPC. Each box
represents a property, with alternative variants of the semantics represented as enclosed labeled boxes.
The edges represent logical dependencies between properties in the sense that a property depends on
property if must hold in order for to hold. For example, to implement FIFO or total ordering,
every server must receive the same set of messages, i.e., the reliability property must hold.

3 Micro-protocols and event-driven execution

A configurable RPC system based on the above properties is realized using a model for composing fine-
grained software modules [HS93] and its associated x-kernel based implementation platform [BS94].
The basic building block of this model is a collection of micro-protocols, each of which implements a
well-defined property. A micro-protocol, in turn, is structured as a collection of event handlers, which
are procedure-like segments of code that are invoked when an event occurs. Events can be either user
or system defined, and are used to signify changes of state potentially of interest to the micro-protocol.
For example, a commonly-used event for building network protocols like RPC is “message arrival.”
When an event is detected, all event handlers registered for that event are invoked; events can also be
generated explicitly by micro-protocols, with the same effect. The invocation of event handlers due to
the occurrence of a single event can be sequential—performed sequentially using one thread of control,
or concurrent—performed concurrently with each event handler given its own thread of control. The
invocation itself can be blocking, where the invoker waits until all the event handlers registered for the
event have finished execution, or non-blocking, where the invoker continues execution without waiting.

Event registration, detection, and invocation are implemented by a standard runtime or framework
that is linked with the micro-protocols. The framework also supports shared data (e.g., messages) that
can be accessed by the micro-protocols configured into the framework. The object formed by the linking
of a collection of micro-protocols and associated framework is known as a composite protocol. Once
created, such a composite protocol can be composed in a traditional hierarchical manner with other
x-kernel protocols to form the application’s protocol stack. To accomplish this, a composite protocol
exports the standard x-kernel Uniform Protocol Interface (UPI), even though its internal structure is
richer than a standard x-kernel protocol.

An example composite protocol is depicted in Figure 3. In the middle is the framework, which
contains a shared data structure—in this case a table of pending RPC calls—and some event definitions.
The boxes to the left represent micro-protocols, while to the right are some common events with the
list of micro-protocols that are to be invoked when the event occurs.

The following operations are provided to micro-protocols by the framework for dealing with events.

register(event name,event handler name, priority), which is used to request that the framework
invoke handler event handler namewhen event name occurs. If the event is sequential, the event
handlers registered for the event are executed in priority order based on the priority value each
supplied when they registered. If omitted, the value defaults to the lowest priority.

trigger(event name,arguments), which is used to notify the framework that event event name
has occurred. The framework will then execute all the event handlers registered for this event,
passing arguments in the invocation.

4

............... U

Events:

Synchronous Call (S)

RPC Main (R)

Bounded Term. (B)

Unique execution (U)

Shared data:

R

R S

B

U

Msg from network

Call from user

Timeout

Reply from server

Figure 3: A composite protocol

deregister(event name,event handler name), which is used to reverse the registration process.

cancel event(), which is used to notify the framework that the current event is to be cancelled,
i.e., the remaining event handlers registered for this event need not be executed. This operation
is mostly useful for sequential events.

The model also has a provision for events triggered by the passage of time. To request this, a
micro-protocol uses the register procedure with TIMEOUT as the event name and specifies the time
interval as the priority parameter. With the exception of the TIMEOUT event, event handlers remain
registered for their event until explicitly deregistered, so that each may be invoked any number of times.
Event handlers registered for the TIMEOUT event are executed only once after the timeout period has
expired.

4 Implementing a group RPC service

4.1 Outline

In this section, we present detailed pseudocode illustrating how RPC can be implemented in a modular
and configurable fashion using the model described in the previous section. For brevity, the focus here
is on group RPC. Point-to-point RPC can be seen as a special case in this implementation, although in
practice it would likely be implemented separately to obtain a more compact and efficient protocol.

In following the tenets of the model, the RPC service is implemented as a composite protocol
gRPC. We assume that the system also includes the following composite or simple protocols: unre-
liable communication, user (i.e., the server or client code), and possibly membership. The unreliable
communication protocol provides the transport service needed to deliver messages between gRPC on
the client and server sites. We also assume that the client above gRPC has a stub for each RPC call
that marshalls arguments and does binding. A similar stub on the server site unmarshalls the data and
invokes the actual procedure. From the perspective of gRPC, then, the arguments are treated as one
continuous untyped field that is copied to and from messages.

4.2 gRPC framework

The framework contains a number of shared data structures. The first is pRPC, a table for storing
pending remote procedure calls at the client.

5

type Status type = enum OK, WAITING, TIMEOUT ;
waiting list = table of p:process id, acked: bool, done: bool indexed by p;

Client Record = record id: int; – call identifier
op: op id; – operation identifier
args: arg type; – input and output parameters
server: group id; – identity of server group
sem: semaphore; – sem. where client thread waits
nres: int; – num. of responses required
pending:waiting list; – response waited from
status: Status type; – return status of call

Client Table = table of Client Record indexed by id;

var pRPC : Client table;
pRPC mutex: semaphore; – control access to pRPC

The call identifier, id, is carried along with the call to the server and its response so that calls and
responses can be matched. The number of responses required field, nres, has a value of 1 for point-
to-point RPC and a value depending on the acceptance policy for group RPC. The pending field lists
the process identifiers of the servers that have yet to respond. The pRPC table is indexed using the call
identifier (e.g., pRPC(id)), while other fields are accessed using record notation (e.g., pRPC(id).sem).

A similar data structure, sRPC, is used at the server to store information about each pending client
call:

type ready index = [1..N]; – N is number of properties
hold table = array [ready index] of bool;

Server Record = record id: int; op: op id; args: arg type; server: group id;
client: process id; – identity of client
hold: hold table; – array of properties satisfied

Server Table = table of Server Record indexed by id;

var sRPC : Server table;
sRPC mutex: semaphore; – control access to sRPC

As described above, messages are exchanged between the user protocol and gRPC, and between
gRPC and the underlying communication protocol. The type definitions for these messages is as
follows:

type Net Optype = enum Call, Reply, ACK, Order ;
Net Msgtype = record type: Net Optype; – type of message

id: int; op: op id; args: arg type; server: group id;
sender: process id; – sender of message
inc: int; – incarnation number
ackid: int; – id of a call being acknowledged

User Optype = enum Call, Request ;
User Msgtype = record type: User Optype; id: int; op: op id;

args: arg type; server: server id; status: Status type;

Mem Change = enum FAILURE, RECOVERY ;

var Net : ptr Protocol; – underlying network protocol
Server : ptr Protocol; – server protocol
inc number: int; – current incarnation nbr
Members: set of process id; – live members
HOLD: hold array; – array of properties to be satisfied
serial: semaphore; – semaphore for enforcing serial execution at server

6

Here, variable Net is a pointer to the communication protocol, and a point-to-point send or multicast
operation that can be executed with the x-kernel operation Net.push() to send messages. Variable
Server is an analogous pointer to the user protocol, and an operation Server.pop() that is used to pass
messages up the protocol stack. A call to this operation is blocking. TheHOLD array is used to indicate
which properties must be satisfied before a call can be passed up to the server, or, in other words, which
micro-protocols must process the message. An analogous array is associated with each call indicating
which properties have been satisfied, and when the two are equal, the call is given to the server.

4.3 Events

The events used by gRPC’s micro-protocols are the following; for simplicity, we assume all events are
blocking and sequential:

CALL FROM USER(umsg:User Msgtype): Triggered at the client side when a new call from the
user protocol arrives.

NEW RPC CALL(id:int): Triggered at the client side when a call is ready to exit gRPC and be
sent to the server site. This event is used primarily by micro-protocols to update data structures
before the invocation is sent.

REPLY FROM SERVER(id:int): Triggered at the server side when the server passes the response
to a call to gRPC.

MSG FROM NETWORK(msg: Net Msgtype): Triggered when a message arrives from the net-
work; both the client and server sides.

RECOVERY(inc number:int): Triggered when failed site is recovering; both client and server
sides. The argument inc number is the sequence number of the current incarnation.

MEMBERSHIP CHANGE(who: process id, change: Mem Change): Triggered by the member-
ship service when a process fails or recovers. Most properties identified in section 2 do not
require this information in their implementations, so the membership component of the system
is omitted in these cases.

4.4 RPC micro-protocols

4.4.1 RPC Main

The RPC Main micro protocol handles the main control flow of an RPC on both the client and server
sides. Specifically, it stores the call request in pRPC, sends the request over the network, issues the
call to the server, sends the response over the network, and stores the results in pRPC. Note that this
micro-protocol does not handle blocking of user threads.

micro-protocol RPC Main(Net, Server: ptr Protocol)
var next id: int;

event handler msg from net(msg: Net Msgtype)
var rec: Server Record;
begin

ifmsg.type = Call then rec = msg.id, msg.op, msg.args, msg.server, msg.sender, ;
rec.hold[] = false; sRPC += rec; forward up(msg.id,MAIN); end

end

7

export procedure forward up(id: int, index: ready index)
var execute = true;

msg: Net Msgtype;
begin

sRPC(id).hold[index] = true;
for each i: ready index do

if HOLD[i] and not sRPC(id).hold[i] then execute = false; end
end
if execute then

Server.pop(sRPC(id).op,sRPC(id).args); trigger(REPLY FROM SERVER,id);
msg = Reply, id, sRPC(id).op, sRPC(id).args, sRPC(id).server, my id, , ;
sRPC -= sRPC(id); Net.push(sRPC(id).client,msg);

end
end

event handler msg from user(umsg:User Msgtype)
var msg: Net Msgtype;

rec: Client Record;
begin

if umsg.type = Call then
P(pRPC mutex);
rec = next id, umsg.op, umsg.args, umsg.server, 0, (waiting list)umsg.server, WAITING ;
next id++; pRPC += rec; V(pRPC mutex); trigger(NEW RPC CALL,rec.id); umsg.id = rec.id;
msg = Call, rec.id, rec.op, rec.args, my id, umsg.server, inc number, ;
Net.push(rec.server,msg);

end
end

event handler handle recovery(inc:int) begin inc number = inc; end

register(MSG FROM NETWORK,msg from net,3); HOLD[MAIN] = true;
register(CALL FROM USER,msg from user,1); register(RECOVERY,handle recovery);

end RPC Main

In the discussion of the HOLD array, we noted that the hold arrays of individual calls are compared
with HOLD and when all properties are satisfied, the request is forwarded to the server. This check-
ing and eventual forwarding is done by calling the forward up procedure, which is exported by the
RPC Main micro-protocol.

4.4.2 User thread management

As described in section 2, an RPC invocation can be either synchronous (blocking) or asynchronous
(non-blocking). The Synchronous Call micro-protocol implements synchronous RPC semantics by
blocking the caller thread and matching responses with pending threads.
micro-protocol Synchronous Call()

event handler msg from user(umsg:User Msgtype)
begin

if umsg.type = Call then
P(pRPC(umsg.id).sem); umsg.args = pRPC(umsg.id).args; umsg.status = pRPC(umsg.id).status;
P(pRPC mutex); pRPC -= pRPC(umsg.id); V(pRPC mutex);

end
end

register(CALL FROM USER,msg from user);
end Synchronous Call

Asynchronous Call implements a very simple asynchronous RPC where the caller thread is not
blocked when the call is issued, but may later request the result using a Request message. If the result
is pending, the request message returns immediately, otherwise, the caller is blocked until the result
arrives or the call is otherwise terminated.

8

micro-protocol Asynchronous Call()

event handler msg from user(umsg:User Msgtype)
begin

if umsg.type = Request then
P(pRPC(umsg.id).sem); umsg.args = pRPC(umsg.id).args; umsg.status = pRPC(umsg.id).status;
P(pRPC mutex); pRPC -= pRPC(umsg.id); V(pRPC mutex);

end
end

register(CALL FROM USER,msg from user);
end Asynchronous Call

4.4.3 Communication aspects

The standard approach to making RPC reliable is to retransmit the call to the server site until the
response or some other form of acknowledgment arrives. The Reliable Communicationmicro-protocol
implements these retransmissions and acknowledgements. The pRPC.pending(id).acked field is used
to keep track of if the call has been acknowledged or not.

micro-protocol Reliable Communication(retrans timeout: real)

event handler handle new call(id:int)
begin

for each p:process id in pRPC(id).pending do pRPC(id).pending(p).acked = false; end
end

event handler msg from net(msg: Net Msgtype)
var client: process id;
begin

ifmsg.type = Reply and exists pRPC(msg.id) then pRPC(msg.id).pending(msg.sender).acked = true;
elsifmsg.type = ACK and exists pRPC(msg.ackid) then

pRPC(msg.ackid).pending(msg.sender).acked = true; end
end

event handler handle timeout()
var msg = new(Net Msgtype);
begin

for each id:int in pRPC do
for each p:process id in pRPC(id).pending do

if not pRPC(id).pending(p).acked then
msg = Call, id, pRPC(id).op, pRPC(id).args, pRPC(id).server, my id, inc number, ;
Net.push(p,msg);

end
end

end
register(TIMEOUT,handle timeout,retrans timeout);

end

register(MSG FROM NETWORK,msg from net,1); register(NEW RPC CALL,handle new call);
register(TIMEOUT,handle timeout,retrans timeout);

end Reliable Communication

RPC Main combined with Reliable Communication provides for unbounded termination, i.e., the
gRPC protocol at the client side keeps on trying until it gets a response. In order to guarantee bounded
termination, either a limit of the amount of time that can pass or the number of retransmissions can
be used. The following implementation of Bounded Terminationmicro-protocol uses a timebound. A
queue Calls is used to store pending calls.

9

micro-protocol Bounded Termination(timebound: real)
var Calls: queue of int;

event handler handle new call(id:int)
begin enqueue(Calls,id); register(TIMEOUT,handle timeout,timebound);
end

event handler handle timeout()
var id: int;
begin

id = dequeue(Calls); P(pRPC mutex);
if exists pRPC(id) then pRPC(id).status = TIMEOUT; V(pRPC(id).sem); end
V(pRPC mutex);

end

register(NEW RPC CALL,handle new call);
end Bounded Termination

4.4.4 Response handling

TheCollationmicro-protocol implements collation semantics, taking the function from the user protocol
as a parameter.

micro-protocol Collation(cum func:function,init:arg type)

event handler msg from net(msg: Net Msgtype)
begin

ifmsg.type = Reply and exists pRPC(msg.id) then
P(pRPC mutex);
pRPC(msg.id).args = cum func(pRPC(msg.id).args,msg.args);
V(pRPC mutex);

end
end

event handler handle new call(id:int)
begin pRPC(id).args = init; end

register(MSG FROM NETWORK,msg from net,4);
register(NEW RPC CALL,handle new call);

end Collation

4.4.5 Failure semantics

RPC Main and Reliable Communication combined with Synchronous Call or Asynchronous Call pro-
vide the equivalent of “at least once” semantics. To implement “exactly once semantics,” gRPC must
guarantee that a call will not be executed more than once at each server, i.e., the unique execution
property from section 2. The basic strategy is to keep track of requests that have already been executed.
In our solution, the server stores its response to the original request until the client acknowledges the
response. If a duplicate request is received after the acknowledgement has been received, the message
is assumed to be old and simply discarded. To keep track of which calls have already been executed
and their results, the micro-protocol on the server side uses data structures OldCalls and OldResults,
respectively.

micro-protocol Unique Execution()
var OldCalls: set of int;

OldResults: table of id: int, args: arg type indexed by id;

event handler handle reply(id:int)
begin OldResults += id, sRPC(id).args ; end

10

event handler msg from net(msg: Net Msgtype)
var new msg: Net Msgtype;
begin

ifmsg.type = Call then
if exists OldResults(msg.id) then

new msg = Reply, msg.id, msg.op, OldResults(msg.id).args, msg.server, my id, inc number,
Net.push(msg.sender,new msg); cancel event();

elsif exists OldCalls(msg.id) then cancel event();
else OldCalls += msg.id; end

elsifmsg.type = Reply then
new msg = ACK, , , , msg.server, my id, inc number, msg.id ;
Net.push(msg.sender, new msg);

elsifmsg.type = ACK then OldResults -= OldResults(msg.ackid); end
end

register(MSG FROM NETWORK,msg from net,2); register(REPLY FROM SERVER,handle reply,1);
end Unique Execution

To provide “at most once” semantics, gRPC also has to guarantee that execution of the server
procedure is atomic, i.e., the atomicity property from section 2. In situations where the server has no
stable state—that is, state that would persist across failures, such as values stored on disk—execution
is automatically atomic. On the other hand, if the server does have stable state, transactional techniques
must be used to guarantee atomicity. These techniques can either be implemented in the server itself,
or, with some extra support, within the RPC layer. The tradeoff is efficiency versus transparency:
implementing the atomicity within the server means that the technique used can be more application
specific, while doing it within the RPC layer simplifies the task of programming the server at the cost
of some execution overhead.

Here, we outline an Atomic Execution micro-protocol that follows the second approach of imple-
menting atomicity in the RPC layer. To support this, the micro-protocol must have the ability to write a
checkpoint of the (volatile and stable) state of the server to stable storage. The operation checkpoint()
is assumed to write such a checkpoint and return the address of the storage location. An analogous
operation load(address) is used to restart the server from the checkpoint stored at location address.
In the following, simple variables that reside in non-volatile storage are labeled stable; assignment to
these variables is assumed to be atomic.

micro-protocol Atomic Execution()
var old, new: stable address; – addr. of checkpoints

event handler handle reply(id:int)
begin new = checkpoint(); old = new; end

event handler handle recovery(inc:int)
begin sRPC mutex = 0; load(old); V(sRPC mutex); end

register(REPLY FROM SERVER,handle reply,2);
register(RECOVERY,handle recovery);

end Atomic Execution

Note that this implementation is inefficient when the state of the user protocol is large. This can be
optimized by just storing the changes (“deltas”) from one checkpoint to the next. Other techniques can
be found in, for example, [BHG87].

This technique for atomic execution only works if calls are processed one at a time by the server,
so an additional micro-protocol, Serial Execution, is also needed.

11

micro-protocol Serial Execution()

event handler msg from net(msg: Net Msgtype)
begin if msg.type = Call then P(serial); end end

event handler handle reply(id:int)
begin V(serial); end

serial = 1; register(MSG FROM NETWORK,msg from net);
register(REPLY FROM SERVER,handle reply);

end Serial Execution

The Acceptance micro-protocol implements the corresponding property. In order for a call to be
accepted, it must be executed successfully by at least Acceptance Limit members of the server group,
where Acceptance Limit is specified as a parameter at initialization time. If the acceptance limit is
greater than the number of group members, the number of required responses is set to the size of the
group. Note that, if no membership service is available, the event MEMBERSHIP CHANGE will never
be triggered and the set “Members” will remain constant. This means that a call will only terminate
when Acceptance Limit responses are received even when some servers fail, or, in case of bounded
termination, when the time limit expires.

micro-protocol Acceptance(Acceptance Limit:int)

event handler handle new call(id:int)
var alive: int = 0;
begin

for each p:process id in pRPC(id).pending do
if p in Members then pRPC(id).pending(p).done = false; alive++;
else pRPC(id).pending(p).done = true; end

end
pRPC(id).nres = min(Acceptance Limit,alive);

end

event handler msg from net(msg: Net Msgtype)
begin

ifmsg.type = Reply then
if exists pRPC(msg.id) and not pRPC(msg.id).pending(msg.sender).done then

pRPC(msg.id).pending(msg.sender).done = true; pRPC(msg.id).nres–;
if pRPC(msg.id).nres <= 0 then pRPC(msg.id).status = OK; V(pRPC(msg.id).sem); end

else cancel event(); end
end

end

event handler server failure(who: process id, change: Mem Change)
begin

if change = FAILURE then
for each id:int in pRPC do

if exists pRPC(id) and not pRPC(id).pending(who).done then
pRPC(id).pending(who).done = true; pRPC(id).nres–;
if pRPC(id).nres <= 0 then pRPC(id).status = OK; V(pRPC(id).sem); end

end
end

end
end

register(NEW RPC CALL,handle new call); register(MEMBERSHIP CHANGE,server failure);
register(MSG FROM NETWORK,msg from net,3);

end Acceptance

12

4.4.6 Ordering calls

The default execution order of the client calls at the server group members is entirely arbitrary, even
to the point where calls from the same client may be executed in a different order by different servers.
Restricting the order is, however, straightforward by incorporating the suitable micro-protocol.

Two micro-protocols for ordering have been defined: FIFO Order and Total Order. FIFO Order
guarantees that the calls from each client will be served in a FIFO order at every server. Total Order,
on the other hand, guarantees that calls from all clients are processed in the same order by all servers.

micro-protocol FIFO Order()
var In Progress: table of client: process id, inc: int, next: int indexed by client;

mutex: semaphore;

event handler msg from net(msg: Net Msgtype)
begin

ifmsg.type = Call then
P(mutex);
if exists In Progress(msg.sender) then

if In Progress(msg.sender).inc > msg.inc or msg.id < In Progress(msg.sender).next then
cancel event(); sRPC -= SRPC(msg.id); V(mutex); exit();

elseif In Progress(msg.sender).inc < msg.inc then
In Progress(msg.sender) = msg.sender, msg.inc, msg.id ; end

else In Progress += msg.sender, msg.inc, msg.id ; end
V(mutex);
if msg.id = In Progress(msg.sender).next then forward up(msg.id,FIFO); end

end
end

event handler handle reply(id:int)
begin

P(mutex); In Progress(sRPC(id).client).next = id + 1; V(mutex);
if exists sRPC(id+1) then forward up(id+1,FIFO); end

end

register(MSG FROM NETWORK,msg from net,10);
register(REPLY FROM SERVER,handle reply,1); HOLD[FIFO] = true;

end FIFO Order

Notice that FIFO Order has been deliberately written so that it allows possible duplicate execution
of a call and it allows concurrent execution.

The Total Order micro-protocol uses one group member, the leader, to assign the total order in
which calls will be executed and then disseminate it to the group. The leader at any point is defined to
be the server with the largest unique identifier of all non-failed servers. Thus, for example, if the initial
leader fails, the server with second largest identifier takes over. The solution presented below is slightly
simplified when it comes to changing the leader. In order to guarantee consistent total order over leader
changes the remaining sites should reach an agreement on what was the last ordering message sent by
the leader before it failed. For brevity this agreement phase has been omitted from the code segment
below.

micro-protocol Total Order()
var Ready list: table of id: int, order: int indexed by order;

Waiting set: table of id: int indexed by id;
next order: int; – next order to be assigned to a request
leader mutex: semaphore; – control access to next order
next entry: int; – the order that is allowed to enter
Old Order: table of id: int, order: int indexed by id;

function leader(server: group id) returns process id begin return(max(id: process id in server)); end

13

event handler assign order(msg: Net Msgtype)
var order msg: Net Msgtype;
begin

ifmsg.type = Call then
if my id = leader(msg.server) then

order msg = Order, msg.id, , , , my id, inc number, ; P(leader mutex);
if exists Old Orders(msg.id) then order msg.ackid = Old Orders(msg.id).order;
else order msg.ackid = next order; Old Orders += msg.id, next order ; next order++; end
V(leader mutex); Net.push(msg.server,order msg);

elseif exists Waiting set(msg.id) then Net.push(leader(msg.server),msg); end
if exists Old Orders(msg.id) and Old Orders(msg.id) < next entry then

cancel event(); exit(); end
end

end

event handler msg from net(msg: Net Msgtype)
var my order: int;
begin

ifmsg.type = Call then
if not exists Old Orders(msg.id) thenWaiting set += msg.id;
else my order = Old Orders(msg.id);

if my order < next entry then cancel event(); sRPC -= sRPC(msg.id); exit();
elseif my order = next entry then forward up(msg.id,TOTAL);
else Ready list += msg.id, my order ; end

end
elseif msg.type = Order then

if next order < msg.ack id + 1 then next order = msg.ack id + 1; end
if not exists Old Orders(msg.id) then Old Orders += msg.id, msg.ack id ; end
if exists Waiting set(msg.id) then

Ready list += msg.id, msg.ack id ; Waiting set -= Waiting set(msg.id);
if msg.ack id = next entry then

next id = Ready list(next entry).id; Ready list -= Ready list(next entry);
forward up(next id,TOTAL);

end
end

end
end

event handler handle reply(id:int)
var next id : int;
begin

next entry++;
if exists Ready list(next entry) then

next id = Ready list(next entry).id; Ready list -= Ready list(next entry);
forward up(next id,TOTAL);

end
end

register(MSG FROM NETWORK,assign order,1); HOLD[TOTAL] = true;
register(MSG FROM NETWORK,msg from net,4); next order = 1;
register(REPLY FROM SERVER,handle reply,1); next entry = 1;

end Total Order

This implementation of total execution order assumes that micro-protocols for reliable communi-
cation and unique execution are present and that micro-protocol for bounded termination is not present.

4.4.7 Dealing with orphans

The basic set of micro-protocols presented so far ignore orphans in the sense that any responses
generated by orphan computations are simply ignored. This approach may, however, cause problems.
For example, a client may issue a request, fail, recover, and issue the request again while the previous
request is still being processed by the server. As described in section 2, two ways of dealing with these

14

problems are interference avoidance and orphan termination.
The micro-protocol Interference Avoidance implements the first option. The solution technique is

based on using client incarnation numbers to partition calls into generations. In particular, if a call
from the client arrives with a new incarnation number, execution of the requested procedure can only
be initiated once execution of any pending calls with old incarnation numbers have been completed.
Rather than storing these calls with new numbers, here we use the approach of simply dropping them
until all current calls have been finished, relying on retransmission from the client to ensure they will
eventually be executed. To avoid starvation, no more calls with the old incarnation number are started
once the first one with a new number has been seen.

micro-protocol Interference Avoidance()
var Cinfo: table of client: process id, inc: int, count: int, next inc: int indexed by client;

Cmutex: semaphore;

event handler msg from net(msg: Net Msgtype)
var client: process id;
begin

ifmsg.type = Call then
client = msg.sender; P(Cmutex);
if not exists Cinfo(client) then Cinfo += client, msg.inc, 0, msg.inc ; end
if Cinfo(client).inc > msg.inc then cancel event();
elsif Cinfo(client).inc < msg.inc then

Cinfo(client).inc = MAX INT; Cinfo(client).next inc = msg.inc;
if Cinfo(client).count = 0 then Cinfo(client).inc = msg.inc; end

end
if Cinfo(client).inc = msg.inc then Cinfo(client).count++; end
V(Cmutex);

end
end

event handler handle reply(id:int)
var client: process id;
begin

P(Cmutex); client = sRPC(id).client; Cinfo(client).count–;
if Cinfo(client).count = 0 and Cinfo(client).inc = MAX INT then

Cinfo(client).inc = Cinfo(client).next inc;
end
V(Cmutex);

end

register(MSG FROM NETWORK,msg from net,2); register(REPLY FROM SERVER,handle reply,1);
end Interference Avoidance

The micro-protocol Terminate Orphan implements the second option of immediately killing or-
phans as soon as they are detected. Detection can be based either on receiving a message from a newer
incarnation of the client, indicating that the previous incarnation died, or by periodically probing the
client. Terminate Orphan uses the first approach. In order to be able to kill the orphans we have to
be able to access the threads executing the server procedure and to kill those threads. For this pur-
pose we assume operation my thread() returns the thread identifier of the current thread and operation
kill(thread) kills the thread with identifier thread.

micro-protocol Terminate Orphan()
var Cinfo: table of client : process id; inc nbr: int; threads: list of thread; indexed by client;

Cmutex: semaphore;

event handler handle reply(id:int)
begin

P(Cmutex); Cinfo(sRPC(id).client).threads -= my thread(); V(Cmutex);
end

15

event handler msg from net(msg: Net Msgtype)
var client: process id;
begin

ifmsg.type = Call then
client = msg.sender; P(Cmutex);
if not exists Cinfo(client) then Cinfo += client, msg.inc, ; end
if Cinfo(client).inc nbr = msg.inc then Cinfo(client).threads += my thread();
elsif Cinfo(client).inc nbr > msg.inc then cancel event();
elsif Cinfo(client).inc nbr < msg.inc then

for each th:thread in Cinfo(client).threads do kill(th); V(serial); end
Cinfo(client) = client, msg.inc, my thread() ;

end
V(Cmutex);

end
end

register(MSG FROM NETWORK,msg from net,2); register(REPLY FROM SERVER,handle reply,1);
end Terminate Orphan

5 Configuring a group RPC service

A group RPC service is configured by choosing those micro-protocols implementing the desired proper-
ties and then combining with the gRPC framework to form a composite protocol. The micro-protocols
are not entirely independent, however, so one has to pay attention to dependencies between micro-
protocols while performing the configuration. Figure 4 shows the dependency graph illustrating the
relationship between micro-protocols. A dependency between micro-protocols and is depicted
by an arrow from to . The bold boxes enclosing micro-protocols indicate choice, i.e., any one, but
only one, of the enclosed micro-protocols may be chosen. The group of micro-protocols surrounded
by dashed line represents the minimal set of micro-protocols required for a functional system.

RPC Main
Asynchronous

Call
Synchronous

Call
ALL

Acceptance

Membership
Service

Collation

Serial
Execution

Atomic
Procedure

Communication
Reliable

Execution
Unique

Bounded
Termination

Interference
Avoidance

Terminate
Orphan

Total FIFOOrder Order

Figure 4: Dependency graph of group RPC micro-protocols

16

Given this graph, it is possible to determine exactly how many possible RPC services can be
built with various combinations of micro-protocols. For fairness, we first fix acceptance and collation
policies, since for a group of servers, there are possible acceptance policies and an infinite
number of possible collation policies. Even with these factors eliminated, however, micro-protocols
can be selected from among two that implement different call semantics; three that deal with orphans;
three that give serial execution, atomic execution, or no special execution property; and a total of 11
possible choices for dealing with unique execution, reliable communication, termination, and ordering.
This sums up to possible combinations, and hence, possible group RPC services.

Also, note that the dependency graph given here does not map directly to the dependency graph of
the properties given in Figure 2. One difference is that the properties in Figure 2 include those that result
when something is not enforced, e.g., non-atomic execution. In an implementation, these are realized
by simply not configuring in the appropriate micro-protocol, which implies they do not appear in Figure
4. The other difference is that Figure 4 contains extra dependencies that simplify the implementation
rather than being inherent to the properties themselves. For example, there is an edge from Total Order
to Unique Execution since our implementation of Total Order assumes that any request is received at
the server only once.

To illustrate how a specific instance of a group RPC service might be configured, consider a
simple group RPC designed to provide quick response time to read-only requests. To achieve this, the
system is configured with “at least once” semantics, acceptance one (i.e., only one response required),
synchronous call semantics, and bounded termination time. Furthermore, we choose to implement
reliability directly in the RPC service rather than relying on the underlying transport. The pseudocode
for the high-level composite realizing this combination of semantics is as follows, where “||” stands for
parallel composition.

protocol RPC Service(Net,Server: ptr protocol)
global type definitions

function id(a,b:arg type) returns arg type
begin return b; end
begin

RPC main(Net,Server) || Synchronous Call() || Reliable Communication(timeout) ||
Bounded Termination(1.0) || Collation(id,0) || Acceptance(1);

end RPC Service

RPC services implementing other combinations of properties are similarly easy to construct.

6 Conclusions

This paper has presented an approach to constructing configurable group RPC services from a small
set of micro-protocols implementing individual semantic properties. The micro-protocols are written
using an event-driven execution style, and then configured with a framework that implements event
detection, handler invocation, and shared variables. This results in an x-kernel compatible composite
protocol that can be combined with others in a normal hierarchical fashion to build a network subsystem.
Although the event-driven execution model is somewhat unusual, our experience is that it decouples
the micro-protocols enough to facilitate configurability without adversely affecting programmability.
All this derives from our experience with the Consul system, which suggests that current techniques
are inadequate for supporting modularity in the type of complex protocols often found in fault-tolerant
distributed systems [MPS93] .

17

Other researchers have also proposed modular implementations of RPC. For example, in [HPOA89]
a modularization technique also based on the x-kernel is described. In contrast with our emphasis on
modularizing along the lines of abstract properties, however, that paper describes a more syntactic
scheme based on functional components of an RPC service implementing one chosen semantics.
The work on agent synthesis system for Cross-RPC communication in [HR94] is relatively closely
related to our goals. Although the primary goal in [HR94] is to allow heterogeneous RPC systems
to communicate with one another, the system also offers the possibility for designing and prototyping
new variants of RPC. In this paper, the authors divide RPC semantics into three components: call
semantics (synchronous versus asynchronous), failure semantics, and RPC topology (one server versus
multicast RPC). An RPC agent is synthesized from a specification written in Cicero, an event-driven
specification language. Our approach to building composite protocols from micro-protocols provides
more structuring support, however, and promotes a style in which RPC services are configured from a
collection of already-written micro-protocols rather than generated from specifications.

References

[AGH 91] H-R. Aschmann, N. Giger, E. Hoepli, P. Janak, and H. Kirrmann. Alphorn: A remote
procedure call environment for fault-tolerant, heterogeneous, distributed systems. IEEE
Micro, 11(5):16–19,60–67, Oct 1991.

[Apo89] Apollo Computer Inc. Network computing system (NCS) reference. Technical report,
Apollo Computer Inc., 1989.

[ATK91] A.L. Ananda, B.H. Tay, and E.K. Koh. ASTRA — An asynchronous remote procedure
call facility. In Proceedings of the 8th International IEEE Conference on Distributed
Computing Systems, pages 172–179, Arlington, Texas, May 1991.

[BALL90] B. Bershad, T. Anderson, E. Lazokska, and H. Levy. Lightweight remote procedure call.
ACM Transactions on Computer Systems, 6(1):37–55, Feb 1990.

[BHG87] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in
Database Systems. Addison-Wesley Publishing Company, 1987.

[Bir85] A. D. Birrell. Secure communication using remote procedure calls. ACM Transactions on
Computer Systems, 3(1):1–14, Feb 1985.

[BN84] A. D. Birrell and B. J. Nelson. Implementing remote procedure calls. ACM Transactions
on Computer Systems, 2(1):39–59, Feb 1984.

[BS94] N. T. Bhatti and R. D. Schlichting. Operating system support for configurable high-level
protocols. Technical report, Department of Computer Science, University of Arizona,
Tucson, AZ, 1994. in preparation.

[CGR88] R.F. Cmelik, N.H. Gehani, and W. D. Roome. Fault Tolerant Concurrent C: A tool for
writing fault tolerant distributed programs. In Proceedings of the Eighteenth International
Symposium on Fault-Tolerant Computing, pages 55–61, Tokyo, June 1988.

[Che86] D. R. Cheriton. VMTP: A transport protocol for the next generation of communication
systems. In Proceedings of SIGCOMM’86 Symposium on Communication Architectures
and Protocols, pages 406–415, Aug 1986.

18

[Coo85] E. C. Cooper. Replicated distributed programs. In Proceedings of the Tenth ACM Sympo-
sium on Operating Systems Principles, pages 63–78, Orcas Island, WA, 1985.

[Coo90] E. C. Cooper. Programming language support for multicast communication in distributed
systems. In Proceedings of the 10th International Conference on Distributed Computing
Systems (ICDCS-10), pages 450–457, Paris, France, 1990.

[Gib87] P.B. Gibbons. A stub generator for multilanguage RPC in heterogeneous environments.
IEEE Transactions on Software Engineering, 13(1):77–87, Jan 1987.

[HP91] N. C. Hutchinson and L. L. Peterson. The x-kernel: An architecture for implementing
network protocols. IEEE Transactions on Software Engineering, 17(1):64–76, Jan 1991.

[HPOA89] N. C. Hutchinson, L. L. Peterson, S. O’Malley, and M. Abbott. RPC in the x-kernel:
Evaluating new design techniques. In Proceedings of the Twelfth ACM Symposium on
Operating Systems Principles, pages 91–101, Litchfield Park, AZ, Dec 1989.

[HR94] Y-M. Huang and C. Ravishankar. Designing an agent synthesis system for cross-RPC
communication. IEEE transactions on software engineering, 19(3):188–198, Mar 1994.

[HS87] R. Hayes and R.D. Schlichting. Facilitating mixed language programming in distributed
systems. IEEE Transaction on Software Engineering, 13(12):1254–1264, Dec 1987.

[HS93] M. A. Hiltunen and R. D. Schlichting. An approach to constructing modular fault-tolerant
protocols. In Proceedings of the 12th IEEE Symposium on Reliable Distributed Systems,
pages 105–114, Princeton, NJ, USA, Oct 1993.

[JZ93] D. Johnson and W. Zwaenepoel. The Peregrine high-performance RPC system. Software:
practice & experience, 23(2):201–222, 1993.

[LS83] B. Liskov and R. W. Scheifler. Guardians and actions: Linguistic support for robust dis-
tributed programs. ACMTransactionson ProgrammingLanguages and Systems, 5(3):381–
404, Jul 1983.

[LS88] B. Liskov and L. Shrira. Promises: Linguistic support for efficient asynchronous pro-
cedure calls in distributed systems. In Proceedings of the SIGPLAN ’88 Conference on
Programming Language Design and Implementation, pages 260–268, Jun 1988.

[LT91] H. Levy and E. Tempero. Modules, objects and distributed programming: Issues in RPC
and remote object invocation. Software, practice & experience, 21(1):77–90, Jan 1991.

[Mar86] B. Martin. Parallel remote procedure call language reference and user’s guide. Technical
report, Computer Systems Research Group, University of California, San Diego, 1986.

[MPS93] S. Mishra, L. L. Peterson, and R. D. Schlichting. Experience with modularity in Consul.
Software Practice & Experience, 23(10):1059–1075, Oct 1993.

[Nel81] B.J. Nelson. Remote Procedure Call. PhD thesis, Dept of Computer Science, Carnegie-
Mellon University, Pittsburgh, PA, 1981.

[PA88] M. Pucci and J. Alberi. Optimized communication in an extended remote procedure call
model. Computer architecture news, 16(4):37–44, Sep 1988.

19

[PS88] F. Panzieri and S. K. Shrivastava. Rajdoot: A remote procedure call mechanism supporting
orphan detection and killing. IEEETransactions on SoftwareEngineering, SE-14(1):30–37,
Jan 1988.

[RST89] R. Van Renesse, H. Van Staveren, and A. S. Tanenbaum. Performance of the Amoeba
distributed operating system. Software – Practice and Experience, 19:223–234, Mar 1989.

[SB90] M. Schroeder and M. Burrows. Performance of Firefly RPC. ACM Transactions on
Computer Systems, 6(1):1–17, Feb 1990.

[Shr83] S. K. Shrivastava. On the treatment of orphans in a distributed system. In Proceedings
of Third Symposium on Reliability in Distributed Software and Database Systems, pages
155–162, Florida, Oct 1983.

[Spe82] A. Z. Spector. Performing remote operations efficiently on a local computer network.
Communications of the ACM, 25(17):246–260, Apr 1982.

[SS90] M. Satyanarayanan and E. H. Siegel. Parallel communication in a large distributed envi-
ronment. IEEE transactions on computers, Mar 1990.

[Sto94] A. Stoyenko. SUPRA-RPC: SUbprogram PaRAmeters in Remote Procedure Calls. Soft-
ware, practice & experience, 24(1):27–49, Jan 1994.

[Sun88] Sun Microsystems. RPC: Remote procedure call protocol specification. Technical Report
RFC-1057, Sun Microsystems, Jun 1988.

[TB90] Y.K. Tham and S.K. Bhonsle. Retargetable stub generator for a remote procedure call
facility. Computer communications, 13(6):323–330, Jul 1990.

[WNF90] E. Walker, P. Neves, and R. Floyd. Asynchronous remote operation execution in distributed
systems. In Proceedings of the 10th International Conference on Distributed Computing
Systems (ICDCS-10), Paris, France, May 1990. IEEE.

[WSG91] Y.-H. Wei, A. Stoyenko, and G. Goldszmidt. The design of a stub generator for heteroge-
neous RPC systems. Journal of Parallel and Distributed Computing, 11(3):188–197, Mar
1991.

[WZZ93] Wang Xingwei, Zhao Hong, and Zhu Jiakeng. GRPC: A communication cooperation
mechanism in distributed systems. Operating Systems Review, 27(3):75–86, Jul 1993.

[Xer81] Xerox. Courier: The remote procedure call protocol. Technical Report XSIS 038112,
Xerox System Integration Standard, Stamford, CT, Dec 1981.

[YJT88] K. Yap, P. Jalote, and S. Tripathi. Fault tolerant remote procedure call. In Proceedings
of the 8th International Conference on Distributed Computing Systems, pages 48–54, Jun
1988.

20

