
Using Fine-Grain Threads and Run-Time

Decision Making in Parallel Computing

David K. Lowenthal
Vincent W. Freeh

Gregory R. Andrews

1

Using Fine-Grain Threads and Run-Time Decision Making in

Parallel Computing

David K. Lowenthal Vincent W. Freeh and Gregory R. Andrews

TR 95-14

Abstract

Programming distributed-memory multiprocessors and networks of workstations re-
quires deciding what can execute concurrently, how processes communicate, and where
data is placed. These decisions can be made statically by a programmer or compiler, or
they can be made dynamically at run time. Using run-time decisions leads to a simpler
interface|because decisions are implicit|and it can lead to better decisions|because
more information is available. This paper examines the costs, bene�ts, and details
of making decisions at run time. The starting point is explicit �ne-grain parallelism
with any number (even thousands) of threads. Five speci�c techniques are considered:
(1) implicitly coarsening the granularity of parallelism, (2) using implicit communica-
tion implemented by a distributed shared memory, (3) overlapping computation and
communication, (4) adaptively moving threads and data between nodes to minimize
communication and balance load, and (5) dynamically remapping data to pages to
avoid false sharing. Details are given on the performance of each of these techniques as
well as their overall performance on several scienti�c applications.

December 1, 1995

Department of Computer Science
The University of Arizona

Tucson, AZ 85721

0This research was supported by NSF grants CCR-9415303 and CDA-8822652.

1 Introduction

Writing e�cient parallel programs for distributed-memory multiprocessors and networks of work-
stations requires addressing �ve issues:

� discovering parallelism,

� determining the granularity of parallelism,

� exchanging data between processors,

� overlapping communication and computation, and

� distributing data among nodes.

The �rst issue has to be addressed when a program is developed or compiled, because parallelism
cannot be discovered at run time. However, the other four issues can be addressed at run time.
If an issue is addressed by a programmer or compiler, the solution is static. On the other hand,
run-time solutions are dynamic.

This paper describes and compares static and dynamic approaches to addressing the issues of
granularity, communication, overlap, and data placement. We show that making decisions at run
time simpli�es application programs and compilers (because decisions are made implicitly), that
run-time decisions can be implemented e�ciently, and that they can result in improved overall
performance (because more information is available than at compile time).

To be more precise, a completely static program for a distributed-memory multiprocessor typi-
cally speci�es some small number of coarse-grain processes (often one per processor), uses message
passing for communication between processors, and explicitly places the data. We are exploring the
other extreme: We start with �ne-grain parallelism and then address the other issues dynamically.

Our approach presents both challenges and opportunities. The challenges are to e�ciently im-
plement �ne-grain concurrency, run-time coarsening of �ne-grain processes, implicit communication,
and adaptive data placement. The opportunities are to overlap computation and communication
and to make better decisions. Moreover, this approach provides a simpler interface for application
programmers and compilers, because the run-time system solves most of the di�cult problems,
freeing the application programmer and compiler writer to concentrate on other areas.

We have implemented our approach in an experimental software system called Filaments [FLA94].
The relevant attributes of Filaments are:

� �ne-grain parallelism with any numbers of threads, even hundreds of thousands;

� implicit communication by means of a distributed shared memory (DSM);

� implicitly overlapped communication and computation;

� dynamic movement of threads and data among nodes to minimize communication and balance
the load; and

� dynamic remapping of data to pages to avoid false sharing.

Using Filaments, the application programmer or compiler has to decide what parts of the program
can be executed in parallel, but that is all. The programmer or compiler can ignore the issues of
the granularity of parallelism, how processes communicate, and so on. Consequently, Filaments
programs are portable between vastly di�erent machines; in particular, the Filaments programs used
in this paper run e�ciently on both shared-machine multiprocessors and a cluster of workstations.

1

The organization of the paper is as follows. The next section more fully describes the static
and dynamic (run-time) approaches using a representative application (Jacobi iteration); it also
summarizes the issues involved in making the run-time approach e�cient. Section 3 describes the
implementation and performance of the concurrency and communication mechanisms provided by
Filaments. Section 4 describes the implementation and performance of our run-time mechanisms
for moving data between nodes and pages. Section 5 analyzes the performance of each mechanism
for Jacobi iteration and their overall performance for Jacobi and three additional applications.
Finally, Section 6 gives concluding remarks. Although all topics are discussed in the context of
their implementation in the Filaments package, the techniques and conclusions apply to other
systems for �ne-grain parallelism or distributed shared memory.

2 Overview of the Static and Run-Time Approaches

Our focus is on writing and executing iterative scienti�c applications for distributed memory ma-
chines. This section describes one such application, Jacobi iteration; shows how it would typically
be written as a coarse-grain program with explicit communication and a statically determined data
placement; shows how it could be written as a �ne-grain program in Filaments with implicit commu-
nication and adaptive data placement; and then summarizes both the challenges and opportunities
presented by the latter in order to make it run e�ciently.

2.1 An Example of a Static Approach

Laplace's equation in two dimensions is the partial di�erential equation

@2u

@x2
+
@2u

@y2
= 0:

Given boundary values for a region, its solution is the steady values of interior points. These values
can be approximated numerically by using a �nite di�erence method such as Jacobi iteration. In
particular, discretize the region using a grid of equally spaced points, and initialize each point to
some value. Then repeatedly compute a new value for each grid point; the new value for a point
is the average of the values of its four neighbors from the previous iteration. The computation
terminates when all new values are within some tolerance, EPSILON, of all old values.

Assume there are P nodes on a distributed-memory machine. To implement Jacobi iteration as
a coarse-grain program with explicit communication and a statically determined data placement,
we do the following. First, we use one process per node. Second, we need to distribute the grids of
old and new values among the nodes. A natural and e�cient way to do this is to assign each process
a strip of each grid|a contiguous set of n=P rows. These become local arrays within each process.
(A strip assignment of data to nodes maximizes the locality within each process and minimizes the
number of \edges" between processes.)

A process \owns" the points in its strip; i.e., it is the only process that can read and write
those values. Each process repeatedly executes six phases: send the top and bottom rows of
new values to neighbors, update local grid points, receive the top and bottom rows of new values
from neighbors, update boundary points, swap the roles of the old and new arrays, and check for
termination. The processes need to exchange their top and bottom rows because the new values
for points in these rows depend on old values computed by the processes that own the adjacent
rows. By asynchronously sending the values �rst and receiving them after performing local work,
the program overlaps communication and computation.

2

The processes also need to interact to detect termination. Each can determine whether all new
values in its strip are within EPSILON of all old values, but these local decisions need to be combined
to determine whether the computation as a whole should terminate. For simplicity, we show a
central coordinator process to detect termination. The process that starts the computation acts as
the coordinator. (One of the computational processes could assume the role of the coordinator.)

An outline of the code for each computational process follows. The parameter pid is the unique
identi�er of each process.

void jacobi(int pid) {

/* declarations of matrices for strips of old and new grids,

* startrow, endrow, localdiff, etc.

*

* initialize local variables */

startrow = pid * n/P;

endrow = startrow + n/P;

init_grids(); /* receive initial values for grid or compute locally */

while (!done) {

send_rows(); /* send top and bottom rows to neighbor processes */

/* compute interior */

for (i = startrow+1; i < endrow-1; i++) {

for (j = 1; j < n; j++) {

new[i][j] = (old[i+1][j]+other neighbors)/4.0;

temp = absval(new[i][j] - old[i][j]);

if (temp > localdiff)

localdiff = temp;

}

}

recv_rows(); /* receive top and bottom rows from neighbors */

/* compute boundaries; code is similar to that for interior points */

send_diff(); /* send localdiff to coordinator process */

swap(old, new);

done = recv_done(); /* receive termination result */

if (done)

send_grid(); /* send local strip to coordinator */

}

}

The exchanging of messages with the coordinator e�ectively introduces a barrier synchronization
point. In particular, none of the processes proceeds to a new update phase until the coordinator
has gathered the results of the previous phase from each process and sent replies.

The coordinator process initiates the computation, receives local di�erences, and sends replies
to the jacobi processes. An outline of its actions is:

3

void coordinator() {

/* declarations of local variables (maxdiff, etc.) */

/* create P instances of jacobi() */

/* send initial data to each process if it isn't computed locally*/

init_grids();

while (!done) {

maxdiff = recv_diffs(); /* receive a localdiff from each process */

if (maxdiff < EPSILON)

done = true;

broadcast_done(done); /* send the vaue of done to each process */

}

recv_grids(); /* receive results from each process */

}

2.2 An Example of a Run-Time Approach Using Filaments

The Filaments package [FLA94, EAL93] supports �ne-grain parallelism and a shared-memory pro-
gramming model on the entire range of parallel machines, from shared-memory multiprocessors
to networks of workstations. In this paper we limit our discussion to networks of uniprocessor
workstations, which we refer to as nodes. A �lament is a very lightweight thread that can access
the shared memory. There are two kinds of �laments: iterative and fork/join. We focus on iter-
ative �laments, which execute repeatedly, with barrier synchronization and termination detection
occurring after each execution of all �laments.

A program that uses the Filaments package has three additional components relative to a
sequential program:

� declaration and allocation of variables that are to be located in shared memory;

� code executed by individual �laments; and

� a section that initializes the package, creates the �laments, places them on nodes, and times
and controls their execution.

Filaments are executed by server threads, which are conventional lightweight threads with a
stack and context (unlike a �lament, which has no private stack or context). Each node has at
least one server thread. Each �lament is placed in a pool, which is a group of �laments that ideally
have a similar data-reference pattern. The collection of pools on a node is called a pool set; it also
has an associated function that is called after each execution of all �laments in the pools in the set;
this function most often synchronizes the nodes and checks for termination.

We now describe how to implement Jacobi iteration using the Filaments package. For this
application, the shared variables are the two grids. The code executed by each �lament computes an
average and di�erence. Because Jacobi iteration uses two grids, the n2 updates are all independent
computations; hence, all new values can be computed in parallel. The initialization section sets
up the Filaments package and the matrices, creates the pool sets, pools, and �laments, and then
starts the server threads on each node.

The important shared variables are:

double **new, **old;

fReductionVar(double, maxdiff); /* a reduction variable */

4

The new and old variables are dynamically allocated two-dimensional vectors of matrices. (The
boundaries of the region are stored in the edges of the arrays.) The fReductionVar macro declares
a reduction variable, which is a special kind of variable with one copy per node. Here, maxdiff is
of type double and is shared among all �laments on a node. The local copy of a reduction variable
can be accessed directly. In addition, such variables are used in calls to fReduce, which atomically
combines all node's private copies into a single copy using an associative/commutative operator
such as add or minimum. Thus, a call of fReduce also results in a barrier synchronization.

Procedure jacobi contains the code executed by each �lament:

void jacobi(int i, j) {

double temp;

new[i][j] = (old[i-1][j] + other neighbors) * 0.25;

temp = absval(new[i][j] - old[i][j]);

if (temp > maxdiff)

maxdiff = temp;

}

After computing the new value of grid point (i,j), jacobi computes the di�erence between
the old and new values of that point. If the di�erence is larger than the maximum di�erence seen
on this iteration of the entire computation, then maxdiff needs to be updated.

After all grid points are updated, the following procedure is called to check for convergence and
to swap grids:

int termCode() {

fReduce(maxdiff, MAX);

if (maxdiff < EPSILON)

return DONE;

swap(old, new);

maxdiff = 0.0;

return CONTINUE;

}

This code is executed sequentially on all nodes at the end of every update phase, i.e., after every
�lament completes its work. The call to fReduce combines all copies of maxdiff (using the MAX

operator) into a consistent copy seen by all nodes.
The main procedure, which includes the initialization section, is shown below. A single thread

on each node executes this code. The Filaments shared-memory abstraction is implemented by a
distributed shared memory (DSM). The two most important parts of this section are the placement
of the data on pages of shared memory and the distribution of DSM pages among the nodes.
(Because of the shared-memory abstraction, data can be accessed by any node, so the placement of
�laments indirectly determines the placement of shared data pages.) The call of fStart executes
the �laments that have been created, terminating when all have completed.

void main() {

/* declarations of local variables */

/* create distributed shared memory and

* place variables new and old onto pages of shared memory

* (don't worry about thrashing; will be corrected while

5

* program is executing if necessary) */

/* create a pool set and some number of pools */

ps = fPoolSet(2, jacobi, termCode);

for (i = 0; i < num_pools; i++)

p[i] = fPool(ps, number_of_filaments);

/* Compute startrow and endrow, which specify which rows of

* filaments are to be placed on each node

* (can be arbitrary; best placement found while program executing) */

/* create the filaments */

for (i = startrow; i < endrow; i++) {

pool = whichPool(); /* determine which pool to use for this row */

for (j = 1; j < n; j++) {

fCreateFilament(*ps, p[pool], i, j);

}

}

fStart();

}

The code above divides �laments into pools based on their data reference patterns. Filaments
in the top and bottom rows on each node can potentially reference o�-node data, so they are placed
in their own pools. All other �laments are placed in a third pool. (Section 3 discusses pools in
more detail.)

2.3 Comparison, Challenges, and Opportunities

The code outlines presented above for the static and run-time approaches are about the same
length. However, there are several di�erences, and these make the Filaments program easier to
write and hence to understand than the static program. First, it is not necessary to program
the clustering (coarsening) of parallelism. Second, the Filaments code directly accesses shared
variables instead of passing data in messages; this also makes it easy to provide and use special
synchronization variables such as reductions. Third, the Filaments program does not have to
worry about overlapping communication and computation, because this is handled by the run-
time system, as described in the next section. Finally, the initial placement of data is not critical,
because a possibly poor placement will be corrected at run time by Filaments subsystems described
in Section 4.

By contrast, the static program clusters points into strips, uses message passing to exchange
rows, and intersperses computation with the message exchange to achieve overlap. All of these
have to be programmed explicitly, and the code is intermingled to an extent. The static program
must also explicitly place the data on the nodes; a poor placement will result in poor performance.
The initialization section in the �ne-grain program appears to be more complex than that of the
coarse-grain program, but this is because we have shown all the details of initializing the Filaments
package. In reality, the coarse-grain program would also have to initialize the system-call library
that it uses (such as PVM).

The Filaments program presents both challenges and opportunities. The challenges are to
implement �laments, the shared-memory abstraction, and run-time placement of �laments and data
e�ciently. The opportunities are to overlap computation and communication by taking advantage

6

of the wealth of concurrency, and to customize the placement of �laments and data at runtime
by adapting to the actual data reference pattern of an application. The remainder of the paper
describes how these challenges can be overcome and how these opportunities can be realized.

3 Fine-Grain Parallelism and Implicit Communication

This section describes how the Filaments package implements �ne-grain concurrency and a dis-
tributed shared memory and then describes application-independent performance measurements.
Although the discussion focuses on attributes of Filaments, the issues, solution techniques, and
conclusions apply to similar packages.

A �lament consists only of a code pointer and arguments; it does not have a private stack.
The �laments in a program communicate by referencing shared variables. The shared memory
abstraction is implemented by a distributed shared memory (DSM) that is customized for use with
�ne-grain threads. The shared address space is divided into pages; copies of pages move between
nodes and may be replicated. When a �lament references a location on a page that is not local, a
page fault occurs.

Filaments are executed one at a time by server threads, which are conventional lightweight
threads with stacks. Each node starts with one server thread and creates others as needed. In
particular, �laments are placed in pools based on their data-reference patterns; each node has one
or more pools. When a server thread executes a �lament that causes a page fault, the server
thread is suspended. If there is another pool of �laments on that node, another server thread is
created and begins executing �laments in that pool. This allows computation to be overlapped
with communication.

3.1 Implementing Fine-Grain Threads (Filaments)

A pool is represented by a list (array) of �laments and a pointer to a function. The basic execution
model of Filaments is to have a server thread traverse the list, calling the pool's function with
arguments speci�ed by the �lament itself. (In fact, one can view a �lament as simply a set of
arguments.) Implementing this execution model e�ciently depends on controlling the overheads
involved in executing many small �laments. Speci�cally, the overheads are creating and running
�laments, potentially ine�cient use of the cache, and producing code that can be hard for a compiler
to optimize because of the abundance of function calls and pointers.

Many Filaments programs attain good performance with little or no optimization (e.g., matrix
multiplication). In such applications, each �lament performs a signi�cant amount of work (O(n)
in matrix multiplication), which amortizes the �lament overheads. However, achieving good per-
formance for iterative applications that possess many small �laments (e.g., Jacobi iteration, where
each �lament only performs a few instructions) requires using implicit coarsening. In particular,
�laments in a pool are executed as if the application were written as a coarse-grain program.1 To
implement implicit coarsening, we use two techniques: inlining and pattern recognition. These
reduce the cost of running �laments, reduce the working set size to make more e�cient use of the
cache, and use code that is amenable to compiler optimizations.

Inlining, as the term implies, consists of inlining the body of each �lament rather than making
a procedure call. In particular, when processing a pool, a server thread executes a loop, the body
of which is the code speci�ed by �laments in the pool. This eliminates a function call for each

1Systems such as Chores [EZ93] and the Uniform System [TC88] have a �ne-grain speci�cation and a coarse-grain

execution model, but use preprocessor support. Filaments generates di�erent codes at compile time, but chooses

among them at run time.

7

�lament, but the server thread still has to traverse the list of �lament descriptors and load the
arguments.

The second technique is to recognize common patterns of �laments at run-time. Filaments
recognizes regular patterns of �laments assigned to the same pool. In such cases, the package at

run time switches to code that iterates over the �laments, generating the arguments in registers
rather than reading the �lament descriptors. Filaments currently recognizes a few common patterns
that support a large subset of regular problems; however, the technique is capable of supporting
any number of other patterns.

E�ciently implementing many small �laments also requires avoiding excessive faulting. In an
application that creates many �laments, it is likely that several of these �laments will reference data
on the same page, potentially causing many faults on this page. This issue is addressed by using
pools. The application places �laments with similar data access patterns into a pool on a node at
initialization time. When a program is started, a server thread on each node starts executing one
pool of �laments. This thread executes pools of �laments until either a page fault occurs or all
eligible �laments have been executed. On a page fault, the state of the �lament is saved on the
stack of its server thread, and a new server thread is started; it executes �laments in a di�erent
pool while the remote page is being fetched. Thus, an entire pool is suspended when any one of its
�laments faults. This minimizes page faults if �laments in the same pool reference the same pages.

In addition to avoiding excessive faulting, the pool mechanism also is responsible for realizing one
of the key opportunities available in implementing �ne-grain threads: overlap of communication and
computation. The next subsection provides details of how pools help to achieve maximal overlap.

The application program determines the number of pools it should use on each node and assigns
each �lament to a pool and a node when the �lament is created. Section 4.1 describes an adaptive
algorithm that determines how to place �laments on nodes at run time, allowing the application
program to e�ectively ignore the issue. If a node has a single pool, it is essentially single-threaded;
this would work well if the time to switch context to a new server thread is greater than the time to
fetch a remote page. Normally, however, the application will want to use multiple pools|as we did
in the application in Section 2.2|as this increases the possibility of overlapping computation and
communication. We are currently working on an adaptive algorithm for determining the number
of pools and assigning �laments to them.

3.2 Distributed Shared Memory

Our multi-threaded distributed shared memory (DSM) is implemented entirely in software and
therefore requires no specialized hardware or changes to the operating system kernel. In single-
threaded DSM implementations, such as [FP89, CBZ91, KDCZ94, SFL+94, BZS93, DJAR91,
BKT90], all work on a faulting node is suspended until the fault is handled. In a multi-threaded
implementation, other work is done while the remote fault is pending. This makes it possible to
overlap communication and computation. VISA, a DSM written for the functional language Sisal,
allows less general overlap of communication and computation [HB92].

The address space of each node contains both shared and private sections. Shared user data
(matrices, linked lists, etc.) are stored in the shared section, which is divided into individually
protected pages of 4K bytes each. Local user data (program code, loop variables, etc.) and all
system data structures (queues, page tables, etc.) are stored in the private sections. The shared
section is replicated on all nodes in the same location so that pointers into the shared space have
the same meaning on all nodes.

Two key events occur in our DSM system: remote page fault and message pending . A remote
page fault is generated when a server thread tries to access a remote memory location. It is handled

8

Operation Time (�s) ops=sec

Filaments creation 2.10 457,000

Context switch

Filaments 0.643 1,560,000

Fil. Inlined 0.126 7,950,000

Threads 48.8 20,500

Figure 1: Filaments overheads

by using the mprotect system call, which changes the access permission of pages, and by using a
signal handler for segmentation violations. A message pending event is generated when a message
arrives at a node; it is handled by an asynchronous event handler, which is triggered by the I/O
pending interrupt (SIGIO).

When a �lament accesses a remote page, the server thread executing the �lament is interrupted
by a signal. The signal handler inserts the faulted server thread in the suspended queue for that
page, requests the remote page if necessary, and calls the scheduler, which will execute another
server thread. When the request is satis�ed, the faulted server thread is rescheduled, as are all
other server threads that are waiting on that page. Because a new server thread is run after every
page fault, the system can have several outstanding page requests.

Filaments uses the multi-threaded DSM together with the pool mechanism to achieve maximal
overlap of communication and computation. For iterative applications, Filaments ensures that after
the �rst iteration, the pools that are run �rst will be those that faulted on the previous iteration;
as many iterative applications have constant sharing patterns, these pools will likely fault again.
This \front loads" the page faults, which increases the potential for overlapping communication
and computation, because there is the maximum amount of local work to do while the faults are
being satis�ed.

Filaments implements the frontloading of page faults in the following way. On a page reply, the
enabled server threads are placed on the tail of the ready queue. This ensures that pools containing
at least one �lament that faults will �nish execution after a pool that contains no �laments that
fault, provided that the faulting pool is started before the non-faulting pool. (Non-faulting pools
are always run to completion, because server threads are only suspended on a page fault.) To make
sure all faulting pools are started �rst, when a server thread �nishes executing an entire pool of
�laments, it pushes the pool on a stack. On the next iteration, the pools are run starting at the
top of the stack, which ensures that all faulting pools are run �rst.2

A DSM has to implement one or more page consistency protocols (PCPs). We have implemented
several, including write-invalidate [LH89], implicit invalidate [FLA94], write-shared [CBZ91], and
writer-owns [Fre95]. (PCPs are discussed in greater detail in Section 4.2.) A DSM also requires
reliable communication. Our system uses a novel, low overhead reliable datagram subsystem called
Packet, which is beyond the scope of this paper (see [FLA94]).

3.3 Application-Independent Overheads

The performance of Filaments programs are application-dependent. For example, an application
with a large ratio of computation to communication will perform much better than one with a small
ratio. This is because the communication overheads in the Filaments DSM are better amortized

2We have not found iterative applications that possess a sharing pattern for which this algorithm is not optimal.

However, if such an application does exist, we can front load the faults by running one �lament from each pool at

the beginning of each iteration.

9

Action Time (�sec)

Send Message 41

Receive Message 424

Make Page Request 967

Service Page Request 1642

Figure 2: Cost of various Filaments communication and overlap operations

Nodes 2 4 8

Time (msec) 3.20 5.29 8.45

Figure 3: Barrier synchronization times

by having a lot of computation relative to communication. However, there are inherent overheads
in Filaments that are independent of any particular application.

Some of the �laments overheads are shown in Figure 1. Each is shown both as the time per
operation and as the number of operations per second. The cost of switching between �laments
depends on whether or not they are inlined. Inlining �laments eliminates a function call (and return)
and improves performance by more than �ve-fold. For comparison purposes, context switch times
for the lightweight server threads are shown as well.

Another main Filaments overhead is due to DSM paging. There are four costs associated with
DSM paging: faulting on the page, and sending, receiving and servicing the message. The faulting
node incurs the �rst three overheads and the owner of the requested page bears the latter. The
paging overhead is application dependent. In general it does not depend on the number of nodes,
but on the sharing of data. Quite often the number of messages increases linearly with the number
of nodes, which only becomes a problem when the network is saturated.

The �nal Filaments overhead is due to synchronization, which results from barriers in iterative
applications. The overhead of barriers is a function of the number of nodes. Filaments uses
a tournament barrier with broadcast dissemination, which has O(p) messages and a latency of
O(log p) messages [HFM88]. Barrier synchronization times are shown in Figure 3. This is the
cost of the barrier only; in an actual application it is likely that the nodes arrive at the barrier at
di�erent times, which increases the time a particular node is at the barrier.

4 Data Placement

With a DSM, any node can reference any variable. However, variables are placed on pages, and
if a page is not resident, referencing a variable on that page leads to a page fault. Moreover, a
page usually contains more than one variable, such as elements of an array. This can lead to false
sharing, which occurs when di�erent nodes update di�erent variables that happen to be located on
the same page.

This section considers the problems of placing data on nodes and pages and presents implicit
mechanisms for moving data at runtime. The challenges are to minimize communication, balance
the computational load, and avoid false sharing (which can lead to thrashing). The ideal data
placement minimizes the overall completion time of an application. The mechanisms we describe
introduce some overhead due to runtime monitoring, but they also make it possible to adapt
dynamically to the characteristics of an application. This sometimes leads to better performance

10

than is possible using any static choice for data placement. Below we give an overview of these
systems; their performance is discussed in Section 5.

4.1 Adaptive Placement of Data on Nodes

First consider the problem of placing data (pages) on nodes. Most current approaches determine
data placements statically. They can generally be divided into two categories: using language
primitives, such as the ones in HPF [HPF93], or compiler analysis, such as the work reported in
[AL93], [GB93], and [KK94]. Language primitives involve the programmer in the choice of data
placement; unfortunately, the best placement may be di�cult or impossible for the programmer to
determine. Compiler analysis also may not be able to infer the best data placement; moreover, the
di�culty of inferring placements greatly increases the size and complexity of the compiler.

Our approach is to determine data placements dynamically, without requiring programmers or
compilers to make such decisions. (Di�erent dynamic approaches are discussed in [Who91] and
[HMS+95].) This approach is implemented in a prototype system called Adapt [LA95], which is a
subsystem of the Filaments package.

The goal of Adapt is to minimize the overall completion time of an application, which is deter-
mined by the completion time of the slowest node. Three factors a�ect the completion time of a
node: computation time, communication overhead, and delay. Computation time is the time spent
executing application code, communication overhead is time spent executing low-level code that
copies messages to and from the network, and delay is time spent waiting for other nodes to com-
plete their computation or respond to a message. We assume that any node can reference any data
element. We also assume the owner-computes rule [HKT92]. This means each data element has an
\owner", which is the only node that updates the element; however, other nodes may reference the
element.

The elements of a data structure can be placed on the nodes in numerous ways. However, the
challenges of simultaneously balancing computational load and minimizing communication often
conict, as there is an interaction between the two. For example, one placement extreme is to
put all data elements on one node; this will minimize communication (there is none), but it also
maximizes load imbalance (all other nodes are idle), which leads to large delays at barrier points.
The other extreme is to assign elements randomly to nodes; this will (probabilistically) balance the
load, but the lack of spatial locality will most likely lead to a large amount of communication.

Between these extremes are several feasible data placements. Adapt considers three|block,
variable block, and cyclic|as illustrated in Figure 4. A block placement places a logically contiguous
set of approximately the same number of data elements on each node. This mapping (called BLOCK

in HPF) could, for example, place contiguous rows (or columns) of a matrix on each node. Block
placements tend to work well for stencil-based applications such as Jacobi iteration, because such
applications have spatial and temporal locality, a balanced workload, and regular communication
between neighboring nodes. Block placements also work well for applications such as particle-in-cell
codes [Har64], that have locality and a regular \nearest neighbor" communication pattern. In this
case, however, the sizes of blocks may need to vary in order to balance the workload; e.g., each
block should contain about the same number of particles. (There are no variable-block placements
in HPF.)

Another placement method is to stripe data across the nodes (this is called CYCLIC in HPF).
Striped placements can handle problems with changing workloads well, because if the amount
of work per element decreases within the computation, a striped placement balances the load
without a need for remapping. However, striped placements have fairly poor spatial locality, so
they are typically useful only when the amount of communication in an application is (relatively)

11

(a) (b) (c)

(BLOCK) (VARIABLE BLOCK) (CYCLIC)

Figure 4: Di�erent data placements in Adapt for the case of 16 rows and 4 nodes. Three di�erent
placements are shown: block, one possible variable block, and cyclic. The rows that are placed on
node 0 are shaded. Solid lines separate di�erent node's data.

independent of the data placement. LU decomposition is an example of an application with a
changing workload and a placement-independent communication pattern. Compromise placements
can also be useful, such as striping contiguous regions onto each node (see [LA95] for details).

The Adapt system dynamically selects one of the data placements shown in Figure 4. It is given
some initial data placement by the programmer or compiler (the current default is BLOCK) and then
employs three steps to determine whether this placement is a good one or whether it should be
changed. First, Adapt gathers information about the communication pattern and computation
time for each loop body in the application. Next, it uses this information to determine which
data placement is likely to minimize both communication overhead and delay. Finally, it e�ects
the new placement (if necessary) and continues to monitor the computation in case the amount of
computation or communication later changes.

Adapt monitors communication using DSM page faults and the DSM page table. In particular,
the system counts the number of messages that each node sends and receives during one iteration
of the application program. From these counts|and architecture-speci�c measures of the times
it takes to send pages between nodes and to service page requests|Adapt estimates the time
due to communication overhead and message delay on each node. Adapt also determines the
communication pattern by inspecting the pattern of page faults on each shared array. (Currently,
Adapt recognizes two patterns: nearest-neighbor and broadcast .)

Adapt gathers information about computation time by instrumenting the application code to
obtain the time each node spends accessing the data elements it owns. These times are combined
at the next barrier synchronization point to obtain the total computation time.

After gathering communication and computation information for one iteration of an application,
Adapt uses it to choose a good data placement. In particular, given the total computation time
T and the number of nodes P , the ratio T=P represents the amount of computation each node
should perform for a perfectly balanced load. Adapt examines di�erent ways that rows could be
mapped to nodes to achieve this ideal load. This is done using a simple bin-packing procedure,
which in turn depends on the communication pattern detected during the monitoring phase. When
the communication pattern is nearest-neighbor, Adapt packs the bins so that each bin contains
consecutive rows and the estimated total time on the node is as close as possible to T=P . Adapt also

12

investigates multiple-bin packings if the load is not su�ciently balanced. When the communication
pattern is broadcast, the type of packing depends on the workload. If a history of iteration execution
times shows a constant workload, the same procedure as the one above is used. On the other hand,
if the execution times are changing, Adapt uses n=P bins on each node to e�ect a CYCLIC style
placement.

If Adapt determines that a new data placement would be better, it reparameterizes the appli-
cation (�lament) code so that the �laments on each node will access di�erent data. This causes
some �laments to reference data that the node does not own, and hence causes page faults. The
underlying DSM in Filaments then implicitly moves the data.

Adapt continues to monitor the application to detect when a di�erent placement might be
better. A large variance in the computation times suggests an imbalanced load, which might require
a placement that better balances the load. An increase in the communication times suggests excess
communication, which might require a placement with more locality. If either is detected, Adapt
noti�es the nodes before the start of the next iteration. All nodes then re-enable the �ne-grain
monitoring (time each row, etc.) and repeat the basic algorithm to determine the new (if any) best
placement.

4.2 Adaptive Placement of Data on Pages

The previous section described the problem of placing pages of data on nodes. We now consider
the problem of placing data on pages themselves. The key issue is avoiding false sharing. False
sharing occurs when two (or more) nodes are accessing distinct elements of a page and at least one
of them is writing.3 False sharing is a problem, because it can lead to thrashing, a situation in
which a page is continuously moving between nodes with very little useful work occurring. This
subsection describes the writer-owns protocol [Fre95] that dynamically eliminates false sharing.

A page-consistency protocol (PCP) is a method for maintaining data on a page using some
memory consistency model [Mos93]. A single-copy PCP, such as migratory [CBZ91], is one in which
only one copy of a page ever exists; therefore, it is inherently consistent. In a multiple-reader/single-
writer protocol, such as write-invalidate [LH89], a page remains consistent at all times because all
read copies are invalidated when a node writes. Multiple-writer protocols, such as write-shared
[CBZ91], allow the local copies of pages to become inconsistent; they regain consistency at speci�c
points in the program through some \consistency operation" (e.g., a barrier synchronization). A
single-copy PCP is very simple, but limits concurrency because all accesses are serialized. Multiple-
copy PCPs are more complicated, but allow greater concurrency.

Suppose false sharing occurs in an application. With the write-invalidate (WI) protocol, any
time a write occurs, the read copies on the other nodes will have to be invalidated. If another
node has not �nished reading the data on the page, it will immediately request a new read copy
of the page. This results in thrashing, which can cause considerable message tra�c and may limit
concurrency, because the readers must wait for the writer and vice versa. In order for the application
to achieve adequate performance, thrashing must be avoided or controlled. It can be avoided if the
programmer or compiler places data on pages so that no false sharing occurs; this will result in
unused space on pages. Alternatively, thrashing can be controlled if the run-time system keeps a
page on a node for some minimum period of time (the time window coherence protocol of Mirage
[FP89] is an example).

The write-shared protocol (WS) tolerates false sharing. Because there can be multiple copies

3When nodes are accessing the same location with at least one node writing, true sharing occurs. If at least one

is updating the element and there is no synchronization between the nodes, there is a race condition, which is a

programming problem.

13

of a page while it is being updated, false sharing does not cause thrashing. However, the page
becomes inconsistent (the local copies change), so false sharing forces a consistency operation. In
WS consistency is regained by merging local changes. When a node updates a shared page, it saves
a (consistent) copy of the original page. At the consistency point the node creates a list of all the
changes that were made to the page; this is called a di� list . Nodes then exchange and merge di�
lists into their copy of the page to regain a consistency.

The writer-owns (WO) protocol detects and eliminates false sharing at run time. WO tolerates
false sharing when it �rst occurs in a way similar to WS; however, at the consistency point, the
data is relocated to eliminate further false sharing.

Avoiding false sharing while using write-invalidate requires detecting and eliminating false shar-
ing at compile time. This is always di�cult and sometimes impossible (especially in the presence of
pointers). In contrast, writer-owns detects all false sharing as it occurs; hence, detection is simple
and exact. The write-shared protocol tolerates false sharing, but di�erences between pages have
to be resolved after every iteration of an iterative application. On the other hand, writer-owns
tolerates each instance of false sharing only once. Thus WO requires signi�cantly fewer consistency
operations in iterative computations than WS.

There are two main steps in implementing the writer-owns protocol. First, during computation,
detect when false sharing occurs and tolerate it. Then, at the next consistency point (e.g., barrier),
regain consistency and eliminate false sharing by relocating data. Writer-owns requires that the
data is \remappable." In particular, because the protocol adjusts pointers, the base remappable

unit must have a level of indirection. For example, in an n-dimensional array, the rows are the base
remappable unit|not the individual elements.

False sharing is detected and tolerated as follows. When an unshared page is requested, the
owner of the page sends a copy of the page to the requester and sets the permission of the page to
READ ONLY. When the requester receives the page, it also sets the permission to READ ONLY.
On a subsequent write to the page (by either node) the writing node copies the current copy of
the page into a clone and changes the permission of the page to READ WRITE. A page has false
sharing if and only if it has been cloned on at least one node.

The second step occurs at the next consistency point. False sharing on a page is eliminated
by performing four operations: determining write sets and relocation information, relocating data,
disseminating relocation information, and �nally remapping the data structures. The clone that was
made when false sharing was detected is a replica of the last consistent copy of the page. Therefore,
each node can compare the current contents of each shared page to its clone and determine the
changes that have been made locally since the last point at which the page was consistent. From
this, each node can construct a write set that lists all the remappable units (on shared pages only)
that the node updated.

In the second step, each node relocates every remappable unit in its write set. The data in each
remappable unit move onto pages owned by the node. Consequently, data dynamically migrates
into the memory of the node that performs the updates|that is, the writer owns the data.

The third step involves piggy backing relocation information on the synchronization message.
Relocation information contains the identity of remappable units and their new location. The
relocation information from all nodes is collected and disseminated back to all nodes on the ac-
knowledgement to the message.

The last operation remaps the data so that all changes are observed by all nodes. This requires
that each node update its pointers to the remappable units that have migrated. It is possible
because all data objects are allocated by the WO protocol. In particular, WO provides routines to
allocate objects, maintains a data base of objects, and matches locations to remappable units.

In order for the writer-owns protocol to function correctly, the program must observe the one-

14

�lament/point (no coarsening) 271

�lament/row (no coarsening) 196

�lament/node (no coarsening) 192

�lament/point (run-time coarsening) 197

Sequential Program 191

Figure 5: Cost of �ne-grain parallelism on a single node. (Times in seconds.)

Nodes 1 2 4 8

Coarse-grain, no overlap (sec) 191 98.1 52.6 33.3

Filaments, one per node (sec) 192 98.5 53.8 33.5

Figure 6: Test of cost of implicit communication. (Times in seconds.)

writer rule: only one node may write to a remappable unit in between consistency points. If this
rule were violated, both nodes would relocate the same remappable unit. The current system aborts
when it detects a violation of the one-writer rule. However, it could instead regain consistency by
merging the local changes on the o�ending remappable unit in a way similar to WS.

In summary, writer-owns does not require static analysis to eliminate false sharing, whereas
write-invalidate does. Furthermore, in iterative computations, it amortizes the cost of tolerating
false sharing over all iterations and eliminates consistency operations on subsequent iterations; this
can lead to better performance than the write-shared protocol.

5 Performance

This section reports the performance of run-time decision making using Filaments. Section 5.1
studies each decision in isolation and then shows the e�ect of combining several of these decisions;
Jacobi iteration is used as the application. The �nal two sections show results speci�c to the Adapt
and writer-owns.

All tests were run on a isolated network of 8 Sparc-1s connected by a 10Mbs Ethernet. They use
the gcc compiler with the -O ag for optimization. The execution times reported are the median
of at least three test runs, as reported by gettimeofday.

5.1 Jacobi Iteration

This application was described in Section 2. All Jacobi iteration tests in this section operate on a
512 � 512 matrix and perform 100 iterations.

Although programming using �ne-grain parallelism is often easier than using coarse-grain par-
allelism, �ne-grain parallelism is generally avoided because it is believed to be ine�cient. The
Filaments package executes �ne-grain parallelism e�ciently; Figure 5 shows its cost in Jacobi iter-
ation. Tests with three di�erent granularities are shown. Normally, a Filaments program uses the
most natural granularity, which in this application is a �lament per point. Because, the work per
�lament is very small (only a handful of instructions), using a �lament per point is very expensive
when execution of �laments is not optimized. In particular, the �lament per point program on one
node is 42% slower than a sequential program. The overhead decreases as the work per �lament
increases, but the potential parallelism, and consequently the exibility, decreases. However, with
run-time coarsening, the Filaments program with a �lament per point is only 3% slower than the

15

Nodes 1 2 4 8

Non-overlapping 197 101 55.8 33.5

Overlapping 197 101 54.1 30.2

Figure 7: Overlapping communication and computation in Filaments. (Times in seconds.)

Nodes 1 2 4 8

Adapt 197 109 59.0 34.7

Filaments BLOCK 197 108 56.5 32.1

Figure 8: Implicit placement of data onto nodes. (Times in seconds.)

sequential program.

Figure 6 shows the cost of implicit communication. In this test, the Filaments program creates
one �lament per node, so there is not any overhead due to �ne-grain execution. Thus, the two
programs are essentially the same: each node updates a strip of the matrix in a 2-dimensional for
loop. The primary di�erence between the two programs is that the Filaments program uses a DSM
for (implicit) communication, which means additional overhead relative to explicit communication.
For each row that is shared between nodes, the static program sends (or receives) a message.
However, with implicit communication the program incurs a page fault, sends a request message,
and sends the appropriate page of data. Furthermore, with the write-invalidate protocol, it is
necessary to send invalidation messages when shared data is updated. Therefore, for each message
in the coarse-grain program, there is a page fault and four messages (page request, page reply,
invalidate, and invalidate acknowledgement) in the Filaments program. This overhead is obviously
dependent on the application; in Jacobi iteration with a reasonably large matrix, the di�erence
is not too large|most nodes send two messages on each iteration, a small cost compared to the
massive amount of computation. (The eight-node test does not show as much overhead as the two-
and four-node tests; this is an anomaly we cannot explain.)

Filaments' multithreading capabilities allow programs to overlap communication and compu-
tation. Figure 7 shows the bene�t of multithreading in Jacobi iteration. The non-overlapping
Filaments program uses a single pool, which means it is single-threaded. The overlapping Fila-
ments program uses 3 pools: one for the top row, one for the bottom row, and the third for all
other �laments. (All �laments in each of the �rst two pools reference the same remote page.) This
achieves the maximal overlap, mitigating all wire and response time due to page faults, because
there is su�cient work in the interior of the matrix. Overlapping results in a 10% improvement on
eight nodes.

Figure 8 shows the overhead of Adapt in Jacobi iteration. The best data placement for Jacobi
iteration is block , meaning that each node works on contiguous sets of n=p rows of the matrices.
The Filaments program (without the Adapt subsystem) uses this placement, whereas the Adapt
version determines a (variable) block placement after the �rst iteration4. Both programs use one
pool of �laments per row, because this is how Adapt currently obtains the execution time of each
row. As can be seen in the �gure, the Adapt program performs slightly worse, due both to its own
overhead and the slightly inexact block placement. However, as will be seen in Section 5.2, for
adaptive problems an Adapt program can outperform a program with a static data placement.

4In some cases the bin-packing algorithm does not quite map n=p rows to each node, because small variances in

row execution times lead to some nodes working on one more or one fewer row.

16

Nodes 1 2 4 8

Write-Invalidate 197 101 54.1 30.2

Writer-Owns 196 101 54.7 31.1

Figure 9: Implicit placement of data onto pages. (Times in seconds.)

Nodes 1 2 4 8

Static 191 98.1 51.7 29.0

Filaments Adapt 197 109 59.0 34.7

Filaments WO 196 101 54.7 34.3

Figure 10: Implicit decisions versus static decisions. (Times in seconds.)

Figure 9 compares the write-invalidate (WI) and writer-owns (WO) protocols. The WI program
statically pads the data at the boundaries to ensure that there is no false sharing (and consequently,
no thrashing). The data in WO program are contiguous in memory. Because each row �ts exactly
on one page, the WO program never needs to remap, explaining the small overhead compared to
WI.

Figure 10 shows the sum total of making all decisions at run time versus making all decisions
statically5. Both Filaments Adapt programs use run-time coarsening, implicit communication, and
implicit overlap. Adaptive data placement and the writer-owns protocol are used exclusively by
the respective programs. The static program uses one process per node, explicit message passing,
explicit overlap, and explicit data placement (block). Even with the multiple overheads present in
the Filaments Adapt and WO programs, both are still within 20% of the static program.

5.2 Additional Adapt Experiments

This subsection describes two additional experiments using Adapt. In the �rst, LU decomposition,
a good data placement can be determined statically. The second, particle simulation, is an example
of an application for which the best data placement changes during the computation.

LU decomposition is used to solve the linear system Ax = b. It is an example of application in
which the load is not balanced. After a row is pivoted, it is never accessed again; on iteration i, only
an (n� i+1) by (n� i+1) submatrix is accessed. On each iteration, the workload decreases by one
row and every node must read the pivot row (row i), which is written by its owner. Communication
is constant over all data placements. For these reasons, the best data placement for this application
is CYCLIC.

The execution times for three versions of LU decomposition are shown in Figure 11. The Adapt
program initially packs the bins in the variable block manner, just as in Jacobi iteration. However,
Adapt quickly detects imbalanced load, re-enabling the �ne-grain monitoring. At this point Adapt
also detects a decreasing workload and packs the bins in a cyclic manner. The di�erence between
this program and the Filaments program that uses CYCLIC is primarily the cost of the extra page
faults necessary to change the data placement at run time. Because Adapt always starts with
a block placement (as the default), this application acts as a worst-case. The Filaments block
program is shown to indicate the load imbalance.

A Filaments program using Adapt can outperform a Filaments program using a static data
placement for a whole class of adaptive applications. For example, Figure 12 shows the results

5The Adapt and WO subsystems have not yet been integrated, so we report on each separately.

17

Number of Nodes 1 2 4

Adapt 173 107 77.2

Filaments CYCLIC 172 95.0 68.2

Filaments BLOCK 172 111 84

Figure 11: LU decomposition, 512� 512 (Times in seconds).

Number of Nodes 1 2 4 8

Adapt 69.4 40.1 29.8 23.5

Filaments 1 block per node 69.1 47.5 38.4 32.4

Filaments 2 blocks per node 69.1 47.0 39.1 25.3

Filaments 4 blocks per node 69.1 48.5 34.2 26.2

Filaments 8 blocks per node 69.1 46.5 39.3 42.6

Figure 12: Particle Simulation, grid 64� 64, 150 particles. (Times in seconds.)

from a particle simulation. The basic structure of this application mimics the behavior of MP3D
[McD88]. Several molecules move through a two-dimensional grid of cells, colliding with other
molecules that occupy the same cell. Colliding molecules move to a random location on the grid,
which can in practice lead to a clustering of particles in certain regions of the grid. Our experiment
is con�gured so that this is exactly what happens.

The Adapt program uses a variable block placement and periodically remaps the grid to balance
the number of particles (for this particular program Adapt performed three remappings). We
tested several Filaments programs with di�erent static data placements; using larger block sizes
exacerbates the load imbalance and using smaller block sizes causes excess communication. None
of the Filaments programs with a static placement performs as well as the Adapt version. Particle
simulation is thus an example of an application for which Adapt can outperform any static data
placement.

5.3 Additional WO Experiments

This section describes two additional experiments showing the bene�ts of the writer-owns protocol.
The �rst experiment, matrix multiplication, shows that WO performs well even in non-iterative
applications. The second, Jacobi iteration, illustrates the advantage of eliminating instead of
tolerating false sharing in an iterative computation. In both of these tests, the row size is 500,
which occupies slightly less than one page. This row size induces false sharing if the data are
placed contiguously in memory. Therefore, the WI programs have to (statically) pad the data at
the boundaries to ensure that there is no false sharing.

Matrix multiplication computes C = A � B, where A, B, and C are n � n matrices. Each
node computes a horizontal contiguous strip of rows of the C matrix. A master node initializes
the matrices, and the other nodes fault on all of B and the appropriate parts of A. The execution
times for matrix multiplication are shown in Figure 13. This application is not iterative, so WO
su�ers from not being able to amortize its overhead of relocating data; however, the penalty for
using WO is quite small.

The second test is Jacobi iteration. Because Jacobi iteration uses two grids and writes to one
grid every other iterations, the WO program eliminates all false sharing in the �rst two iterations.
In contrast, the WS program has to merge di� lists on each iteration, explaining the additional

18

Nodes 1 2 4 8

Write-Invalidate 224 119 64.7 44.3

Writer-Owns 228 121 66.3 45.3

Figure 13: Matrix Multiplication, 500 � 500 (Times in seconds.)

Nodes 1 2 4 8

Write-Invalidate 165 94.1 49.6 32.1

Writer-Owns 165 94.1 48.9 31.9

Write-Shared 166 99.8 52.2 44.0

Figure 14: Jacobi iteration, 500 � 500, 100 iterations (Times in seconds.)

overhead relative to the WO program. Figure 14 shows that WS performs worse than WO, and that
its relative performance decreases as the number of node increases. The write-invalidate protocol
serves as a baseline, because it pads pages and hence avoids thrashing.6 However, as discussed
above, static padding is nontrivial.

6 Summary and Conclusions

This paper has examined static and dynamic approaches to implementing parallel applications on
distributed-memory machines. Speci�cally, we have looked at four issues that can be addressed
statically when a program is developed or compiled or that can be addressed dynamically at run
time:

� the granularity of parallelism (coarse or �ne),

� how data is exchanged between processors (directly using explicit message passing or indirectly
using shared variables),

� overlapping communication and computation (explicitly using message passing or implicitly
using a distributed shared memory), and

� placing data on nodes and on pages (explicitly in the source code or implicitly during execu-
tion).

Section 2 showed that using run-time decisions leads to a simpler programming interface, mainly
because decisions are implicit.

Section 3 described how concurrency and communication can be addressed at run time. In
particular, we discussed how to coarsen the granularity of parallelism, implement a distributed
shared memory using multiple server threads, and use multithreading to overlap communication
and computation.

Section 4 described how data placement issues can be addressed at run time. The Adapt system
monitors communication overhead, computation time, and page reference patterns to decide how
to place pages on nodes. The writer-owns protocol decides during execution how to place data on

6The WO program is faster than the WI program, which we believe is due to the di�erent memory layout and

hence di�erent caching e�ects. Because WO operates the same as WI after it has eliminated false sharing, we would

expect WI with padding to be faster than WO in most applications.

19

pages in order to avoid false sharing. Both make it possible to adapt to the run-time characteristics
of an application, and hence they make it possible to make better decisions than could possibly be
made with the lesser amount of information that is available at compile time.

Section 5 presented performance �gures, both to show the cost of individual mechanisms and
to show their combined e�ect. Dynamic mechanisms inherently result in overhead, because they
monitor events at run time. However, each mechanism we have discussed either adds only a minor
amount of overhead to the overall execution time or in some cases improves the overall time. The
composite e�ect of using all mechanisms for the same application is, of course, additive, but they
do not have to be used together. In particular, the individual mechanisms could be used in other
systems that employ �ne-grain concurrency and/or distributed shared memory.

In conclusion, it is indeed possible to make e�ective decisions at run time. The costs are a small
amount of execution overhead and a somewhat larger run-time system. The bene�ts are a much
simpler interface and potentially better performance.

References

[AL93] J. Anderson and M. Lam. Global optimizations for parallelism and locality on scalable parallel

machines. In Proceedings of the SIGPLAN '93 Conference on Program Language Design and

Implementation, pages 112{125, 1993.

[BKT90] H. E. Bal, M. F. Kaashoek, and A. S. Tanenbaum. Experience with Distributed Programming

in Orca. In Proc. of the 1990 Int'l Conf. on Computer Languages, pages 79{89, March 1990.

[BZS93] Brian N. Bershad, Matthew J. Zekauskas, and Wayne A. Sawdon. The Midway distributed shared

memory system. In COMPCON '93, pages 528{537, 1993.

[CBZ91] John B. Carter, John K. Bennett, and Willy Zwaenepoel. Implementation and performance of

Munin. In Proceedings of 13th ACM Symposium On Operating Systems, pages 152{164, October

1991.

[DJAR91] Partha Dasgupta, Richard J. LeBlanc Jr., Mustaque Ahmad, and Umakishore Ramachandran.

The Clouds distributed operating system. Computer, 24(11):34{44, November 1991.

[EAL93] Dawson R. Engler, Gregory R. Andrews, and David K. Lowenthal. Shared �laments: E�cient

support for �ne-grain parallelism on shared-memory multiprocessors. Technical Report 93-13,

Dept. of Computer Science, University of Arizona, April 1993.

[EZ93] Derek L. Eager and John Zahorjan. Chores: Enhanced run-time support for shared memory

parallel computing. ACM Transactions on Computer Systems, 11(1):1{32, February 1993.

[FLA94] Vincent W. Freeh, David K. Lowenthal, and Gregory R. Andrews. Distributed Filaments: E�-

cient �ne-grain parallelism on a cluster of workstations. In First Symposium on Operating Systems

Design and Implementation, pages 201{212, November 1994.

[FP89] Brett D. Fleisch and Gerald J. Popek. Mirage: a coherent distributed shared memory design. In

Proceedings of 12th ACM Symposium On Operating Systems, pages 211{223, December 1989.

[Fre95] Vincent W. Freeh. Writer-Owns: a new page consistency protocol for dynamically controlling

thrashing on distributed-shared memory systems. December 1995.

[GB93] M. Gupta and P. Banerjee. PARADIGM: A compiler for automated data distribution on multi-

computers. In Proceedings of the 1993 ACM International Conference on Supercomputing, pages

357{367, July 1993.

[Har64] Francis H. Harlow. The particle-in-cell computing method for uid dynamics. In Bernie Alder,

editor, Methods in Computational Physics, pages 319{343. Academic Press, Inc., 1964.

[HB92] Matthew Haines and Wim B�ohm. The design of VISA: A virtual shared addressing system.

Technical Report CS-92-120, Colorado State University, May 1992.

20

[HFM88] D. Hansgen, R. Finkel, and U. Manber. Two algorithms for barier synchronization. Int. Journal

of Parallel Programming, 17(1):1{18, February 1988.

[HKT92] S. Hiranandani, K. Kennedy, and C.W. Tseng. Compiling Fortran D for MIMD distributed-

memory machines. Communications of the ACM, 35(8):66{80, August 1992.

[HMS+95] Yuan-Shin Hwang, Bongki Moon, Shamik D. Sharma, Ravi Ponnusamy, Raja Das, and Joel H.

Saltz. Runtime and language support for compiling adaptive irregular programs on distributed-

memory machines. Software|Practice and Experience, 25(6):597{621, June 1995.

[HPF93] High Performance Fortran language speci�cation. October 1993.

[KDCZ94] Pete Keleher, Sandhya Dwarkadas, Alan Cox, and Willy Zwaenepoel. TreadMarks: Distributed

shared memory on standard workstations and operating systems. In Proceedings of the 1994

Winter Usenix Conference, pages 115{131, January 1994.

[KK94] Ken Kennedy and Ulrich Kremer. Automatic data layout for High Performance Fortran. Tech-

nical Report CRPC-TR94498-S, Rice University, December 1994.

[LA95] David K. Lowenthal and Gregory R. Andrews. Adaptive data placement for distributed-memory

machines. TR 95-13, University of Arizona, November 1995.

[LH89] Kai Li and Paul Hudak. Memory coherence in shared virtual memory systems. ACM Transactions

on Computer Systems, 7(4), November 1989.

[McD88] Je�rey D. McDonald. A direct particle simulation method for hypersonic rari�ed ow. Technical

Report 411, Stanford University, March 1988.

[Mos93] David Mosberger. Memory consistency models. Operating Systems Review, 27(1):18{26, January

1993.

[SFL+94] Ioannis Schoinas, Babak Falsa�, Alvin R. Lebeck, Steven K. Reinhardt, James R. Larus, and

David A. Wood. Fine-grain access control for distributed shared memory. In Sixth International

Conference on Architecture Support for Programming Languages and Operating Systems, October

1994.

[TC88] Robert H. Thomas and Will Crowther. The Uniform system: an approach to runtime support

for large scale shared memory parallel processors. In 1988 Conference on Parallel Processing,

pages 245{254, August 1988.

[Who91] Skef Wholey. Automatic Data Mapping for Distributed-Memory Parallel Computers. PhD thesis,

Carnegie Mellon University, Pittsburgh, PA 15213, May 1991.

21

