
Semantics of Time-Varying

Information

Christian S. Jensen and Richard T. Snodgrass

TR 96-02

March 7, 1996

1



Abstract

This paper provides a systematic and comprehensive study of the underlying semantics of

temporal databases, summarizing the results of an intensive collaboration between the two authors

over the last �ve years. We �rst examine how facts may be associated with time, most prominently

with one or more dimensions of valid time and transaction time. One common case is that of a

bitemporal relation, in which facts are associated with exactly one valid time and one transaction

time. These two times may be related in various ways, yielding temporal specialization. Multiple

transaction times arise when a fact is stored in one database, then later replicated or transferred to

another database. By retaining the transaction times, termed temporal generalization, the original

relation can be e�ectively queried by referencing only the �nal relation. We attempt to capture

the essence of time-varying information via a very simple data model, the bitemporal conceptual

data model. Emphasis is placed on the notion of snapshot equivalence of the information content

of relations of di�erent data models.

The logical design of temporal databases is a natural next topic. Normal forms play a central

role during the design of conventional relational databases. We show how to extend the existing

relational dependency theory, including the dependencies themselves, keys, normal forms, and

schema decomposition algorithms, to apply to temporal relations. However, this theory does not

fully take into account the temporal semantics of the attributes of temporal relations. To address

this de�ciency, we study the semantics of individual attributes. One aspect is the observation and

update patterns of attributes|when an attribute changes value and when the changes are recorded

in the database, respectively. A related aspect is when an attribute has some value, termed its

lifespan. Yet another aspect is the values themselves of attributes|how to derive a value for

an attribute at any point in time from stored values, termed temporal derivation. This study of

attribute semantics leads to the formulation of temporal guidelines for logical database design.
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1 Introduction and Historical Context

This paper summarizes the result of an intensive collaboration between the two authors over

the last �ve years into the semantics of time-varying information. A wide variety of topics were

investigated, yielding a comprehensive understanding both of this semantics and of why such

disparate approaches to temporal data modeling have appeared in the literature.

Christian initially came to Tucson in January, 1991 to start a seven-month sabbatical1. Rick

had been at the University of Arizona for 16 months. We had each read the other's work, but

had met only a few times at conferences. There existed no established joint research stream,

nor commonality other than a shared interest in temporal databases. Fortunately, in turned out

that we worked very e�ectively together, and Christian was able to come to Tucson for additional

sabbaticals during January{August, 1992 and July, 1994{January, 1995. Rick returned the favor

with several shorter visits to Denmark.

Rick had previously worked on temporal query language design and implementation, in the

context of his TQuel language [HS93, MS90, Sno87, SGM93, Sno93], and on temporal semantics,

speci�cally characterizing the orthogonality of valid time and transaction time [SA86]. Christian

had previously worked on transaction-time databases, speci�cally architecture [JMRS93, JM93],

implementation [JMR91], and language support [JM92].

In our initial discussions once Christian arrived, we identi�ed two areas of common interest:

understanding the semantics of temporal data in detail, and developing e�cient implementation

techniques for bitemporal databases. In large part due to the many projects already underway

by Rick's students addressing implementation, we decided to focus instead on the semantics of

time-varying information.

At that time, there had already been over a decade of work on temporal databases, principally

on temporal query languages and their associated data models. Unlike relational databases, in

which a single data model, the relational data model [Cod79], held sway, there were perhaps 20

extant temporal data models described in the literature (that number has since doubled). There

was little consensus on the features that a temporal data model should include. Quite the contrary:

there was a raging debate over whether the data model should be nested or not (characterized

as �rst normal form (1NF) versus non-1NF (N1NF) approaches). While there had been some

comparisons between the proposals (e.g., [MS91a]), there had been little work to delineate the

notions underlying these varied models.

This lack of consensus of even a starting point for work on query language design, query op-

timization, or temporal access methods was starting to have a constricting e�ect on temporal

database research. Certainly it was complicating temporal semantics and its close relative, tem-

poral database design.

The lack of a single, or at least consensus, temporal data model had less impact on early work

on conceptual modeling of time and time-varying information, the latter primarily in the context

of the ER model and its temporal extensions. There were also insights from temporal logic, a

prominent example being the various models of the time line: dense, continuous, discrete, and

branching. Several authors had emphasized the utility of a stepwise constant semantics, in which

a fact stored in the database remains true until modi�ed or updated (a kind of Newtonian second

law). There had been a few e�orts to de�ne temporal normal forms; however, all were speci�c to a

particular data model, limiting their applicability. Finally, there occasionally appeared in papers

various observations about attribute semantics, anomalies, and normalization.

At the start, we explicitly intended to not produce yet another data model, with its own

peculiarities; that would only add to the confusion. Instead, we hoped to discern the underlying

1Mention of one author is in the third person; mention of both authors is in the �rst person.
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semantics of temporal data. Our vague intuition was that much of the work on temporal data

models was \representational" in nature. It seemed that the model-independent semantics of

time-varying information was being forced into speci�c con�gurations by existing data models.

The resulting structures did capture some of the essence, but were to a large extent artifacts of the

data model itself, rather than emphasizing the underlying information content. At the same time,

we realized that considering information outside the context of a data model, some data model,

would have been an aimless and ultimately unsatisfying exercise.

Our early discussions focused on several confusing aspects that we felt might lead us to more

fundamental issues.

� Why are there so many temporal data models? Is a single ideal model even possible? As

a more speci�c related question, should data be stored as events (state transitions) or as

states?

� Are transaction time and valid time really orthogonal, as Rick had previously claimed [SA86]?

More speci�cally, what is the relationship between POSTGRES' two timestamps, TQuel's

four timestamps, and Ben-Zvi's �ve timestamps? Are there more than two dimensions of

time? How does Thompson's taxonomy of four kinds of time relate to valid and transaction

time?

� Is �rst normal form versus non-�rst normal form a fundamental distinction?

� Which data model aspects are concerned with the information content of the modeled data,

which aspects are best justi�ed by their interaction with query language facilities, and which

aspects concern only e�ciency, and thus are in the domain of physical design? As a speci�c

question, is the problem of NULL values in some temporal data models a logical issue,

concerning data semantics, or a physical issue, concerning only performance?

� Can conventional dependency theory be applied in a model-independent fashion to temporal

databases? Can existing temporal functional dependencies and normal forms particular to

individual data models be recast to apply to a larger subset of data models?

� What are the implications of temporal interpolation on data semantics?

Thinking about these leading questions and following the technical threads that emerged turned

out to be a great adventure. This paper gives some of the of the milestones along that journey

and provides often surprising answers to the above questions.

The exposition that follows deviates somewhat from a strict chronological order. Rather,

we �rst consider the fundamental question of how to associate time with facts, leading to an

understanding of the nature of temporal data. We then address the design of temporal databases.

Initially, existing normal forms are generalized to apply to temporal databases. Then, temporal

design guidelines are developed based on a study of the semantics of individual attributes of

temporal relations. For each new topic introduced, we start with the initial questions that got us

thinking about the issue, then follow the investigation as it unfolded.

2 Associating Time with Facts

The past decade of temporal DB research presented a conundrum. Time-varying data seems so

simple: rather than one value, there is a value for each instant of time. Yet it seemed that temporal

data model design was terribly complicated. There were a plethora of temporal data models, now
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over 40 discussed in the literature [ �OS95]. There must be something else going on. So we worked

hard to get to the essence of temporal data.

Philosophers have long recognized the dichotomy, and the duality, between events and states

[RU71]. A state is something that has extent over time. Something is true about an object for

an interval of time, but was not true before and not after. An event is instantaneous [JCE+94];

it is something that \happens," rather than being true over time2. Events delimit states. The

occurrence of an event results in a fact becoming true; later, the occurrence of another event

renders that fact no longer valid. Hence, events and states are duals; states can be represented by

their delimiting events, and events are implied by states.

A conventional relation models the reality relevant to an enterprise as a single state [Sno87].

This is often illustrated as a two-dimensional table, with the tuples as rows and the attributes as

columns. If nothing changes in reality, the tuples will remain in the relation. Otherwise, some

tuples are removed and others are inserted into the relation.

It is well known that database facts have at least two relevant temporal aspects [SA85, SA86].

Valid time concerns when a fact was true in the modeled reality [JCE+94]. Transaction time

concerns when a fact was current in the database. These two aspects are orthogonal, in that each

could be independently recorded or not, and each has associated with it speci�c properties. The

valid time of a fact can be in the past or the future and can be changed freely. In contrast, the

transaction time of a fact cannot extend beyond the current time (there is no way of knowing

whether the fact will be current in the database in the future), and the transaction time cannot

be changed (we cannot now change what was stored in the database in the past).

Such was the context for the start of our investigation of temporal database semantics. The

simplicity of associating with each fact two times, one valid time, indicating when the fact was true

in reality, and one transaction time, indicating when that fact was current in the database, was not

adequate to capture the full semantics of time-varying information. We then began a systematic

study of the frayed edges of this appealing framework.

2.1 Temporal Specialization

While valid time and transaction time had been shown to be orthogonal [SA86], some papers did not

make a distinction between the two. Instead, they seemed to use one time to handle both aspects.

For example, the POSTGRES papers mentioned \time travel," terminology strongly suggesting

valid time: \For example to �nd the salary of Sam at time T one would query [...] POSTGRES will

automatically �nd the version of Sam's record valid at the correct time and get the appropriate

salary" [SRH90, p. 515]. However, POSTGRES technically supports only transaction time in its

data model and query language. Clearly something was going on that was not being captured.

Example: Consider a relation recording the assignment of employees to departments, using

two attributes, Name and Dept. On Monday, we observe that employee Tom is in the Shipping

department and that Kate is in the Loading department. By end of Tuesday, Tom leaves the

Shipping department, and on Wednesday another employee, Sam, starts in Shipping. By end of

Thursday, Kate leaves Shipping. This can be represented in a temporal table as illustrated in

Figure 1(a).

The timeslice at any time yields the conventional relation at that time. For example, the timeslice

at time Wednesday yields the relation in Figure 1(b). ut

2We do not consider the so-called \macro events" that are true, or take place, for an interval of time, but are not

true for any subset of their interval. A wedding is an example [Eva90, MMCR92].
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Name Dept Time

Tom Shipping Monday { Tuesday

Kate Loading Monday { Thursday

Sam Shipping Wednesday { now

(a)

Name Dept

Kate Loading

Sam Shipping

(b)

Figure 1: A Sample Temporal Relation (a) and a Timeslice (b)

The question we asked was, is the temporal relation a valid-time relation or a transaction-time

relation? Our eventual answer was: either, or perhaps even both, i.e., a bitemporal relation.

The insight was to consider the interaction between valid and transaction time. While the

semantics of these two times is indeed orthogonal, their use in a particular application needs not

be. In the employee example, the relation is updated precisely (at a granularity of days) when

reality changes. On Tuesday, there was no change to the assignment of employees (we will examine

this stepwise constant assumption more fully in Section 3.5), and so no updates were made to the

relation. The relation is assumed to be always up to date; otherwise, the timeslice might not yield

the correct result. In this light, the employee relation may be considered to be a transaction-

time relation, and the timestamp a transaction time representing when the fact was stored in

the database. All modi�cations are insertions, except that right end points for the timestamps

are being are being supplied when assignments are terminated (more on this in Section 2.9). A

timeslice at any time in the past yields what the database stored as current at that time.

An equally correct interpretation is that the employee relation is a valid-time relation, with the

timestamps indicating when in the past the employee assignments held true. Modi�cations reect

a change in our understanding of reality; when we learn about a change, we update the relation.

A timeslice at a time in the past yields what assignments were valid in reality at that time.

A third, equally correct interpretation is that the employee relation is a bitemporal relation.

The transaction time and the valid time, for this application, are synchronized. Hence we could

replicate the timestamp, and consider one the valid time and one the transaction time. While

a bitemporal relation a�ords additional query and update capabilities (e.g., retroactive updates),

such features are not used by this particular application.

This led us to consider other interactions between valid and transaction time. We term re-

lations with such relationships specialized temporal relations [JS94a]. We identi�ed a taxonomy

of interrelationships|in between the extremes of identity and no interrelation at all|that are

possible between the valid and transaction times of facts, shown in Figure 2.

In this taxonomy, the employee relation would be classi�ed as degenerate. As another example,

a temporal relation is retroactive if the facts stored by the tuples are valid before they are entered

into the relation, i.e., the facts became true before they were stored. Retroactive relations are

common in monitoring situations, such as process control in a chemical production plant, where

variables such as temperature and pressure are periodically sampled and stored in a database for

subsequent analysis.

Further, it is often the case that some (non-negative) minimum delay between the actual time

of measurement and the time of storage can be determined. For example, a particular set-up for

the sampling of temperatures may result in delays that always exceed 30 seconds. This gives rise

to a delayed retroactive relation if it is retroactive and if there is a bound on the time between

when the fact became true in reality and when it was stored in the database.

In a data warehousing application where, e.g., point-of-sales records from an operational system

are entered into a warehouse relation on a monthly basis, the valid times of the point-of-sales records
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Figure 2: Generalization/Specialization Structure of the Taxonomy for Temporal Specialization

are between a month and a few hours earlier than the corresponding transaction times. Thus, the

temporal warehouse relation is delayed strongly retroactively bounded.

A temporal relation is predictive if the values of an item are not valid until some time after they

have been entered into the relation. An example is a relation that records direct-deposit payroll

checks. Generally a copy of this relation is made on magnetic tape near the end of the month,

and sent to the bank so that the payments can be e�ective on the �rst day of the next month.

The early predictive temporal relation is the specialization of the predictive temporal relation. The

direct-deposit payroll check relation is an example if the tape must be received by the bank at

least, say, three days before the day the deposits are to be made e�ective.

The taxonomy of specialized temporal relations provides a coherent framework that allows us

to more precisely describe, distinguish, and thus understand temporal relations. The taxonomy

may also be used for characterizing the many existing temporal data models. We illustrate this by

characterizing several well-known temporal data models.

Ariav's Temporally Oriented Data Model includes the temporal isomorphism assumption, in

which \there is a tight correspondence between the database and the temporally concurrent reality

it is aimed to capture." [Ari86, p. 503]. As the transaction time of a fact can be determined from

the stored valid time, under this assumption, this data model supports degenerate bitemporal

relations as well as general transaction-time relations.

Gadia presents a multi-dimensional data model which is in turn restricted to a two-dimensional

data model with valid and transaction time as the dimensions [GY88]. In this model, however,

only data valid in the past may be stored. For example, it is impossible to store on May 11, 1995

the fact that \Employee Kate will be in the Shipping department from September 1, 1995 until

February 29, 2000." Therefore, the model does not support fully general bitemporal relations, but

5



supports instead retroactive bitemporal relations. The restriction to retroactive data is inherited

from an earlier (retroactive) valid-time data model [Gad88].

Sarda proposes another specialized temporal data model in which current facts may be ap-

pended and where so-called retrospective updates (changes to information about the past) are

possible [Sar90]. Hence, the transaction time is always equal to or after the valid time, and, like

the previous model, this model supports retroactive bitemporal relations.

The POSTGRES data model [Re87, Sto87a] supports degenerate bitemporal relations, in that

facts valid now in the real world are stored now, and all past states are retained. The POST-

GRES query language [Sto90] supports transaction timeslice. This query language may be viewed

alternatively as a transaction-time, valid-time, or even bitemporal query language, with signi�-

cant restrictions on the expressiveness (query and data) of each. valid-time or bitemporal query

language.

Temporal specialization goes down the taxonomy, adding constraints on the interaction of

valid and transaction time. Temporal generalization goes up the taxonomy, removing constraints.

While considering a di�erent aspect of temporal semantics, we discovered that it made sense to

apply generalization above even the top-most point of the hierarchy in Figure 2, yielding temporal

relations more general than those termed general in the hierarchy, as we will see in the next section.

2.2 Temporal Generalization

A common concern voiced about temporal data models was, why timestamp facts with only one

or two timestamps?

Example: Consider a promotion decision at a University, which is associated with many dates:

the date materials were submitted, the date the departmental committee made its decision, the

date the department head decided, the date the college committee decided, the date the Dean

decided, the date the Provost's committee decided, the date the Provost decided, the date the

President decided, the e�ective date of the promotion, and the date when each of these decisions

was stored in the database (whew!). ut

Does it make sense to associate more than one timestamp (valid or transaction) with a fact?

Which timestamps are in fact valid and which are transaction? Does it really matter?

The latter two questions are easier to answer. Yes, it does matter, for the simple reason that

each kind of time has a particular semantics. The database designer determines the temporal

support|valid-time, transaction-time, or bitemporal|of the relations that is appropriate for the

applications at hand. The application programmers then exploit that support. Valid and trans-

action time have precise, crisp de�nitions. If changes to the past are important, then valid-time

support is required. If it is necessary to, e.g., rollback to a previous state of the database, then

transaction time support is called for.

Let us examine the promotion decision example more closely. The submission of materials con-

cerns reality, as do the various decisions. These would have dates associated with them regardless

of whether they were ever stored in the database. This hints that each of these dates concerns

valid time. But which is the valid time of the promotion? None of these dates, it turns out. The

valid time of the promotion is the time the promotion was valid, that is, its e�ective date.

The apparent confusion, both in the paragraph above and in some of the research literature,

occurs because it makes little sense to reason about what the transaction time and the valid time is

abstractly, without reference to a particular fact. We must �rst identify the fact we are considering!

Then it not only makes sense, but also becomes easy to talk about transaction time, valid time,

and other times.

6



So, let us �rst determine what fact is being timestamped. If the fact is \person X was promoted

to Professor," the valid time is the time when the person became a Professor, and the transaction

time is when the fact that the person was a Professor was recorded in the database. If the fact is

\person X was approved for promotion by the department head," then the valid time is the time

when that approval was made (probably when the letter from the department head was signed)

and the transaction time is when that fact was recorded in the database. If the fact is \person X

is a Professor," the valid time is the interval that started when the promotion decision took e�ect

and is terminated when person X is no longer a Professor. Hence, we see that there are many

interrelated facts, each with di�erent valid times and (potentially!) with transaction times.

This discussion provides insight into the relationship between valid time and the so-called

decision time that has been considered in the literature (e.g., [CK94, KC93, CK93, EGS93, GES94,

NE95, ND96]). Assume that we are considering the fact \person X is a Professor." In the example,

many decisions took place a di�erent times before person X could become a Professor. These times

are decision times of our fact. Di�erent types of facts may have di�erent numbers of di�erent types

of decision times. The discussion above reveals that the decision times of a fact are also valid times

of facts that are closely related to the \main" fact. What the \closely related" facts are is dependent

on the reality to be modeled and on the requirements of the application at hand. Speci�cally, no

general statement can be made about the number and speci�c meaning of the decision times can

be made.

The question is then how to best reect decision times in a data model. One approach is to

store decision times as valid times of the related facts. This permits any number of decision times

to be (indirectly) supported, and it clari�es what the individual decision times actually mean.

Another approach is to allow for the direct association of an arbitrary number of decision times

with all database facts. So far, proposals that take this approach have considered only one decision

time per fact. As the meaning of this decision time will vary from application to application, little

semantics can be built into the data model for this time. It is not yet known what the bene�ts of a

general solution with this approach are and whether these bene�ts outweigh the added complexity.

There is, however, an unrelated rationale for storing multiple transaction times in a tuple. This

insight followed from considering the four time domains introduced in Thompson's dissertation

[Tho91]. When facts ow between temporal relations, several time dimensions may be associated

with individual facts.

Example: Consider again the promotion decision. This fact has an associated time when the

promotion was e�ective as well as the time when it was entered into a relation on the University's

administrative computer. Later, this fact was copied into the departmental personnel relation on

a di�erent machine, and is associated with an additional time value, namely the time it was stored

there. This personnel relation has three times. Storing both transaction timestamps makes it

possible to query the one relation from another relation. In the example, it is possible to query

the time-varying relation on the centralized administrative machine indirectly via the personnel

relation on the departmental machine. Unlike in the previous discussion, when the multiple times

were associated with multiple facts, here we have a single fact, \person X is a Professor," with a

single valid time and two transaction times: when that fact was stored in the University's database

and when it was stored in the departmental database. ut

The ability to have multiple transaction times �ts in well with temporal specialization. The

concepts of specialization and generalization have been used previously within data modeling (e.g.,

[EN89, HM81, SS77]). A subclass may be created from a class by means of specialization, i.e., by

making the de�ning properties (the intension) of the class more restrictive and thus also restricting
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the set of examples (the extension) of the class. As the dual, a superclass may be created from a

class by means of generalization, i.e., by making the intension of the class less restrictive and thus

expanding the extension of the class.

Temporal specialization and generalization are also duals. As we have seen, specialization con-

tracts the space of possible timestamp combinations. Temporal generalization appears in at least

four guises, each of which expands the space of possible timestamps. The �rst is removing restric-

tions. For example, a strongly predictively bounded relation may be generalized to a predictively

bounded relation. This generalization is the opposite of specialization, and it involves moving up

the lattice given in Section 2.1.

A second way to de�ne a generalized temporal relation is to simply add completely new, or-

thogonal time dimensions. In systems where facts ow between multiple temporal relations, facts

may accumulate transaction timestamps by retaining their previous timestamps and gaining new

transaction timestamps as they are entered into new temporal relations. Consequently, a fact in a

generalized temporal relation has several kinds of timestamps: a valid timestamp, which records

when the fact was true in reality, a primary transaction timestamp, which records when the fact

was stored in this relation, and one or more inherited transaction timestamps, which record when

the fact was stored in previous relations.

A third, more involved, means of de�ning generalized relations is to have derived relations

inherit transaction time-stamps from their underlying relations. For example, consider process

control in a chemical manufacturing plant. Values from temperature and pressure sensors may be

stored in temporal relations. The sensed data may later be processed further to derive new data,

such as the rates at which the reaction is progressing [Ram92]. This derivation typically would

depend on past temperature and pressure trends. The derived temporal relation that records the

reaction rates would store the transaction time when the rate was recorded, along with one or more

inherited transaction times, specifying when the underlying data, the temperature and pressure

readings, were originally recorded. These underlying transaction times provide an indication of

the relevance of the calculated rates.

A fourth way of generalizing temporal relations occurs when di�erent beliefs about the modeled

reality is to be recorded. For example, a database that records the history of some country and

is being used by historians may bene�t from the inclusion of multiple valid-time dimensions. The

di�erent valid-time dimensions may be used for accommodating di�erent, competing perceptions

of history.

This elaboration of the original taxonomy of valid and transaction time [SA85] allowed us to

better understand Thompson's 4-time model [CT90, Tho91]. Speci�cally, Thompson's physical

time is precisely the transaction time of a base �nancial relation, his logical time is the valid time

of this relation, his accounting time (when that relation is closed out) is the valid time of the

relation resulting from the close out process, and his engineering time is the inherited transaction

time in the close out relation.

Our conclusion is that for facts stored in databases, two kinds of times are fundamental and

universal, namely valid time and transaction time, and that these are indeed orthogonal. However,

an application's usage of these two time dimensions may introduce interdependencies between the

timestamps, multiple valid times, and multiple (inherited) transaction times. In this light, decision

time and Thompson's physical, logical, accounting, and engineering times may be seen as valid or

transaction times with re�ned semantics.

From now on, we will assume one valid time (either event or state) and one transaction time.
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2.3 Temporal Data Models

At this point, we felt that we had a good handle on the semantics of timestamps. We then turned

to the central question of the semantics of time-varying values. How should time be associated

with facts? There were at the time some two dozen temporal data models that timestamp facts

in some way with valid time. Each proposal came with justi�cations as to why it was better than

the others. Each proposal appeared in a refereed conference or journal, and thus had survived the

reviewing process, and was judged to make a contribution.

Rick and a colleague previously analyzed a dozen or so models [MS91a], and had come to the

conclusions that (a) there were many desirable criteria for a temporal data model, (b) each model

satis�ed a substantial subset of the desirable criteria, (c) the design space had been thoroughly

explored, in that there generally existed a data model for each combination of relevant aspects,

and (d) the desirable criteria were mutually incompatible. So a temporal data model that did

everything was simply unattainable.

The implicit mind-set of those developing temporal data models was to �nd the ideal combi-

nation of properties, to come as close to the perfect model as possible. The data models we had

individually designed before our collaboration also sought this holy grail [JMR91, MS90, MS91b,

Sno87]. We eventually decided that that course of action was inappropriate. The speci�c design

decisions were highly subjective. Because the criteria were incompatible, many design decision

necessarily forced useful properties to be unmet. Instead of one design towering over the others

by virtue of it satisfying most of the desirable properties, the situation was unavoidably one of a

plethora of designs, each with its strong, but also weak, points.

So we decided that the best approach was to alter our goals, instead advocating a separation

of concerns. Rather than attempt to de�ne a temporal data model that did everything, we would

eliminate those aspects not central to capturing the temporal semantics of the data, which is

after all the primary job of a temporal data model. In particular, we would not be concerned

with presenting all the information concerning an object in one tuple, or of ensuring ease of

implementation and query evaluation e�ciency. With a shorter list of requirements, we would

then identify a data model that was ideal, in that it did all that was asked of it.

Focusing just on semantics, we found that the existing data models, including our own, were

too complicated. These complications arose from the other requirements they were addressing. So

we developed a very simple data model, the Bitemporal Conceptual Data Model, or BCDM [JSS94],

whose sole goal was to capture when facts were valid in reality and when they were stored in the

database.

The BCDM is termed a conceptual model dues to its single-minded focus on semantics. In

essence, we advocate moving the distinction between the various existing temporal data models

from a semantic basis to a physical, performance-relevant basis, utilizing our proposed conceptual

data model to capture the time-varying semantics. The terminology of \conceptual" is used only

to emphasize the use of the model for design and as a basis for a query language; otherwise, this

new model is similar to other temporal data models in the formalism used to de�ne it.

We rely on existing data model(s) for the other tasks, by exploiting equivalence mappings

between the conceptual model and the representational models. The equivalence mappings are

well-behaved in that they preserve snapshot equivalence, which says that two relation instances

have the same information content if all their snapshots, taken at all times (valid and transaction),

are identical (a precise de�nition will be provided later). Snapshot equivalence provides a natural

means of comparing relation instances in the models considered in this paper. Finally, we feel that

the conceptual data model is the appropriate location for database design, as we shall demonstrate

in Section 3.
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2.4 The Bitemporal Conceptual Data Model

The idea behind the BCDM was to retain the simplicity of the relational model while also allowing

for the capturing of the temporal aspects of the facts stored in a database. This was accomplished

by associating with each conventional relational database tuple a region in the space spanned by

transaction time and valid time that succinctly de�nes the temporal aspects of the tuple. Below,

we describe this in more detail.

The BCDM employs the same model of time for both time domains: that of a �nite sequence

of chronons. In mathematical terms, this sequence is isomorphic to a �nite sequence of natural

numbers [JS94b]. The sequence of chronons may be thought of as representing a partitioning

of the real time line into equal-sized, indivisible segments. Thus, chronons are thought of as

representing time segments such as femtoseconds or seconds or years, depending on the particular

data processing needs. Real-world time instants are assumed to be much smaller than chronons

and are represented in the model by the chronons during which they occur. We will use c, possibly

indexed, to denote chronons.

A time interval is de�ned as the time between two instants, a starting and a terminating instant.

A time interval is then represented by a sequence of consecutive chronons, where each chronon

represents all instances that occurred during the chronon. We may also represent a sequence of

chronons simply by the pair of the starting and terminating chronon. Unions of intervals are

termed temporal elements [Gad88].

The domain of valid times is given as DV T = fcv1; c
v
2; : : : ; c

v
kg, and the domain of transaction

times may be given as DTT = fct1; c
t
2; : : : ; c

t
jg. A valid-time chronon cv is thus a member of DV T ,

a transaction-time chronon ct is a member of DTT , and a bitemporal chronon cb = (ct; cv) is an

ordered pair of a transaction-time chronon and a valid-time chronon.

Next, we de�ne a set of names, DA = fA1; A2; : : : ; AnAg, for explicit attributes and a set

of domains for these attributes, DD = fD1; D2; : : : ; DnDg. For these domains, we use ?i, ?u,

and ? as inapplicable, unknown, and inapplicable-or-unknown null values, respectively (see, e.g.,

[Zan82]). We also assume that a domain of surrogates is included among these domains. Surrogates

are system-generated unique identi�ers, the values of which cannot be seen but only compared for

identity [HOT76]. Surrogates are used for representing real-world objects. With the preceding

de�nitions, the schema of a bitemporal conceptual relation, R, consists of an arbitrary number,

e.g., n, of di�erent explicit attributes from DA with domains in DD, and an implicit timestamp

attribute, T, with domain 2(DTT[fUCg)�DV T n;. Here, UC (\until changed") is a special transaction-

time marker. A value (UC ; cv) in a timestamp for a tuple indicates that the tuple being valid at

time cv is current in the database. The example below elaborates on this.

A tuple (a1; a2; : : : ; anj t
b), in a bitemporal conceptual relation instance, r(R), consists of a

number of attribute values associated with a bitemporal timestamp value. Depending on the

extent of decomposition, such a tuple may be thought of as encoding an atomic or a composite

fact. For convenience, we will simply use the terminology that a tuple encodes or records a fact

and that a bitemporal relation instance is a collection of (bitemporal) facts.

An arbitrary subset of the domain of valid times is associated with each tuple, meaning that

the fact recorded by the tuple is true in the modeled reality during each valid-time chronon in the

subset. Each individual valid-time chronon of a single tuple has associated a subset of the domain

of transaction times, meaning that the fact, valid during the particular chronon, is current in the

relation during each of the transaction-time chronons in the subset. Any subset of transaction times

less than the current time and including the value UC may be associated with a valid time. Notice

that while the de�nition of a bitemporal chronon is symmetric, this explanation is asymmetric.

This asymmetry reects the di�erent semantics of transaction and valid time.
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We have thus seen that a tuple has associated a set of so-called bitemporal chronons in the two-

dimensional space spanned by transaction time and valid time. Such a set is termed a bitemporal

element [JCE+94] and is denoted tb. Because no two tuples with mutually identical explicit

attribute values (termed value-equivalent) are allowed in a bitemporal relation instance, the full

history of a fact is contained in a single tuple.

In graphical representations of bitemporal space, we choose the x-axis as the transaction-time

dimension and the y-axis as the valid-time dimension. Hence, the ordered pair (ct, cv) represents

the bitemporal chronon with transaction time ct and valid time cv.

Example: Consider a relation recording employee/department information, such as \Tom works

for the Shipping department." We assume that the granularity of chronons is one day for both valid

time and transaction time, and the interval of interest is some given month in a given year, e.g.,

January 1995. Throughout, we use integers as timestamp components. The reader may informally

think of these integers as dates, e.g., the integer 15 in a timestamp represents the date January

15, 1995. The current time is assumed to be 19 (i.e., NOW = 19).

Figure 3(a) shows an instance, empDep, of this relation. A graphical illustration of the empDep

relation is shown in Figure 3(b). Right-pointing arrows in the graph and the special value UC in

the relation signify that the given tuple is still current in the database and that new chronons will

be added to the timestamps as time passes and until the tuple is logically deleted.

The relation shows the employment information for two employees, Tom and Sam, contained in

three tuples. The �rst two tuples indicate when Tom worked for the Shipping and Loading depart-

ments, respectively. These two tuples are shown in the graph as the regions labeled \(Tom, Ship-

ping)," and \(Tom, Loading)," respectively. The last tuple indicates when Sam worked for the

Shipping department, and corresponds to the region of the graph labeled \(Sam, Shipping)." ut

EName Dept T

Tom Shipping f(5; 10); : : : ; (5; 15); : : : ; (9; 10); : : : ; (9; 15);
(10; 5); : : : ; (10; 20); : : : ; (14; 5); : : : ; (14; 20);

(15; 10); : : : ; (15; 15) : : : ; (19; 10); : : : ; (19; 15)g

Tom Loading f(UC ; 10); : : : ; (UC ; 15)g

Sam Shipping f(UC ; 25); : : : ; (UC ; 30)g

(a)

-

-

-

-

6

-

(Sam,Ship)

(Tom,Ship) (Tom,Load)

30

25

5

20

15

10

0
0 105 15 20 25 30

(b)
TT

VT

Figure 3: A Bitemporal Conceptual Relation

Valid-time relations and transaction-time relations are special cases of bitemporal relations that

support only valid time or transaction time, respectively. Thus a valid-time tuple has associated

a set of valid-time chronons (termed a valid-time element and denoted tv), and a transaction-time

tuple has associated a set of transaction-time chronons (termed a transaction-time element and

denoted tt). For clarity, we use the term snapshot relation for a conventional relation. Snapshot

relations support neither valid time nor transaction time.

As evidence of the simplicity of the relations in the BCDM, it should be noted that, unlike in

other models, there is exactly one tuple per fact. We shall also see that BCDM relation instances

that are syntactically di�erent have di�erent information content, and vice versa. This concep-

tual cleanliness is generally not obtained by other bitemporal models where syntactically di�erent

instances may record the same information.
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2.5 Associated Algebraic Operators

We have so far described the objects in the bitemporal conceptual data model|relations of tuples

timestamped with bitemporal elements. We now de�ne some algebraic operators on these objects

that will be used later. A complete algebra for the BCDM is de�ned elsewhere [SJS95].

We �rst de�ne bitemporal analogues of some of the snapshot relational operators, to be denoted

with the superscript \B".

De�ne a relation schema R = (A1; : : : ; AnjT), and let r be an instance of this schema. We

will use A as a shorthand for all attributes Ai of R. Let D be an arbitrary set of explicit (i.e.,

non-timestamp) attributes of relation schema R. The projection on D of r, �BD(r), is de�ned as

follows.

�BD(r) = fz(jDj+1) j 9x 2 r (z[D] = x[D])^ 8y 2 r (y[D] = z[D]) y[T] � z[T])^
8t 2 z[T] 9y 2 r (y[D] = z[D] ^ t 2 y[T])g

The �rst line ensures that no chronon in any value-equivalent tuple of r is left unaccounted for,

and the second line ensures that no spurious chronons are introduced.

Let P be a predicate de�ned on A1; : : : ; An. The selection P on r, �BP (r), is de�ned as follows.

�BP (r) = fz j z 2 r ^ P (z[A])g

As can be seen from the de�nition, �BP (r) simply performs the familiar snapshot selection, with

the addition that each selected tuple carries along its timestamp, T.

Finally, we de�ne two operators that select on valid time and transaction time. They have no

counterparts in the snapshot relational algebra. Let cv denote an arbitrary valid-time chronon and

let ct denote a transaction-time chronon. The valid-timeslice operator (�B) yields a transaction-

time relation; the transaction-timeslice operator (�B) evaluates to a valid-time relation3.

�Bcv(r) = fz(n+1) j 9x 2 r (z[A] = x[A]^ z[T] = fctj(ct; cv) 2 x[T]g ^ z[T] 6= ;)g

�Bct(r) = fz(n+1) j 9x 2 r (z[A] = x[A]^ z[T] = fcvj(ct; cb) 2 x[T]g ^ z[T] 6= ;)g

Thus, �Bcv(r) simply returns all tuples in r that were valid during the valid-time chronon cv. The

timestamp of a returned tuple is all transaction-time chronons associated with cv. Next, �B
ct
(r)

performs the same operation, except the selection is performed on the transaction time ct.

Example: Consider the empDep relation shown in Figure 3(a). The following result is produced

by �B12(empDep).

EName Dept T

Tom Shipping f5; : : : ; 19g
Tom Loading fUCg

Using the graphical representation, valid timeslice can be visualized by drawing a horizontal line

through the graph at the given valid time. The tuples returned are those that overlap with the

drawn line. The timestamps of the returned tuples are set to the segments of transaction time

corresponding to the overlapped regions. ut

3Operator � was originally termed the rollback operator, hence the choice of symbol.
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The operators above apply only to bitemporal relations. Similar operators for valid-time and

transaction-time relations are simpler special cases and are omitted for brevity. We will use super-

scripts \T" and \V" for the transaction and valid-time counterparts, respectively.

To extract from r the tuples valid at time cv and current in the database during ct (termed

a snapshot of r), either �Vcv(�
B

ct
(r)) or �T

ct
(�Bcv(r)) may be used; these two expressions evaluate to

the same snapshot relation [JSS94]. While other temporal data models often do not provide exact

counterparts of these timeslice operators, models generally include functionality that permits this

extraction of snapshots.

Note that since relations in the data model are homogeneous, i.e., all attribute values in a tuple

are associated with the same timestamp [Gad88], the valid or transaction timeslice of a relation

will not introduce any nulls into the resulting relation.

2.6 Representational Models

A bitemporal conceptual relation is structurally simple|it is a set of facts, each timestamped with

a bitemporal element, which is a set of bitemporal chronons. Ostensibly, it is modeling the same

time-varying reality that the many other temporal data models capture. How can we characterize

this interaction between the models? We need to emphasize the notion of \information content."

Speci�cally, a BCDM database, in a simple and straightforward manner, captures a portion of

reality. If a database in another data model captures that same portion, then that database has

the same information content as the BCDM database.

Central to this comparison of databases is the concept of snapshot equivalence. Two rela-

tion instances with the same non-temporal attributes are snapshot equivalent if for all valid and

transaction-time pairs, their snapshots are identical. The snapshots are produced using timeslice

operators or other language constructs, as described in the previous section. Snapshot equivalence

is thus a formalization of the notion that two temporal relations have the same information content.

This fundamental insight is due to Gadia, who characterized the information content of individual

relations by stating that two relations are weakly equal if they are snapshot equivalent [Gad86].

We extended this notion to apply to relations of di�erent data models, thereby providing a natural

means of comparing structurally diverse databases.

We developed precise mappings, respecting snapshot equivalence, between instances of the

BCDM and instances of each of the existing bitemporal relational data models that have been

previously proposed [JSS94]. These data models fall into the class of temporally ungrouped bitem-

poral models [CCT94] and constitute all such models proposed to date, to our knowledge. We

also showed how the relational algebraic operators de�ned in the previous section induced analo-

gous operators in each of the representational models, and how updates of bitemporal conceptual

relations could be mapped into updates on relations in the representation. This provides an ex-

plicit homomorphism between the BCDM and the six bitemporal data models, emphasizing their

similarities (in terms of information content) and abstracting out their di�erences, which can be

argued concern more e�ciency and data presentation than semantics.

This homomorphism has wide-ranging implications, some yet to be explored adequately, for

temporal database design and implementation. A database designer could design the conceptual

schema of the database as a (normalized) collection of BCDM relation schemas, as will be discussed

in Section 3. This approach yields guidelines for the design of the logical database schema, also to

be discussed in detail, that are independent of any particular representation of a temporal relation.

A temporal DBMS may use any of the existing temporal data models as physical data models.

The query language, again focusing on semantics, would be based on the BCDM (an example is

the consensual query language TSQL2 [Sno95]). Queries against the BCDM would be mapped into
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algebraic expressions against the representational data model(s) by the DBMS, to be evaluated in

an e�cient manner. Physical database design would also be in terms of the representational data

model. Snapshot equivalence is the central underpinning of this entire framework.

2.7 Implications of the BCDM

With its accompanying separation of information content and particular encodings of the infor-

mation content, the BCDM allowed us to answer some of the fundamental questions we began

with. Should data be stored as events (state transitions) or as states? Our answer is that at a

logical level, the natural extension of a conventional relation to a temporal relation, the BCDM

relation, encodes states rather than events. An event would be eeting in a conventional relation:

A tuple would appear for a single chronon, then disappear. Only states have persistence in the

(conventional) relational model. As events and states are duals, the BCDM relation is su�cient.

Relations capturing events are still useful. A database designer might decide that focusing on

the events in a particular corner of the design is more natural than focusing on the states induced

by those events.

At a physical level, the answer to whether data should be stored as events or states is: It

depends on which representational model one feels is most appropriate to achieve good performance

for the application at hand. Five of the representational models are state-based; the sixth, Jensen's

backlog-based scheme, is event-based. Applications may be identi�ed for which each representation

is suitable.

Is 1NF versus N1NF really a fundamental distinction? Our reply becomes: yes, at a represen-

tational level, but no at a conceptual level. Two of the representational models are attribute times-

tamped; the other four are tuple-timestamped. The distinction is not one of semantics. Rather,

the distinction may be relevant for performance. We provide more insight into this distinction in

Section 3.4.2.

What is the relationship between POSTGRES' two timestamps, TQuel's four timestamps,

and Ben-Zvi's �ve timestamps? We showed in Section 2.1 that POSTGRES was a degenerate

bitemporal data model, and thus a tuple's two timestamps Tmin and Tmax [Sto87a] serve as

both valid and transaction time, equal to TQuel's four timestamps, two valid (begin = Tmin and

end = Tmax) and two transaction (start = Tmin and stop = Tmax). Using the BCDM, and in

particular its spatial metaphor (cf. Figure 3b), we see that POSTGRES tuples are timestamped

with rectangles, with the bottom-left and top-right corners constrained to be on the 45� line of

TT = V T .

We then considered Ben-Zvi's �ve tuple timestamps. Again, the question was, was the times-

tamp format chosen to reect the semantics of data, or for presentation, or for query language

reasons? To review, Ben-Zvi's Temporal Relational Model is a tuple-timestamped model, sup-

porting both valid and transaction time. Let a bitemporal relation schema R have the attributes

A1; : : : ; An;T where T is the timestamp attribute de�ned on the domain of bitemporal elements.

Then R is represented by a relation schema R in Ben-Zvi's data model as follows.

R = (A1; : : : ; An;Tes;Trs;Tee;Tre;Td)

In a tuple, the value of attribute Tes (e�ective start) is the time when the explicit attribute values

of the tuple start being true. The value for Trs (registration start) indicates when the Tes value

was stored. Similarly, the value for Tee (e�ective end) indicates when the information recorded by

the tuple ceased to be true, and Tre (registration end) contains the time when the Tee value was

recorded. The last implicit attribute, Td (deletion), indicates the time when the information in

the tuple was logically deleted from the database.
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It is not necessary that Tee be recorded when the Tes value is recorded (i.e., when a tuple is

inserted). The symbol `{' indicates an unrecorded Tee value (and Tre value). Also, the symbol `{',

when used in the Td �eld, indicates that a tuple contains current information.

Example: The Ben-Zvi relation corresponding to the conceptual relation in Figure 3 is shown

below.

Emp Dept Tes Trs Tee Tre Td

Tom Shipping 10 5 15 5 10

Tom Shipping 5 10 20 10 15

Tom Shipping 10 15 15 15 20

Tom Loading 10 20 15 20 {

Sam Shipping 25 20 30 20 {

In the example, the timestamps Tes and Tee are stored simultaneously, hence the registration

timestamps associated with the e�ective timestamps are identical within each tuple. As facts are

corrected, the deletion timestamp Td is set to the current transaction time, e�ectively outdating

the given fact, and a new tuple without a deletion time is inserted. As only two facts are current

when all updates have been performed on the database, only two tuples with no deletion times

remain. ut

The di�erent updates possible in this model lead to six di�erent types of tuples, as discussed

below and illustrated in Figure 4.

1. A tuple is inserted with recorded Tes and Trs timestamps.

2. A tuple is inserted with recorded Tes, Trs, Tee and Tre timestamps. In this case, Trs = Tre.

3. A tuple with an unrecorded Tee timestamp (1, above) has that timestamp set to a particular

time.

4. A tuple with an unrecorded Tee timestamp (1, above) is deleted, setting the Td timestamp.

5. A tuple with the �rst four timestamps recorded (2, above) is deleted, setting the Td times-

tamp.

6. A tuple with the �rst four timestamps recorded, with Trs 6= Tre (3, above), is deleted, setting

the Td timestamp.

Let's examine each resulting tuple in terms of the BCDM two-dimensional graphical metaphor,

cf. Figure 3. Tuple (5) corresponds to a rectangle, with bottom left coordinate (Trs, Tes) and top

right coordinate (Td, Tee). The bitemporal elements of the remaining �ve tuples are open-ended.

If Tee is not recorded, the bitemporal element is open-ended at the top; if Td is not recorded, it is

open at the right.

The di�erent ways the various data models have adopted for timestamping tuples may be

explained as the models having adopted di�erent covering functions that encode the regions in

a bitemporal element using one or more graphical entities. POSTGRES uses two timestamps

to encode a rectangle with two corners on the 45� line; TQuel uses four timestamps to encode

arbitrary rectangles, as well as open rectangles (regions 1, 2, and 4 of Figure 4); and Ben-Zvi uses

�ve timestamps to encode the six shapes of Figure 4. From a semantic point of view, all can encode

(snapshot-) equivalent information. Their di�erences are more of an issue of data presentation (how
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Figure 4: Ben-Zvi's Tuples as Bitemporal Elements

users want to see the temporal information) and storage e�ciency. For example, to encode regions

3 and 6 of Figure 4 each require two TQuel tuples. On the other hand, TQuel's data model can

encode regions 1, 2, 4, and 5 with one fewer timestamp than Ben-Zvi's data model.

Ben-Zvi's model illustrates another issue, that of what transaction time is. Some authors de�ne

the transaction time of a tuple as what is the transaction-time start attribute in TQuel (i.e., start)

and emphasize that the transaction time of a tuple is a single time instant (e.g., [EGS93, ND96]).

This contrasts the de�nition that we use [JCE+94]. In TQuel terms, the transaction time of a tuple

is the time from the start to the stop attribute value, an interval. With our de�nition, it is not

hard to characterize the transaction time of tuples in Ben-Zvi's model. With the other de�nition

(as a single time instant), we wonder what the transaction time is of each of the six types of tuples

(see also [Gad93] where Tre is said to be the end of transaction time!).

2.8 Coalescing and Repetition of Information

It turns out that even within a single representational data model, there often is exibility in

representing a bitemporal element. To see this, we use TQuel's four-timestamp rectangles and

examine two transformations that can change the covering in a representation without a�ecting

the results of queries, as the transformations preserve snapshot equivalence [JSS94].

The �rst transformation is termed coalescing. Informally, it states that two temporally over-

lapping or adjacent, value-equivalent tuples may be collapsed into a single tuple [Sno87]. We say

that a bitemporal relation instance is coalesced if no pair of tuples may be coalesced. Coalescing

may reduce the number of tuples necessary for representing a bitemporal relation, and, as such, is

a space optimization.

Coalescing of overlapping, value-equivalent tuples is illustrated in Figure 5. The �gure shows

how rectangles may be combined when overlap or adjacency occurs in transaction time (a) or

valid time (b). Note that it is only possible to coalesce rectangles when the result is a bitemporal

rectangle. Compared to valid-time relations with only one time dimension, this severely restricts
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Figure 5: Coalescing

the applicability of coalescing.

As a precursor to explaining the other transformation, we �rst describe the notion that a relation

may have repeated information among its tuples. Speci�cally, a bitemporal relation instance has

repetition of information if it contains two distinct tuples that are value-equivalent (i.e., have

identical non-temporal attribute values) and have timestamps that encode overlapping regions in

bitemporal space. A relation with no such tuples has no repetition of information.

While coalescing may both reduce the number of rectangles and reduce repetition of infor-

mation, its applicability is restricted. The next transformation may be employed to completely

eliminate temporally redundant information, possibly at the expense of adding extra tuples. The

transformation maps two value-equivalent tuples with overlapping bitemporal rectangles to three

value-equivalent tuples with non-overlapping bitemporal rectangles.

The transformation may partition the regions covered by the argument rectangles on either

transaction time or valid time. These two possibilities are illustrated in parts (a) and (b), respec-

tively, of Figure 6.
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Figure 6: Eliminating Representational Repetition of Information

The transformation is well-behaved. First, it does eliminate repetition among two tuples.

Second, the result of an application of the transformation produces at most one additional tuple.

Third, repeated application produces a relation instance with no repetition of information. The

elimination of repetition of information may thus increase the number of tuples in a representation.

The transformation may still be desirable because subsequent coalescing may be possible and, more

importantly, because certain modi�cation operations are simpli�ed. (See [JSS94] for a formalization

and proofs of these properties.)

2.9 Now and Forever

The next aspect of temporal data that drew our attention was the arrows in Figures 3 and 4.

One question was, does the particular semantics of valid time and transaction time imply any

di�erences between upward-pointing arrows and right-pointing arrows? Do open rectangles and

L-shaped regions capture the semantics we desire?

Let us return to the employment example. Figure 3 on page 11 contains only right-pointing

arrows, indicating information that is still thought to be true, i.e., that has not been logically
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deleted. Because we cannot know what is stored in the database in the future, the right arrow is

always at a transaction time of the current time, or NOW .

The �gure does not contain upward-pointing arrows because the interval of employment for

both Tom and Sam was always known (though not always known correctly, for Tom).

Upward-pointing arrows are illustrated in regions 1, 3, 4, and 6 of Figure 4. These are cases

where the terminating time (Tee in Ben-Zvi's model) is not known. We do not know when a fact

ceased or ceases being true in reality, so we model it as being forever true. For example, to model

the fact that Tom was hired on June 10 in the Loading department, with an unknown termination

date, an open rectangle shaped as region 1 of Figure 4 would be used.

If the valid-time domain is bounded, say at some time way in the future, then `{' in Ben-Zvi's

model and `1' in TQuel's model (other data models are similar) are simply shorthands for this

maximum valid time. In this sense, in Figure 4, tuples (1) and (2), and (4) and (5), are identical.

Tuple (1) is merely a special case of tuple (2) in which Tee is �xed to a particular value; the same

applies for tuples (4) and (5).

Modeling Tom's employment as continuing forever is an overly optimistic assumption, and one

that is certainly false. We do not know Tom's termination date, but it is certainly within the next

150 years, and probably within the next 10{20 years. In fact, all that we feel that we know for

certain is that Tom was in the Loading department from June 10 to June 10 (now), assuming that

whenever reality changes (such as Tom resigning), the database is immediately updated. Tomorrow

(June 11), if Tom does not resign in the meantime, we will know that Tom was in the Loading

department from June 10 to June 11.

In the BCDM, we handled the concept of NOW in transaction name by using a special marker,

UC , that indicated where to add bitemporal chronons to the tuples' timestamps every time the

clock advances a tick. This approach is not useful in a practical representation of temporal data.

Instead, our solution to being able to model the dependence on the current time is to allow the

model to include variables as well as ground facts in the stored data [CDI+94]. NOW is one such

variable that evaluates to the current time. Including such variables increases the �delity of the

data model considerably. To understand its impact, it is useful to consider another kind of time,

the reference time, which is the time of the database observer's \frame of reference." Reference

time is a concept analogous to the indices or \points of reference" in intensional logic [Mon73],

and discussed more recently in the context of valid-time databases [Fin92]. The reference time

facilitates a kind of \time travel" by means of which we may observe the database at times other

than the present.

A related time is the query time. It is the time at which a query is processed. The reference

time and query time are independent concepts. In general, the time when a query is initiated is

always the current time, while the reference time is the time at which an observer \observes" the

database. In many queries, the user \observes" the database with respect to the frame of reference

in which the query was initiated, so the reference time and the query time are the same. But the

user may choose to \observe" the database from a previous perspective; for this kind of query, the

reference time is earlier than the query time. For example, if today is June 19 and we wish to

observe the database from the perspective of a week ago, then the current time (and the query

time) is June 19 and the reference time is June 12.

So, how may we visualize a tuple's timestamp when it contains a variable such as NOW in

transaction and valid time? As the reference time increases, say from June 12 to June 13, the region

of the temporal element grows. Only when NOW is replaced with a ground value (for valid time,

this means that the fact is known to have terminated, and for transaction time, this means that

the fact is logically deleted), does the temporal element not grow, in valid time or transaction time,

respectively. Illustrating this behavior requires three dimensions: valid time, transaction time, and
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reference time. In Figure 7, the dimension that goes into the page illustrates reference time. Here,

the fact being recorded is \Tom was in the loading department." Initially, at a reference time of

June 10, the database records that the information was valid on June 10.

Finally, we would also like to model facts such as \Tom is de�nitely employed from June 10

until now, and will probably be employed until the end of the summer, when he will return to

school." If we know that changes in reality take two days to make it into the database, we would

amend that to \Tom is de�nitely employed from June 12 until now minus two days, and : : :" These

facts can be modeled using a re�nement of now variables, speci�cally indeterminate now-relative

variables [CDI+94].

2.10 Summary

Up to this point, our focus has been on the association of facts with times. We have seen that while

the semantics of valid time and transaction time are orthogonal, their usage within an application

may exhibit interactions, such as the valid time always preceding the transaction time in the case

of a retroactive relation. A fact may be timestamped with multiple transaction times, if it is copied

several times between relations or databases. A fact has typically one valid time, specifying when

it was true in reality. The decision time(s) of a fact were seen to be valid times of di�erent, closely

related facts.

We have seen that there can be no ideal temporal data model, but that by focusing only on

the semantics of time-varying data, and ignoring other possible criteria, a simple data model,

the Bitemporal Conceptual Data Model, is quite satisfactory. The BCDM provides insights into

the expressiveness of existing temporal data models. Speci�cally, using snapshot equivalence as

the measure, all such models encode the same information; they just break up the bitemporal

elements, which are sets of regions in bitemporal chronon space, in di�erent ways, sometimes

including a bitemporal chronon in the timestamps of two or more value-equivalent tuples. As

another di�erence, the various models enter the times at di�erent levels (e.g., tuples, attribute

values) in the temporal relations.

The right and upward pointing arrows of bitemporal regions represented with timestamps in
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these models suggested the addition of now-relative variables to the stored data, thereby increasing

the modeling power of the model.

3 Design of Relation Schemas

With a considerably increased understanding of temporal data, facts with associated times, we

turned to the design of the relations themselves, addressing the question of what constitutes facts

(tuples). Existing work on temporal relational design was fragmented, incomplete, and model-

speci�c. We found this state of a�airs confusing and unappealing. As there has been a compre-

hensive dependency theory developed for relational databases, it seemed to us that that theory

should be applicable to temporal databases as well.

Previously, an array of temporal normalization concepts had been proposed, including �rst

temporal normal form [SS88a] and two di�erent normal forms termed time normal form [BZ82,

NA89]. Each of these is speci�c to a particular data model, and thus appropriates the inherent

peculiarities of its data model. Furthermore, these normal forms often deviate substantially in

nature from conventional normal forms and are in some sense not \true" extensions of these, for a

variety of reasons [JSS96].

We adopted a di�erent approach. Since relations in the BCDM can be related to those of other

temporal data models, then functional dependencies and normal forms expressed in terms of the

BCDM can also be mapped into other data models. We thus chose to apply dependency theory to

the BCDM. Furthermore, we wanted our normal forms to be natural extensions of those de�ned

for conventional relations. It turned out that the clean semantics of the BCDM allowed us to do

so in a natural fashion.

3.1 Temporal Functional Dependencies

As in design of snapshot relational databases, dependencies are also important during temporal

relational database design. As background, we �rst state the notion of a functional dependency

for snapshot relations.

Definition: Let a relation schema R be de�ned as R = (A1; A2; : : : ; An), and let X and Y be

sets of attributes of R. The set Y is functionally dependent on the set X , denoted X ! Y , if for

all meaningful instances r of R,

8s1; s2 2 r(s1[X ] = s2[X ]) s1[Y ] = s2[Y ]):

If X ! Y , we say that X determines Y . ut

A functional dependency constrains the set of possible extensions of a relation. Which func-

tional dependencies are applicable to a schema reects the reality being modeled and the intended

use of the database. Determining the relevant functional dependencies is a primary task of the

database designer.

3.1.1 Generalizing Functional Dependencies to Temporal Databases

In database design, functional dependencies are intensional, i.e., they apply to every possible

extension. This intuitive notion already encompasses time, for a functional dependency may be

interpreted as applying at any time in reality and for any stored state of the relation.
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To be more speci�c, consider the restricted case of a transaction-time relation r, with schema

R = (A1; : : : ; AnjT), and a parallel snapshot relation r0 with the same schema (but without the

implicit timestamp attribute): R0 = (A1; : : : ; An). The current state of r, denoted by �T
now

(r),

where \now" denotes the current time, will faithfully track the current state of r0. Past states of r0

will be retained in r, and can be extracted via �Tt (r), with \t" being the desired past point in time.

A functional dependency on R0 will hold for all possible extensions, and hence for all past states

of r0. Hence, the same functional dependency must hold for all snapshots of r (this insight �rst

appeared over a decade ago [CW83]). A similar argument can be applied to valid-time relations

and to bitemporal relations, yielding the following characterization [JSS96].

Definition: Let X and Y be sets of non-timestamp attributes of a bitemporal relation schema

R. A temporal functional dependency , denoted X
T
!Y , exists on R if for all meaningful instance r

of R,

8cv ; ct 8s1; s2 2 �Vcv(�
B

ct
(r)) (s1[X ] = s2[X ]) s1[Y ] = s2[Y ]). ut

For example, the instance empSal in Figure 11(a) satis�es the dependency EName
T
! Sal.

In the de�nition of a temporal functional dependency, a temporal relation is perceived as a

collection of snapshot relations. Each such snapshot of any extension must satisfy the corresponding

functional dependency.

The parallel between conventional functional dependencies and temporal functional dependen-

cies means that inference rules such as Armstrong's axioms have close temporal counterparts that

play the same role in the temporal context as do the non-temporal rules in the non-temporal

context.

Next, we can also de�ne temporal keys [JSS96]. For example, the explicit attributes X of a

temporal relation schema R form a (temporal) key if X
T
!R.

Finally, we can generalize snapshot normal forms in a similar manner.

Definition: A pair (R; F ) of a temporal relation schema R and a set of associated temporal

functional dependencies F is in temporal Boyce-Codd normal form (TBCNF) if

8 X
T
!Y 2 F+ (Y � X _X

T
!R). ut

Definition: A pair (R; F ) of a temporal relation schema R and a set of associated temporal

functional dependencies F is in temporal third normal form (T3NF) if for all non-trivial temporal

functional dependencies X
T
!Y in F+, X is a temporal super-key for R or each attribute of Y is

part of a minimal temporal key of R. ut

One can also de�ne temporal variants of second normal form, multivalued dependencies [Zan76],

fourth normal form [DF92], join dependencies [Ris77], �fth normal form (also called project-join

normal form) [Fag79], embedded join dependencies [Fag77], inclusion dependencies [CFP84], tem-

plate dependencies [SU82], domain-key normal form [Fag81], and generalized functional dependen-

cies [Sad80]. This is done by exploiting the intensional quality of these properties (i.e., applying

to every extension implies applying over all time), as well as the simplicity of the bitemporal

conceptual data model. Similarly, the notions of lossless-join and dependency-preserving decom-

position can be naturally extended to temporal relations. Furthermore, one can de�ne temporal

variants of conventional integrity constraints involving uniqueness, referential integrity, and subset

and cardinality constraints.

Via the mappings that exist between the BCDM and the representational data models, these

dependencies, normal forms, and integrity constraints can also be applied to these models. The
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result is a consistent and wholesale application of existing dependency and normalization theory

to valid-time, transaction-time, and bitemporal databases in a wide variety of temporal relational

data models.

3.1.2 Parameterized Temporal Functional Dependencies

In the de�nition of temporal functional dependency, each constituent snapshot of a temporal

relation must satisfy the corresponding snapshot functional dependency for the temporal relation

to satisfy the temporal functional dependency. We next parameterized the dependency with a

subset of constituent snapshots that must satisfy the snapshot dependency for the temporal relation

to satisfy the parameterized temporal functional dependency.

The resulting dependencies may capture the temporal semantics of a database schema more

precisely than the standard temporal dependency.

Definition: Let X and Y be sets of non-timestamp attributes of a temporal relation schema R.

A parameterized temporal functional dependency , denoted X
T [P ]
! Y , exists on R if for all meaningful

instances of r of R,

8cv; ct 8s1; s2 2 �Vcv(�
B

ct
(r)) ((P (cv; ct) ^ s1[X ] = s2[X ])) s1[Y ] = s2[Y ]). ut

With this more general de�nition, it is possible to de�ne a range of di�erent temporal functional

dependencies by specifying the predicate P. Examples of the predicate P include the following.

(1) P1(c
t; cv) � True. This yields the temporal functional dependency as �rst de�ned.

(2) P2(c
t; cv) � cv � ct. With this predicate, only snapshots that concern a past state of reality,

relatively to the time the snapshot was current, are required to satisfy the snapshot depen-

dency. For retroactive temporal relations, in which the stored information lags the modeled

reality, this predicate is equivalent to the generally less restrictive predicate above.

(3) P3(c
t; cv) � ct = cv. Here, only snapshots that are about the current state of reality, relative

to when the snapshot was current in the database, are considered. This matches degenerate

relations in which the transaction time always equals the valid time, i.e., updates occur

instantly.

(4) P4(c
t; cv) � ct = now ^ ct = now. Here, only the snapshot about the current state of reality

in the current state of the database is considered.

(5) P5(c
t; cv) � ct 2 [1; 10]. This predicate speci�es absolute limits on the states of the database

within which all snapshots must satisfy the corresponding snapshot dependency for the tem-

poral relation to satisfy the parameterized temporal functional dependency.

(6) P6(c
t; cv) � cv 2 [1; 10]. Here, the restriction is that states recording information about real-

ity in the speci�ed interval are the only ones considered.

Example: To see the di�erences between the sample predicates (1){(6), consider the sample

relation instances in Figure 8.

With (1) as the predicate of a temporal dependency, neither empDep1 nor empDep2 satisfy the

dependency EName
T [P1]! Dept. However, empDep2 does satisfy the dependency if the predicate of

(2) is adopted; empDep1 still does not. If predicate (3) (and thus the more restrictive (4)) is

adopted, both instances satisfy the dependency. Finally, empDep1 satis�es (5), but not (6). The
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EmpS EName Dept T

e1 Tom Shipping f(20; 1); : : :; (20; 10); : : :;
(30; 1); : : : ; (30; 10)g

e1 Tom Loading f(20; 1); : : :; (20; 10); : : :;
(30; 1); : : : ; (30; 10)g

EmpS EName Dept T

e1 Tom Shipping f(1; 20); : : :; (1; 30); : : :;
(10; 20); : : : ; (10; 30)g

e1 Tom Loading f(1; 20); : : :; (1; 30); : : :;
(10; 20); : : : ; (10; 30)g

(a) empDep1 (b) empDep2

Figure 8: Sample Bitemporal Relations

opposite holds for empDep2. ut

Parameterization also applies to integrity constraints in general for temporal databases.

3.1.3 Strong Temporal Functional Dependencies

The temporal dependencies we have seen thus far apply snapshot dependencies to individual snap-

shots in isolation. Thus, these dependencies are not capable of capturing the relative variation over

time of attribute values. So while we were able to capture dependencies such as a salary attribute

(at any time) being determined by an employee-name attribute, we cannot capture that a salary

of an employee does not change within a month, or never changes. These latter constraints require

looking at more than one time point to determine if the constraint is satis�ed by a particular

relation instance. This distinction has previously been captured more generally with the terms

intrastate and interstate integrity constraints [B�oh94].

While a (regular or parameterized) temporal dependency holds if the corresponding conven-

tional dependency holds for each snapshot in isolation, our �rst step was to \bundle" tuples of

certain snapshots and require the corresponding snapshot dependency to hold for each \bundle"

in isolation. A \bundle" is de�ned to contain all tuples in all valid timeslices of the result ob-

tained from applying a single transaction timeslice operation to a meaningful bitemporal database

instance of the schema under consideration. This is stated more precisely below.

Definition: Let X and Y be sets of non-timestamp attributes of a bitemporal relation schema

R. A strong temporal functional dependency , denoted X
Str
!Y , exists on R if for all meaningful

instances r of R,

8ct; cvx; c
v
y 8s1 2 �Vcvx(�

B

ct
(r)) 8s2 2 �Vcvy(�

B

ct
(r)) (s1[X ] = s2[X ]) s1[Y ] = s2[Y ]) . ut

Consider the relation instance empSal in Figure 9. While we have seen that it does satisfy

the dependency EName
T
! Sal, it does not satisfy the dependency EName

Str
! Sal. For example,

(e1, Tom, 30k) and (e1, Tom, 32k) are in valid timeslices at times 5 and 15, respectively, which

violates the dependency. The dependency EmpS
Str
! EName, however, holds for empSal. It might

not hold for the schema of empSal. Speci�cally, if a person may change name, e.g., person e1 may

change name from Tom to Rob, the dependency is not satis�ed. Strong temporal dependencies

are useful in part because they have a practical and intuitive interpretation. Speci�cally, if X
Str
!Y

holds on a relation schema, this means that Y does not vary with respect to X . For example, the

observation that employees never change salary while remaining in a department may be stated as

EmpS Dept
Str
! Sal.

Strong temporal normal forms and integrity constraints can be analogously de�ned.

Following this work, Wang and his colleagues generalized this notion to dependencies (and
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EmpS EName Sal T

e1 Tom 30k f1; : : : ; 9g

e1 Tom 32k f10; : : : ; 19g
e1 Tom 36k f30; : : : ; 39g

e1 Tom 40k f40; : : : ; 49g

Figure 9: The empSal Relation

normal forms and decomposition algorithms [WBBJ94]) that were along a spectrum between our

temporal functional dependencies, which apply to individual timeslices, and strong functional de-

pendencies, which apply to all timeslices at once. Speci�cally, they de�ne a functional dependency

for each available granularity (e.g., second, week, year), and require that the equality hold only

during a unit of the granularity. Our temporal functional dependency is a Wang dependency on the

smallest granularity (that of chronons); our strong functional dependency is a Wang dependency

on a granularity in which all of time is contained in a single granule. Next, Wijsen has recently

developed a normalization theory for valid-time databases that includes three types of temporal

dependencies [Wij95]. Two correspond to our temporal dependency and strong temporal depen-

dency. The third dependency is in-between the two. This so-called dynamic dependency holds if

the corresponding snapshot dependency holds on the unions of all pairs of consecutive snapshots.

Returning to our dependencies, we subsequently realized that with strong temporal dependen-

cies, we were able to characterize within our general framework a notion of synchronous attributes

very similar to the one that had previously been de�ned by Navathe and Ahmed [NA89] in their

particular data model. To de�ne this notion, they �rst de�ne a notion of temporal dependency.

Definition: There exists a temporal dependency between two attributes, Ai and Aj , in a relation

schema R = (A1; A2; : : : ; An; Ts; Te) if there exists an instance r of R containing two distinct tuples,

t and t0, that satisfy each of the following three properties.

1. t[K] = t0[K] where K is a chosen temporal key.

2. t[Te] = t0[Ts]� 1 _ t0[Te] = t[Ts]� 1.

3. t[Ai] = t0[Ai] XOR t[Aj ] = t0[Aj ].

[NA89, p. 156] and [Ahm92] ut

The goal of this de�nition is to capture a kind of asynchronism among attributes: If at successive

times, it is possible for two tuples with the same key value (e.g., S value) to have the same Ai

values and di�erent Aj values, or vice versa, then Ai and Aj are temporally dependent.

Navathe and Ahmed then de�ne two attributes as being synchronous if there is no temporal de-

pendency between them. We determined that it was possible to capture and generalize this notion

of synchronism of attributes by using strong dependencies. In the strong temporal dependency

X
Str
!Y , attributes X may vary more often than attributes Y , but X must change when Y changes.

Definition: Let X and Y be sets of non-timestamp attributes of a bitemporal relation schema

R. A strong temporal equivalence, denoted X
Str
$Y , exists on R if X

Str
!Y and Y

Str
!X . ut

Intuitively, X
Str
$Y means that the sets of attributes X and Y change values simultaneously,

and are thus synchronous. We return to this issue in Section 3.4.2.

24



We then considered the useful and intuitive concept of time-invariant keys and attributes that

had been previously used in the context of this particular data model [NA89]. As we were able

to de�ne regular (temporal) keys, could a time-invariant key not be de�ned the same way? On

further thought, it became clear that we needed an unambiguous means of tying an attribute value

together with the real-world entity that it concerns.

3.2 Using Surrogates

In data modeling, an attribute is about a particular entity in the modeled reality, and we say that

the attribute records a property of that entity. As an example, the frequency of change of a salary

attribute with respect to a speci�c employee in a company may be relatively regular, and there

will be at most one salary for the employee at each point in time. If the salary is with respect to a

department, a signi�cantly di�erent pattern of change may be expected, and there will generally

be many salaries associated with a department at a single point in time. Hence, it is important to

identify the reference entity when discussing the semantics of an attribute.

This insight is not new. For example, when using the ER model for conceptual database design,

one identi�es entity types (or entity sets) at an early stage in the modeling process.

In our approach, the reference-entity types are represented by surrogate attributes, and the

entities are represented by surrogates. In this regard, we follow the approach adopted in, e.g.,

the TEER model by Elmasri [EWK93]. Surrogates do not vary over time in the sense that two

entities identi�ed by identical surrogates are the same entity, and two entities identi�ed by di�erent

surrogates are di�erent entities. We assume the presence of surrogate attributes throughout logical

design. At the conclusion of logical design, surrogate attributes may be either retained, replaced

by regular (key) attributes, or eliminated with no replacements.

Definition: Let X be a set of non-timestamp attributes of a bitemporal relation schema R with

surrogate attribute S. Then X is said to be time invariant if S
Str
!X . ut

Because it is assumed that di�erent entities are represented by di�erent surrogates and the same

entity always is represented by the same surrogate, this is a rather natural de�nition of time invari-

ant attributes. In the empSal instance in Figure 11, attribute EName is time invariant, but attribute

Sal is not. By combining standard temporal dependency and strong temporal dependency, the

notion of a time-invariant key (which had previously been used with a di�erent meaning [NA89])

results.

Definition: Let X be a set of non-timestamp attributes of a bitemporal relation schema R with

surrogate attribute S. Then X is termed a time-invariant key (TIK) if S
Str
!X and X

T
!R. ut

The �rst requirement to attributes X is that they be time invariant. The second is that they be a

temporal key. In combination, the requirements amount to saying that X is a key with values that

do not change (with respect to the surrogate attribute). In the empSal instance, attribute EName

is a time-invariant key. Indeed, it would be not be inconsistent with our perception of reality to

specify EName as a time-invariant key for the schema of empSal. In situations such as this, where

the surrogate attribute EmpS was used to determine that Emp is a time-invariant key of schema

empSal, it may be advantageous to remove the surrogate attribute from the schema.

The temporal dependencies and normal forms that arise from conventional dependency theory,

along with the extensions just discussed (parameterized and strong temporal functional depen-

dencies), permit characterizations, as we have seen, of some existing temporal dependencies and

normal forms, in a model-independent fashion. However, there were other existing normal forms,
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such as Time Normal Form [NA89], that were not subsumed by our new de�nitions. So we turned

our attention to those normal forms, in an attempt to devise a comprehensive design methodology.

3.3 Lifespans of Individual Time-Varying Attributes

An \anomaly" that had been mentioned in several papers was the necessity of null values, par-

ticularly when tuple time-stamping was utilized. Navathe and Ahmed's notion of synchronous

attributes, discussed in Section 3.1.3, served in part to identify where null values may or could

not occur. In the absence of synchronism, one attribute might have a value when another one did

not, thereby requiring a null value. Gadia's homogeneous data model was predicated on snapshots

not adding nulls; indeed, this was the source of the homogeneity requirement [Gad88]. In thinking

through this issue, we eventually came to see it as a distinction between inapplicable and unknown

nulls. While both can be represented with NULL values, the former is relevant for logical design;

a good design will obviate the need for inapplicable nulls.

As with time-invariance (cf. Section 3.2), we concluded here that the mechanism of functional

dependencies|looking at the relationships among attribute values within individual meaningful

relations to determine intensional properties|was not adequate. Rather, it was necessary to

consider the time-varying semantics of individual attributes, and make design decisions based on

that semantics. Hence, to specify when inapplicable nulls could occur, we adapted the concept

of lifespans, whose importance had previously been recognized in the context of data models.

The HRDM model associates explicit lifespans with each attribute of a relation schema and with

each tuple of a relation instance [CT85, CC87, CC93]. The HRDM goes further than other data

models in incorporating lifespans, but it still does not explicitly record the lifespans of attributes

of individual tuples/surrogates (HRDM tuples correspond to our object-representing surrogates),

as we do. Rather, the lifespan of an attribute of a particular object is derived as the intersection of

the tuple's lifespan and the relation schema's lifespan for the attribute. In a recent extension to his

data model, Gadia augmented the timestamp to incorporate de�nite and possible lifespans, both

of objects and of attribute values [GNP92]. In TERM, Klopprogge [KL83] records lifespans by

adding mandatory, boolean-valued valid-time attributes, \existence," to entity and relationship

types. In another extension to the ER model, the TEER model associates lifespans with individual

surrogates, which represent entities in that model [EWK93].

Our use of lifespans for database design di�ers from the use of lifespans in database instances.

In particular, using lifespans during database design does not imply any need for storing lifespans

in the database.

Intuitively, the lifespan of an attribute for a speci�c object is all the times when the object has

a value, distinct from ?i (inapplicable null), for the attribute. In its full generality, the lifespan

is a temporal element, but most often, the lifespan is a single time interval. Note that lifespans

concern valid time, i.e., are about the times when there exist some valid values.

To more precisely de�ne lifespans, we �rst de�ne an auxiliary function, vte, that takes as argu-

ment a valid-time relation r and returns the valid-time element. Speci�cally, vte(r) = fcv j 9s (s 2
r ^ cv 2 s[T])g.

Definition: Let a relation schema R = (S;A1; : : : ; An jT) be given, where S is surrogate valued,

and let r be an instance of R. The lifespan for attribute Ai, i = 1; : : : ; n, with respect to a value s

of S in r is denoted ls(r; Ai; s) and is de�ned as follows.

ls(r; Ai; s) = vte(�S=s^A6=?i
(r)) ut

Lifespans are important because attributes are guaranteed to not have an inapplicable null
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value during their lifespans. Assume that we are given a relation schema empDep = (EmpS, EName,

Dept) that records the names and departments of employees (identi�ed by the surrogate attribute

EmpS). If employees always have a name when they have a department, and vice versa, this means

that inapplicable nulls are not present in instances of the schema. With lifespans, this property

may be stated by saying that for all meaningful instances of EmpSal and for all EmpS surrogates,

attributes EName and Dept have the same lifespans.

Definition: Let a relation schema R = (S;A1; : : : ; An jT ) be given where S is surrogate valued.

Two attributes Ai and Aj , i; j = 1; : : : ; n, are termed lifespan equal with respect to surrogate S,

denoted Ai
LS
=SAj , if for all meaningful instances r of R,

8s 2 dom(S) (ls(r; Ai; s) = ls(r; Aj; s)). ut

To exemplify this de�nition, consider a relation schema Emp with attributes EmpS (the employee's

surrogate), Dept, Salary, and MgrSince. The schema is used by a company where each employee

is always assigned to some department and has a salary. In addition, the relation records when an

employee in a department �rst became a manager in that department.

For this schema, we have Dept
LS
=EmpS Salary because an employee has a salary (it might be

unknown) exactly when that employee is associated with a department. Thus, no instances of

Emp will have tuples with an inapplicable-null value for one of Dept and Salary and not for the

other. Next, it is not the case that Dept
LS
=EmpS MgrSince and (by inference) not the case that

Salary
LS
=EmpS MgrSince. This is so because employees often are associated with a department

where they have never been a manager. Thus, instances of Emp may contain inapplicable nulls.

Speci�cally, the nulls are associated with attribute MgrSince as the lifespan of this attribute is

shorter than that of Dept and Salary.

Next, observe that Dept and Salary being lifespan equal with respect to EmpS does not mean

that all employees have the same lifespan for their department (or salary) attribute. Employees

may have been hired at di�erent times, and the lifespans are thus generally di�erent for di�erent

employees. Rather, the equality is between the department lifespan and the salary lifespan for

individual employees.

The following de�nition then characterizes temporal database schemas with instances that do

not contain inapplicable nulls.

Definition: A relation schema R = (S;A1; : : : ; An j T ) where S is surrogate valued is lifespan

homogeneous if

8A;B 2 R (A
LS
=SB). ut

These concepts formally tie the connection between the notion of lifespans of attributes with

the occurrence of inapplicable nulls in instances. With them, we are in a position to formulate the

following design rule.

Definition: (Lifespan Decomposition Rule) To avoid inapplicable nulls in temporal database

instances, decompose temporal relation schemas to ensure lifespan homogeneity. ut

It is appropriate to briey consider the interaction of this rule with the the existing temporal

normal forms that also prescribe decomposition of relation schemas. Initially, observe that a

database schema that obeys the temporal normal forms may still require inapplicable nulls in its

instances. To exemplify, consider the Emp schema. Here, EmpS is a temporal key, and there are
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no other non-trivial dependencies. Thus, the schema is in temporal BCNF. It is also the case

that Emp has no non-trivial temporal multi-valued dependencies, and it is thus also in temporal

fourth normal form. In spite of this, we saw that there are inapplicable nulls. The solution is to

decompose Emp = (EmpS, Dept, Salary, MgrSince) into Emp1 = (EmpS, Dept, Salary) and

Emp2 = (EmpS, MgrSince). Both resulting relations are lifespan homogeneous.

Note that decomposition for this reason may not be required, as the temporal normal forms

tend to eliminate the need for inapplicable nulls.

3.4 Pattern-Based Synchronism

In the context of their data model where tuples are timestamped with single time intervals, Navathe

and Ahmed [NA89] had previously de�ned a normal form that is related to synchronism and is

based on their notion of temporal dependence as discussed in Section 3.1.3. The intuition was

that when two attributes were changing independently (i.e., were temporally dependent), tuple

timestamping could generate redundancy. Their normal form then states that relation schemas

should not contain temporally dependent attributes.

Definition: A valid-time relation schema \is in time normal form (TNF) if and only if it is in

[snapshot] BCNF and there exists no temporal dependency among its time varying attributes."[NA89,

p. 157] ut

Example: Consider the relation instance empDepSal in Figure 10, recording departments and

salaries for employees.

EmpS Dept Salary T

e1 Shipping 30k f1; : : : ; 5g

e1 Loading 30k f6; : : : ; 9g
e1 Loading 32k f10; : : : ; 14g

e1 Loading 36k f15; : : : ; 27g
e1 Loading 40k f28; : : : ; 39g
e1 Shipping 50k f40; : : : ; 49g

e1 Loading 50k f50; : : : ; 59g

Figure 10: The empDepSal Relation.

The schema for the relation is in temporal BCNF, with the surrogate-valued attribute EmpS being

the only minimal key and no other dependencies. Yet, it may be observed that the salaries 30k and

50k are repeated once in the instance. Similarly, the departments A and B are repeated once and

four times, respectively. This relation is not in TNF, because there exists a temporal dependency

between Dept and Salary (in fact, many tuples represent the value of one attribute changing while

the value of the other remained as before). ut

The type of redundancy identi�ed by TNF has been mentioned in the past by several researchers

(e.g., [CT85, GV85, Gad88, GY91]). Most often, it has been used for motivating a non-�rst normal

form data modeling approach where time is associated with attribute values rather than with

tuples, because that approach avoids the redundancy. The problem with such data models, as

discussed in Section 2.3, is that they jettison other desirable properties in attempting to eliminate

this redundancy.
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More centrally, though, this \redundancy" should be more properly termed \data replication,"

as Wijsen has pointed out [Wij95]. It does not share with other identi�ed redundancies the

important property that the values in question can be predicted from other information in the

relation. In the example above, the salary 30K is indeed replicated, but nevertheless still contributes

to the information content of the relation.

Additionally, this normal form is a very restrictive one. Speci�cally, it appears that the im-

position of TNF e�ectively leads to a binary data model, in which all relations have just two

attributes, an entity-identifying attribute and one time-varying attribute. To see this, observe that

if two time-varying attributes are to reside in the same relation schema, we must guarantee that

when one attribute changes value, the other also changes its value. If it is at all possible that

the value of one attribute (not both) may at some point \change" to its existing value, there is a

temporal dependency between the two attributes, and they cannot reside in the same schema.

We thus started looking for less restrictive decomposition guidelines that are based on synchro-

nism. Our �rst idea was that we did not want to decompose a schema just because an attribute

at rare occasions may \change" its value to its existing value. Decomposition guidelines that ac-

complish this cannot be based solely on the attribute values, as is TNF; and we can use neither

strong temporal dependencies nor Navathe and Ahmed's temporal dependency. Rather, we had to

focus not on the values themselves, but on the times that the values were observed. As we shall

see, this led to a pattern-based notion of synchronism that is quite di�erent from the value-based

notions of synchronism that have been considered by others.

3.4.1 Time Patterns of Individual Time-Varying Attributes

Informally, a time pattern is simply a sequence of times. We will use time patterns to de�ne a

database design rule that serves a purpose similar to Time Normal Form.

Definition: The time pattern T is a partial function from the natural numbers N to a domain

DT of times: T : N ,! DT . If T (i) is de�ned, so is T (j) for all j 2 N where j < i. T (i) denotes

the i'th time point. ut

In the context of databases, two distinct types of time patterns are of particular interest.

The observation pattern Os
A, for an attribute A relative to a particular surrogate s, is the times

when the attribute is given a particular value, perhaps as a result of an observation (e.g., if the

attribute is sampled), a prediction, or an estimation. Observation patterns relate to valid time.

The observation pattern may be expected to be closely related to, but distinct from, the actual

(possibly unknown) pattern of change of the attribute in the modeled reality. The update pattern

U s
A is the times when the value of the attribute is updated in the database. Thus, update patterns

relate to transaction time.

Note that an attribute may not actually change value at a time point. It may very well be that

the existing and new values are the same (an example will be given shortly). Note that all times

in the observation pattern of an attribute belong to its lifespan. This is not necessarily true for

times in the update pattern, in particular for non-degenerate relations (cf. Section 2.1).

Example: Consider a valid-time relation schema ExpTemp = (ExpS, Exp, Temp) that is to be used

when monitoring the temperature in chemical experiments. In the schema, ExpS is a surrogate-

valued attribute, the values of which represent speci�c experiments. Attributes Exp and Temp

record experiment names and temperatures.

We are given the following information that allows us to characterize the observation pattern

for the temperature attribute. In experiments, the temperature is sampled every ten seconds, the
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sampling is initiated �ve seconds after the experiment is initiated, and each experiment runs for

two hours. There is a �xed maximum delay of two seconds from when a temperature is sampled

until it is actually stored in the database.

Assuming that an experiment x1 starts at 9:00:00 a.m., its time patterns may be given as

follows.

Ox1
A (0) = 9:00:05; Ox1

A (1) = 9:00:15; : : : ; Ox1
A (199) = 10:59:55

Ux1
A (0) 2 [9:00:05; 9:00:07); : : : ; Ux1

A (199) 2 [10:59:55; 10:59:57)

Note that it is generally only possible to predict the update pattern within bounds. We will return

to this aspect below. ut
In some temporal database applications, the observation and update patterns are identical.

For example, this is the case in banking applications where an account balance by de�nition takes

e�ect when the balance is stored in a database. As we will show shortly, while the concepts of

observation and change patterns are highly useful in database design, it is usually not necessary to

know the speci�c time patterns of individual surrogates (indeed, the time patterns are generally

not a priori known).

To further illustrate the notion of time patterns, we introduce two important types of time

patterns. A regular time pattern is characterized by a start time ts, a starting delay �ts, a regular

frequency �td, and an end time te. It is de�ned as follows.

T s
reg(i) =

8><
>:

ts + i � �ts if i 2 f0; 1g
ti�1 +�td if i > 1 ^ ti�1 + �td � te
unde�ned otherwise

The sample observation pattern above is regular with ts = 9:00.00 a.m., �t = 10, �ts = 5, and

te = 11:00.00 a.m.

A constant time pattern is a further specialization.

T s
const(i) =

(
ts if i = 0

unde�ned otherwise

Initially, an attribute with a constant update pattern has no value. Then, at time ts, it obtains a

value, and the value never changes.

We may or may not know at schema design time the actual de�nitions of the observation or

update patterns for an attribute. In the example, we were able to calculate Ox1
A (i) for any time

point i, but we were unable to predict the precise value of Ux1
A (i). The best we could do was to

indicate bounds for Ux1
A (i). Next, we consider this issue of predictability of time patterns.

Definition: A time pattern T is predictable if a function f is known that computes T . Time

pattern T is predictable within bounds if a pair of functions l and u are de�ned so that for all i for

which T is de�ned, l and u are also de�ned, and l(i) � T (i) � u(i). ut

Example: Assuming that fx1 predicts the observation pattern for experiment x1, the pair of

functions, lx1 and ux1, shown next predicts the bounds on the update pattern for the temperature

attribute.

lx1(i) = fx1(i)

ux1(i) = fx1(i) + 2 ut
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Finally, time patterns may be characterized by the bounds that exist between successive times

in the patterns. For example, a time in a pattern may be at least some (non-zero) duration �tl

after and at most some (larger) duration �tu after its predecessor time.

In a company, an agreement may exist between the management and the employees that salaries

cannot be renegotiated within six months after they were last negotiated and that they will always

be be renegotiated within a year after they were last negotiated. This illustrates a restriction of

time patterns where �tli is six months and �tui is twelve months. We again emphasize that the

new salary can be identical to the old salary, even if it was renegotiated.

3.4.2 Synchronous Decomposition Rule

The synchronous decomposition rule is based on the notion of observation pattern, and its objective

is to eliminate a particular kind of redundancy.

Example: Consider the empDepSal relation in Figure 10. We recall that the salaries 30k and

50k are repeated once in the instance. Similarly, the departments A and B are repeated once and

four times, respectively. These repetitions are due to attributes Dept and Salary having di�erent

observation patterns. Speci�cally, the instance is consistent with the patterns shown below.

Oe1
Dept =< [0 7! 1]; [1 7! 6]; [2 7! 40]; [3 7! 50]; [4 7! 60] >

Oe1
Salary =< [0 7! 1]; [1 7! 10]; [2 7! 15]; [3 7! 28]; [4 7! 40]; [5 7! 60] >

With these observation patterns, there is redundancy in the sample instance|we can predict the

repeated values. Thus, capturing during database design what attributes of the same relation

schema have di�erent observation patterns is a means of identifying a type of redundancy.

Note that patterns with additional time points are also consistent with the instance. For ex-

ample, the salary may have been updated to become 50k at time 55. ut

To characterize the synchronism of attributes, de�ne T jt to be the restriction of time pattern

T to the valid-time element t, that is, to include only those times also contained in t.

Definition: De�ne relation schema R = (S;A1; : : : ; An j T) where S is surrogate valued. Two

attributes Ai and Aj , i; j = 1; : : : ; n, with observation patterns OS
Ai

and OS
Aj
, are synchronous with

respect to S, denoted Ai
S
=SAj , if for all meaningful instances r of R and for all surrogates s,

OS
Ai
jls(r;Ai;s)\ls(r;Aj;s)

= OS
Aj
jls(r;Ai;s)\ls(r;Aj;s)

. ut

Thus, attributes are synchronous if their observation patterns are identical when restricted to the

intersection of their lifespans. Often, it is possible to deduce asynchronism, even when the speci�c

observation patterns are not known.

With this de�nition, we can characterize relations that avoid the redundancy caused by a lack

of synchronism.

Definition: De�ne relation schema R = (S;A1; : : : ; An jT) where S is surrogate valued. Relation

R is synchronous if

8Ai; Aj 2 R (Ai
S
=SAj). ut
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This de�nition provides the basis for stating the Synchronous Decomposition Rule.

Definition: (Synchronous Decomposition Rule) To avoid repetition of attribute values in tem-

poral relations, decompose relation schemas until they are synchronous. ut

Above, we de�ned pattern-based synchronism among attributes. In Section 3.1.3 we introduced

strong temporal functional dependencies that could capture a notion of value-based synchronism

among attributes. The following example will illustrate the relationship between valued-based

synchronism and the pattern-based synchronism just introduced.

Example: We consider two relations instances. In the �rst, Dept and Salary are pattern-

synchronous but not value-synchronous.

empS Dept Salary T

e1 Shipping 30k f1; : : : ; 5g

e1 Shipping 40k f6; : : : ; 10g

We assume the following observation patterns.

Oe1
Dept =< [0 7! 1]; [1 7! 6]; [2 7! 11] >

Oe1
Salary =< [0 7! 1]; [1 7! 6]; [2 7! 11] >

When, at time 6, Dept and Salary were observed, their values were Shipping and 40k, respec-

tively. These observation patterns, which are consistent with the above instance, imply that

Dept
S
=SSalary. However, in the relation instant Dept and Salary are not value-synchronous,

because the value of Salary changed at time 6, while the value of Dept did not.

The next relation instance is value-synchronous, but is not pattern-synchronous.

empS Dept Salary T

e1 Shipping 30k f1; : : : ; 5g

e1 Loading 40k f6; : : : ; 10g

Since the values of the two attributes track each other, Dept
Str
$Salary for this instance. This

instance, in turn, is consistent with the following observation patterns, which are not identical.

Oe1
Dept =< [0 7! 1]; [1 7! 6]; [2 7! 11] >

Oe1
Salary =< [0 7! 1]; [1 7! 6]; [2 7! 8]; [3 7! 11] >

The pattern for Os
Salary indicates that Salary was observed at time 8, and the instance indicates

that Salary did not change value at that time, so the value observed at time 8 was the same as

the existing value. ut

Put together, the above example shows that neither of the two notions,
Str
$ and

S
=, is subsumed

by the other. The former notion is concerned with the values of attributes while the latter is

concerned with the observation patterns, aspects we have previously characterized as independent.

However, note that instances that are consistent with TNF but not with the synchronous

decomposition rule (e.g., the latter instance above), only occur when it is guaranteed that no value

changes for any time not in both observation patterns. In practice, we expect this to be quite rare.

The synchronous decomposition rule is thus typically less restrictive than TNF.
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We now address the positioning of the synchronous decomposition rule with respect to logical

versus physical database design. In this paper, we have made a clear distinction between logical-

level relations and their physical representation in a temporal DBMS (see Section 2.6).

Unlike time normal form, the synchronous decomposition rule does eliminate a kind of redun-

dancy.

Example: Consider the following relation instance, under the observation patterns speci�ed.

empS Dept Salary T

e1 Shipping 30k f1; : : : ; 5g
e1 Loading 30k f6; : : : ; 10g

Oe1
Dept =< [0 7! 1]; [1 7! 6]; [2 7! 11] >

Oe1
Salary =< [0 7! 1]; [1 7! 11] >

The 30k value in the second tuple is redundant: it can be guessed by using the �rst tuple and the

observation patterns. ut

Decomposing relation schemas to eliminate this redundancy may be important when storing

temporal relations. The speci�cs depend on the amount of redundancy and the query and update

patterns. However, we feel that the redundancy is of little consequence at a logical level, considering

query anomalies and modi�cation anomalies.

For the querying of logical-level relations, we use the query language associated with those

relations, namely TSQL2. In TSQL2, it is possible to declare variables in the from clause that

range over groups of tuples [Sno95].

Example: Consider the relation instance in the previous example, containing asynchronous at-

tributes. The following from clause,

FROM emp(EmpS, Dept) AS empDept, emp(EmpS, Salary) AS empSalary

yields variables empDept and empSalary that range over the following two sets of tuples, respec-

tively (the \blank attributes" are inaccessible through the variables).

EmpS Dept T

e1 Shipping f1; : : : ; 5g

e1 Loading f6; : : : 10g

EmpS Salary T

e1 30k f1; : : : ; 10g

Note that the coalescing implied by the from clause isolates the times in which the values change. ut

With this facility, we believe that (pattern-based) asynchronous attributes in a relation present no

special problems when posing queries.

Assuming that lifespan decomposition has already been performed, there are no insertion nor

deletion anomalies, in the sense that no inapplicable nulls are generated by the insertion and

deletion operations. Concerning update anomalies, TSQL2 provides facilities that allow the value

of an attribute over all time, or over a restricted time, to be updated via a single statement, thereby

ensuring that the redundancy does not generate an inconsistency.

In conclusion, the synchronous decomposition rule is clearly relevant to physical-level design.

Its relevance to logical-level design seems less obvious and depends on the data model employed. In
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our conceptual data model, which is a tuple-timestamped �rst normal form model, it is generally

not necessary (and it is probably not even desirable) to separate attributes in logical-level temporal

relations on the sole basis of asynchronism.

Several claims have been made in the past about synchronism and database design. The

need for synchronism at the logical level has previously been claimed to make normal forms and

dependency theory inapplicable (e.g., [GV85]) because it leads to binary relations with no need for

further decomposition. This claim then does not apply to our data model. It has also been claimed

that the need for separating asynchronous attributes is inherent to tuple-timestamped data models

(e.g., `[...] the notion of �rst normal form has been applied too literally to temporal databases [...]

Our departure from this \hangup" brings temporal databases within the framework of classical

relational theory' [GV85, p. 55]). We feel that this statement devolves from a too narrow view of

tuple-timestamped data models; it does not apply in our context.

For completeness, it should be mentioned that while the decomposition rule and associated

concepts presented in this section have concerned valid time, a similar decomposition rule and

associated concepts that concern transaction time, employing update patterns rather than obser-

vation patterns, may also be de�ned. For brevity, we omit these concepts.

3.5 Temporal Interpolation

The topic of temporal interpolation, how to derive information about times for which no informa-

tion is stored, has occasionally surfaced in temporal database papers. Here we �rst consider this

background, then present our study of aspects of the topic.

3.5.1 Background

In the early 1980's, several researchers studied independently the notion of temporal interpolation.

In the context of a Pascal-based extension of the ER model to include the time dimension, Klop-

progge [Klo81, KL83] discussed so-called \derivation functions" (also termed \induction formulas

and operators"), to be used for inferring values valid at times when no values were explicitly stored

in the database. The \missing" values are inferred from stored ones, e.g., at neighbor points. If

a procedure can be given that computes such missing values precisely, the procedure was termed

a \derivation;" if the procedure can only approximate the missing values, it was termed an \ap-

proximation." Independently, and contemporaneously, Cli�ord and Warren [CW83] explored the

same concepts in a mathematical and less practice-oriented context. In their own terminology,

they considered di�erent \continuity assumptions". For example, with the step-function continu-

ity assumption, a value holds until a new value is explicitly recorded, or until the object ceases to

exist. More recently, Segev and Shoshani [SS87, SS93] incorporated \interpolation functions" (their

term) directly into their time series data model; their papers lists four such functions: step-wise

constant, continuous, discrete, and user-de�ned.

The use of these properties in logical database design was unexplored. In particular, does

enumerating these properties impact the logical design? Segev, with collaborators, had used the

notions quite e�ectively in producing e�cient representations of time sequence collections [SS88a,

SS88b, SC92] (in fact, Illustra's TimeSeries Datablade is based on this); what are the implications

for temporal databases in general, and speci�cally for data semantics? To get a handle on this,

we initially examined valid-time derivation. At the end of this section, we consider the e�ects of

including transaction time.

A relation may record explicitly when a particular attribute value is valid. Alternatively, what

value is true at a certain point in time may be computed from other recorded values. An example
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clari�es the distinction between the two cases.

Example: Consider the two relations in Figure 11. The �rst, empSal, records names and salaries

of employees, and the second, expTemp, records names and temperature measurements for ex-

periments. Attributes EmpS and ExpS record surrogates representing employees and experiments,

respectively.

EmpS EName Sal T

e1 Tom 30k f1; : : : ; 9g

e1 Tom 32k f10; : : : ; 19g
e1 Tom 36k f30; : : : ; 39g

e1 Tom 40k f40; : : : ; 49g

ExpS Exp Temp T

x1 Exp1 25 f5; 65g

x1 Exp1 27 f15g
x1 Exp1 31 f25g

x1 Exp1 29 f35g
x1 Exp1 27 f45g

x1 Exp1 26 f55g
(a) empSal (b) expTemp

Figure 11: Sample Valid-time Relations

Relation empSal records Tom's salaries at all the times he has a salary. This is clearly consistent

with what a valid-time relation is. Relation expTemp is di�erent in this regard and is perhaps more

problematic. It does not record temperatures for all the times when there exists a temperature for

experiment x1. The temperature of x1 is sampled regularly, and we may later want to estimate x1

temperature values for times with no explicitly recorded value.

The di�erence between relations such as empSal and expTemp is solely in what additional, or

even di�erent, information is implied. In relation empSal, no salary is recorded for Tom from

time 20 to time 29, and the existing tuples do not imply any salary for Tom in that time interval.

However, while no temperature for Exp1 at time 40 is recorded in expTemp, such a temperature

does exist. Thus, the di�erence is that di�erent interpolation functions apply to the salary and

temperature attributes of the two relations. ut

We explore several interesting aspects of interpolation in the following sections.

3.5.2 Derivation Functions

A derivation function fA for a speci�c attribute A of a relation schema R takes as arguments a

valid-time chronon cv and a relation instance r and returns a value in the domain of attribute A.

Definition: A derivation function f is a partial function from the domains of valid times DV T

and relation instances r with schema R to a value domain D in the universal set of domains DD.

f : DV T � r(R) ,! D ut

Next, we introduce three important types of derivation functions in turn, namely stepwise-

constant, discrete, and nearest-neighbor derivation functions. To do so, we need the following

concept.

Definition: An attribute A is snapshot single-valued in a valid-time relation r if for all chronons

cv in DV T , j�
V
A(�

V
cv(r))j � 1 (i.e., at most one A value appears in any timeslice). ut
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Definition: The stepwise constant derivation function fA-sc for an attribute A is de�ned for all

valid-time relations r with A in its schema and attribute A is snapshot single-valued in r.

fA-sc(c
v; r) =

8><
>:

t1[A] where t1 2 r if 9cv1 2 t1[T ] (c
v
1 � cv^

:(9t2 2 r (t2[A] 62 f?;?ug ^ 9c
v
2 2 t2[T ] (c

v
1 < cv2 � cv))))

?i otherwise

Note that the function has a value for all cv such that there exists a tuple in r with a chronon in

its timestamp that is equal to or before cv. ut

Example: To illustrate this type of derivation function, let relation empSal1 be populated with

the following tuples.

EmpS EName Sal T

e1 Tom 30k f1g

e1 Tom 32k f10g
e1 Tom ?i f20g

e1 Tom 36k f30g
e1 Tom 40k f40g

e1 Tom ?i f50g

We associate a step-wise constant derivation function with attribute Sal. Thus, fSal-sc(5; empSal1) =

30k, fSal-sc(10; empSal1) = 32k, fSal-sc(15; empSal1) = 32k, and fSal-sc(25; empSal1) = ?i. For

this relation, fSal-sc is unde�ned for valid times before 1. Intuitively, empSal1 with this derivation

function encodes the same information as the tuples for Tom in empSal, yet uses instant time-

stamps. ut

One can add a derivation operator to the algebra, similar in spirit to Klug's aggregate formation

operator [Klu82]. Such an operator would take as a subscript the derivation operator to be applied.

Here we take a more informal approach to emphasize intuition.

Example: To exemplify the derivation operator, we apply it using the stepwise-constant deriva-

tion function to the empSal1 relation above. The following table, empSal2, results.

EmpS EName Sal DSal T

e1 Tom 30k 30k f1g

e1 Tom ? 30k f2; : : : ; 9g
e1 Tom 32k 32k f10g

e1 Tom ? 32k f11; : : : ; 19g
e1 Tom ?i ?i f20g

e1 Tom ? ?i f21; : : : ; 29g
e1 Tom 36k 36k f30g

e1 Tom ? 36k f31; : : : ; 39g
e1 Tom 40k 40k f40g

e1 Tom ? 40k f41; : : : ; 49g
e1 Tom ?i ?i f50g

e1 Tom ? ?i f51; : : : ; cv
k
g

In the result, cvk is the largest possible valid-time chronon. We can now precisely describe the sense

in which empSal1 with derivation function fSal-sc and empSal record the same information.
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�DSal!Sal(�
V
EmpS;EName;DSal(�

V
DSal6=?i

(empSal2))) � empSal

Here, �A!B(r) renames an attribute A in the schema of r to B [KS91]. ut

Most existing data models implicitly assume that only one (kind of) derivation function is of

relevance to the attributes of the base relations representable in the model, namely the discrete

derivation function, de�ned as follows.

Definition: The discrete derivation function fA-d for an attribute A takes as arguments a valid-

time chronon cv and a valid-time relation r with A in its schema R and A snapshot single-valued

in r.

fA-d(c
v; r) =

(
t[A] where t 2 �Vcv(r) if j�Vcv(r)j 6= 0

? otherwise
ut

Thus, if there exists an A value in r that is valid at cv, that value is the result; otherwise, the

result is ?.

3.5.3 Interpolation Functions

Interpolation functions preserve the information content of the relations they are applied to and

are special cases of derivation functions that are not restricted in this regard. Discrete interpo-

lation functions may be used for precisely characterizing those derivation functions that are also

interpolation functions.

Definition: Let fA be a derivation function and let fA-d be the discrete derivation function

with the same signature. Then fA is an interpolation function if for all pairs of a valid time cv

and an argument relation r for which fA-d(c
v; r) 6= ?, the condition fA(c

v; r) = fA-d(c
v; r) is

satis�ed. ut

It follows that the discrete and step-wise constant derivation functions are interpolation functions.

The nearest-neighbor-interpolation interpolation function (denoted by fA-nn) is appropriate for

the Temp attribute of expTemp in Figure 11(b). As for the previous two interpolation functions, it

applies to a particular (numeric-valued) attribute, e.g., A of a valid-time relation. When applied

to a valid time cv and a relation r, it returns a value interpolated from the two A values in r that

are valid most recently before and after cv.

3.5.4 Further Properties of Derivation Functions

Next, we introduce derivation functions that produce upper and lower bounds for each derived

value. The bounds may be used for indicating how much the real value is expected to deviate from

the derived value.

Definition: A derivation function with error bounds f is a partial function from the domains of

valid times and relation instances with some �xed schema to a triplet of value domains,

f : DV T � r(R) ,! D �D �D;

where R is a valid-time relation schema, r(R) is the domain of instances of R, and D is in the

universal set of domains DD. ut
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With this concept, we may describe the concepts of stability and non-divergence of derivation

functions. As these concepts are not essential for database design purposes, we focus solely on the

intuition behind the concepts.

Example: Consider the relation instance expTemp in Figure 11(b). This instance stems from

the sampling of a temperature sensor in a chemical experiment. For the purpose of this example,

assume that there is a maximum delay of �ve time units between the measurement of temperature

values and when they are inserted in expTemp. Assume also that the only updates to expTemp are

such insertions. Let the current time be 66.

Now consider the application of some derivation function, fTemp for the temperature attribute

on this relation. We know that no temperatures with a valid time before time 61 are deleted or

inserted. Thus, we may expect that applications of fTemp to valid times before this time will from

now on always yield the same value, i.e., are stable. This is true in particular for the discrete and

step-wise constant interpolation functions. For the nearest-neighbor interpolation function, this is

also true because the function is unde�ned for times where earlier and later neighbor temperatures

are not available.

For time arguments later than time 61, it is more di�cult to provide stability. However, the

discrete interpolation function is stable also for times after time 61 because it only returns a value

for times where a value is already recorded. The two other interpolation functions are not. ut

Stability is often too strong a property. In some situations, it is su�cient to ensure only that the

interpolated value at a particular time improves as more information is utilized by the interpolation

function.

Example: In continuation of the previous example, assume that at time 66, a value is derived

for time 64 and expTemp using fTemp�nn. Then, at time 68 a value is again derived for time 64 and

expTemp. The two values may be di�erent because a temperature valid at time 64 may have been

stored at time 67.

However, it may still be the case that derived results improve in accuracy as time progresses.

This notion of derivation functions being non-divergingmay be captured using derivation functions

with error bounds. Speci�cally, if derived values from successive applications of the derivation func-

tion have error bounds that do not increase, a derivation function is non-diverging. ut

3.5.5 Interpolation in Database Design

In previous work, interpolations such as step-wise constant were speci�ed in the meta-data, then

utilized by the query language; or they were hard-wired into the data model. We were uneasy

about this, as our work with scienti�c databases told us that interpolations are subject to change

(a good example is an equipment re-calibration); there are also often several di�erent interpolation

functions one might want to apply to the same data.

For each time-varying attribute, a set of perhaps several derivation functions may be relevant.

It is often the case that exactly one derivation function applies to an attribute, namely the discrete

interpolation function that is a kind of identity function. However, it may also be the case that

several nontrivial derivation functions apply to a single attribute.

The problem is then how to accommodate several derivation functions. We feel that there

should be a clear separation between recorded data and data derived from the stored data via

some function. Maintaining this separation makes it possible to later add new derivation functions
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or remove or modify existing derivation functions.

The view mechanism is an ideal solution that maintains this separation. Thus, the database

designer �rst identi�es which sets of derivation functions that should be applied simultaneously to

the attributes of a logical relation instance, one function per attribute. The designer then de�nes a

view for each such set. It is feasible, though not easy, to express such view de�nitions in SQL, as-

suming the support by the DBMS of user-de�ned aggregate operators (several commercial DBMS's

provide this facility). With the temporal aggregates in TSQL2 [KSL95], and the availability of

user-de�ned aggregate functions, such views are straightforward to express.

3.5.6 Interpolation in Transaction Time

For transaction time, only two interpolation functions appear to be important. The discrete

interpolation function is to be used if all the times a fact is current in the database are stored with

the fact, e.g., as an interval timestamp. The stepwise-constant interpolation function is used if facts

are stamped with their insertion times only, as an instant timestamp. Which single interpolation

function is appropriate is determined by the adopted temporal data model. All transaction-time

data models known to us employ either discrete or stepwise-constant transaction-time interpolation.

We see that transaction-time interpolation is then not relevant for database design.

3.6 Additional Decomposition

To this point, we have seen how most of the aspects associated with attributes enter into the design

process, and more fundamentally, into the semantics of the relations in which they participate.

There are two aspects that remain to be examined: whether transaction-time (or valid-time)

support is needed at all and the granularity of the observation patterns.

3.6.1 Temporal Support of Attributes

During database design, a model of a part of reality is created. What aspects of the modeled reality

to capture and what to leave out is determined by the functional requirements to the application

being created. The application may require any combination of valid-time and transaction-time

support, or no temporal support, for each of the time-varying attributes.

Next, attributes may be either state based or event based. Values of state-based attributes are

valid for durations of time while values of event-based attributes are valid only for instants in time.

Combining these alternatives, there are six possibilities for the temporal support required for

a time-varying attribute.

8>>><
>>>:

Valid-time:

no support required

state support required

event support required

9>>>=
>>>;
�

8><
>:

Transaction-time:

no support required

support required

9>=
>;

The characterization of attributes according to the temporal support they require is important

for database design because data models generally support only one type of temporal support in

a single relation. We embed this requirement in a simple decomposition rule.

Definition: (Temporal Support Decomposition Rule) To achieve the correct temporal support

of time-varying attributes, decompose temporal relation schemas to have only attributes with the

same temporal support requirements in the same schema, except for the surrogate attribute(s)
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forming the primary key. ut

Example: Consider a relation schema with four attributes, Name (a surrogate attribute which

is the primary key), PromotedBy, Salary, and Dept. All four require valid-time support, but the

PromotedBy attribute is associated with the promotion event, while the last two attributes are

associated with states. The promotion event is the transition between two salary and/or depart-

ment states. The Temporal Support Decomposition Rule requires that this schema be decomposed

into two schemas, (Name, PromotedBy), a valid-time event relation, and (Name, Salary, Dept), a

valid-time state relation. ut

It may be possible to avoid such decomposition in certain circumstances, but the designer

should be aware of the potential drawbacks of doing so. Consider including an attribute S requiring

snapshot support together with an attribute T requiring transaction-time support, in a transaction-

time relation. Attribute S should have a single value over all time. However, since it is embedded

in a transaction-time relation, past values are automatically retained. Taking the transaction

timeslice at now produces the correct result, but taking a transaction timeslice at a time in the

past, at time ct < now, may retrieve an old value of S, which is inconsistent with the requirement

that it be a snapshot attribute. Such queries must take this into account, timeslicing the relation

as of now to get the value of S, then join this with the timeslice of the relation as of ct to get the

value of T , which is quite awkward. Another drawback is physical in nature: the fact that old

values of S are being retained may increase the storage demand.

Including an attribute S along with an attribute V requiring valid-time support is even more

problematic. Whereas the system provides the transaction time during modi�cations, the user must

provide the valid time. This raises the issue of what should the valid time be for the snapshot

attribute S. All updates have to maintain this semantics, and queries also have to consider the

valid time.

Temporal specialization, discussed in Section 2.1, provides exibility and can reduce the need

for decomposition. Consider an attribute D that requires both valid-time and transaction-time

support, but which is degenerate, i.e., the valid and transaction times are exactly correlated.

Whenever a change occurs in the modeled reality, the new data is immediately recorded in the

database. Say this attribute is associated with another attribute V requiring only valid-time

support. The two attributes D and V can comfortably co-reside in the relation's schema. In this

case, the relation will be a valid-time relation. Transaction-time queries can be recast as valid-

time queries on the relation, exploiting the correlation between the two kinds of time. A similar

situation holds if D is paired with an attribute T requiring only transaction-time support, with the

relation being in this case a transaction-time relation. When the correlation is less precise, as with,

for example, a delayed strongly retroactively bounded warehouse relation, pairing a specialized

bitemporal attribute with either a valid-time or a transaction-time attribute will eliminate some

queries, and so should be justi�ed on performance grounds instead of logical semantic concerns.

3.6.2 Temporal Precision of Attributes

Each time-varying attribute has an associated observation pattern, as discussed in Section 3.4.

A time pattern is a function to a time domain, that has an associated time granularity. The

granularity is the precision in which the time-variance is recorded. If a hiring decision occurred

sometime during the business day, but it is not known exactly when (i.e., what minute or hour)

the decision occurred, then it is inappropriate to store that fact with a timestamp at a minute

granularity. The reason is that a particular minute must be chosen, and that minute is probably
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incorrect, with the implication that the model is incorrect [DS93b].

This property of time-varying attributes is important for database design because temporal

relational data models and query languages are frequently based on the (sometimes implicit) as-

sumption that all time-varying attributes of a relation may be recorded with the same precision.

For example, in tuple timestamped models, the time-variance of all attribute values is recorded

with a single timestamp attribute (or the same set of timestamp attributes).

One approach is to use the minimum granularity of the DBMS at the precision of all relations.

As just discussed, this results in a low-�delity model of reality. A better approach is to choose the

most appropriate granularity for each relation. We propose a simple strategy. Associate with each

attribute a set of granularities. The smallest granularity in this set is the granularity in which the

time-variance of the attribute is known. Other, coarser granularities represent granularities which

are acceptable to the applications utilizing the relation. Then decompose the relation only if there

is not a common granularity that is a member of the granularity sets of all attributes.

Definition: (Precision Decomposition Rule) To accurately reect the temporal precisions of

time-varying attributes, decompose relation schemas so that all attributes in a schema have a

compatible temporal precision, that is, a common granularity. ut

Example: Continuing the previous example, the observation pattern for Salary is at a gran-

ularity of minute. However, it is acceptable for applications if the timestamps associated with

this attribute are stored at the coarser granularity of day, yielding a set of granularities for this

attribute of fminute, dayg. The observation pattern for Dept is at a granularity of day, and coarser
granularities are not acceptable to applications, yielding a set of granularities for this attribute of

fdayg. The Precision Decomposition Rule enables these two attributes to remain together in the

relation, which will have a timestamp granularity of day. ut

A more general approach was recently proposed by Wang and his colleagues, using their tem-

poral functional dependencies based on granularities, discussed briey in Section 3.1.3 [WBBJ94].

Their approach is complex and may generate new granularities, of uncertain comprehensibility

by the user. The Precision Decomposition Rule above is very simple and does not generate new

granularities.

3.7 Summary

Below, we review the concepts introduced in this section and briey indicate how they may be

used for capturing the semantics of time-varying attributes during database design.

In order to exploit the full potential of temporal relational database technology, guidelines for

the design of temporal relational databases should be provided. This section has presented concepts

for capturing the properties of time-varying attributes in temporal databases. These concepts

include surrogates that represent the real-world objects described by the attributes, lifespans of

attributes, observation and update patterns for time-varying attributes, derivation functions that

compute new attribute values from stored ones, and new temporal functional dependencies.

We subsequently showed how surrogates, lifespans, and dependencies play a role during design

of the logical database schema. In particular, the notion of lifespans led to the formulation of a

lifespan decomposition rule. The notion of observation (and update) patterns led to a synchronous

decomposition rule; it was argued that this rule should ideally apply to physical database design.

Finally, it was shown how derivation functions are relevant for view design.

These concepts are applied during logical database design. The database designer starts with a
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set of relation schemas in hand. The �rst task is to re�ne the semantics of each attribute appearing

in the schemas.

� Identify entity types and represent them with surrogate attributes. The real-world objects

(or entities) that the attributes of the database describe are represented with surrogate

attributes.

� Describe lifespans. For each relation schema, describe the lifespans of the attributes.

� Determine observation and update patterns. For each relation schema, indicate which at-

tributes are synchronous, i.e., share observation and update patterns.

� Describe precisions. For each time-varying attribute, indicate its set of applicable granulari-

ties.

� For each attribute, indicate its appropriate derivation or interpolation function(s). The func-

tions concern interpolation in valid-time, and there may be several functions per attribute.

� Determine the required temporal support. For each attribute, indicate the required temporal

support for the attribute. Record the interactions (if any) between the valid time and the

transaction time implied by the temporal specializations in e�ect for the attribute.

� Specify temporal functional dependencies. These provide the basis for applying the temporal

extensions of the conventional normal forms for schema decomposition.

� Specify strong temporal functional dependencies.

Two important goals of logical database design are to design a database schema (a) that does

not require the use of inapplicable nulls, and (b) that avoids redundancy. Logical temporal database

design accomplishes this by applying the available decomposition rules.

The information listed above guides the logical and physical design of relation schemas and the

design of views.

� Temporal functional dependencies may be used to achieve the temporal analogues of tra-

ditional normal forms, e.g., third normal form, BCNF, fourth normal form. All standard

database design approaches apply here directly.

� The lifespan decomposition rule ensures that inapplicable nulls are not required.

� The synchronous decomposition rule removes redundant attribute values, while being less

strict than previous de�nitions of value synchronism.

� The temporal support decomposition rule ensures that each relation has a temporal support

appropriate for the attributes it contains.

� The precision decomposition rule uses the granularity sets to prescribe decomposition of

relation schemas and to determine the granularity of the resulting relation schemas.

� Strong temporal functional dependencies, together with the temporal functional dependen-

cies, allow the designer to identify time-invariant keys, which may play the role of surrogates,

which can subsequently be eliminated.

� The derivation function associated with attributes induce views computing the derived values.
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While logical design is concerned with adequately modeling the semantics of the application,

physical design is concerned with performance. The concepts concerning synchronism, i.e., time

patterns, including observation and update patterns, are relevant for physical design. Their use

was discussed in Section 3.4.2.

Physical design may also reverse some of the decomposition that is indicated by logical design.

Database designers are faced with a number of design criteria which are sometimes conicting,

making database design a challenging task. So, while we discussed the design criteria in isolation,

it is understood that there may be other criteria that should be taken into consideration during

database design, such as minimizing the need for joins.

4 Status and Outlook

At this point in time, we feel that the semantics of temporal relational schemas and their logical

design are well understood. In this paper, we have presented the general concepts of temporal

specialization and generalization, the Bitemporal Conceptual Data Model, the impact of temporal

coalescing, now and forever on temporal semantics, temporal functional dependencies (including

parameterized and strong variants), surrogates, attributes lifespans, pattern-based synchronism,

temporal interpolation, and several forms of decomposition based on temporal semantics.

We feel that several aspects merit further study. It is not yet clear how to best integrate

the logical and conceptual design of temporal databases, two research areas that have hitherto

evolved with minimal interaction. The third design area, physical temporal database design, is

still in its infancy, with few results. A coherent design methodology for temporal databases, includ-

ing conceptual (implementation-data-model independent) design and logical design, is needed. A

methodology for physical design that takes into account available storage formats and primary and

secondary indexing techniques still remains to be devised. In particular, the role of synchronous

decomposition in physical design needs to be explored in greater detail. The methodology should

be validated with actual applications. Finally, the ideas presented here and the methodology that

will follow should be transitioned to existing implementation platforms, including non-temporal

query languages such as SQL-92 [MS93]. In the short and perhaps even medium term, it is

unrealistic to assume that applications will be designed using a temporal data model with new

design methodologies, implemented using new temporal query languages, and run on new temporal

DBMSs.
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