
Analysis of Techniques to Improve Protocol Processing Latency

David Mosberger, Larry L. Peterson, Patrick G. Bridges, and Sean O’Malley

TR 96-03

Abstract

This paper describes several techniques designed to improve protocol latency, and reports on their effec-
tiveness when measured on a modern RISC machine employing the DEC Alpha processor. We found that
the memory system—which has long been known to dominate network throughput—is also a key factor
in protocol latency. In particular, improving instruction cache effectiveness can greatly reduce protocol
processing overheads. An important metric in this context is the memory cycles per instructions (mCPI),
which is the average number of cycles that an instruction stalls waiting for a memory access to complete.
The techniques presented in this paper reduce the mCPI by up to a factor of 5.8. In analyzing the effective-
ness of the techniques, we also present a detailed study of the protocol processing behavior of two protocol
stacks—TCP/IP and RPC—on a modern RISC processor.

Department of Computer Science
The University of Arizona

Tucson, AZ 85721

This work supported in part by ARPA Contract DABT63-91-C-0030, by Digital Equipment Corporation.

1 Introduction

Communication latency is often just as important as throughput in distributed systems, and for this reason, researchers
have analyzed the latency characteristics of common network protocols, such as TCP/IP [KP93, CJRS89, Jac93] and
RPC [TL93]. This paper revisits the issue of protocol latency. Our goal is not to optimize a particular protocol stack,
but rather, to understand the fundamental limitations on processing overhead. In doing so, this paper goes beyond the
earlier work in three important ways:

Updated Study: It studies protocol latency on a modern RISC architecture—the 64-bit DEC Alpha—and in
doing so, updates earlier studies that were performed on the x86 architecture. This is important because, while
on the surface it seems that protocol latency should scale with processor speed, this is not necessarily the case.
Like throughput, protocol latency is influenced by the processor’s memory bandwidth.

Detailed Analysis: It contains a level of detail not found in other studies. In particular, it reports on instruction-
cache (i-cache) effectiveness, as well as on processor stall rates. The bottom-line is that we evaluate protocol
latency in terms of memory cycles per instruction (mCPI), a metric that will become increasingly important as
improvements in memory speed lag behind improvements in processor speed.

New Techniques: It describes and evaluates a new set of techniques that are designed to improve protocol la-
tency. These techniques are targeted not so much at reducing the number of instructions executed to process each
packet, but more at the number of cycles that each instruction takes.

It should be clear from these three points that memory bandwidth—and in particular, the memory cycles required
by each instruction—is a central focus of this paper. In fact, the experimental results presented in this paper show that
the difference between the worst- and best-case mCPI that we were able to measure is a factor of 3.9 for the TCP/IP
stack, and a factor of 5.8 for an RPC stack. The techniques we propose are primarily targetted at improving the mCPI,
although they also have a positive effect on the instruction count.

Because these techniques are aimed at improving the mCPI of network software, they are necessarily fine-grain.
To be more precise, they can all be characterized as compiler-based techniques, and as such, one might ask if they
are specific to network code, or if they are applicable to programs in general (i.e., SPECmark code). The answer is
that while it is possible that these techniques are of some benefit to application programs, they are motivated by the
unique characteristics of network software (specifically) and low-level systems code (more generally). For example,
exception handling code often makes up a large portion of network software. One of our techniques (outlining) exploits
this fact. As a second example, network software, since it is often layered, typically involves rather deep call chains.
A second technique (path-inlining) is targetted at this situation. As a final example, network software is designed to
handle a wide-range of situations, but once a connection is established, it is often possible to specialize the code for
that connection. A final technique (cloning) addresses this issue.

The paper is organized as follows. Section 2 revisits earlier studies on TCP/IP latency, but this time on RISC pro-
cessors. This study is interesting in its own right, but also serves as the foundation for the techniques and analysis
presented in later sections. Section 3 then describes the latency improvement techniques, and Section 4 reports on an
experimental evaluation of these techniques. Note that these techniques are applied to existing protocol implemen-
tations written in C; we are not proposing a new programming language. Finally, Section 5 offers some concluding
remarks.

1

2 Starting Point

The work reported in this paper is done in the context of the -kernel [HP91], a framework that allows flexible exper-
imentation with networking protocols. This section briefly describes the -kernel and the protocols that we evaluate.
In doing so, this section has two goals: (1) to establish a base case that we use to evaluate the techniques introduced in
the next section, and (2) to update eariler studies of protocol latency.

2.1 Test Protocols

We begin by emphasizing that the goal of this research is not to create the world’s fastest implementation of a given
protocol stack, but rather to test a set of latency improving techniques on protocol stacks that are representative of
networking code in general. To that end, we tested the techniques both on a TCP/IP and an RPC stack.

TCP/IP is an interesting test-case because of its ubiquitous nature. Applying the techniques to TCP/IP also facili-
tates comparison with other work on latency-oriented optimizations. The left part of Figure 1 shows the protocol-stack
that was used to test TCP/IP. At the top, TCPTEST is a simple, ping-pong-style test program. Below are TCP and IP
which are the -kernel versions of the corresponding Internet protocols [Pos81b, Pos81a]. The -kernel implementa-
tion of TCP is based onBSD source code so, except for interface changes, they are identical. VNET is a virtual protocol
[OP92] that routes outgoing messages to the appropriate network adaptor. In BSD-derived implementations, VNET’s
functionality is part of IP. ETH is the device-independent half of the Ethernet driver, while LANCE is the device driver
for the LANCE network adaptor that is present in the DEC 3000/600 workstations. The network adaptor connects to
the CPU via the TURBOchannel bus [AMD, DEC93].

TCPTEST

TCP

IP

VNET

ETH

LANCE LANCE

ETH

VNET

IP

BLAST

BID

CHAN

VCHAN

MSELECT

XRPCTEST

Figure 1: Test Protocol Stacks

The RPC stack implements a remote procedure call facility similar to Sprite RPC [OP92]. This test stack is a model
for the -kernel paradigm that encourages decomposing networking functionality into many small protocols. Conse-
quently, as shown in Figure 1, the RPC stack is deeper than the TCP/IP stack. At the top of the RPC stack we find
protocol XRPCTEST which is again a simple ping-pong style test program. The test program sends zero-sized RPC
requests to the RPC server which responds with a zero-sized reply. MSELECT, VCHAN, CHAN, BID and BLAST
together provide RPC semantics. A detailed description of these protocols can be found in [OP92]. For the purpose
of this discussion, it is sufficient to know that the client side of XRPCTEST performs a call into MSELECT to send a

2

request to the server. This call propagates all the way down to the LANCE driver where the request packet is transmit-
ted to the server. After the packet is sent, the calling thread is blocked in CHAN, waiting for the server’s reply. The
reply packet triggers an interrupt in the LANCE driver, which propagates up the protocol stack to CHAN. CHAN then
signals (unblocks) the waiting thread and returns. Eventually, the awakened thread resumes execution and returns to
XRPCTEST.

2.2 RISC-Motivated Changes

The -kernel was originally developed on a 32-bitCISCmachine, and as a result, there were several interesting changes
that we had to make to produce better latency-sensitive code for a modern RISC machine with a multi-level memory
system. Similarly, portingTCP to the 64-bitAlpha processor required some changes. We now summarize these changes
to the -kernel and TCP.

2.2.1 Improving Data Cache Behavior

Strictly speaking, caches are not a RISC invention. However, since many RISC CPUs push CPU clock frequencies to
the extreme, mainmemory accesses impose amuch higher relative penalty thanother architectures. Makingnetworking
code more cache friendly, therefore, is an important step towards reducing processing latency. Whereas the focus is on
the i-cache, there were also a few changes to improve the d-cache side. In particular, the -kernel data structures were
reorganized to minimize compiler introduced padding. This is important on the Alpha since pointers and long integers
take up 8 bytes, and since such variables must be aligned to their size. For example, placing a pointer behind a byte-
sized field normally results in in a 7 byte gap since the compiler needs to ensure proper alignment of the pointer. While
reorganizing the structures we were also careful to spatially co-locate structure fields that are used together in close
temporal proximity.

The memory object that is used most often during execution is the program stack. To optimize d-cache behavior, we
modified the tread manager to make extensive use of continuations [DBRD91]. We also converted stacks to first-class
objects. Instead of being statically attached to a given thread, stacks are now dynamically attached to a thread upon
demand. Together with continuations, this has the effect that latency sensitive path invocations will normally execute
on the same stack. This optimization does not work when a thread blocks with useful state on the stack. To improve
this case, stacks are managed with a last-in-first-out policy. This maximizes the chance that a newly attached stack is
already in the d-cache.

Another d-cache optimization is to store the same information only once. For example, TCP timer management
requires efficient traversal of all open connections. Being BSD-based, the original -kernel implementation employed
a list of open connections for this purpose. However, in the -kernel there is also a hash-table that is used to demultiplex
incoming TCP segments. This hash-table fundamentally contains the same information as the list of open connections.
So, if it were possible to efficiently traverse all elements in a hash-table, there would be no need tomaintain the separate
list of open connections. Unfortunately, hash-tables operate best if they are sparsely populated. Traversing the whole
table therefore is relatively inefficient because most of the table-entries (hash-buckets) are empty. Not only is it slow,
but it also results in a needlessly large d-cache footprint.

To remedy this situation, we modified the hash-table implementation to contain a list of non-empty hash-table buck-
ets. With this list, the elements in the hash table can be visited simply by following the list of non-empty buckets. Un-
fortunately, managing the list imposed unacceptably high overheads because removing an element either required a
list-traversal or a doubly-linked list. Fortunately, it is possible to evaluate list-removals lazily: when a bucket becomes

3

empty, we can just leave it on the list. The list is then cleaned up the next time we have to traverse the list anyway
(i.e., on the next visitation of the elements), at which time removing empty buckets is trivial since it is easy to keep
track of the previous non-empty bucket as the list is being traversed. Detailed measurements showed that the modified
hash-table manager is substantially faster for hash-table traversals, without significantly affecting the time to insert el-
ements. All other operations—in particular, hash-table lookup—are unaffected. The speedup for hash-table traversals
is roughly inversely proportional to the fraction of non-empty buckets in the table. For example, traversing a table with

of the buckets populated will be roughly an order of magnitude faster. Thus, at the expense of one pointer per
hash-table bucket, it was possible to completely remove the list of open connections in TCP.

2.2.2 Avoiding Unnecessary Work

After the d-cache optimizations, we analyzed the code path that is executed when TCP/IP processes a message. In
doing so, we found several opportunities to avoid unnecessary work.

First, execution traces indicated that TCP performs integer multiplication and division on both the inbound and
output paths. On the inbound path, the operations are used to update the congestion window. In a latency-sensitive
environment (e.g., low-latency LAN), losses are rare and the congestion window is usually fully open. By testing for
this common case, it is possible to avoid the expensive integer operations all together. Similarly, on the output side, TCP
checks whether it is necessary to send a window update by computing 35 percent of the maximum possible window.
By computing 33 percent instead, it is possible to replace the integer multiplication and division by a simple shift and
add. This change does not affect the operational properties of TCP noticeably. Integer multiplication and division are
quite slow on most processors. This is compounded by the fact that the Alpha architecture does not provide an integer
division instruction [Sit92]. Thus, not only is the operation slow, but the function that implements it also takes up
instruction space. Removing the large division routine from the critical path of execution reduced the cache-footprint
and proved to be important for some of the techniques that will be presented in the next section.

The second opportunity to avoid unnecessary work is -kernel specific, but similar opportunitiesmay arise in other
implementations. In the -kernel, message buffers are pre-allocated for interrupt handlers. For incoming packets, typi-
cal processing involves takinga message buffer from the poolof pre-allocated buffers, shepherding themessage through
protocol processing, and upon return, refreshing (reallocating) the message buffer so that it can be put back into the
buffer pool. Originally, a message buffer was refreshed by first destroying it. Destroying a message buffer may or may
not result in memory being freed, depending on whether there are other references to the same message. In most cases,
incoming messages are consumed immediately. This means that by the time protocol processing is finished, there are
no other reference to the message remaining and destroying the message buffer will always result in freeing exactly as
much memory as is needed for the new buffer. Thus, in the vast majority of cases, it is possible to avoid a call to free()
and malloc() by simply detecting this case short-circuiting the two calls.

2.2.3 Careful Inlining

Inlining is one of the most commonly applied optimizations. Fundamentally, it trades temporal locality for better code
quality. In an environment where instruction-bandwidth is at a premium, this presents a non-trivial trade-off. For ex-
ample, suppose there is a frequently called function occupying i-cache blocks. If that function is inlined, the caller
may grow only by blocks because the compiler’s optimizer can exploit call-site specific information and there

In fact, some versions of TCP, for example the one that is shipped with NetBSD, compute 50 percent instead.

4

is no call overhead. Notice that even if the inlined code is not smaller by itself, inlining can increase the size of the
caller by less than blocks because function calls are normally optimization barriers.

A frequently called function is likely to reside in the i-cache when it is called. If it is inlined, however, the locality
of reference may be so small that executing the inlinedversion will result in additional cache misses. In such a case,
inlining is beneficial only if the inlined version is faster with cache misses than the genuine function with cache
hits. In practice, we found the following four cases to be safe for inlining:

1. The function has only one call-site.

2. The inlined version is not larger than the number of instructions that would be required in the call-site to perform
the function call.

3. Call-site specific information simplifies the functionsso much that it will execute faster even if the inlinedversion
causes additional i-cache misses.

4. The inlined code itself is used frequently enough that i-cache misses can be amortized over multiple activations.

It is our contention that inlining is frequently misused to avoid replacement misses in the small associativity caches
commonly found in high-performance RISC architectures. This may be tolerable when optimizing for throughput, but
our experience clearly suggests that this is the wrong approach to improve latency. As discussed in the next section,
replacement misses can instead be avoided through direct means.

While searching for good inlining opportunities, we found that in many cases, inlining would be beneficial when
one or more of the actual arguments are constant (i.e., such that the third case in the above list applies). For example,
the -kernel hash-table manager supports a one-entry cache to exploit locality of network messages [Mog92]. Ideally,
a hash-table lookup that results in a cache-hit should require only the few instructions needed to compare the key being
looked up with the key of the cached entry. However, the hash-table manager supports a general interface that allows
for unalignedkeys and various key-sizes. This introduces the dilemma that the common usage pattern is simple enough
to be inlined, but the general case is complicated enough to make inlining counter-productive.

Fortunately, GNUC [Sta92] supports a builtin (intrinsic) function that evaluates toTRUE if and only if the argument
is a compile-time constant. This mechanism is powerful enough to construct a pre-processor macro that expands into
an inline key-comparison if the alignment and size of the keys are appropriate, but results in a simple function call if
inlining is not warranted. Obviously, this is an ad-hoc solution that is rather awkward to use. However, the concept
of conditional inlining appears to be an elegant solution to achieving high performance without sacrificing modularity.
On the Alpha architecture, we found that an inlined hash-table lookup with a cache-hit takes about three times fewer
instructions than the general function. Moreover, because only the initial key-comparison is inlined, code expansion is
minimal.

2.2.4 Fixing Machine Idiosyncrasies

The first twogenerations of Alpha implementations did not support byte and short-word (16-bit) sizedmemory-accesses.
Consequently, changing char and short variables to word-sized integers typically results in a reduction of code-size.
Normally, this reduction is not very significant, but for TCP, changing about a dozen declarations in the C structure
that represents connection state resulted in a surprising code-size reduction. In fact, we found that this change was the
one with the largest savings in instruction count.

Another machine peculiarity involves the interface to the network adaptor. The network driver communicates with
the LANCE chip via a shared region in the main memory. This shared region holds receive and transmit frame buffers
as well as descriptors for the frame buffers. The LANCE chip has a 16-bit bus interface, while the TURBOchannel to

5

which it is connected is 32 bits wide. This has the unfortunate effect that shared memory is used sparsely—for descrip-
tors, every 16 bits of shared memory are followed by a 16-bit gap. For buffers, 16 bytes of shared memory are followed
by a 16 byte gap. To keep things simple, most LANCE drivers for TURBOchannel-based machines update descrip-
tors in the shared memory by copying them first into dense memory, applying the necessary modifications, and then
writing back the entire descriptor to sparse memory. Descriptors are ten bytes long. Every update therefore involves
copying 20 bytes, even if only a single bit changes. In principle, there is no reason that this copying cannot be avoided:
descriptors can be updated in the sparse memory directly. However, C has no concept of “sparse” or “dense” memory
and coding this directly is at least error prone enough that, to the best of our knowledge, nobody has ever bothered to
do so. Fortunately, the Universal Stub Compiler (USC) is ideally suited for this task—the layout of the descriptor can
be described independently of the structure of the sparse memory space [OPM94]. USC can generate inlined functions
that allow direct sparse memory access to any field in the descriptor. USC provides an efficient solution to the sparse-
memory problem presented by the machine, and as a side-effect, the resulting code is much easier to understand and
maintain.

2.2.5 Summary of Changes

Since we are interested in latency, it is useful to summarize the changes that affect code size. Table 1 gives a breakdown
of the dynamic instructioncount savings for the TCP/IP processing path. As thefirst row shows, the simple TCP change
that replaced some byte and short variables by words achieved the biggest saving. The second rank is occupied by the
change in the way messages are refreshed at the end of protocol processing. As the second row in the table shows,
this resulted in a reduction of 208 instructions. Interestingly, this improvement does not affect end-to-end latency in
the TCP/IP latency test. This is because the message is refreshed only after the current packet has been sent to the
network adapter. The computation therefore is overlapped with communication. However, the change does reduce
CPU utilization, which is also desirable.

Technique Instructions saved
Change bytes and shorts to words in TCP state: 324
More efficiently refresh message after processing: 208
Use USC in LANCE to avoid descriptor copying: 171
Inlined hash-table cache test: 120
Various inlining: 119
Avoid integer division: 90
Other minor changes: 39
Total: 1071

Table 1: Dynamic Instruction Count Reductions

2.3 TCP/IP Performance Comparison

After applying the optimizations described above, we felt that the code was in good enough shape to serve as a base
case for evaluating the techniques presented in the next section. The performance numbers in Table 2 indeed demon-
strate significant improvements. End-to-end roundtrip latency was reduced by more than s and almost 20% fewer
instructionswere executed during protocol processing. Notice that the number of cycles per instruction (CPI) does not
change significantly.

6

Original: Improved:
Roundtrip latency [s]: 377.7 351.0
Instructions executed: 5821 4750

Processing time [cycles]: 18941 15688
CPI: 3.26 3.30

Table 2: Performance Comparison of Original and Improved -kernel TCP/IP Stack

To verify that the TCP/IP implementation is roughly equivalent to a production-quality implementation, we present
a few performance numbers that compare the improved -kernel implementationwith the DEC Unix v3.2c implemen-
tation. These numbers are based on instruction traces that we collected. This comparison also provides an interesting
update of the CISC numbers presented in [CJRS89]. Specifically, we traced and measured the time it takes to perform
IP and TCP processing for an incoming one byte TCP segment on a connection with bi-directional data flow. Notice
that [CJRS89] focused on the case where data flows only in one direction (as is the case for an ftp transfer, for exam-
ple). We feel using a bi-directional connection is more realistic since if data flows in only one direction, it is usually
possible to batch it together and send reasonably large packets, and for large packets, processing time is dominated by
data-dependent costs. In contrast, with a request-response style of communication, batching is not possible, and small
latency-sensitive messages are quite common.

The distinctionbetween uni- and bi-directionaldata connectionsmatters for two reasons. First, with a bi-directional
connection, both hosts perform sender and receiver-related house-keeping when receiving a packet. In contrast, with
a unidirectional connection a host performs either sender or receiver-related house-keeping but not both. Second, the
DEC Unix TCP implementation uses header-prediction [CJRS89]. This is an optimization targeted at improving la-
tency. However, all the header-prediction implementations we know of work only for uni-directional connections.
The result is that rather than improving latency, header prediction slightly worsens latency on a connection with a bi-
directional data flow. Fortunately, with less than a dozen additional instructions executed, the slow down is not very
large.

Architecture: 80386 Alpha
TCP/IP implementation: [CJRS89]: DEC Unix v3.2c: Improved -kernel:

Number of instruction executed
in ipintr: 57 248

in tcp input: 276 406
between IP input and TCP input: 262 437

between TCP input and socket input: 1188 1004

Table 3: Comparison of TCP/IP Implementations

Table 3 displays the results. The first row shows the number of instructionsexecuted while the processor executes in
function ipintr (IP input processing). The second row displays the number of instructions executed in tcp input
after the TCP control block has been found (i.e., after function in pcblookup returns). Since the -kernel source
code is organized differently, it is not possible to list corresponding number for the -kernel.

The traces are available via anonymous ftp from ftp://cage.cs.arizona.edu/pub/davidm/tcpip.

7

The cost of 276 instructions for TCP input processing on the 80386was arrived at by adding both the sender side and
the receiver side costs, as well as the common path cost reported in [CJRS89] (instructions for the common path,

additional instructions for the receive side processing, and additional instructions for the sender
side processing). First, we notice that IP processing in DEC Unix appears to be more than a factor of four longer than
for the 80386. We believe this more more an artifact of how the counting was performed rather than a real difference.
For example, the DEC Unix implementation has the IP header checksum inlined. This artificially inflates the ipintr
count by instructions. Even though the checksum alone does not fully explain the large discrepancy, it serves to
illustrate that it is probably not a good idea to count instructions executed in a specific function since that depends
heavily on implementation details (e.g., amount of inlining). Instead, we suggest to count the number of instructions
required to complete a specific task; more on this below. For tcp input, the DEC Unix trace is roughly longer
than the 80386 count. While somewhat on the large side, such a code inflation is not uncommon when converting CISC
code to RISC code, especially considering that the traced Alpha code does have sub-word loads and stores available.

As alluded to before, a better performance measure is to count the total number of instructions executed to com-
plete a particular task. This is what we did to compare the -kernel and the DEC Unix implementations. In particular,
we counted the number of instructions executed between the point where an incoming packet enters IP and the point
where it enters TCP. For BSD-derived implementations, this covers the instructions executed from the point where
ipintr is called up to the point where tcp input is called. The corresponding -kernel functions are ipDemux
and tcpDemux. Similarly, to establish TCP processing costs we counted the number of instructions executed between
entering TCP and the point where data is delivered to the layer above TCP. For BSD-derived implementations, this is
the code executed between the calls totcp input and sowakeup. The corresponding -kernel calls are tcpDemux
and clientStreamDemux. Equivalent counts for the 80386 were not available. As the third row in Table 3 illus-
trates, DEC Unix is doing a little better during IP processing, and the -kernel implementation is better during TCP
processing. Overall, the two traces have almost the same length (1450 versus 1441). However, the -kernel code exe-
cutes quite a bit faster as separate measurements yielded a CPI of 4.26 for DEC Unix and a CPI of 3.3 for the -kernel.
The important point is that the -kernel implementations appears perfectly competitivewith a common and reasonably
well optimized implementation of TCP/IP.

3 Latency Reducing Techniques

This section describes three techniques that we have evaluated in an attempt to reduce protocol-processing latency.
Unlike the techniques presented in the previous section, which had the effect of reducing the number of instructions
executed along the protocol stack, these techniques are primarily targetted at the cost—in terms of memory cycles—for
each instruction.

3.1 Outlining
As the name suggests, outlining is the opposite of inlining. It exploits the fact that not all basic blocks in a function
are executed with equal frequency. For example, error handling in the form of a kernel panic is clearly expected to be
a low-frequency event. Unfortunately, it is rarely possible for a compiler to detect such cases based only on compile-
time information. In general, basic blocks are generated simply in the order of the corresponding source code lines.
For example, the sample C source code shown on the left is often translated to machine code of the form shown on the
right:

:
: load r0, (bad_case)

8

if (bad_case) { jump_if_zero r0, good_day
panic("Hit a snag..."); load_address a0, "Hit a snag..."

} call panic
printf("Good day..."); good_day:

: load_address a0, "Good day..."
call printf
:

The above machine code is suboptimal for two reasons: (1) it requires a jump to skip the error handling code, and (2)
it introduces a gap in the i-cache if the i-cache block size is larger than one instruction. A taken jump often results in
pipeline stalls and i-cache gaps waste memory bandwidth because useless instructions are loaded into the cache. This
can be avoided by moving error handling code out of the mainline of execution, that is, by outlining error handling
code. For example, error handling code could be moved to the end of the function or to the end of the program.

Outlining traditionally has been associated with profile-based optimizers [Hei94, PH90]. Unfortunately, profile-
based optimizers suffer from the problem of being aggressive rather than conservative: any code that is not covered
by the collected profile will be outlined. This is aggravated by the fact that it is difficult to back-map the optimizer’s
changes to the source code, thereby making it difficult to verify that a collected profile is indeed (sufficiently) exhaus-
tive. Also, relatively simple changes to the source code may require collecting a new profile all over again. This may
be acceptable for user-level code, but is certainly less than ideal for system software, such as networking code.

In contrast, our outlining approach is language-based and conservative. Being conservative, it may miss outlining
opportunities and be less effective than a profile-based approach. However, we have measured system software that
contains up to 50% error checking/handling code; just outlining in these obvious cases can result in dramatic code-
density improvements. We modified the GNU C compiler such that if-statements can be annotated with a static predic-
tion as to whether the if-conditional will mostly evaluate to TRUE or FALSE. If-statements with annotations will have
the machine code for the unlikely branch generated at the end of the function. Unannotated if-statements are translated
as usual. With this compiler-extension, the code on the left is translated into the machine code on the right:

:
: load r0, (bad_case)

if (bad_case PREDICT_FALSE) { jump_if_not_zero r0, bad_day
panic("Hit a snag..."); load_address a0, "Good day..."

} call printf
printf("Good day..."); continue:

: :
return_from_function

bad_day:
load_address a0, "Hit a snag..."
call panic
jump continue

The above machine code avoids the taken jump and the i-cache gap at the cost of an additional jump in the infrequent
case. Corresponding code will be generated for if-statements with an else-branch. In that case, the static number of
jumps remains the same, however. It is also possible to use if-statement annotations to direct the compiler’s optimizer.
For example, it would be reasonable to give outlined code low-priority during register allocation. Our present imple-
mentation does not yet exploit this option.

As alluded to before, outlining should not be applied overly aggressively. In practice, we found the following three
cases to be good candidates for outlining:

9

1. Error handling. Any kind of expensive error handling can be safely outlined. Error handling is expensive, for
example, if it requires a reboot of the machine, console I/O, or similar mechanisms.

2. Initialization code. Code that is executed only once (e.g., at system startup) can be outlined.

3. Unrolled loops. The latency sensitive case usually involves so little data processing that unrolled loops are never
entered. If there is enough data for an unrolled loop to be entered, execution time is typically dominated by data-
dependent costs, so that the additional overheads due to outlining are insignificant.

We found that outlining alone does not make a huge difference in end-to-end latency. However, the code density im-
provements that it achieves are essential to the effectiveness of the next technique: cloning.

3.2 Cloning

Cloning involves making a copy of a function. The cloned copy can be relocated to a more appropriate address and/or
optimized for a particular use of that function. For example, if the TCP/IP path is executed frequently, it may be de-
sirable to pack the involved functions as tightly as possible. It is usually not necessary to clone outlined code. The
resulting increase in code-density can improve i-cache, TLB, and paging behavior. The longer cloning is delayed, the
more information is available to specialize the cloned functions. For example, if cloning is delayed until a TCP/IP
connection is established, most connection state will remain constant and can be used to partially evaluate the cloned
function. This achieves similar benefits as code synthesis [Mas92]. Just as for inlining, cloning is at odds with locality
of reference. Cloning at connection creation time will lead to one cloned copy per connection, while cloning at protocol
stack creation time will require only one copy per protocol stack. By choosing the point at which cloning is performed,
it is possible to tradeoff locality of reference with the amount of specialization that can be applied.

clone A

clone B

function A

function B

After Outlining:

function A

function B

After Cloning:

function A

function B

Standard Layout:

copy & relocate
frequently executed code

frequently executed instructions

infrequently executed instructions

Figure 2: Effects of Outlining and Cloning

10

Cloning can be considered the next logical step followingoutlining—the latter improves (dynamic) instructionden-
sity within a function, while the former achieves the same across functions. Figure 2 summarizes the effect that out-
lining and cloning have on the i-cache footprint. The left column shows many small i-cache gaps due to infrequently
executed code. As shown in the middle column, outlining compresses frequently executed code and moves everything
else to the end of the function. The right column shows that cloning leads to a contiguous layout for clone A and clone
B. In this particular example, we assume the clones can share outlined code with the original functions.

We implemented runtime cloning as a means to allow flexible experimentation with various function positioning
algorithms. Cloning currently occurs when the system is booted (not when a connection is established) and supports
only very simple code specialization. Code specialization is specific to theAlpha architecture and is targeted at reducing
function call overheads. In particular, under certain circumstances, the Alpha calling convention allows us to skip the
first few instructions in the function prologue. Similarly, if a caller and callee are spatially close, it is possible to replace
a jump to an absolute address with a PC-relative branch. This typically avoids the load instruction required to load the
address of the callee’s entry point and also improves branch-prediction accuracy.

We experimented extensively with different layout strategies for cloned code. We thought that, ideally, it should
be possible to avoid all i-cache conflicts along a critical path of execution. With a direct-mapped i-cache, the starting
address of a function determines exactly which i-cache blocks it is going to occupy [McF89]. Consequently, by choos-
ing appropriate addresses, it is possible to optimize i-cache behavior for a given path. The cost is that occasionally it
is necessary to introduce gaps between two consecutive functions (sometimes it is possible to fill a gap with another
function of the appropriate length). Gaps have the obvious cost of occupying main memory without being of any di-
rect use. More subtly, if i-cache blocks are larger than one instruction, fetching the last instructions in a function will
frequently result in part of a gap being loaded into the i-cache as well, thereby wasting precious i-cache bandwidth.

We devised a tool employing simple heuristics that, based on a trace-file, computed a layout thatminimizes replace-
ment misses without introducing too many additional gaps. We call this approach micro-positioning because function
placement is controlled down to size of an individual instruction. I-cache simulation results were encouraging—it was
possible to reduce replacement misses by an order of magnitude (from 40, down to 4), while introducing only four or
five new cold misses due to gaps.

However, when performing end-to-end measurement, a much simpler layout strategy consistently outperformed
the micro-positioning approach. The simpler layout strategy achieves what we call a bipartite layout. Cloned func-
tions are divided into two classes: path functions that are executed once per path-invocation and library functions that
are executed multiple times per path. There is very little benefit in keeping path functions in the cache after they exe-
cuted, as there is no temporal locality unless the entire path fits into the i-cache. In contrast, library functions should
be kept cached starting with the first and ending with the last invocation. Based on these considerations it makes sense
to partition the i-cache into a path partition and a library partition. Within a partition, functions should be placed in
the order in which they are called. A sequential layout maximizes the effectiveness of prefetching hardware that may
be present. This layout strategy is so simple that it can be computed easily at runtime—the only dynamic information
required is the order in which the functions are invoked. In essence, computing a bipartite layout consists of applying
the well-known “closest-is-best” strategy to the library and path partition individually [PH90].

Establishing the performance advantage of this layout scheme relative to the micro-positioningapproach is difficult
since small changes to the heuristics of the latter approach results in large performance changes. The micro-positioning
approach usually performs somewhat worse than a bipartite layout and sometimes almost equallywell, but never better.
One may wonder why this is so. It is impossible to make any definite conclusions without detailed simulations of the
CPU and thememory system, but we have three hypotheses. First, micro-positioning leads to a non-sequential memory

11

access pattern because a cloned function is positionedwherever it fits best, that is where it incurs the minimum number
of replacement misses. It may be this nearly random access pattern in the micro-positioned code that causes the overall
slowdown. Second, the gaps introduced by the micro-positioning approach do cost extra i-cache bandwidth. We have
not found a single instance where aligning function entry-points or similar gap-introducing techniques would have im-
proved end-to-end latency. This is in stark contrast with the findings published in [GC90], where i-cache optimization
focused on functions with a very high degree of locality. So it may be that micro-positioning suffers because of the
i-cache bandwidth wasted on loading gaps. Third, the DEC 3000/600 workstations used in the experiments employ a
large second-level cache. It may be the case that the initial i-cache misses also missed in the second-level cache. On the
other hand, i-cache replacement misses are almost guaranteed to result in a second-level cache hit. Thus, it is quite pos-
sible that 36 replacement misses are cheaper than four or five additional cold misses introduced by micro-positioning.

Despite the unexpected outcome, this result is encouraging. In order to improve i-cache performance, it is not nec-
essary to compute an optimal layout—a simple layout-strategy such as the bipartite layout appears to be just as good
(or even better) at a fraction of the cost. We would like to emphasize that the bipartite layout strategy may not be appro-
priate if all the path and library functions can fit into the i-cache. If it is likely that the path will remain cached between
subsequent path-invocations, it is better to use a simple linear allocation scheme that allocates functions strictly in the
order of invocation, that is, without making any distinction between library and path functions. This is, unfortunately,
a recurrent theme for cache-oriented optimizations—the best solutionwhen the problem fits into the cache is radically
different from the best solution when the cache is a scarce resource.

3.3 Path-Inlining

The third latency reducing technique is path-inlining. This is an agressive form of inlining where the entire latency-
sensitive path of execution is inlined into a single function. As explained in Section 2.2.3, this is warranted only if the
inlined code is executed very frequently. Obviously, functions that are used repeatedly still should not be inlined since
it is better to preserve the locality of reference and also since otherwise the size of the resulting path could suffer from
exponential growth.

The advantage of path-inlining is that it removes almost all call overheads and greatly increases the amount of
context available to the compiler for optimization. For example, in the -kernel’s VNET protocol, output processing
consists of simply calling the next lower layer’s output function. With path-inlining, the compiler can trivially detect
and avoid such useless call overheads.

Path-inlining is relative easy as long as no indirect function calls are involved. This is usually the case for the
outbound side of network processing, although routing can complicate this case. On the inbound side, traditional net-
working code discovers the path of execution incrementally and as part of other protocol processing: a protocol’sheader
contains the identifier of the higher-level protocol. This higher-level protocol identifier is then mapped into the address
of the function that implements the appropriate protocolprocessing. In short, inboundprocessing is full of indirect func-
tion calls. To make path-inliningwork for this important case, it is necessary to assume that a packet will followa given
path, generate path-inlined code for that assumed path, and then at run-time, establish that an incoming packet really
will follow the assumed path. The last part requires employing a packet classifier [BGP 94, MJ93, YBMM93, EKJ95].

While path-inlining is easy in principle once indirect function calls have been taken care of, the practical problem is
quite difficult. None of the common C compilers are able to inline code across module boundaries (object files). There
are tools available that assist in doing so, but the ones that we experimented with were not reliable enough to be of
much use. While it should not be very difficult to add cross-module inlining to an existing C compiler, in our case it
appeared more effective to apply the require transformations manually.

12

We applied path-inlining to both the TCP/IP and the RPC stacks. In the TCP/IP case, this resulted in collapsing the
entire stack into two large functions: one for input processing and one for output processing. Roughly the same applies
for the RPC stack, although the split is slightly different: one function takes care of all the processing in protocols
XRPCTEST, MSELECT, VCHAN as well as the output processing in CHAN and the protocols below it, whereas the
other function handles all input processing up to the CHAN protocol.

4 Evaluation

This section evaluates the techniques presented in the previous section. If first describes the experimental methodology
and summarizes the test cases wemeasured, and then reports both end-to-endmeasurements and the results of a detailed
analysis.

4.1 Experimental Setup

The hardware consists of two DEC 3000/600 workstations connected over an isolated Ethernet. These workstations
use the 21064 Alpha CPU running at 175MHz [Sit92]. The memory system features split primary i- and d-caches of
8KB each, a unified 2MB second-level cache (backup-cache, or b-cache), and 64MB of main memory. All caches are
direct-mapped and use 32-byte cache blocks. For the i-cache, this implies that a cache block holds 8 instructions. The
d-cache is write-through and allocates on read misses only, while the b-cache is write-back and allocates on either miss
type. To improve write performance, the CPU uses a 4-deep write buffer. Each write buffer can hold one cache block.
The CPU is a 64-bit wide, super-scalar design that can issue up to two instructions per cycle. The memory system
interface is 128 bits wide.

To achieve maximum control over the experiments, the software was implemented in a minimal stand-alone ver-
sion of the -kernel [HP91]. The entire test runs in kernel mode (no protection domain crossings) and without virtual
memory. The kernel is so small that it fits entirely into the b-cache, and unless forced (as in some of the tests), there
are no b-cache conflicts. The protocol stack uses the protocols described in section 2. All code was compiled using a
version of gcc 2.6.0 that supports outlining.

The metrics that are ultimately of most interest are end-to-end latency, throughput, and CPUutilization. End-to-end
timingswere measured with a timer running at 1024Hz, yielding roughly a 1ms resolution. We verified that none of the
techniques negatively affected throughput, and in fact, they slightly improved throughput performance. For the sake
of brevity, we do not report any of the throughput results in this paper. To measure CPU utilization and to gain a better
understanding of the effects of each technique, we also collected execution traces and measured the execution time of
the traced code using the CPU’s builtin cycle counter.

4.2 Test Cases

Both the TCP/IP and RPC stacks were measured in several configurations. The configurations were selected to allow
us to gauge the effect of each technique. Measuring all possible combinations of the techniques would have been im-
practical, so we focused on the following six cases; we supply additional data where appropriate.

STD: This configuration includes none of the optimizations described in Section 3, but does include the 64-bit specific
improvements outlined in Section 2.

OUT: Like STD, but includes outlining.

13

CLO: Like OUT, but includes cloning (using the bipartite layout).

BAD: Like CLO, but cloning has been used to artificially worsen the i-cache behavior.

PIN: Like OUT, but includes path-inlining.

ALL: Like PIN, but cloning (bipartite layout) has been used to improve i-cache behavior. That is, this version uses all
techniques, and is expected to achieve the best performance.

It is important to note that path-inliningrequires running a packet classifier on incomingpackets since the optimized
code is no longer general enough to handle all possible packets. Currently, the best packet classifiers add an overhead
of about s per packet on the tested hardware platform [BGP 94, EKJ95]. However, to separate packet classi-
fication performance from the techniques under study here, no packet classifier was used. In this sense, the PIN and
ALL measurements should be interpreted as the performance obtained with a zero-overhead packet classifier. Using
path-inliningwithout a packet classifier works fine in the test environment since we used an isolated Ethernet network
that had no traffic other than the one generated by the test programs.

Latency was measured by ping-pongingpackets with no payload between a server and a clientmachine. Since TCP
is stream-oriented, it does not send any network packets unless there is data to be sent. Thus, the “no payload” case is
approximated by sending 1B of data per message. In both cases, this results in 64-byte frames on the wire since that
is the minimum allowed size for Ethernet. The end-to-end latency reported is the average time it took to complete one
roundtrip in a test involving100,000 roundtrips. For the TCP/IP stack, the optimizationswere applied to both the server
and client side. Since the processing on the server and client side is almost identical, the improvement on the server and
client sides is simply half of the end-to-end improvement. For the RPC stack, the optimizations were restricted to the
client side. On the server side, the configuration yielding the best performance was used in all measurements (which
happened to be the ALL version). Always running the same RPC server ensures that the reference point remains fixed
and a meaningful analysis of client-performance can be performed.

4.3 End-to-End Results

Table 4 shows the end-to-end results. The rows are sorted according to decreasing latency, with each row giving the
performance of one version of the TCP/IP and RPC stacks. The performance is reported in absolute terms as the mean
roundtrip time plus/minus one standard deviation, and in relative terms as the per cent slow-down compared to the
fastest version (ALL). For TCP/IP, themean and standard deviationwhere computed based on ten samples; five samples
were collected for RPC.

TCP/IP RPC
Version [s] [%] [s] [%]
BAD 498.8 0.29 +60.5 457.1 0.20 +25.1
STD 351.0 0.28 +12.9 399.2 0.29 +9.2
OUT 336.1 0.37 +8.1 394.6 0.10 +8.0
CLO 325.5 0.07 +4.7 383.1 0.20 +4.8
PIN 317.1 0.03 +2.0 367.3 0.19 +0.5
ALL 310.8 0.27 +0.0 365.5 0.26 +0.0

Table 4: End-to-end Roundtrip Latency

14

Not surprisingly, version BAD performs worst. With almost s per roundtrip, it is over slower than the
version CLO, which corresponds to a slowdown of more than 53%. As alluded to before, the two versions are identical
except for their cache behavior. On the client side of TCP/IP, version BAD suffers an additional 217 i-cache and 110
b-cache misses compared to version CLO, while the RPC client has an additional 233 i-cache and 14 b-cache misses.
Clearly, i-cache effects can have a profound effect on end-to-end latency.

As row STD shows, however, the standard -kernel version of the protocol stacks has much better cache behavior
than version BAD. That version is slower by only 12.9% for TCP/IP and by 9.2% for RPC. The reason that STD per-
forms relatively well is two-fold. First, it appears to be the case that the function usage pattern is such that laying the
functions out in the address space in a random manner yields an average performance closer to the best case than to
the worst case. Second, earlier -kernel experiences with direct-mapped caches have led to attempts to improve cache
performance by changing the link-order of the object files that form the kernel. Because of this manual tuning, the
STD version does not suffer from cache thrashing to start with. Keep in mind, however, that case BAD is possible in
practice; part of the motivation for this work is to provide automatic tools that avoid such pessimal layouts.

Row OUT indicates that outlining works quite well for TCP/IP—it reduces roundtrip time by about s when
compared to STD. Since both the client and the server uses outlining, the reduction on the client side is roughly half
of the end-to-end reduction, or s. In contrast, at a s savings, outlining makes a smaller difference to the RPC
stack. This is not surprising. This is because TCP consists of a few large functions that handle most of the protocol
processing (including connection establishment, tear-down, and packet retransmission), while RPC consists of many
small functions and exceptional events are often handled by calling another function. In a sense, the RPCcode is already
structured in a way that handles exceptional events outside the main line of the code. Nevertheless, outlining does
improve performance significantly in both cases.

In contrast, row CLO indicates that cloningworks better for RPC than for TCP. In the former case, the reduction on
the client side is about s whereas in the latter case the client-side reduction is roughly s. This makes sense
since TCP/IP absorbs most of its instruction locality in a few, big functions, meaning that there are few opportunities
for self-interference. The many-small-function structure of the RPC stack makes it likely that the uncontrolled layout
present in version OUT would lead to unnecessary replacement misses. Conversely, this means that there are good
opportunities for cloning to improve cache effectiveness.

Path-inlining also appears to work very well for the RPC stack. Since PIN is the same as version OUT with path-
inlining enabled, it is more meaningful to compare it to the outlined version (OUT), rather than the next best version
(CLO). If we do so, we find that the TCP/IP client side latency is about s and the RPC client side about
below the corresponding value in row OUT. Again, this is consistent with the fact that the RPC stack contains many
more—and typicallymuch smaller—functions than TCP. Just eliminating call-overheads through inlining improves the
performance of the RPC stack significantly.

Finally, row ALL shows the roundtrip latency of the version with all optimizations applied. As we expected, it is
indeed the fastest version. However, the client-side reduction for TCP/IP compared to PIN is only about s and the
improvement in the RPC case is a meager s. That is, based on end-to-end latency, separating library code from the
path-inlined code does not appear to be very important.

While end-to-end latency improvements are certainly respectable, they are nevertheless fractional on the given test
system. It is important to keep in mind, however, that modern high-performance network adaptors have much lower
latency than the LANCE Ethernet adaptor present in the DEC 3000 system [AMD]. To put this into perspective, con-
sider that a minimum-sized Ethernet packet is 64 bytes long, towhich an 8 byte long preamble is added. At the speed of
Ethernet (bps), transmitting the frame takes s. This is compounded by the relative tardiness of the LANCE

15

controller itself: we measured s between the point where a frame is passed to the controller and the point where
the “transmission complete” interrupt handler is invoked. The LANCE overhead of s is consistent with the s
figure reported elsewhere for the same controller in an older generation workstation [TL93]. Since the latency between
sending the frame and the receive interrupt on the destination system is likely to be higher, and since each roundtrip
involves two message transmissions, we can safely subtract s s from the end-to-end latency to get an
estimate of the actual processing time involved. For example, if we apply this correction to the TCP/IP stack, we find
that version BAD is actually 186% slower than the fastest version. Even version STD is still 40% slower than version
ALL.

Table 5 revisits the end-to-end latency numbers, adjusted to factor out the overhead imposedby the controller. While
the controller will obviously add some latency, one should expect RTTs on the order of s rather than the s
measured on our experimental platform.

TCP/IP RPC
Version [s] [%] [s] [%]
BAD 288.8 +186.5 247.1 +59.0
STD 141.0 +40.2 189.2 +21.7
OUT 126.1 +25.1 184.6 +18.7
CLO 115.5 +14.6 173.1 +11.3
PIN 107.1 +6.3 157.3 +1.2
ALL 100.8 +0.0 155.5 +0.0

Table 5: End-to-end Roundtrip Latency Adjusted for Network Controller

4.4 Detailed Analysis

The end-to-end results are interesting to establish global performance effects, but since some of the protocol processing
can be overlapped with network I/O, they are not directly related to CPU utilization. Also, it is impossible to control all
performance parameters at once. For example, the tests did not explicitly control data-cache performance. Similarly,
there are other sources of variability. For example, the memory free-list is likely to vary from test case to test case (e.g.,
due to different memory allocation patterns at startup time). While we cannot control these effects, we can measure
many of them. Towards this end, we collected twoadditional sets of data. Thefirst is a set of instructiontraces that cover
most of the protocol processing. The second is a set of fine-grained measurements of the execution time of the traced
code. The instruction traces are not complete since the tracing method did not allow us to trace interrupt handling; they
cover all protocol processing code except for the network driver interrupt handling and context switching.

4.4.1 Cache Statistics

With the execution traces and a simulator of the DEC 3000/600 memory hierarchy it is possible to compute the cache
statistics presented in Table 6. It lists the i-cache, d-cache, and b-cache performance as the number of misses to the
cache (columnMiss), the total number of accesses to the cache (column Acc), and the number of replacement misses
(column Repl). Notice that the middle three columns combine the d-cache and write-buffer performance since the d-

Numbers is this range have been reported in the literature for FDDI and ATM controllers.

16

cache is used on the read path and the write-buffer on the write path only. The write-buffer performs write-merging, so
a merged write is counted like a cache-hit, whereas a write that caused a write to the b-cache is counted as a cache-miss.

i-cache d-cache/wr-buffer b-cache
Miss Acc. Repl Miss Acc Repl Miss Acc Repl

BAD 700 4718 224 459 1862 31 863 1390 110
STD 586 4750 72 492 1845 56 800 1286 0
OUT 547 4728 69 462 1841 40 731 1183 0

TCP/IP CLO 483 4684 27 455 1862 34 678 1074 0
PIN 484 4245 66 406 1668 27 630 1015 0
ALL 414 4215 10 401 1682 28 596 913 0

BAD 721 4253 176 556 1663 19 995 1544 14
STD 590 4291 31 547 1635 14 1004 1379 0
OUT 542 4257 26 556 1629 19 951 1313 0

RPC CLO 488 4227 7 547 1664 13 845 1213 0
PIN 402 3471 14 453 1310 19 694 972 0
ALL 374 3468 0 450 1330 13 662 931 0

Table 6: Cache Performance. Miss: number of accesses thatmissed in the cache. Acc: Total number of cache accesses.
Repl: Number of replacement misses.

The rightmost column in the table shows that, except for the BAD versions, none of the kernels cause replacement
misses in the b-cache. Since the entire kernel is small enough to fit into the b-cache, this means that all code executes
out of the b-cache unless there are conflicts with data accesses performed outside of the traced code.

A more important observation is that the cache simulations confirm that cloning with a bipartite layout does indeed
help avoid i-cache replacement misses. For example, applying cloning to version OUT reduced the number of i-cache
replacement misses in the TCP/IP stack from 69 to 27. Interestingly, path-inlining alone does not get rid of many re-
placement misses. The table shows that the PIN version still suffers from 66 such misses. This is because there is
nothing that prevents library code from clashing with path code. The RPC case is analogous to TCP/IP. In fact, the sav-
ings are even larger: compared to version OUT, cloning alone reduces the number of replacement misses by a factor
of 3.7, and together with path-inlining, not a single replacement miss remains.

4.4.2 Processing Time Measurements

We now consider the execution time of the traced code. Together with the length of the instruction trace, we can deter-
mine the average number of cycles per instruction (CPI) by simply multiplying the execution time by the CPU clock
frequency (MHz) and dividing the product by the trace length. Furthermore, feeding the trace into a CPU simu-
lator, we can compute the CPI of the traced code assuming a perfect memory system. This is usually referred to as
the instruction CPI (iCPI). Subtracting the iCPI from the CPI yields the memory CPI (mCPI)—the average number
of cycles that an instruction stalls waiting for the memory system. This data is shown in Table 7. Column shows
the measured processing time in micro-seconds. As before, this is shown as the sample mean plus/minus the sample
standard deviation. The column labelled Length gives the trace length as an instruction count. Columns mCPI and
iCPI are the memory and instruction CPI values, respectively.

17

TCP/IP RPC
[s] Length mCPI iCPI Time [s] Length mCPI iCPI

BAD 167.0 1.75 4718 4.58 1.61 154.2 0.47 4253 4.66 1.69
STD 89.6 0.34 4750 1.58 1.72 85.1 0.53 4291 1.69 1.78
OUT 84.1 0.12 4728 1.50 1.61 81.0 0.16 4257 1.65 1.68
CLO 77.2 0.36 4684 1.28 1.61 71.0 0.29 4227 1.25 1.69
PIN 69.9 0.48 4245 1.31 1.57 57.7 0.18 3471 1.25 1.66
ALL 66.1 0.48 4215 1.17 1.57 49.2 0.12 3468 0.81 1.67

Table 7: Protocol Processing Costs

Looking at the iCPI columns, we find that both the TCP/IP and RPC stacks break down into three classes: the
standard version has the largest iCPI, the versions using outlining (BAD, OUT, CLO) have the second largest value,
and the path-inlined versions have the smallest value. This is expected since the code within each class is identical.
Since the CPU simulator adds a fixed penalty for each taken branch, the decrease in the iCPI as we go from the outlined
versions to the standard version can be attributed to the reduction in taken branches. Interestingly, outlining improves
iCPI by almost exactly 0.1 cycles for both protocol stacks. This is a suprisingly large reduction considering that path-
inlining achieves a reduction of 0.04 cycles at the most. We expected that the increased context available in the inlined
versions would allow the compiler to improve instruction scheduling more. It is, however, possible that a compiler
with a better instruction scheduler would have achieved a larger iCPI reduction.

As the mCPI columns show, the CPU spends well above 1 cycle per instruction waiting for memory (on average).
The only exception is version ALL in the RPC stack, where mCPI suddenly drops to 0.81; we return to this later. Com-
paring the mCPI values for the various versions, we find that the proposed techniques are rather effective. Both proto-
col stacks achieve a reduction of more than 3.9 when going from version BAD to version ALL. Even when comparing
version ALL to STD we find that the latter has an mCPI that is more than 35% larger. In terms of mCPI reduction,
cloning with a bipartite layout and path-inlining are about equally effective. The former is slightly more effective for
the TCP/IP stack, but in the RPC case, both achieve a reduction of 0.4 cycles per instruction. Combining the two tech-
niques does have some synergistic effects for TCP/IP since version ALL has the smallest mCPI of all versions. The
additional reduction compared to outlining or path-inlining alone is small though, on the order of 0.11 to 0.14 cycles
per instruction.

4.4.3 Performance Improvement Comparison

Weare now in a positionwhere we can compare the end-to-end resultswith the processing execution times and the trace-
based cache simulation results. First, we would like to verify that the outlining and cloning improvements are really
primarily due to i-cache rather than d-cache effects. The fact that the mCPI values are much greater than 0 indicates
that the memory system is the bottleneck. As all versions run out of the b-cache (except for the BAD versions), the
processing time improvement is dominated by changes in the number of b-cache accesses (column in Table 8).
Thus, we would like to know the percentage of b-cache access reduction due to the i-cache, as opposed to the d-
cache/write-buffer. If the number of b-cache accesses is reduced purely due to the i-cache, the percentage would be

In computing this percentage, it is important to keep in mind that the number of b-cache accesses due to the i-cache is given by the number of
b-cache accesses minus the number d-cache/write-buffer misses. This is typically greater than the number of i-cache misses since a miss may lead
to another i-cache block being prefetched, thus resulting in two b-cache accesses.

18

100%. If the reduction is purely due to the d-cache/write-buffer, it would be 0%. A value greater than 100% indicates
that d-cache/write-buffer performance got worse, but that the i-cache was able to compensate for those losses so that,
overall, the number of b-cache access was still reduced.

Table 8 lists this percentage for both the TCP/IP and RPC protocol stack in the respective column labeled . Notice
that in all but one case more than 90% of the b-cache access reductions obtained through outlining and cloning are due
to the i-cache. The exception is where outlining is applied to the standard -kernel version of the TCP/IP stack. As
shown in row STD OUT, the i-cache can take credit for only 71%of the reduction in b-cache accesses, but in all other
cases, d-cache effects did not lead to significantly overestimating the benefit of a technique.

TCP/IP RPC

[%] [s] [s] [1] [1] [%] [s] [s] [1] [1]
BAD CLO 97 86.7 89.8 316 110 99 74.0 83.2 331 14
STD OUT 114 7.4 5.5 103 0 71 4.6 4.1 66 0
OUT CLO 91 5.3 6.9 109 0 94 11.5 10.0 100 0
OUT PIN 70 9.5 14.2 168 0 67 27.3 23.3 341 0
PIN ALL 93 3.2 3.8 102 0 95 1.8 8.5 41 0

Table 8: Comparison of Latency Improvement

Next, we can compare the end-to-end latency improvements with the improvements in processing time. This is
shown in columns and in Table 8. The data shows that the improvements are generally consistent with each
other. The end-to-end improvement may be bigger than the processing time improvement if portions of the untraced
code executed faster as well. The converse can occur if, for example, most of the improvement occurs in a section of
the code whose execution overlaps network communication. The only place where these figures deviate significantly is
in the RPC case, when going from the path-inlinedversion (PIN) to the version that was also cloned (ALL). In this case,
the processing time improvement is s, but the observed end-to-end improvement is only s. While attempting
to resolve this discrepancy, we found that only slight changes to the code led to processing time improvements much
closer to the observed end-to-end numbers. We suspect that throughbad luck, most of the untraced code collided in one
part of the i-cache, leaving most of the traced code cached over multiple activations. Thus, the traced code executed
almost entirely out of the i-cache, whereas the untraced code experienced many replacement misses. Unfortunately,
we cannot verify this hypothesis since none of the available measurement techniques are completely free of intrusion.
To be on the safe side, the discussions in this paper consider the end-to-end results as the relevant ones.

Finally, we can cross check whether the time improvements are consistent with the reductions in the number of b-
cache accesses. If we divide the processing time improvements () in the second throughfifth row by the difference
in the number of b-cache accesses () we get an average b-cache latency in the range from 5.6 to to 17.5 cycles.
(This ignores the RPC improvement for the PIN ALL case, and uses a conversion factor of cycles/ s.) These
values appear reasonable considering that a b-cache access takes 10 cycles to complete. It would be unrealistic to expect
exactly 10 cycles per miss since this simplemodel ignoresmany of the finer aspects of the DEC 3000’smemory system.
Also, we cannot apply the same reasoning to the BAD CLO improvements since we did not measure how many of
the b-cache blocks remain cached across multiple invocations of the path. Nevertheless, the table includes the data
for the sake of completeness. Notice that the PIN ALL change in the RPC stack yields an s processing time
improvement, but the difference in the number of b-cache accesses is only 41. Clearly, the improvement cannot be

19

due to the decrease in the number of b-cache accesses since that would mean that each access cost on the order of 36
cycles—almost four times the theoretical latency. This supports the hypothesis that the processing time improvement
is due to effects outside of the traced code.

4.4.4 Outlining Effectiveness

There are several ways to evaluate the effectiveness of outlining. For example, Table 7 shows that outlining reduces
processing times by about 5% compared to the standard version. Another measure is the percentage of instructions
that remain unused in each cache block. Those instructions take up i-cache bandwidth without ever being used by the
latency-critical path of execution. Table 9 indicates that outlining reduces the amount of wasted i-cache bandwidth sig-
nificantly. Both the TCP/IP stack and the RPC stack originally left about 21%, or 1.8 instructionsout of 8, unused. With
outlining, only about 1.3 instructions per block are not used. This is a respectable improvement, especially considering
that outliningwas applied conservatively.

Without Outlining With Outlining
i-cache i-cache
unused Size unused Size

TCP/IP 21% 5841 15% 3856
RPC 22% 5085 16% 3641

Table 9: Outlining Effectiveness

Outlining is even more dramatic when measuring the amount of code that was outlined. In Table 9, the columns
labeled Size show the static code size (in number of instructions) of the latency critical path before and after outlining.
In the TCP/IP stack, about 1985 instructionscould be outlined, corresponding to 34%of the code. Similarly, in the RPC
stack 28% of the 5085 instructions could be outlined. Thus, we consider outlining a useful technique not only because
of its direct benefits, but primarily as a means to greatly improve cloning. As cloning works at the function level,
minimizing the size of the main-line code—which is the only part that is cloned—improves flexibility and increases
the likelihood that the entire path will fit into the cache.

5 Concluding Remarks

Network designers have known for a long time that memory bandwidth plays a critical role in end-to-end network
throughput rates. This paper argues that memory bandwidth also has a measurable impact on protocol latency, and it
describes three techniques that can be applied to network code to improve this situation. These techniques are primarily
targetted at improving the number of memory cycles required by each instruction; we also described a collection of
techniques that can be used to simply reduce the number of instructions required for each packet.

Beyond this basic result, there are two important things to take away from this work. First, even though case BAD
reported in the results corresponds to a pessimally configured system, sub-optimal configurations are possible in prac-
tice. For example, we measured themCPI of theDECUnixTCP/IP stack to be 2.3, which is significantlyworse than the
1.17 mCPI measured in our optimally configured system. One contribution of this work is a set of compiler-based tech-
niques that can be applied to any system to ensure that such bad cases do not happen. If nothing else, these techniques
improve the predictability of the system. Second, the impact of mCPI reducing techniques is becoming increasingly

20

important as the gap between processor and memory speeds widen. For example, this research was conducted on a
175MHz Alpha-based processor with a 100MB/s memory system. We now also have in our lab a low-cost 266MHz
processor with a 66MB/s memory system.

References

[AMD] AMD. Am7990: Local Area Network Controller for Ethernet.

[BGP 94] Mary L. Bailey, Burra Gopal, Michael A. Pagels, Larry L. Peterson, and Prasenjit Sarkar. PathFinder: A
pattern-based packet classifier. In Proceedings of the First Symposium on Operating Systems Design and
Implementation, pages 115–123, 1994.

[CJRS89] David D. Clark, Van Jacobson, John Romkey, and Howard Salwen. An analysis of TCP processing over-
heads. IEEE CommunicationsMagazine, 27(6):23–29, June 1989.

[DBRD91] Richard P. Draves, Brian N. Bershad, Richard F. Rashid, and Randall W. Dean. Using continuations to
implement threadmanagement and communication in operating systems. InProceedings of the Thirteenth
ACM Symposium on Operating System Principles, pages 122–36. Association for ComputingMachinery
SIGOPS, October 1991.

[DEC93] DEC. TURBOchannel: Hardware Specification. Digital Equipment Corp., 1993. Order number EK-
369AA-OD-007B.

[EKJ95] Dawson R. Engler, Frans Kaashoek, and James O’Toole Jr. Exokernel: An operating system architecture
for application-level resource management. In Proceedings of the Fifteenth ACM Symposium on Operat-
ing System Principles, pages 251–266, 1995.

[GC90] Rajiv Gupta and Chi-Hung Chi. Improving instruction cache behavior by reducing cache pollution. In
Proceedings Supercomputing ’90, pages 82–91. IEEE, 1990.

[Hei94] R. R. Heisch. Trace-directed program restructuring for AIX executables. IBM Journal of Research and
Development, 38(9):595–603, September 1994.

[HP91] Norman C. Hutchinson and Larry L. Peterson. The x-kernel: An architecture for implementing network
protocols. IEEE Transactions on Software Engineering, 17(1):64–76, January 1991.

[Jac93] Van Jacobson. A high performance TCP/IP implementation. Presentation at the NRI Gigabit TCP Work-
shop, March 18th–19th 1993.

[KP93] Jonathan Kay and Joseph Pasquale. The importance of non-data touching processing overheads in
TCP/IP. In Proceedings of SIGCOMM ’93 Symposium, volume 23, pages 259–268, San Fransico, Cali-
fornia, October 1993. ACM.

[Mas92] HenryMassalin. Synthesis: An Efficient Implementationof FundamentalOperating System Services. PhD
thesis, Columbia University, New York, NY 10027, September 1992.

[McF89] Scott McFarling. Program optimization for instruction caches. In Third International Conference on
Architectural Support for Programming Languages and Operating Systems, pages 183–191. ACM, April
1989.

21

[MJ93] Steven McCanne and Van Jacobson. The BSD packet filter: A new architecture for user-level packet
capture. In 1993 Winter USENIX Conference, San Diego, CA, January 1993. USENIX.

[Mog92] Jeffrey C. Mogul. Network locality at the scale of processes. ACM Transactions on Computer Systems,
10(2):81–109, May 1992.

[OP92] Sean W. O’Malley and Larry L. Peterson. A dynamic network architecture. ACM Transactions on Com-
puter Systems, 10(2):110–143, May 1992.

[OPM94] S. W. O’Malley, T. Proebsting, and A. B. Montz. USC: A universal stub compiler. In Proceedings of
SIGCOMM ’94 Symposium, pages 295–306, London, UK, August 31st – September 2nd 1994.

[PH90] K. Pettis and R. C. Hansen. Profile guided code positioning. In Proceedings of SIGPLAN ’90 Conference
on Programming LanguageDesign and Implementation, volume 25, pages 16–27,White Plains, NY, June
1990.

[Pos81a] J. Postel. RFC-791: Internet Protocol. Available via ftp from ftp.nisc.sri.com, September 1981.

[Pos81b] J. Postel. RFC-793: Transmission Control Protocol. Available via ftp from ftp.nisc.sri.com, September
1981.

[Sit92] Richard L. Sites, editor. Alpha Architecture Reference Manual. Digital Press, Burlington,Massachusetts,
1992. Order number EY-L520E-DP.

[Sta92] Richard M. Stallman. Using and Porting GNU CC, 1992. Manuscript provided by the Free Software
Foundation to document gcc.

[TL93] Chandramohan A. Thekkath and Henry M. Levy. Limits to low-latency communication on high-speed
networks. ACM Transactions on Computer Systems, 11(2):179–203, May 1993.

[YBMM93] Masanobu Yuhara, Brian N. Bershad, Chris Maeda, and J. Eliot B. Moss. Efficient packet demultiplexing
for multiple endpoints and large messages. July 1993.

22

