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ABSTRACT

A variety of historically-proven computer languages have recently been extended to sup-
port paralel computation in a data-parallel framework. The performance capabilities of
modern microprocessors have made the “ cluster-of-workstations’” model of parallel com-
puting more attractive, by permitting organizations to network together workstations to
solve problems in concert, without the need to buy specialized and expensive supercom-
puters or mainframes.

For the most part, research on these extended |anguages has focused on compile-time
analyses which detect data dependencies and use user-provided hints to distribute data and
encode the necessary communi cation operations between nodesin amultiprocessor system.
These analyses have shown their value when the necessary hints are provided, but require
moreinformation at compile-timethan may be availablein large-scal e rea -world programs.

This dissertation focuses on elements important to an efficient and portable imple-
mentation of runtime support for data-parallel languages, to the near absence of any re-
liance on compile-time information. We consider issues ranging from data distribution and
global/local address conversion, through a communication framework intended to support
modern networked computers, and optimizations for a variety of communications patterns
common to data-parallel programs. The discussion is grounded in a compl ete implementa-
tion of adata-parallel language, C*, on stock workstations connected with standard network
hardware. The performance of the resulting systemisevaluated on aset of eight benchmark
programs by comparing it to optimized sequential solutionsto the same problems, and to the
reference implementation of C* on the Connection Machine CM5 supercomputer. Our im-
plementation, denoted pC* for “portable C*”, generally performs within afactor of four of
the optimized sequential algorithms. In addition, the optimizations developed in this dis-
sertation permit a cluster of twelve workstations connected with Ethernet to outperform a
sixty-four node CM5 in absolute performance on three of the eight benchmarks.

Though we specifically addressthe issues of runtime support for C*, the material inthis
dissertation applies equally well to avariety of other paralel systems, especialy the data-
parallel features of Fortran 90 and High Performance Fortran.



CHAPTER 1
SO WHAT'STHISALL ABOUT

It seems disjointed and jumps around like water on a griddle, but it all comes
together, so be patient.

— Harlan Ellison, “Revealed at Last! What Killed the Dinosaurs! And
You Don’t Look So Terrific Yoursalf.”

The calculation capability of computer systems has increased by orders of magnitude
over their history, to the point where modern workstations, even personal notebook comput-
ers, have performances that match those of state-of-the-art mainframe computers of aslittle
asten years ago (Hennessy & Patterson, 1990). Unfortunately, thisincreasein the ability of
single-processor computers to handle larger problem sizes has only whetted the appetite of
scientistsand researchers who areinterested in problemsthat would require monthsor years
of processing to solve. As software and hardware technology matures, interest and accep-
tance of parallel computation—Iinking many single processors together to solve a problem
in concert—has increased.

Some software mechanism must be avail ablefor programmersto take advantage of these
paralel hardware systems. Three primary techniques have been considered:

e Modify the compilation systems for standard sequential languages to detect opportuni-
tiesfor exploiting parallelism, and generate code which takes advantage of those oppor-
tunities;

e Develop new languages which have explicit constructs for parallel computation, such
as distribution directives, synchronization primitives, and communication routines; and

e Extend current sequential languages with constructs which provide their compilerswith
information necessary to generate efficient code that runs on a parallel system.

Thefirst two techniques received the most attention in early work on parallel systems. Pre-
vious data-dependence anal yses devel oped to permit vectorization optimizations on vector-
based supercomputers such asthe Cray-2 could be extended to allow distribution of compu-
tation amongst separate processors (Banerjee, 1988). An ability to detect parallelism from
previously-written “ dusty-deck” programswould capitalize on alarge investment in extant
code. However, aconsensus seemsto be emerging that thesetechniques areinherently ham-
pered by the fact that such codes were usualy written with a particular system (hardware
and/or software) in mind, and the opportunitiesfor parallelization are often so deeply hidden
that they cannot be effectively extracted (Adve, Carle, Granston, Hiranandani, Kennedy,
Koelbel, Kremer, Mellor-Crummey, Warren, & Tseng, 1994).

2



CHAPTER 1. So What's This All About 3

The second method provides the programmer with an ability to control the computa-
tion completely, taking full advantage of the underlying parallel system. It is now acknowl-
edged, though, that these parallel languages tend to result in programs that are hard to un-
derstand, difficult to debug, and often limited to a particular concept of a parallel system,
such as uniform shared memory or distributed memory machines (Harris, Bircsak, Bolduc,
Diewald, Gae, Johnson, Lee, Nelson, & Offner, 1995).

More recently, attention has turned to the third method. Proposed extensionsto proven
languages such as C (American National Standards Institute, 1989; Numerical C Extensions
Group of X3J11, 1994) and Fortran (Adams, Brainerd, Martin, Smith, & Wagener, 1992;
High Performance Fortran Forum, 1993) alow a programmer to express particular algo-
rithms or operationsin a high level form which the compiler can use to translate into code
that implements the operations in an effective way on its target hardware. In addition, the
backwards compatibility inherent from the underlying language means that investmentsin
large software projects are not totally lost: core routines can be replaced with new code us-
ing the parallel features, whilethelesscritical (and often larger) support code can be reused.

Two paradigms for how parallelism can be expressed are data parallelism (Hillis &
Steele Jr., 1986) and control parallelism. The control-parallel paradigm, generally embod-
iedinlanguageswith explicit parallel constructs, requiresthe programmer to distributework
herself, and take responsibility for starting and synchronizing worker processes, and ensur-
ing that each computing processisgiven the datait needs beforeit beginstowork. Inadata-
paralel implementation, parallelism is implicit in the distribution of large data structures
amongst many computing devices, each of which isresponsible for performing operations
on a subset of the entire problem. While a control parallel implementation provides fine
control of the computation (in essence, an “assembly language” of parallel programming),
dataparallel systemsare generally more easy to program, and are capable of expressing ef-
fective solutionsto awide variety of problems (Fox, 1988).

Two significant extensionsfor parallel programming support the data-parallel paradigm.
The most recent standard for Fortran, denoted Fortran 90, contains support for operating
on whole arrays without an enclosing DO loop: conceptually, the specified operation is per-
formed on each element of the array simultaneously, and it is up to the Fortran 90 system
to ensure that this is done correctly. Similar but more extensive support for data-parallel
programming is in High Performance Fortran (HPF Forum, 1993). Many of the data par-
allel features in these languages are based on experience with an extension to C, called C*
(pronounced “see-star”), developed at Thinking Machines Corporation (Frankel, 1991) to
support their massively-paralel SIMD system, the CM2. C* has also birthed an alternative
proposed data-parallel C, DPCE (Numerical C Extensions Group of X3J11, 1994). A va
riety of current research projects are investigating mechanisms that support these language
extensions.

Optimizationsfor a parallel system can be implemented at three different levels:

e Control and dataflow analysisin the compiler can improve on the programmer’s nota-
tions or detect special cases which can be handled more efficiently than a general case.
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If communication patterns can be derived, part of the work involved in distributing data
can be done at compile time, making the execution more efficient.

e Thesupport systeminvoked at runtime, i.e. themechani smsused to communicateval ues
between nodes or implement control operations that are not resolvable at compiletime,
can be optimized for thetypes of operationsexpected inthelanguage, or again to support
specia cases that can be detected either at compile time or during execution.

e At alower level, the runtime system can be optimized for a particular host platform,
by providing support within the operating system or hardware for fast communications.
Research in this area a so applies to general problemsin networked computing.

While many research programs are devoted to compiletime analyses (Tseng, 1993; Bozkus,
Choudhary, Fox, Haupt, Ranka, & Wu, 1994), this approach can fail if the source program
does not provide adequate information for the analyses to find opportunitiesto exploit par-
alelism.

In this dissertation, we focus on optimizations that can be performed solely at runtime,
with no or minimal compiler support. We consider issues ranging from data distribution
and runtime data structures, to a framework for portable inter-node message transmission
and mechanismsfor efficient communication of data between nodeswith a variety of com-
munication patterns. Because it is difficult to determine the synergistic effect of particular
optimizations which are clearly desirable when only kernel computations are considered,
we frame the approach described here in the context of a portable implementation of C*
specifically intended to support alarge extant image processing system developed at Oasis
Research Center, which was originally developed to run on the Connection Machine CM5
system. The agorithms in this system are required to work on real-world programs and
data sets, a constraint which has had a significant effect on the level of detail necessary to
implement a complete and reliable runtime system. For example, image data such as that
available from the Landsat satellite imaging system is often measured in gigabytes; asingle
multi-spectral Landsat image will be over 200MB (Richards, 1994). The agorithms often
use a hierarchical view of data which narrows the focus of operations to a data-dependent
subset of animage (Turner & Turner, 1994), which means that we will not know until run-
time what size of data we will be working on in a particular routine, making compile-time
analysesineffective.

pC* (“portable C*”) is a complete implementation of the C* language, designed to be
fully compatible with C* as implemented on the Connection Machine CM5, from core lan-
guage up to and including the complex computation-and-communication routines in the
TMC cscomm library. The system was designed primarily to support stock workstations
networked with standard interconnects such as Ethernet, while retaining a high degree of
portability which we have proved by running the system on avariety of symmetric and dis-
tributed multiprocessors. We make certain basi c assumptionsabout the type of interconnec-
tion mechanism supported, and show how these assumptions percolate through the entire
system to alow avariety of optimizationsin the runtime system and opportunitiesto easily
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support compile-time analyses. The intent of this dissertation is to support the following
thesis:

Theperformance of runtime support routinesisfundamental to the performance
of aparallel language/system: no compiler optimization can compensatefor in-
efficient communications or memory operations. Carefully crafted runtime al-
gorithms can yield adequate performance on their own, and independently pro-
vide support for compiler-assisted optimizations. Adequate performance can
be achieved in a portable manner, though OS support for buffers and direct
hardware control could improve this performance further.

We support thisthesisin the following chapters.

Chapter 2 We describe the C* language, focusing on the features of particular significance
to the runtime system: the paradigm with which data is viewed and the type of communi-
cations operations that are performed in programs, especially related to image processing.
We go on to describe the genesis of the pC* system from the C* compiler developed at the
University of New Hampshire by Phil Hatcher and his group, and describe its current sta-
tus. We close with a description of how the material in this dissertation relates to and can
support other data-parallel languages and systems, such as Fortran 90.

Chapter 3 In this chapter we examine in detail issues relating to data distribution, includ-
ing runtime structures and the effect on performance of address trandlation between the pro-
grammer’s global view and the runtime system’s internal view. We show how translation
techniquesallow acache sensitive data access pattern when straightforward non-contiguous
access would result in very bad performance. We conclude with an examination of how
uniform use of this access pattern permits an optimized encoding of afundamental C* con-
struct, context, in away that reduces memory usage by up to 99%, and run time by as much
as 25-50% on common programs.

Chapter 4 We consider the design of acommunications framework in the context of there-
guirements of our system: correctness, portability, and efficiency. We outline a three-level
hierarchy which isolates system-specific routines to asmall set of well-defined and limited
procedures, using aset of intermediate routinesto handleissuesof buffering and unrestricted
communicationsin a machine-independent fashion, and supporting language-specific com-
plex high-level communication operations. In the context of this framework, we examine
avariety of agorithmsto implement one-to-all broadcast and all-to-all reductions on both
point-to-point and multicast protocols over Ethernet, and how the effect of imposing relia-
bility requirementsat user-level ontop of an Ethernet-based UDP implementation can make
use of hardware broadcast not as beneficial as one would normally expect.

Chapter 5 We use the intermediate routines of the framework described in the previous
chapter to implement an efficient mechanism for moving data between nodes in an arbi-
trary fashion (“irregular communication” in the distributed-processing literature). We aso
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examine a special type of communication pattern, common in certain image processing al-
gorithms, and show how aheuristic can detect the pattern at runtime at little-to-no cost, and
enable a variant communication implementation which can save up to 85% of the runtime
by reducing communication volume.

Chapter 6 We examine how a simple mechanism can be used to emul ate multi-dimensional
loops at runtime without knowing the number of loopsthat will be needed. The mechanism
isused to develop amethod of quickly forming acommon type of C* context using minimal
compiler support. More importantly, it can be used to implement a general mechanism for
grid-based communi cations, operating on data of arbitrary rank and dimension, with simul-
taneous shifts in multiple directions. The resulting general implementation is competitive
with optimized implementations of special cases of grid communications, and is orders of
magnitude faster than a straightforward general implementation.

Chapter 7 In this chapter we use a set of eight benchmark programs to measure the effec-
tiveness of particular optimizations described in previous chapters, and the pC* system as
awhole. We contrast the system on its native platform (twelve networked Sun SPARC-
Stations connected with Ethernet) with optimized C solutions of the same algorithms, and a
different portable C* implementation. We show portability by giving performance numbers
on asymmetric multiprocessor (a Silicon Graphics 4D340), and the distributed memory In-
tel Paragon. We al so compare the native platform performance of pC* with the performance
of the reference implementation of C* on the Connection Machine CM5, showing that the
optimizations in the previous chapters permit pC* to solve three of the eight benchmarks
faster in real time than a sixty-four node, multi-million dollar supercomputer.

Chapter 8 We review the major contributions of the dissertation.

A hallmark of thiswork isitsreliance on detailed experimental evaluation at all phases
of development, to help build an understanding of the accuracy of our initial perceptions
of an issue as important or unimportant. Within this dissertation, we often present initial
and intermediate results along with our final decisions, so the reader has an opportunity to
follow the development of our ideas and, we hope, build on her own intuitions. We express
some code and data structures using a pseudo-code very similar to C (American National
Standards Institute, 1989). These excerpts should not be taken as the only way to express
an idea—in fact, the implementation in pC* usually differs for mundane reasons—but do
often contain some nugget which has guided our path to a particular solution.

For the reader who is frustrated by our “whodunnit” approach, we provide a very short
summary at the start of each chapter, which outlinesits results. In conjunction with thein-
dex, the summaries can be used to jump to areas of particular interest. However, the bulk
of the text is intended to address the question of “why” at least as much as it presents our
conclusions of “what” and “how”.

The core system described in this dissertation, aswell as reports of subsequent research
based on it, may be made available, at no charge, to interested researchers. To inquire about
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the current availability of pC*, send electronic mail to pcstar-info@0asisRC.CON.

\ersion: overview.tex,v 1.8 1996/04/09 02:06:52 pab Exp



CHAPTER 2
INTRODUCTION TO C* AND PC*

If we believe in data structures, we must believe in independent (hence simul-
taneous) processing. For why else would we collect items within a structure?
Why do we tolerate languages that give us the one without the other?

— Alan J. Perlis, Epigram #68

Before describing the details of the implementation of data parallel languages, it is
necessary to understand the basic features of such a programming model. In this
chapter we present the fundamental features of C* (Thinking Machines Corpora-
tion, 1993; Frankel, 1991), one of the more mature data parallel languages, and in-
clude a discussion of the aspects of C* that make it difficult to use compiler-level
optimizations for many real-world programs. We continue with a discussion of the
genesis of the pC* system—the framework used in the remainder of the thesis—and
briefly describe its current status. We conclude with a discussion of the relationship
between C* and other data parallel 1anguages, and the applicability of our work to
these languages.

2.1 Overview of C*

C* is a data-parallel language with extensions to ANSI C (American National Stan-
dards Institute, 1989), designed to support single-instruction multiple-data (SIMD) com-
puters such as Thinking Machines Corporation’s CM2. We will present here a very brief
overview of the fundamental concepts of C*; this, in conjunction with more detailed exam-
ples throughout the text, should provide sufficient information for the reader to understand
the issues involved in implementing the class of languages represented by C*. Readersin-
terested in pursuing the syntax and semantics of the language in more depth are directed to
(Frankel, 1991; Thinking Machines Corporation, 1993; Numerical C Extensions Group of
X3J11, 1994).

211 Shapeand Parallel Execution

Parallelism in C* is supported by extending C with shapes, which are similar to (multi-
dimensional) arrays. Shapes are named objects, with rank or number of dimensions, and
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dimension or extent along each axis. Examples of shape declarations include:

shape [10] S1;
shape [20][30] S2;

S1 is declared to be a one-dimensional shape with 10 elements or positions, while S2 isa
two-dimensional shape with atotal of 600 positions. We use dimension both in the sense of
the length of a particular axis, and in general to refer to the combined information of rank
and all dimensions; the intended reading should be clear from context.

In C* terminology, ascalar typeis any standard C data type, including aggregate types
such as structs, but not arrays. A parallel typeisastandard C data type augmented by a
shape. Conceptually this denotes an object with asingle scalar value at each positionin the
shape. For example, the declarations:

int:S1 i1, ilb;
float:S2 f2;

following the above shape declarations cause i1 and i1b to be parallel integers—bundled
groups of 10 integers treated as single objects—and £2 to be a paralel float bundling 600
floats as asingle object. We use “parallel variable” (or object or value, as appropriate, and
often shortened to “pvar”) to refer to the group of scalarstogether with their shape. We will
generally use the term position to refer to an individual element in a shape, and element to
refer to a particular individual scalar value in a paralel value; that is, position names an
address, while element names a scalar value at an address. The distinction is not rigorous,
however, and for prosaic convenience “element” will sometimes be used with the sense of
“position”.

C* isadata-parallel language, which meansthat parallelismisachieved by operating on
program datain parallel. The standard C operators are extended to work on parallel objects
with the expected semantics: each position in the shapeis acted on separately and, concep-
tually, concurrently by different processors. We will use the notion of avirtual processor
associated with each position to describe the semantics of C*. With the above declarations,
the code fragment:

with (S1) {
ilb = 2 = iil;
}

instructs each virtual processor to assign to the element of i1b that it owns twice the value
of the element of i1 that it owns. To ensure that such concurrent execution iswell defined,
C* uses the concept of current shape, introduced syntactically by the with construct used
above, and requires that all parallel operands occurring in an expression be of the current
shape. If ascalar value appearsin aposition which requiresaparalel value, aswith the con-
stant 2 above, it isimplicitly replicated in each virtual processor to satisfy the requirement.
The keyword current yields a shape-valued expression which names the current shape,
allowing access to shape information inside functions called within with bodies.
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In addition to the source specification of shapesexhibited above, C* aso permits shapes
to be defined at runtime. Both the dimensions and the rank may be fixed at runtime, by
calling a function which allocates a shape object. The code sequence:

shape S;
int * dims;

allocate_shape (&S, n, dims);

defines S to be an n-dimensiona shape, where the extent of axis 0 is defined by dims [0],
axis 1 by dims[1], etc. Following this, the new shape can be used in code just like any
other:

with (S) {
int:current iv;
iv = ...

Asaresult, it may not be possiblefor the compiler to determine the number of positions of
the shape, or even its rank, at the time the program is compiled. Thisisin stark contrast
to languages such as Fortran, where at least the rank of a distributed array (analogousto a
C* pardld variable) is known at compile time; most research compilers also assume full
information about array boundsisavailable, if their most powerful techniques are to be ap-
plied (Koelbel, 1990; Hiranandani, Kennedy, & Tseng, 1993). Only recently hasthis begun
to change (Agrawal, Sussman, & Saltz, 1995). Dynamic allocation of shapes is required
for good performance in data-dependent algorithms, so assuming that full information is
available at compiletimeleavesthe problem of implementing these languagesincompletely
solved.

2.1.2 Communication and Position Addressing

As shapes are analogousto arrays, individual positions may be accessed using array in-
dexing syntax. However, because aparallel object may be stored in adistributed fashion on
amulti-computer, shape indexing is moved to the |eft side of the expression being indexed,
to highlight that it may not have the same execution time profile as standard C indexing.

with (S1) {
[4]i1 = 3;
}

This assigns the integer 3 to the fifth position of the shape (as with arrays, shape indexing
begins with 0). Shape indexing is known as left-indexing, and |eft-indexing should always
be assumed to havethe potential toinvolve communication. Multidimensional |eft-indexing
involvesmultiple bracketed indexing expressions, and the number of |eft-index expressions
must exactly match the rank of the shape of the indexed expression.

If all index expressions are scalar, a single element of the parallel expression is named.
Parallel index expressions must be parallel integers of the current shape. If any index ex-
pression is parallel, acommunication operation isinvoked. Grid communication resultsin
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shape S
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Figure 2.1: Results of 10xpcoord (0)+pcoord (1) ina4 x 4 shape

atransfer of data between elements linked by afixed relative offset within the shape, while
general communication transfers data between elements that may have no obvious struc-
tural relationship.

C* provides an intrinsic function! pcoord (i), which evaluates to a parallel integer of
the current shape whose values at each position contain the index along the ith axis of that
position. For example, the following code assignsto iv the values depicted in figure 2.12:

shape [4][4] S;
int:S iv, iv2;
with (S) {
iv = 10 * pcoord (0) + pcoord (1);
}

Grid communication is invoked when the left index expressions consist of callsto pcoord
on the corresponding axis, with aintegral scalar offset. For simplicity, C* supports using
the dot character as short-hand for the corresponding call to pcoord in this context. Asan
example, the expression:

iv2 = [.+1][.-1]iv;

assigns to a position (i, j) of iv2 the vaue in position (i+ 1, j — 1) of iv, as depicted in
figure 2.2. Use of aleft-indexing communication expression as a C rvalue or plain value
resultsin aget communication. Intuitively, each processor adds the necessary offsetsto the
indices which represent its own position, then requests the value from the named position.
Thisresultsin a paralle value of current shape. Left-indexed communication can aso be
used in an lvalue context, i.e. asthe target of an assignment, in which case a send communi-
cationisinvoked: each virtual processor performstheindex evaluation, then sendsitsvalue
to the named position of the left-hand-side object. The send communication corresponding

1. Intrinsic functions—anotion borrowed from C++—are language constructs which are syntactically func-
tion calls but which may be recognized by the compiler and trandlated directly to any appropriate implemen-
tation. In addition to pcoord, C* counts the shape allocation functions among itsintrinsics.

2. Throughout this work, rank-2 parallel variables will be shown with axis O proceeding vertically and axis
1 proceeding horizontally, from the upper |eft corner of the matrix.
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shape S
1

Figure2.2: Assgnment iv2 = [.+1][.-1]iv

shape S
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Figure 2.3: Assignment iv2 = [pcoord(1)] [pcoord(0)]iv

to the above get communicationis:
[.-1]1[.+1]iv2 = iv;

Note that the signs on the offsets have changed, as we are now providing the relative shift
whichyieldsthe positionto which our valueisto be sent, rather than the position from which
wewishtoreceiveavaue. Send and get operations are not exact duals. context (introduced
insection 2.1.3) affects communication patternsdifferently for each, and send allowsacom-
bining communication (to be described later in this section).

General communication results when parallel 1eft index expressions do not conform to
the grid communication requirements: i.e., the index expression for axisi is not syntacti-
caly equivalent to pcoord(i)+c. In this case, the set of indices at a given position name
the position from which this processor reads its value, or to which the processor sends its
value. For example, matrix transposition may be implemented as follows, with resultsin
figure 2.3:

iv2 = [pcoord(1)] [pcoord(0)]iv;

Note that axis 0 haspcoord (1) asitsindex expression, so the processor which owns posi-
tion (i, j) reads the value from processor (j,i). In ageneral communication all |eft indices
must be parallel; if ascalar valueis used as an index expression, it isimplicitly extended to
aparalel valuejust asis donein expression evaluation.
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Figure 2.4: Histogram example input and result

Send communications allow use of compound assignment, where the incoming values
may be combined with the previous value in the target position and other incoming values
to that position if theindex expressionsresult in collisions. These features are exemplified
by theidiom for image histograming: we have a shape whose el ements represent pixels and
have some integral datatype, usually 8 or 16 bit, representing the brightness at that pixel.
We wish to create a histogram which counts the number of occurrences of each intensity in
the image. The following code does this, with image size and intensity range restricted so
theillustrative example in figure 2.4 fits on the page:

shape [4][4] Image;
shape [4] HistShape;
int:Image im;
int:HistShape hist;

with (HistShape) hist = 0;
with (Image) {
[im]lhist += (int:current) 1;

}

In this example, the histogram target is initialized to zero. Then, while working in Image
shape, each processor sends a one to the position in the histogram shape that is named by
theimageintensity at its own position. The compound assignment adds the incoming con-
tributions, and the result is the number of positionsin the image which have each intensity.
This example also shows explicit casting of scalar values to parallel values, and the use of
left indexing to convert from one shape to another.

2.1.3 Contextualization

The last mgjor feature of C* that we will outline here is contextualization. In certain
problems, there are regions of the shape where we do not want the processors to act; for
example, window operations on images should not be performed at the edges where the
window would have extended beyond the boundary of the shape. The observant reader will
have noted in figure 2.2 that certain positions have undefined values. Thisis because those
positions attempted to read from a shape position which did not exist. Reference to non-
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Figure 2.5: Contextualized assignment result

existent positionsgenerally resultsin undefined behavior in C*: at best the system will qui-
etly ignorethereference, but in someimplementationsother objects could be corrupted, just
as may occur when accessing data outside array boundsin C.

Contextualization uses a conditional construct similar to sequential C's if statement,
but using the keyword where and a parallel boolean expression to denote which positions
are active for ablock of code. For example, if we wished to replace all image pixelswhich
have a 0 value with a different value, say 4, we could execute the following:

where (0 == im) {
im = 4;

}
Each virtual processor will evaluatethe conditional expressioninthewhere statement. Only
those which evaluate to a nonzero value will go on to execute the assignment in the body.
If im initially has the value shown in figure 2.4, the value of im following the above con-
textualized assignment is shown in figure 2.5, where inactive positions are shaded. Note
that the elements whose positions were inactive are unchanged. Careful programmers will
avoid the undefined behavior mentioned for out-of-bounds accesses by protecting commu-
nication routines with contexts which will only reference valid locations. Thus, the grid
communication shown in figure 2.2 should be coded as:

where ((dimof (current,0)-1 > pcoord (0)) &&
(0 < pcoord (1))) {
iv2 = [.+1]1[.-1]iv;
}

to ensure the index expressions do not stray outside axis bounds. The intrinsic function
dimof (s,1) returns the scalar integer representing the dimension or extent of axis i in
shape s.

Context is associated with the current shape, can be nested, and is persistent into func-
tions called from within a where block: it is a dynamic feature of shapes. Therefore, in
most cases the compiler is unable to determine the context under which a particular expres-
sionwill be evaluated. If anew shapeis entered with awith statement, the context will be
reset to the context of the latest dynamically enclosing where block affecting that shape;
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when the with statement isleft, the previous shape is restored with its last known context.
Like if, where statements have an optional else clause whichisexecuted with the logical
negation of the contextualization expression, subject to enclosing contexts. For example,
with:
where (f1) {
where (£2) {

im = vi;
} else {
im = v2;

}
}

the effect on im is:

e whereboth £1 and £2 aretrue im isassigned v1;

e wheref1istruebut £2 isfalse im isassigned v2; and
e where f1 isfalse im is unchanged.

The semantics of where/else isthat both branches are executed in sequence, even if one
might have no active positions. As such, any scalar operations that appear in either body
(either directly or due to called functions) will be executed, and any side effects (scalar or
paralel) inthewhere body will complete before operationsin the else body begin. There
is a corresponding everywhere statement which resets the context to completely active,
since this cannot be represented by nested where statements.

214 Summary

We have introduced the major concepts of C*: parallelismisgenerated by augmenting a
sequential language with shapes which represent groups of scalar objects as a single entity
and which can be allocated and destroyed as execution progresses; data are moved about
using left-indexed communication expressions; and evaluation can be restricted to certain
elementsthrough the use of context. The subset of C* outlined hereisinsufficient for serious
programming: other C* features that will be addressed only in passing are:

e Reduction operators. these perform global operations to reduce al values in a shape
down to a single scalar, such as the sum of elementsin aparalel value

e More generic communication routines, which vary how addresses are specified, what
the source value or destination object are, or permit fill values to be used when out-of -
bounds accesses are performed

e AXxis-specific computation routines, to perform reductions or spreads along axes in the
shape independently (e.g., the sum of valuesin each column)



CHAPTER 2. Introduction to C* and pC* 16

e Parald prefix operations, to perform an associative operation along al elementsin an
axis, leaving intermediate results behind: e.g., the incremental sum along rows (the
scan family of functions)

These functions and others are needed to allow C* to express many data parallel algorithms
in various application domains, such as image processing and scientific computation. Al-
though they have been implemented in pC*, the insight they offer is not as fundamental as
the insights evoked by the core features described in more detail above, and as such this
dissertation will focus on the issues of these core features, pointing out similarities in or
additional requirements for the extended functions only in passing.

2.2 ThepC* Implementation of C*

221 Genesis

This dissertation describes pC* (“portable C*”). The system was devel oped to support
a group responsible for image processing software supporting a variety of applicationsin
remote sensing (Richards, 1994), such as old growth forest mapping (Congalton, Green, &
Teply, 1993), species habitat mapping (Turner & Turner, 1994; Aspinall & Veitch, 1993),
land use change (Green, Kempka, & Lackey, 1994), and other instances where one wants
to classify ground phenomena over wide areas quickly and inexpensively. The software in
guestion was written in C* and had been running on Connection Machine supercomput-
ers built by Thinking Machines Corporation. In the spring of 1994, the strong dependence
of the system on TMC hardware and software was perceived as a serious weakness, es-
pecially given the questionable financial status of the company at the time: if TMC went
out of business, the entire software system would need to be ported to a new platform, us-
ing a different language, with the concomitant loss of previous experience and libraries of
algorithms. There was a strong interest in investigating the feasibility of an implementa-
tion of C* which would not be dependent on any particular hardware platform, allowing it
to be moved from system to system based on whatever hardware was most cost-effective.
A cluster-of-workstations model (Cheung & Reeves, 1992), using stock workstations con-
nected with stock network hardware, was determined to be the best alternative to the previ-
ous “big iron” approach.

Since compatibility with TMC C* was of paramount importance, the choice of areplace-
ment system was limited. The only available aternative that had a promise of robustness
and would not suffer from the same single-source problems as TMC was aresearch imple-
mentation of C* developed at the University of New Hampshire by Phil Hatcher and others,
based on previous work by Hatcher and Quinn on Dataparallel C (Hatcher & Quinn, 1991;
Lapadula& Herold, 1994). We examined the UNH C* compiler and found that, although it
implemented the core language, it had a variety of limitations which madeit inefficient for
large scale programming on the sort of data expected inimage processing (dataon the order
of tensto hundreds of megabytes), and most importantly did not support any of the auxiliary
C* functions that the image processing system required. Furthermore, the system was by
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design aresearch compiler, with focus primarily on compile-time analysis to improve com-
munications behavior in core-language expression of mesh-based scientific algorithms, and
some work on the Intel Delta network subsystem which had been its primary target, while
more mundane issues needed for large programs and data but without real research value
were discounted. What we needed was a solid C* implementation whose correctness and
completenesswere of significantly higher importance than speed, at |east for the short-term.
Therefore, we undertook to adapt the UNH system to our needs.

The original intent was simply to add the required additional functionality on top of the
core UNH implementation. Over time, though, in support of the new functionality and re-
liability requirements, al components of the runtime system were replaced with new algo-
rithms and data structures, and the front-end was extensively modified to use the changed
runtime interface as well as programming features such as typedefs which are important in
a production environment. The replacement algorithms were based on core assumptions
about network features and getting as much speed and reliability as possible without rely-
ing on compiler analysis or limiting the source programs to restricted cases. Eventualy it
became clear that many of the algorithms and issues that had been addressed in the pC*
system were of independent interest and had not been adequately addressed in the litera-
ture. The purpose of this dissertation is to examine the design and implementation of the
resulting system. Before considering the details in the following chapters, we first exam-
ine the fundamental implementation model, retained from UNH C* and common to most
implementationsof distributed |anguages, then go on to present the current status of the sys-
tem.

2.2.2 BasicImplementation Model

The fundamental implementation model of pC* is retained from the UNH C* system,
and resembl es that chosen for other distributed languages that translate to scalar languages,
such as the original Dataparalel C (Hatcher & Quinn, 1991), Fortran-D/90D (Bozkus,
Choudhary, Fox, Haupt, Ranka, & Wu, 1993; Choudhary, Fox, Hiranandani, Kennedy,
Koelbel, Ranka, & Tseng, 1993) and SR (Andrews, Olsson, Coffin, Elshoff, Nilsen, Pur-
din, & Townsend, 1988). We use a single-program, multiple-data (SPMD) model, where
each compute node in the system runs a copy of a common scalar program, operating on
its own portion of the global data and using alibrary of message-passing routines to com-
municate with the other nodes in the computation. In the case of pC*, C* istrandated to C
code.

An important feature of the implementation model, and one which differs from SIMD-
based implementationslikethe CM 2, isthat scalar data are replicated on al compute nodes,
and all nodes perform the same operations on that scalar data. Thisallowsusto handle Am-
dahl’s observation that a portion of any program will be scalar computation, and hence not
amenable to speedup, without suffering additional overhead by designating one compute
node as responsible for performing scalar computation and distributing the results to other
nodes. Sincein C* al control flow at the program level isbased on scalar values (using if,
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while, €etc.), we can be assured that, unless somehow the same scalar expression evaluates
to different values on different nodes,® control flow will be the same on all nodes, so in-
correct behavior resulting from different execution pathswill not occur. Synchronizationis
also easy to accommodate, since it is either implicit in communicating operations (such as
reductions), or performed explicitly at the end of the communicating library routines: absent
data flow analyses which would lift synchronization out of the library routines, no barriers
need be inserted into the C tranglation.

Unlike other systems where communication behavior can generally be discovered by
examining the program source, we do not attempt to generate calls to message passing rou-
tines directly, but rather call library routines to perform any operations associated with a
communication (asisdonein the Syracuse version of Fortran-90 (Choudhary et al., 1993)).
Thisresultsin smaller code, and i sol atesthe opportunitiesfor implementation errorsand op-
timizations to one location rather than everywhere in a program that communication might
occur. In trade, we may lose opportunities for latency-hiding communication/computation
overlap when dataflow analysisis not performed. The decision is motivated primarily by
thelack of information at compile time about shape dimension and distribution and the size
of the cluster on which the program will run.

Each physical processor in the computation environment is responsible for a subset of
the positions of each shape. Scalar computationsin C*, including control flow, are trans-
lated directly to C, while regions of parallel code are grouped in the body of aloop which
iterates over the positions of the shape held by the particular node: these loops are called
VP loops (virtual-processor loops). Since communications invoke calls to library routines
that operate on entire parallel values, they cannot appear within the body of VP loops. Thus
communications and other library calls must be lifted out of—or split—V P loops, and the
resulting parallel values stored in temporary variables by the compiler. For example, the C*
code:

with (8) {
iv2 = [.-1]1[.-1]iv + [.+1]1[.+1]iv;
}

would be translated to C code roughly comparable to:

readgrid (&tml, iv, -1, -1);

readgrid (&tm2, iv, 1, 1);

for (vp = 0; vp < S.vplimit; vp++) {
iv2 [vp]l = tml [vpl + tm2 [vp];

}

(abstracting away from complexities not yet introduced). This does not take direct advan-
tage of the fact that much of tm1 and tm2 are values that are available at positions vp + 0,

3. Such behavior is contrary to the semantics of C*, but could occur with naive implementations of reduc-
tion operations on floating point values, where the operations which are mathematically associative are not
associative in implementation: a differencein order of evaluation on different nodes can result in different
answers. Cf. section 4.3.2.
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and vp + &, respectively, because to do so would generally require knowledge about shape
dimensions and distribution which is not available to the compiler. However, some of the
techniques described later in thisdissertation could be extended to permit direct referenceto
local datanot present at the current position of the VP loop, at some (perhaps considerable)
complication to the VP loop structure. These issues are reserved for future investigation.

2.2.3 Current Status

The current pC* system is a complete implementation of C*, including core language
and auxiliary cscomm libraries. Though the primary development platform is networked
Sun multiprocessorsrunning Solaris 2.3 and using TCP sockets for communication, the sys-
tem has been ported to and tested on Intel Pentiums running Linux and DEC Alphasrunning
OSF/1 (single-process execution), the Portable Virtual Machineversion 3 (PVM3), the Sys-
tem V message facility (under Solarisand Irix 5), a Sequent Symmetry using shared buffers
to emulate amessage passing architecture, and the Intel Paragon using the NX communica-
tions library. The system is currently used as the main development platform by four pro-
grammers in addition to the author. Over seventy thousand lines of code including severa
maj or image processing systems have been run using pC*; other applications such as short-
est path and some core graph and linear algebra routines have also been implemented and
used to solve problems.

Thesystem hasevolved from the UNH C* compiler of May 6, 1994, graciously provided
to usby Phil Hatcher. Thefollowing significant changesto thefront end tranglation program
were made:

e Removed all dataflow analysis support. At the start of modifying the system to meet
the pC* goals, it was deemed too difficult to guarantee reliability of the generated code
when both the runtime library routines and dataflow analysis were required for correct-
ness; over time, sufficient changes were madeto theinternal representationsin the com-
piler and assumptions held by the runtime system that leaving such a large amount of
unverified code in place was unwise from a software maintenance point-of-view. We
do not feel thisto be agreat liability: evolution of the runtime library has resulted in a
system which can integrate with a simple dataflow analysis with little effort, as will be
described later in the dissertation. 1t seems unlikely, had we had the goal of supporting
both fast runtime routines and compile-time dataflow analysis, that either could have
been accomplished as well.

e The parsing system was overhauled, primarily to support maintaining C typedefsand
ensuring compatibility of declarations between separately compiled modules.

e The anaysis of where loops and corresponding generation of virtual-processor loops
was enhanced to avoid overhead and generating unnecessary context maps (a similar
optimization was independently added to a later version of the UNH C* compiler by
the UNH researchers).
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e Additional care was taken to ensure that compiler-allocated parallel values were col-
lected when the blocks in which they were declared were exited “abnormally” (e.g.,
through goto or break). Theimage processing system generally works on shapes with
millions of positions, making it very important to reclaim memory as quickly as possi-
ble.

The front-end generates C code, which is compiled and linked with a runtime library
which implements memory management, communication, and the extended C* functions.
Thelibrary and the runtime structuresit uses have been completely redesigned several times
by replacing core routines, until the library no longer bears any relation to the UNH C*
implementation except in several hold-over utility functionsfor writing error messages. The
details of thealgorithmsand structures used in the current runtime system comprisethe bulk
of this dissertation.

In addition to the compiler and runtime system, a distributed control system which al-
lows execution of programs on anetwork of machines has been implemented. While some
of itsfeatures areinteresting in their own right, it is not significantly different from the con-
trol components of other systems such as PVM, and is not considered further here.

2.3 Related Parallel and Data-Parallel Systems

There are a variety of research systems which address the same general issues as
this dissertation—language and implementation support for parallel programming—but
none which seem to investigate runtime issues in data parallelism to the extent covered
herein. The closest from the language point of view are the implementation of Dataparallel
C (Hatcher & Quinn, 1991), based onthe original version of the C* language (Rose & Steele
Jr., 1987), and its successor C* compiler from the University of New Hampshire (Lapadula
& Herold, 1994). The current literature on Dataparallel C seems to be addressed primar-
ily to data distribution on networks of heterogeneous processors (Crandall & Quinn, 1993)
and focuses on mathematical description of decomposition alternatives based on communi-
cation patterns rather than a detailed investigation of their implementation techniques and
costs. Recent work on the University of New Hampshire C* compiler has addressed com-
piler analysesto improve communicationsbehavior onirregular problems(Mason, Hatcher,
& Chappelow, 1994). Neither system attempts to extract the level of performance that we
demand from the runtime system alone.

Other languages provide a data parallel model of programming: most notable among
these are the various extensions to Fortran which extend array semantics to operate over
whole arrays at once, such as the array components of Fortran 90 (Adams et al., 1992),
Fortran-D (Tseng, 1993), and High Performance Fortran (HPF Forum, 1993). Research on
the Fortran extensions tend to be more limited, though; since the Fortran paradigm has his-
torically been onewherethe code expressed dependenciesand explicitly coded loop bounds,
research on data parallelism in Fortran has focused on analyses based on the assumption that
the source code provides sufficient information to determine, for example, communication
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behavior or preferred data layout. Thisisin sharp contrast to C*, where most of the func-
tionality used inimage processing algorithmsat least is buried deep inside library functions
such as scan or specialized grid communication routines, where it isinfeasible to special-
ize the code to a particular invocation. For example, the Fortran 90 equivalent to where
does not reach down into user-defined functions called within its scope; hence, generation
of contextualized loopsissimplified considerably. Research compilersfor dataparallel For-
tran (Tseng, 1993; Choudhary et al., 1993) can have asufficiently strong dependence on the
availability of information at compile time that they are unable to translate general Fortran
applications because run-timeissuesfor the general case have not been addressed (Hiranan-
dani et al., 1993). The material in this dissertation, which contrarily focuses on run-time
implementation to the near exclusion of available compile-time information, should com-
plement these analysis techniques to result in a system which takes full advantage of all
information available at all trandlation and execution stages.

APL (Gilman & Rose, 1984) is an array-based language which can be considered data-
paralel. Tranglators from APL to C targeting both shared (Ching & Ju, 1991) and dis-
tributed (Ching & Katz, 1994) memory machines have been implemented. These imple-
mentations are geared towards “low-hanging fruit’—only array-parallel materia (the con-
tents of our VP loops) is considered. The reliance on shared memory and replicated datain
these trandlators could be removed by merging the framework of this dissertation into the
APL runtime system.

In addition, there are a variety of systems which use more explicit parallel constructs,
but to which some of the data layout and access techniques described in this dissertation
couldbeapplied. Kali (Koelbel & Mehrotra, 1991) uses compile-timeanalysesto determine
communication patterns and reduce communication overhead; the Kali implementation for
runtime resolution of grid communication could benefit from the techniques of chapter 6.
DINO (Rosing, Schnabel, & Weaver, 1991) requires explicit user specification of communi-
cations across nodes, hence does not embody a data-parallel model, but addresses the same
sort of issues of data distribution and location resolution aswe discussin chapter 3. SPLIT-
C (Culler, Dusseau, Goldstein, Krishnamurthy, Lumetta, von Eicken, & Yelick, 1993) is
another explicitly parallel language which is designed to be portable and is being used for
image processing applications (Fallah-Adl, JaJa, Liang, Kaufman, & Townshend, 1995).
There have also been specialized languages such as Apply (Hamey, Webb, & Wu, 1989)
which focus solely on neighborhood-based computations, and languages that permit nested
rather than single-level data-parallelism (Blelloch, Chatterjee, Hardwick, Sipelstein, & Za
gha, 1993).

C* hasaso served asthe basisfor an alternative data parallel version of C, as described
inthe DataParallel C Extensionsreport (Numerical C Extensions Group of X3J11, 1994) of
asubcommittee of X3J11, the American National Standards I nstitute committee responsible
for the C programming language. DPCE is quite different from traditional C*: among other
changes, it removesthe need for current shape (requiring shape equivalence of operandsin-
stead), allows the user to specify slices out of a shape if interested in, say, only one row
(something expressible in C* only through contortions and the use of context or general
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communications), adds parallel pointersto support irregular computations (C* does not per-
mit pointers to appear inside parallel types), and adds nodal functions to allow the user to
escapethe data-parallel programming model (permitting each processor to execute different
code up to a synchronization point). Though some of the features in DPCE are interesting,
most such asnodal functionsand parallel pointers have not yet been validated in afull-scale
production compiler, and appear to result in some seriousimplementation difficultiesunless
strong restrictions are placed on internal representations. Due to their newness and other
pragmatic restrictions outlined in section 2.2.1, the material described in this dissertation
is addressed to C* as currently implemented by TMC supercomputers. Most of the core
techniques should extend to a DPCE implementation without difficulty.
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CHAPTER 3
IMPLEMENTATION OF PARALLEL VALUESAND CONTEXT

| see you stand like greyhoundsin the dlips,
Straining upon the start. The game’'s afoot: ...

— Wm. Shakespeare, King Henry V, act 111, scenei, line 31

We describe how pC* distributes data amongst nodes in a computation, especially
taking into account the costs of global/local address conversion, an issue which we
argue has not been adequately addressed for the more complex distribution mech-
anisms described in the literature. We describe a mechanism for block distribution
which allows the user afairly fine control over placement of data, while still per-
mitting very fast conversion between global and local addresses. We examine the
issues of data access patterns on multidimensional objects, and measure the perfor-
mance improvements of imposing a contiguous sequential access pattern on the data
even when the operation being performed is conceptually non-contiguous. Thetech-
niques that permit this access pattern are those developed for address conversion.
Uniform gpplication of the contiguous access pattern permits anovel representation
of context using run-length encoding, a method which yields space savings of up to
99% and time savings of 10-50% in common cases.

Since computer programs operate on data, the operations required to access the data are
perhaps the most important contributor to the efficiency of those programs. Alongwith clas-
sical issues of the appropriate structure for complex data, distributed multiprocessing raises
the question of how data should be apportioned amongst processing nodes to balance the
speedup from dividing the work equally with the slowdown of moving datato where they
are needed, an operation that isgenerally quite expensive. This chapter examinestheissues
involved in choosing both data distribution and implementation data structures for parallel
objectsin C*. Since contextualization—restricting operations to apply to only certain data
elements—is closely tied to data layout, we also address context representations that allow
access to active positions and skip inactive positions with as little overhead as possible.

3.1 Issuesin Data Distribution

A primary tenet of many research projects in parallel languages is that the fundamen-
tal determiner of performance is data distribution. The volume of literature on distribu-
tion of arrays in Fortran-like languages on a variety of hardware platforms is staggering

23
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(Sheffler, Schreiber, Gilbert, & Chatterjee, 1994; Mahéo & Pazat, 1993; Knobe, Lukas, &
Guy L. Steele, 1990). While we would not argue that data distribution is an insignificant
contributor to performance, we fed that certain corollary issues have not been sufficiently
addressed: specifically, the overhead involved in computing the owning node in schemes
designed to distribute data equally over homogeneous or heterogeneous networks can be
exorbitant, and any implementation that requires changing distribution between program
points based on analysis of communication patterns leaves itself open to bad runtime be-
havior (“thrashing” of data distribution) if the analysisis inaccurate.

C* avoidssome of these problemsby dictating that agiven shape hasafixed distribution,
and al variables with that shape share the distribution. This ensures that operationsthat do
not have communication coded explicitly by the programmer will occur without communi-
cation at runtime, presenting apredictable model that aidsthe programmer in understanding
the performance of her code. Other problemsare avoided by restricting the sorts of distribu-
tion that are supported in the system. Whilethisrestriction may affect certain algorithmsby
being unable to support the specialized distributions that are most appropriate for them, the
limitation is outweighed by the corresponding improvement on other, more common, op-
erations, where owner computation is simplified. The major distribution mechanisms and
how they interact with C* programming are discussed below.

3.1.1 DataDistribution Options

If an algorithm requires no communi cation, then any distribution which dolesout datain
proportion to the computation power of each processing unit will result in aload-balanced
system with maximal efficiency. However, most algorithms relate values at one positionin
a shape to others, either close or distant and with either relative or absolute position spec-
ifications. Two sources of overhead in these cases cut into the speedups from an equally-
distributed system. Thefirst iscommunication cost induced when the dataneeded for acom-
putation reside on different processors, and the second is overhead induced by determining
where the desired data live, using either absolute or relative indexing. Asinterconnection
networks with higher bandwidth and lower latency become more common, the latter cost
becomes increasingly more significant.

As an extreme casg, it is possible to support afully general distribution where there is
no relation between the global address of an element (the set of indices that name that posi-
tion in ashape) and itslocation at a particular address on a particular processor. Whilethis
isgood from algorithmic and theoretical perspectives, in practice the need to do a complex
computation or table lookup at each element to find its physical location will cause a dras-
tic increase in the local processing costs of communication. We would like a mechanism
where the hardest cases, e.g. general communication which has no structure, require very
little computation per element, and easier cases such as structured grid communication are
ableto take advantage of their regul arity and do address computation oncefor blocksof ssim-
ilar elements. In support of thesedesires, it iscommon to restrict distributionsby supporting
only afew regular layout options, and considering each axis separately (Tseng, 1993; HPF
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Figure 3.1: Examples of Data Distributions. The block distributions are supported in pC*; the cyclic
is not.

Forum, 1993).
Assuming a set of P processors (computation nodes) and a distributed one-dimensional
shape (array) of N positions, the most common layout options are:

e Serid—all N positions are owned by one of the processors

e Block—the N positions are partitioned into P sequences, which are apportioned to each
processor in turn

e Cyclic—the N positions are distributed in round-robin fashion over the P processors,
with element i owned by processor i mod P

Cyclic and block can be combined into ablock-cyclic distribution where chunksof sizek are
distributed in round-robin fashion. The issues are essentially the same as for cyclic distri-
bution. Block distribution can require that each node has the same size partition as others—
usually |[N/P|, with any excess apportioned to the first Nmod P processors—or may allow
arbitrarily sized subsequences. Some example distributions are shown in figure 3.1, with
the values at each position naming the owning processor in a 4-node cluster, and heavier
lines in the shape denoting borders between nodes.

The layout options supported in an implementation are fundamental to the performance
of the system, and to its maintainability. There are several operations that are commonly
performed and that depend on the distribution. These include:

e Given an element that is stored at offset 0 on processor p, what isits global coordinate
along axis k of its shape?

e Given avector of indicesi, what processor owns the named element, and what offset is
it at on that processor?
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e Given an element that is stored at offset 0 on processor p, what is the processor/offset
pair of the element n positions away along axis k?

For simple distributions, such as equal-sized blocks along one axis, the computations re-
quired to do these conversions are straightforward and can beinlined directly. Asanimple-
mentation or language comes to support more, and more complex, distributions, it becomes
infeasible to duplicate the conversion code everywhere that it is required, and each such
conversion requires a call to afunction which determines the appropriate answer based on
distribution information. Thisis especially an issuein alanguage like C*, where the shape
dimensioninformationisnot available at compiletime, or the conversionsare being applied
inside library routines where the distribution of the particular input cannot be determined a
priori. Any system which attemptsto generate code that does not rely on ahard-coded num-
ber of processors will encounter the same problems.

The above considerationsrule out distributionsmore complex than the block/cyclic ones
described above. Yet thereis still ajump in complexity when supporting cyclic distribu-
tions, especidly if full block-cyclic layout isalowed. It has been argued (Dongarra, van de
Geijn, & Walker, 1992) that cyclic distributions are necessary for load balancing in certain
linear algebra problems such as LU decomposition, where certain regions of data (rows or
columnsof amatrix) drop out as the computation progresses. In anaive block-based imple-
mentation, processorswill drop out one-by-one as rows become disabled in order, resulting
in poor load balancing. Cyclic decomposition avoids this problem, because each row that
drops out isowned by adifferent processor than thelast row, so all processorsremain active
until the final rows are resolved.

However, even in this case, ssmple algorithmic changes permit block distributionsto be
probabilistically as effective as cyclic distributions. For example, if in LU decomposition
we use virtual pivoting, where the chosen pivot row is not moved to its final position in
the decomposition (an expensive operation in its own right) but instead the row number is
recorded, load balance is effected by an assumption that pivot rows will be randomly dis-
tributed throughout the matrix. If this assumption should be invalid for expected inputs, or
if adecomposition method is used which does not rely on pivoting for numerical accuracy
(such as QR), a simple pre-processing step can effect a cyclic distribution at runtime un-
der user control where necessary, without burdening all other computation by supporting a
feature needed only for this case (see section 5.5.

Neighborhood-based grid computations, a primary component of image processing sys-
tems, also suffer under cyclic distributions, because strides which are not a multiple of the
cycle length will induce communication for every position on the node, instead of having
an internal block where all operations are local. The final straw that makes cyclic distribu-
tion untenable in C* is the existence of the parallel prefix scan functions: implementation
of these, which requires saving the intermediate values as an operation is performed aong
an axis of a shape, becomes significantly more complex when values adjacent in the user’s
view of the data are never co-resident on the same processor.
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3.1.2 DataDistribution in pC*

For these reasons, pC* supports only serial and block distributions, and meets the goal
mentioned earlier of simple calculation for unstructured communication and amortizing the
cost over similar sequences in grid calculations. However, the features of those distribu-
tions are not very restrictive, and application-specific load balancing and communication
reduction are possible under the user’s control. Furthermore, if cyclic distribution is truly
required in a system which could use it more effectively, ssmple and common restrictions
would permit many of the algorithmsincluding the grid communications routines in chap-
ter 6 to be extended to cover it aswell.

If no other distributionis specified, the systemwill by default distribute axis 0 acrossthe
processors equally (using block distribution) whileleaving higher axes undistributed (serial
distribution). This allows the programmer to have an expected performance model for ax-
ial operations, regardless of the size of cluster the program will run on: i.e., she knows that
“communication” along axis 1 or higher axes requires shifting data only within the proces-
sor, while operationsalong axis O will be more expensive. Should more control be required,
the user is permitted to partition the axis in whatever fashion she desires, up to and includ-
ing processorswhich receive empty sections, or all ocating the entire extent to one processor.
Distributionisalso supported on any or all axes of ashape, under user control, subject to the
restriction that the product of the number of blocks on all distributed axesyieldsthe number
of processors in the cluster: i.e., the distribution itself must yield an orthogonal partition-
ing of the shape. The sub-blocks of the partitioned shape are assigned to the processorsin
row-major order. Unlike data distribution on other parallel/distributed systems, neither the
axis extent nor the sub-block size need be powers of 2, nor is there any benefit if they are.
With the data sizes anticipated in an image processing system, rounding up to powers of 2
or otherwise requiring “nice” shape sizes can result in huge amounts of wasted space and
concomitant performance loss (cf. the performance of matrix multiply on the CM5 in sec-
tion 7.7).

Asan example, figure 3.2 represents the distribution of a8 x 8 shape across six proces-
sors, with axis O partitioned into three chunks of sizes 3, 1, and 4, and axis 1 partitioned
into two chunks of sizes2 and 6. The valuesin each cell name the processor number which
owns that cell. This distribution mechanism, which allows partitioning of a shape into an
arbitrary regular grid with subgrids on each node, should be powerful enough to meet most
load-balancing and communication-reducing needs. The details of the interna data struc-
tures and functions required to support it are presented in the next section.

3.2 Data Structuresfor Parallel Valuesin pC*

In this section we will examine the data structures used to implement parallel datain
pC*, and the associated functions which perform the required conversions between internal
representation and the indexing scheme used by the C* programmer. We will also address
issuesin alocating memory which uses these structures, and how to support access patterns
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Figure 3.2: Example of Supported Block Distribution

which preserve good cache behavior whilestill computing valueswhich requirelarge strides
between elements, as when summing the elements in columns of a matrix.

3.21 Implementation of shape in pC*

As noted in section 2.1, C* shapes encode multidimensional arrays with scalar values
at each position. The arrays can be dynamically sized, not only in terms of the extent along
each axis but also in terms of the number of axes. Although C* permits dynamic allocation
of shapes, the user can specify when a shape is declared that the shape object can only hold
shapeswith aparticular rank: for example, if parallel valueswith that shape areleft-indexed,
specifying that the shape will have two dimensions permits the compiler to make additional
checks on the user’s code. There are three classes of shape specification:

e A fully unspecified shape gives no information about either rank or extents. This shape
may be used asthe destination for any dynamically allocated shape. A fully-unspecified
shapeis declared in the following manner:

/* Fully unspecified shape */
shape UnspecShape;

Note the absence of any left indexing.

e A partially specified shape provides information about its rank, but not its extent. This
shape may be used as the destination for any dynamically allocated shape with the cor-
responding rank. A partially specified shape is declared by leaving the extents empty:

/* Partially specified shape of 2 dimensions */
shape [][]PartiallySpec2d;
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typedef struct shape_base {

int rank; /* Rank of shape */

int num_total; /* Total number positions in the shape */
int extent [MAX_RANK]; /* Length of each axis for whole shape */
int ndistaxes; /* Number axes w/non-serial distribution */

axis_distribution_t disttype [MAX_RANK]; /* Axis distribution types */
int distnblocks [MAX_RANK]; /* Number blocks each axis is split into */
int * distbsizes [MAX_RANK]; /* Block sizes along each axis */
int distpprod [MAX_RANK]; /* Axis-to-node support */
PCS__ctx_rletype * context; /* Pointer to current context */
shape_pernode * dpernode; /* Distribution information per node */

} shape_base;

Figure 3.3: shape_base structure contents

e A fully specified shape provides both rank and extent information. Thisisthe only case
where (in conjunction with cluster size) the distribution can be calculated at compile
time. Fully specified shapes are declared thudly:

/* A 3-dimensional shape with 60 positions */
shape [3][4][5] FullySpec3d;

The extents, which are constant integral expressions, must be provided for al axes.

An unspecified or partially specified shape becomes fully specified when it is used as the
destination of a dynamic shape allocation; it returns to its former specification level when
the shapeisdeallocated. It isaruntimeerror to attempt to dynamically allocate into a shape
object whichisfully specified, either from declaration or dynamic allocation, or to allocate a
rank k shapeinto partially specified shape of rank j # k. The two-stage shape data structure
described here permits these checks to be performed.

A shape at user C* level isrepresented internally by a pointer to a shape_base struc-
ture, as defined in figure 3.3. A fully unspecified shape is represented by a null pointer; at
allocation time, a base structure is dynamically allocated from system memory. A partially
specified shapeisrepresented by a pointer to ashape_base structure, but only some of the
fields arefilledin.

Thefieldsinfigure 3.3 contain thefollowing information, which isdefined only for fully
specified shapes unless otherwise noted.

e rank: The number of dimensionsin the shape. Must be a positive integer. Defined for
partialy or fully specified shapes.

e num_total: Thetotal number of positionsin the shape: the product of the extents.

e extent[]: The extent along each dimension. Must be positive integers.
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typedef struct shape_pernode {

int num_local; /* Number of local VPs */

int localabove [PCS__MAX_RANK]; /* VPs above this node in each axis */
int localdim [PCS__MAX_RANK]; /* VPs on this node in each axis */
int num_per_axis [PCS__MAX_RANK]; /* Partial prods */

} shape_pernode;

Figure 3.4: shape_pernode structure contents

ndistaxes: The number of axes which are distributed. Used for quick-lookup to see
if communication is necessary with this shape, and for walking a shape in blocks asin
chapter 6.

disttype[]: For each axis, the distribution type: serial or block.
distnblocks[]: For each axis, how many chunksisit split into?

distbsizes[][1: For each axis, what are the sizes of the sectionsit is split into. Must
be non-negative integers which sum, within each axis, to the extent of the axis.

distpprod[]: A partia-product vector indexed by axisto aid in translating between
processor number and shape partition subblock.

context *: A pointer to the currently active context. Thisvalue is updated as context
changes; see section 3.3.

dpernode [1: Anarray indexed by processor number to aid in determining the layout
information for particular nodes.

Once a shape becomes fully specified, the dimension and distribution informa

tion is used to build information about the local layout on each node. An array of
shape_pernode Structures, one per processor, is allocated and assigned to the dpernode
field of shape_base. The shape_pernode structure is defined in figure 3.4, with the fol-
lowing meanings per field:

num_local: The number of e ementsthat are stored on this node: the sub-grid size.

localabove [1: For each axis, the position along the axis at which the datain this sub-
grid starts.

localdim[]: The extent along each axisfor the subgrid that is held on this node.

num_per_axis[]: Partial product information used for converting between local axis
indices and the local offset.
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Image->ndistaxes
Image->num_total
k = Image->rank - 1;
Image->distpprod[k] = 1;
Image->ndistaxes = (block_distribution == Image->disttypel[k]);
Image->num_total = Image->extent[k];
while (0 <= --k) {
Image->distpprod[k] = Image->distpprod[k+1];
if (block_distribution == Image->disttypelk]) {
Image->distpprod[k] *= Image->distnblocks[k];
++Image->ndistaxes;

0;
1;

}
Image->num_total *= Image->extent [k];

¥

Figure 3.5: Calculation of Globa Shape Geometry

Now let us consider in depth the process involved in generating the data used to con-
vert between local (processor/offset pairs) and global (set of indices) addresses, using the
distribution in figure 3.2 as an example. First, shape initialization assigns the basic fields
thugly:*

Image->rank = 2;

Image->extent [0] = Image->extent[1] = 8;
Image->disttype[0] = block_distribution;
Image->distnblocks[0] = 3;
Image->distbsizes[0] [0] =
Image->distbsizes[0] [1]
Image->distbsizes[0] [2] ;
Image->disttype[1] = block_distribution;
Image->distnblocks[1] = 2;
Image->distbsizes[1][0] = 2
Image->distbsizes[1][1] = 6;

b
b

I
DR w

With this information, the system can fill in num_total and ndistaxes trivially. Re-
call that we required that the product of the distnblocks fields for distributed axes
yield the number of processors. This is so that the processor numbers, which range
from O to P — 1, can be mapped to coordinates in the partitioning of the shape, using
the equation that processor p uses section s of the partitioning of axis k, where s =
(p/distpprod[k]) moddistnblocksK]|. Thisprovidesarow-major mapping between pro-
cessor numbers and partition coordinates. Code similar to that in figure 3.5 performs the
necessary calculations, while information about local layout per-node is computed in the
manner shown in figure 3.6. The resulting information for the distribution in figure 3.2 is

1. Wegivehereonly theeffective codeto performtheinitialization for theexampledistribution. Initialization
in the system is done through an all ocation function which performs additional checksand allocates space for
arrayssuch asdistbsizes.
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for (p = 0; p < P; p++) {
pi = Image->pernode+p;
pi->num_local = 1;
k = Image->rank;
while (0 <= --k) {
pi->localabovel[k] = 0;
if (block_distribution == Image->disttypelk]) {
sgi = (p / Image->distpprod[k]) % Image->distnblocks[k];
pi->localdim[k] = Image->distbsizes [k] [sgil;
while (0 <= --sgi) {
pi->localabove[k] += Image->distbsizes[k][sgil;
}
} else {
pi->localdim[k] = Image->extent[k];
}
pi->num_per_axis [k] = pi->num_local;
pi->num_local *= pi->localdim[k];

Figure 3.6: Calculation of Local Shape Geometry

summarized in the tables in figure 3.7.

Theinternal representation of shapesistreated the same as user scalar values. theinfor-
mationisduplicated on all nodes, and all nodes possessinformation about thelayout used on
all other nodes. Thissimplifiesthe functionswhich convert between local and global infor-
mation. We can now examine the implementation of the two primary conversion functions
mentioned in section 3.1, leaving the third to chapter 6 where it is of most interest.

3.2.1.1 Internal Location to C* Index

Given an element that is stored at offset 0 on processor p, what isits global coordinate
i along axis k of its shape?

Thisisthepcoord computation: the function that must be evaluated for each local offset
0 on a given processor p when generating the result of a call to pcoord (k). The block
distribution in conjunction with local row-major linearization permits a simple calculation
using the partial product information in num_per_axis:

spn = shape->pernode + p;
i = spn->localabove [k] + (o/spn->num_per_axis[k]) % spn->localdim[k];

The division by num_per_axis[k] eliminates the effect of axes higher than k, while the
modulo operation eliminates those below. Thisyields the position along axis k in the local
subgrid; we need only add in the effect of prior elements along axisk stored on other nodes
to get the final result.

Thisfunction isagood example of where the complexity of the distributions supported
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shape_base Data

Field Value

rank 2

extent (8,8)

num_total 64

ndistaxes 2

disttype (block_distribution,block_distribution)
distnblocks | 3,2

distbsizes | (3,1,4),(2,6)

distpprod (2,1)

shape_pernode Data

Field p=0|p=1|p=2|p=3|p=4|p=5
num_local 6 18 2 6 8 24

localabove (0,0) | (0,2) | (3,0) | (3,2) | (4,0) | (4,2)
localdim (3,2) | (3,6) | (1,2) | (1,6) | (4,2) | (4,6)
num_per_axis || (2,1) | (6,1) | (2,1) | (6,1) | (2,1) | (6,1)

Figure 3.7: Shape data values for distribution in figure 3.2

in asystem can have astrong effect on program performance, and it isworth spending some
time examining the ways in which the implementation can be improved. pcoord generally
appears in one of three placesin a C* program, in decreasing order of frequency:

e Inagrid communication, e.g. [.-1]1[.+1]1iv. Inthiscase, the implicit pcoord rep-
resented by . isnot actualy calculated in pC*; it is handled in the course of the grid
communication, in the manner described in chapter 6.

e |n acontextualization expression designed to prevent invalid positions from being ac-
cessed in grid operations; e.g.
where ((dimof (current,0)-1 > pcoord (0)) &&
(0 < pcoord (1))) {
iv2 = [.+1]1[.-1]iv;
}

Again, in this case the pcoord isnot calculated explicitly: the format of the where ex-
pression is noted by the compiler, and a context is built taking advantage of the regular
form of the resulting boolean parallel expression (see sections 3.3 and 6.1).

e |In some other fashion.

The third case is the only one where the pcoord calculation is actually performed with the
above expression. In many such uses, pcoord will be called with a constant axis, asin the
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initialization expression for figure 2.1:
iv = 10 * pcoord(0) + pcoord (1);

Because the pcoord function is small, it can be defined in a C macro, with an expansion
to the above expression in the resulting C code. The mgjor time sinksin evaluating the ex-
pression are the two integer division operations (one divide, one modulo). Although most
modern architectures implement these in hardware, they tend be several times slower than
other instructions. By examining the construction of num_per_axis above and assuming
that 0 < num_local (guaranteed by the pC* code generator or checksin library functions),
thereader will notethat for k = 0, the modul o operation isunnecessary: the division already
yieldsavaluewhichiswithinthelocaldim[0] extent. Measurement within an old version
of pC* indicated that evaluation of pcoord (0) was50% slower when the unnecessary mod-
ulo operation was performed. On some small test programs this yielded a 10% slowdown
overall, because of the large number of pcoord calls.? To improve performance we rede-
fined the pcoord macro to check its axis and use an expression that does not perform the
modul o operation when it is unnecessary:3

#define pcoord(_k,_o) (DimAbove(curshape,(_k)) + \
(0 == (k) \
? ((_o) / NPA(curshape,(_k))) \
: (((_o) / NPA(curshape,(_k))) % DimLocal(curshape, (_k)))))

In many cases, the axis parameter _k isaconstant at compiletime, so the correct expression
can be compiled without overhead. When the axis can be determined to be 0 the resulting
expression istwice as fast as one which goes ahead and blindly does the modulo operation,
even if the check must be performed at runtime; in the rare cases when the axis cannot be
determined at compile time the check induces an overhead of only 5%. The effect in perfor-
mance by such asmall change to an already nearly trivial conversion calculation indicates
the importance of keeping conversion functions as small and fast as possible.

However, westill haveapcoord function which containsat |east one division operation.
When pcoord iscaled in aVP loop which iterates through the processor’s local offsetsin
segquence we can do much better by using a finite-state-machine implementation. Here the
pcoord vaue cycles over the range of axis indices that are held on this node, increment-
ing once every so-many (NPA(curshape,k) to be exact) elements, and wrapping when it
reaches the upper limit of the axis. Thus we can maintain a separate counter for the value
of pcoord (k) with the following initialization before the VP loop:

0;
DimAbove (current, k);

pcent
pcval

2. Caveat: thiswas prior to the optimization which generates special context for the grid-bound protection
expression above; in the current implementation many of these pcoord invocations would instead be routed
to the boundary context code, which uses a different eval uation mechanism (cf. section 6.1).

3. We use NPA as a shorthand accessor function to the shape num_per_axis field; smilarly for DimAbove
and DimLocal.
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pcoord type constant O | constant 1 | variable O | variable 1
div+mod, unopt 1176413 | 1176606 | 1176696 | 1179604
div+mod, opt 567973 | 1176518 630970 | 1218764
step/wrap 262926 263137 264576 362870
power-of-2, unopt 147764 147687 148041 147851
power-of-2, opt 147711 128411 169864 147656

Table 3.1: Evaluation of pcoord Implementation Alternatives. Times in psec for 22° conversions.

and the following increment step within the VP loop:
if (++pccnt == NPA (current, k)) {

pccent = 0;

if ((DimAbove (current, k) + DimLocal (current, k)) == ++pcval) {
pcval = DimAbove (current, k);

}

}

Thisimplementation, which can be considered aform of strength reduction (Aho, Sethi, &
Ullman, 1986; Fischer & LeBlanc, Jr., 1988) performs much faster than the divide based
mechanism. When it can be determined at compile-time that the axisin the pcoord isthe
highest axisin the shape (k == rankof (current)-1), we know that the distribution will

guarantee that NPA (current k) == 1, and the per-step increment can be reduced to:
if ((DimAbove (current, k) + DimLocal (current, k)) == ++pcval) {
pcval = DimAbove (current, k);
}

This technique can be used to good effect anywhere in the library where it is necessary
to walk the node’s local data in sequence while retaining the pcoord values along a given
axis; seesection 3.2.4. Theimplementation hererelieson ablock-based distribution, though
atechnique similar to this or one based on the stride access pattern method of (Chatterjee,
Gilbert, Long, Schreiber, & Teng, 1993) would be possiblewith acyclic distribution. Irreg-
ular distributions are less likely to permit such a simple and fast pcoord implementation.

The performance of the various pcoord calculationsin a C program designed to test a-
ternative implementationsis shown in the experimental resultsin table 3.1.4 We consider
the time requirements for various methods of pcoord calcul ation along each axis, where the
axisisknown at compiletime (constant) or only at runtime (variable). Alongwith the unop-
timized and optimized divide/modul o implementations and the step/wrap method described
above, we present for comparison thetimethepcoord calculation would take if the subgrid
extents on axes 1 and higher were restricted to powers of 2. Thishas historically been done
to improve exactly this sort of global-to-local address calculation, because it allows the di-

4. Timings run as the only active process on a 50MHz Sparc 20 using gcc 2.6.3 -02 -msupersparc, Ona
rank 2 1024 x 1024 shape measuring time to generate pcoord (k) for various types of k and variousimple-
mentations of pcoord. Vaues arein microseconds, and are the median of 5 runs.
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vision and modul o operations to be performed with shifts and masksinstead. The resulting
functions are approximately 8 times faster than the unoptimized divide-based implementa-
tions on the tested hardware, though only 2-3 times faster than the step/wrap method, and it
isstraightforward to extend the shape_pernode structure to contain the necessary shift and
mask values for each axis. However, the concomitant subgrid extent restriction is onerous:
if the user wishes to extract an n x m block from an image for more detailed processing,
she or the system must round m up to a power of 2. This may make the shape nearly twice
as large as the region of interest, and requires extra care to either avoid processing the fil
elements or ensure that the operations performed will not fail due to invalid datain thefill
area. The step/wrap method is less than twice as slow as the shift/mask version except on
the highest axiswhen thisis not detected at compile-time, and has no restrictionson the axis
extents. As such, limiting shape extents to powers-of-2 does not appear to be worthwhile,
and pC* uses the step/wrap method for all pcoord operations within VP loops.

Outside VP loops the internal -location-to-C* -address conversion is used in several li-
brary functions. When we are operating on asingle offset we alwayswant theindicesfor all
axes (e.g., to yield aglobal address for a particular position), and in this case, the pcoord
computation can be placed in aloop which calculates the indices by peeling them out of
the offset one-by-one; the step/wrap method is inappropriate in this case, and we must re-
sort to using the division operations (one per axis). There is one obscure library function
(copy_multispread) which requirescomputing all indicesfor each element in turn; it uses
avariant of the multidimensional for-loop described in chapter 6.

3.2.1.2 C* AddresstoInternal Location

Given a set of indices idx [1, what processor owns the named element, and what offset
isit at on that processor?

The inverse operation of mapping a user-provided C* global address to a proces-
sor/offset pair isless common, occurring most often when addressing an element of aparal-
lel value as a scalar value through scalar left index expressions, as is done at each position
when performing general communications (cf. chapter 5). It is somewhat more complex
than the pcoord cal cul ation above, requiring several loopsto search for the owning proces-
sor based on the index values, and calculate the linear offset given the local indices within
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Rank | Inline Outline
1| 0.4002 0.5802
21 05603 0.7402
3| 0.7203 0.9003
410.8802 1.0604

Table 3.2; Per-Position Costs of C* to Local Index Conversion. Timein seconds for 10° conversions.

the subgrid stored on that processor.

pn = 0;

for (k = 0; k < shape->rank; k++) {
d = idx [k];
i=0;

while ((i < shape->distnblocks[k]) &&
(d >= shape->distbsizes[k][i])) {
d -= shape->distbsizes [k][i];
i++;
}
ldims [k] = d;
if (block == shape->disttype [k]) {
pn += i*shape->distpprod[k];
}
}
offs = 0;
for (k = 0; k < shape->rank; k++) {
offs += 1dims [k] * shape->pernode [pn]->num_per_axis [k];

}

Were this functionality required in many locations, it would be undesirable (for code bloat
reasons) to generate it using a macro or by explicitly coding it, and it should be placed in-
side afunction to ensure maintainability of the system. However, since there are relatively
few locations where the conversion must be done and all areinside library routines (unlike
pcoord, which can appear arbitrarily many timesin converted user code), the code sequence
can be encapsulated in a macro or inlined function to save the (rather significant) function
call overhead on each position.

The cost of this function is given for shapeswith ranks 1to 4 in table 3.2, running on a
50MHz Sun Sparc 20. Thetest convertsone million global index vectorsto processor/off set
pairsusing the above codefragment. Thetimeinthetableindicatesthe average per-position
cost in microseconds, comparing amethod which inlined the conversioninthe VP loop with
one which placed it in a function which was called once for each position. The constant
difference of 0.18sec is about what we would expect for one million function calls on a 50
MHz SS20 (measured independently to be approximately 166 nsec per call). Thisamounts
to roughly 30% of the conversion timefor a2d shape, soitisclear that inlining isdesirable.

To understand the performance with respect to communications overhead, an Ethernet
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packet of 1400 bytes® will hold 175 elementsin ageneral communication of integers (nodes
must receive both the value and its destination offset; see chapter 5). We can estimate the
one-way transmission using the reliable TCP package of figure 4.9 on 10Mbps Ethernet to
be approximately 750usec for startup (half the bi-directional TCP overhead); we will as-
sumethat, since sending a packet does not require waiting for it to go acrossthewire, 1msec
isaconservative (over-)estimate of the timerequired to transmit a 1400-byte message with-
out waiting for any response (asis appropriate in this case).6 The location calculation time
using arank-2 shape with theinlined conversion for the elements which go into that packet
is 98usec, approximately 10% of the per-packet transmission cost. The per-packet com-
munications cost can be decreased significantly with network optimizations such as those
outlined in section 4.5, increasing the proportion of time spent on local address computa-
tions. Thisagain leads usto remark on theimportance of ensuring that trang ations between
global and internal addressing be as simple and fast as possible.

3.2.2 Runtime Memory Management

We must pause the discussion of implementation data structures to address a related
issue—that of allocating space for them at runtime. Although shape structuresrequireacer-
tain amount of dynamic memory (e.g., allocating the per-node array once the cluster sizeis
known), the amount of memory isfairly small. Thisisnot the casefor paralel variablesand
contexts. C* variable declarations have the same storage-classes as C declarations. ones at
file scope or with static class persist throughout the life of the program, while auto-class
variablesinsideblocksare created and destroyed when the block isentered and exited. Since
the amount of memory required for aparallel variableisnot known until runtime, and is of-
ten extremely large, it is not feasible to create pvars on the C stack. Therefore, we need a
dynamic memory allocation scheme which allows easy creation and reclamation of parallel
objects.

While many parallel objects are created in direct response to user declarations, some
must be created by the compiler, for example to use as temporary valuesto hold the results
of communications. A complex garbage collection schemeis not required, but it is neces-
sary to reclaim, at the end of the block, both the user- and compiler-generated parallel vari-
ables which were allocated therein. A simple high-water mark collection scheme suits this
well: the memory allocator must support marking a current allocation level when ablock is
entered, and reclaiming everything allocated since that point when it isleft.

The implementation in pC* assigns allocations to the classes listed in figure 3.8.
Allocationis performed on each node through afunction which is given the size of the block
required and amemory classwith whichit isassociated. The memory isallocated usingC's

5. Seefootnote 9 on page 90 for why sizes were limited to 1400 bytes.

6. Itisdifficult to determinethe exact cost, sinceit dependson the status of system buffers, but simpletiming
tests indicated that absent flow control problems the write(2) system call for 1400 bytes to a TCP socket
takes less than 500usec on the experimental hardware. We will accept 1msec as an estimate to include the
extraprocessing timethat isrequired per chapter 4, though discussion in section 5.5 indicates a more complex
estimation may be required for large data transfers.
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typedef enum PCSRTMemClass {

PCS__RTMC_CompilerTemp, /* For compiler temporaries */
PCS__RTMC_UserMem, /* User pvars */

PCS__RTMC_StackedContext, /* Stacked contexts within where blocks */
PCS__RTMC_ParFuncRetval, /* Return values from parallel ftns */
PCS__RTMC_ShapeDecl, /* Non-dynamic shape information */
PCS__RTMC_StaticPvar /* Static local pvar */

} PCSRTMemClass;

Figure 3.8: Dynamic Memory Classes

malloc function, and a pointer to the block is saved in an array which emulates a stack of
alocationsin that class. High-water marks are indexes into the arrays, and memory is re-
claimed in one pass by walking thearray fromthemark tothelast allocation, calling free on
each block to be freed. We choseto usemalloc and free directly rather than cache blocks
inside the pC* memory handler because the host system’s allocation routines will perform
necessary block splitting and merging as memory alocation patterns change, while dupli-
cating thiswork insidethe pC* memory handler (aswasdonein (Lapadula& Herold, 1994))
would be complex and liable to leave blocks of memory allocated but unused, especially
when using dynamically allocated shapes of various sizes over along program execution.
A necessary step to ensure that memory use does not grow through leaks is to execute the
reclamation code everywhere a block can be exited: not only when it isclosed, but a goto,
break, and continue Statements as well. While the memory would be reclaimed when
the enclosing block was left, aloop with a body in which reclamation code is consistently
skipped due to non-structured resumption could easily consume all available memory.
The shape of file scope parallel variablesmust befully specified at compiletime, and the
compiler generates initialization functions that are called prior to invoking the user’'smain
function to do the necessary allocation in appropriate classes, as described in (Lapadula &
Herold, 1994). Management of non-persistent allocationsis performed on block entry and
exit, using the high-water stack method outline above. Five of the six classesin figure 3.8
usethisstack-based allocation: compiler temporaries, user pvars (with C auto storageclass,
i.e. declared inside blocks), stacked contexts (contexts allocated when awhere block isen-
tered), temporaries which hold parallel return values, and the space required for partially
and fully-specified shape declarations inside blocks all can be reclaimed when the scopein
which they were defined has been left.” Thelast class is used for values with static stor-
age class (which are allocated and initialized the first time the block is entered, and must
be of a shape which is fully specified at compile-time). Though high-water mark and re-
claim is not used in this case, we collect the blocks used for static allocations so they can
be freed when the program exits. Similarly, the memory allocated through the initializa-

7. Thoughall five are stack based, we do not attempt to coalesce them into a single all ocation stack, because
they are conceptually separate entities. Allocation and reclamation patterns can differ slightly between the
classes, and there would be no benefit in memory use or code clarity by combining the classes.
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typedef struct PCS__Pvar {
PCS__shape_base * shape; /* Shape by which data is to be interpreted */

char *base; /* Base of data region for variable */
int stride; /* Bytes between subsequent elements */
} PCS__Pvar;

typedef struct PCS__PvarPtr {
PCS__Pvar var; /* Basic information about the variable */
char * data; /* Base of the data pointed to */

} PCS__PvarPtr;

Figure 3.9: Structures for Parallel Variables

tion functions for file-scope variables is freed by the compiler’s exit function (by reclaim-
ing the whole stack of blocks), leaving allocated only memory which the user has asked for
specifically. Memory alocations in response to user commands such as palloc (for cre-
ating parallel variables of agiven shape with given element size) or allocate_shape (for
dynamic shape specification) are done using direct callstomalloc, sincethereisno need to
be able to recognize them or treat them as distinct classes, and it is the user’s responsibility
to make the corresponding calls to pfree and deallocate_shape. Careful management
of compiler-alocated memory permits development tools such as Purify (Pure Software,
1994), which analyzes memory usage and detects illegal accesses, to be used on the result-
ing C* programs, aiding in making the user’s code robust by ensuring that access errors
and leaked memory are due to problemsin the user’s code and are not caused or masked by
similar problemsin the runtime system.

3.2.3 Implementation of Parallel Variables

The data structures used for parallel variables are significantly simpler than those for
shapes, and aregiveninfigure3.9. Theseareessentially thesameasin (Lapadula& Herold,
1994), except for one change—rel ocating the information from a header which appears be-
foretheraw datato a structure dissociated with the data—which isrequired to support alias-
ing parallel variables between shapes, afeature used in acommon image analysis technique
described in an extended example below.

The basic variable structure contains apointer to ashape_base structure, indicating the
shape of the variable; a pointer to a data region of

spn->pernode [mynode] .num_local

elements treated as a linear sequence; and a stride which gives the element size in bytes.
A pointer-to-parallel consists of a parallel variable along with a separate pointer into the
data region. This pointer will be in the range [var .base,var.base + var.stride), and
permits the user to address specific fields of parallel aggregate types, such as structures or
arrays. A pointer-to-parallel doesnot require aseparate stridefield, asit will usethe stride of
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char * PCS__t0, * PCS__t1;
int PCS__s0, PCS__s1;

PCS__t0 = iv.base;
PCS__sO0 = iv.stride;
PCS__t1 = iv2.base;
PCS__sl1 = iv2.stride;
PCS__vpi = 0;

PCS__vplimit = PCS__current->pernode[PCS__nodenum] .num_local;
while (PCS__vpi < PCS__vplimit) {

* (int *)PCS__t1 = 2 * *(int *)PCS__t0;

PCS__t0 += PCS__s0;

PCS__t1 += PCS__s1;

PCS__vpi++;
}

Figure 3.10: C Trandation of C* code iv2 = 2 * iv

the base variable. Pointers-to-parallel are valuable both by providing away to dynamically
allocate parallel variablesthroughpalloc, and by providing away to passparallel variables
to functions by reference. This avoidsthe need to make a copy of an arbitrarily large block
of data on each parallel function call, since C* retains C's call-by-value semantics even for
paralel parameters.

Accesstotheelementsof aparallel expressionismadewithin virtua -processor loops by
associatingaC char * pointer with each parallel object, dereferencing acast of that pointer
to the appropriate type, then adding a stride to point to the next element. For example, the
C* code

iv2 = 2 * iv;

would betranslated into something like that givenin figure 3.10. In caseswherethe parallel
value has a scalar type and it is known that the stride is equal to the size of the type, the
pointer dereferencing can be converted into array indexing; e.g. PCS__t0 [PCS__vpil.

A more extended examplewill highlight the use of parallel variable structures and point-
ers, the need to be able to refer to parallel variables by different shapes, and the rationale
for supporting arbitrarily-sized blocks in distribution specifications.

3.2.3.1 Extended Example: Shape Aliasing

Image analysistendsto operate on extremely large sets of data: for example, the datafor
a single patch of Landsat Thematic Mapper imagery covers a ground area 185 kilometers
on each side with an 8-hit value for each of six frequency bands at each 30m x 30m pixel,
yielding a216MB data set (Richards, 1994). In many cases, a quick-and-dirty analysis can
determinethat there are only certain regions of the image that hold data of interest; in many
of those cases, the structural relationship between the pixelsin the regionsislessimportant
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shape | nage shape | mage shape | mage
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Figure 3.11: Shape Alias Example Data

than the values of features associated with them. For example, a pass over an image |ook-
ing at elevation data could recognize pixels above a certain elevation, and perform amore
detailed multi-band spectral analysis on those pixelsto identify the type of ground cover in
those regions (see, for example, (Turner & Turner, 1994)). Though context might restrict
operations to the pixels of interest, thus saving time, we would still need to allocate space
for the uninteresting pixels as long as we operated in the image shape. Therefore, we want
to extract those pixels from the image into a smaller shape (Voorhees & Tucker, 1992).

As an example, consider the data in figure 3.11 as representing elevation data (elev)
and two bands of spectral data that can be used for ground cover classification (imband1
and imband?2). We wish to extract the band data corresponding to pixelswhose elevation is
highest, and put those into new parallel variablesto operate on. The codein figure 3.12 per-
formsthisfunction.? To further illustrate aspects of data distribution and shape aliasing, we
have assumed alayout for theimage datawhich distributesit a ong both rows and columns,
on a4-node cluster, with bold linesindicating cross-processor boundariesin the shapes. Let
us now examinein detail what the code does.

e First, wecreate anew shape which is one-dimensional, has as many el ements as Image,
uses block distributioninto as many sectionsasthere are nodesin the cluster, and usesas
the section sizesthe Image subgrid sizeson each node. Thisensuresthat wehave ashape
which has the same number of elementson each node as Image, but isone-dimensional.

e Next, we create two pointers-to-parallel which point to the same memory as the two-
dimensional parallel variables elev and imidx but will treat that memory is though it
were of shape ImageInid. The elevation datainterpreted as a one-dimensional pvar is
shown in figure 3.13. Note that the one-dimensional view is not ssmply a row-major
flattening of the two-dimensional view, because we are retaining node ownership of the

8. The interface to detailed allocation in pC* is actually somewhat more complex than that shown in fig-
ure 3.12, but the differences would serve only to confuse the issue. Asapolicy decision, weretain TMC C*
namesfor functionswhich performthe same operationas TMCversionsor likeallocate_detailed_shape
are documented to be implementation-specific, while changing the names for functions which do not
appear in TMC C*: hence the use of PCS_shape_subgrid_sizes, which is specific to pC*, but
CMC_change_pointer_shape, which is supported in both implementations.
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with (Image) everywhere {

shape ImageInld; /* Shape for 1d image */

shape ReducedImage; /* Shape for reduced data set */
int:Image imidx; /* Reduction conversion map */
Peltype:ImageInid * elevld; /* Elevation data as 1d pvar */
int:ImageInld * imidx1d; /* Index as 1d pvar */

/* Allocate a 1d shape with same subgrid sizes as 2d Image */

allocate_detailed_shape (&ImageInld, 1, positionsof(Image),
PCS__block_distribution, dimof (physical),
PCS_shape_subgrid_sizes (Image));

/* Alias both the image and the idx vector to 1d */
elevlid = CMC_change_pointer_shape (&elev, ImagelInld);
imidx1d = CMC_change_pointer_shape (&imidx, ImageInld);
imidx = -1;
with (ImageInld) where (4 == *elevid) {
/* In 1d space, generate an enumeration of high-elevation
* pixels */
*imidx1d = enumerate (0, CMC_upward, CMC_exclusive, CMC_none,
CMC_no_field);
/* Determine the number of pixels which are turned on. */
npix = += (int:current) 1;
}
deallocate_shape (&ImageInid);

/* Allocate a new shape to hold the reduced image */
allocate_shape (&ReducedImage, 1, npix);
with (ReducedImage) {

Peltype:current rbandl, rband?2;

with (Image) where (0 <= imidx) {
/* Send the band data for the high elevation pixels into
* the pvars for the working shape */
[imidx]rbandl = bandi;
[imidx] rband2 = band2;

}

/* Operate on the reduced image data here */

}
deallocate_shape (&ReducedImage) ;

}

Figure 3.12: Code for Shape Aliasing Example
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Figure 3.13: Elevation and Index Datain One Dimension

shape | nage
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Figure 3.14: Reduction Index Variable

data: although the right half of the first row is owned by processor 1, the data appear
following the left half of the second row, which is owned by processor O.

e Now we can create the index variable. Weinitializeit to —1, so positions which do not
satisfy the elevation test are recognizable, then switch to the one-dimensional shape and
immediately restrict the context to the positions where the elevation is maximal. The
inactive positions are shaded in figure 3.13.

e Under thisrestricted context, we call a C* auxiliary function enumerate which labels
the active positions with the number of positions prior to them: this gives each high-
elevation pixel a unique index. The result, viewed as a one-dimensional pvar, is aso
shown in figure 3.13. We determine how many positions pass the elevation test: this
will be the required size of the shape for the reduced data.

e We can now free the one-dimensional image shape, since we are finished, and alocate
a new one-dimensional shape to hold the reduced data.

e Next, we enter the reduced data shape, and declare variables of that shape for the band
data. To send the band data to the new shape, we drop back into Image shape, restrict
the context to positionswhich have valid indices, then send the image band datainto the
reduced shape pvars. The imidx pvar interpreted in Image spaceisin figure 3.14, and
the band datain itsfinal format are in figure 3.15.
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shape Reducedl nage shape Reducedl nage
0 1 2 3 4 0 1 2 3 4
rbandl |0 | 4] 2]3]|4 rband2 |16 |12]14]113|12

Figure 3.15: Reduced Band Data

Through theuse of pvar aliasing, weare ableto perform all the stepsup to thefinal redis-
tribution of the data without communication, except for asmall amount within enumerate.
After execution of the alias and distribution code, we have reduced the problem size to ex-
actly what we need to work with, and have redistributed the necessary data over the en-
tire cluster, eliminating any load imbalance due to an unequal distribution of high-elevation
pointsin the origina image.

This example illustrates some of the functions we wish to perform and how the inter-
nal representation supports them. The need to view an object as two-dimensional and one-
dimensional data simultaneously comes from the object’s natural form as a representation
of an image area, conflicting with the desire to label a subset of the area with a linear se-
guence of integers. While it may be possible to generate an index value similar to that of
figure 3.14 using C* operations on the rank-2 shape, it would not be nearly as succinct and
efficient as the shape alias plus enumerate method used in the example.

It is this need to be able to represent blocks of data as subgrids in differently-ranked
shapes that mandates the support of arbitrary partitioning of axes described in section 3.1,
so that the code in figure 3.12 will work regardless of the number of rows and columnsin
the image, the distribution of the two-dimensional image, and number of workers in the
cluster. If the user, for independent reasons, distributed Image only aong axis 0, and the
system required a near-equal partitioning along the axis (where each node had at most one
more row than any other node), the difference of one row would trandate to a difference
of dimof (Image, 1) in number of positions, and the near-equal partitioning would not be
satisfied in the one-dimensional alias.

3.2.4 Data Access Patterns

Thefact that shape dimensions are unknown at compile time meansthat the virtual pro-
cessor loops which perform computations at all elementsin the shape walk through datain
their linear form, disregarding rank and extents. It is not possible for the compiler to emit
anested loop structure to walk a paralel value, unless one iswilling to provide at compile
time a hard upper-bound on the rank of shapes on which the generated code will operate.
An algorithm outlined in section 6.1 shows that it is possible to emulate arbitrary for-loops
using awhileloop, but it is unnecessary in the cases examined so far to do so, since alinear
walk provides aperfectly adequate access pattern (though this does require usto use amore
complex pcoord computation than simply referencing an index variable).

However, there are a variety of auxiliary C* functions which operate on one user-
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0O 1 2 3 0o 1 2 3 o 1 2 3
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Figure 3.16: Auxiliary Reduce Function Example

specified axis of ashape at atime. For example, the library reduce function® takes as pa-
rameters a shape, an axis number, a destination index, and an operator. It then separatesthe
shape into groups of elements where each group has the same global index except within
the provided axis, applies the operator to the el ements in each group, and stores the answer
inthepositionthat isat the given index along the axis. These groups are known as scansets,
and, in a 2d shape, correspond to rows or columns. For example, figure 3.16 shows the ap-
plication of the add operation to a2 dimensional shape, with one result being along axis 0
(scansets are columns) and stored in index 0, and the other along axis 1 (scansets are rows)
stored in index 2.

The simplest way to implement thisfunction isto use nested for-loops, oneloop for each
axis and ordering the loops so that the innermost one iterates over the axis along which the
reduction is performed; e.g., for the axis O reduction in figure 3.16 the effective code would
be something like:

for (¢ = 0; ¢ < 4; c++) {
sum = 0;
for (r = 0; r < 4; r++) {
sum += data [r][c];
}
dx0 [0] [c] = sum;
}

Although the reduce function is a library routine so cannot have hard-coded nested loops,
the multi-dimensional for-loop emulation method of chapter 6 can be modified to provide
thisfunctionality. The primary benefits of thismethod are that it isconceptually simple, and
it requires only one scalar temporary to hold the accumulated results along the scanset that
is currently being walked.

Theprimary disadvantage of the method isthat it has extremely poor memory access pat-
terns. Rather than perform one pass over the local data set, it will perform multiple passes,
each one accessing a dightly different area of memory. Advances in computer hardware
mean that access timeincreases by severa orders of magnitude as the data that are required

9. Thisroutineis one of the cscomm auxiliary routines provided in the Thinking Machines Corporation im-
plementation of C*, and should distinguished from the core language reduce function and the pC* internal
reduce collective communicationsroutine described in section 4.3.2.
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Dimensions AXis | AXIAL | LINEAR
1000000 0 0.1501 | 0.2076
100 x 10000 0 0.5017 | 0.1949
1000 x 1000 0 0.6509 | 0.1720
10000 x 100 0 0.7677 | 0.1726
100 x 10000 1 0.1500 | 0.2077
1000 x 1000 1 0.1507 | 0.2079
10000 x 100 1 0.1614 | 0.2115
100 x 100 x 100 | O 0.5076 | 0.1936
100 x 100 x 100 | 1 0.1935 | 0.1769
100 x 100 x 100 | 2 0.1631 | 0.2115

Table 3.3: Axial versus Linear Walks of Multidimensional Data. Time in seconds over one million
positions.

live further away from the processor along the spectrum of on-processor cache, externa
cache, main memory, and paged disk memory (Hennessy & Patterson, 1990). The large-
stride access means that the block of memory holding a desired element must be loaded
into the cache, incurring some cost, but we then refer only to the one element in that block,
losing the chance to amortize the load cost by operating on all elementsin order. Inthe case
of large images, the amount of data is such that while walking along a column performing
areduction the previously-loaded blocks must be freed to make room for more data, so the
load cost isincurred again on the next column.

To quantify the overhead involved, we implemented the reduce function in sequential
C, and tested the performance on a variety of one million element shapes ranging from 1
to 3 dimensions on each axis. The experimenta platform was a Sun Sparc 20, using a 50
MHz SuperSPARC chip with a 16K 4-way set associative D-cache on-chip, a1MB second
level cache, and 512MB of memory. Genera algorithms were coded to handle arbitrarily-
dimensioned shapes using one of two methods: AXIAL emulates the above nested for-loop
method operating on each scanset in sequence, while LINEAR walksthe datain their locally
stored order, and uses avariant of the step/wrap pcoord method to determine which scanset
itisexamining. The LINEAR agorithm therefore requires an array which maintainsthe par-
tial sumsof many scansets simultaneously. Results of the experiment are shownintable 3.3.
Walking axis k — 1 of arank k shape using the LINEAR agorithm induces a roughly 15%
performanceloss (rel ativeto other axes) dueto the same effect seenin the step/wrap pcoord
calculation on this axis. specifically, overhead from repeatedly executing aloop for one it-
eration, because a special case could not be anticipated. The effect of bad memory access
can be seen most clearly in the lower axes of multidimensiona shapes. The degree of in-
terference is proportional to the number of times a different region of memory is accessed:
hence using AXIAL on the 100 x 10000 shape on axis 0 the inner loop iterates only 100
times before it finishes and data it has already |oaded is accessed for the next scanset. But
when the shape is 10000 x 100, there are 10000 accesses before re-examining apreviously-
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loaded cache line, and the likelihood of the data surviving in the cache is correspondingly
less, increasing the average access cost. Theinverse interference pattern can be seen in the
performance of LINEAR on the same data: for thefirst case the summary vector is 10000 el-
ements long, yielding a much larger cache footprint than the 100 element summary vector
for the second case.

Assuming the likelihood of walking each axisisequal, the AX1AL method on the square
rank-2 shape takes on average 0.4 seconds, compared with 0.19 seconds for the LINEAR
method. Thus, by carefully coding all algorithmsto walk datain a cache-sensitive manner
we can obtain very good speedups. In addition, mandating this access pattern (when we
must touch every element in a shape) allows additional optimizations such as the context
encoding described next.

3.3 Implementation of Context

Context allows the C* programmer to specify that operations should not be performed
on certain elementsin the shape. Essentially this associates a boolean value with each po-
sition, indicating whether or not the position is active for operations. As all operations not
within thedirect scope of an everywhere block are performed under context, it isimportant
to make the overhead of context checking as small as possible.

3.3.1 Representation of Context

The natural first approach to context is to use a parallel boolean value. Since bit-wise
operations on modern RISC processors usually require multipleinstructions, a sensible al-
ternative is to use one byte per position, with O indicating an inactive and non-zero an ac-
tive position. Thus, insidea VP loop, atest can be made to determine whether the operation
should be performed for that virtual processor: e.g.

/* OMITTED: initialize other pvar pointers and strides */
PCS__ctx = (char *) PCS__current->context;
for (PCS__vpi = 0; PCS__vpi < PCS__vplimit; ++PCS__vpi) {
if (*PCS__ctx) {
/* OMITTED: perform operation here */
}
/* OMITTED: add stride to pvar pointers */
++PCS__ctx;
}

While simple, this method, which we will call acharmap encoding, is suboptimal for ava
riety of reasons that become clear when the common forms of context are considered. Con-
texts generaly fall into one of the following categories:

e Everywhere—Operationsthat have no inactive positions. In this case, we pay the price
for storing a charmap which is all ones, and for checking it at each position. Further-
more, although the compiler may be able to recognize that code appears within the



CHAPTER 3. Implementation of Parallel Values and Context 49

boundary of an everywhere context and thus generate aV P loop that omits the unneces-
sary check, library routines will be unable to take advantage of this information unless
everywhere contexts are marked internally in some form.

e Boundary elimination—An internal regular region of the shapeis active, but thereisa
boundary region for each axiswhich masksout areas which would induce out-of-bounds
grid accesses or destroy values that are to be algorithmically invariant. These contexts
generally alternate long runs of active positions with short runs of inactive positions.

e Random—Thereis no easily-recognizable structural regularity to the context. Often a
high percentage of the shapeisinactive, aswith the high-elevation context in the exam-
ple on page 41.

e Tiled—Elements are alternately on and off: for example, as would be used in a red-
black or odd-even simultaneous over-relaxation algorithm (Press, Flannery, Teukoloky,
& Vetterling, 1984).

We counted the uses of context restrictionsin the source for benchmarks described in chap-
ter 7, and found fifteen everywhere (in part because of the performance benefits of doingthis
when entering anew function, to permit extra compile-time optimizations), thirteen bound-
ary elimination, and nine random or non-structured contexts. Tiled contexts can appear in
some numerical analysis algorithms but are virtually unknown in image processing appli-
cations. The other forms are fairly common, and have a noticeable feature that they have
long runs of consecutive elements with the same context type (active or inactive). Given
that compiler-generated VP loops and library routines both access data in internal, linear
order, this leads one to consider whether a run-length encoding of context might be more
efficient, both in terms of space required to store the context, and in time by skipping over
inactive regions in one step and putting operations over active regions inside a tight loop
which does not need to check context.

A run-length encoding (RLE) of context can be implemented by using asigned integral
type to encode the run, with positive values indicating an inactive sequence and negative
values an active sequence (or vice-versa). The RLE context map is represented by a pointer
to a sequence of integers which encode runs; the space required by the map depends on the
integer data-type used to encode runs, and the variability of the context. By combining ad-
jacent runs of the sametype in the function which reads the context map, we can get thefull
length of each active and inactive sequence, allowing asimple conditional to distinguish an
inactive region that should be skipped immediately from an active region that does not re-
quire context checking. An everywhere context can beeasily represented by anull pointer,
whichtheroutinesinterpret asan active sequence of num_local positions. Thisallowsboth
an optimal space representation and communication of theeverywhere contextinto library
routines and user functionswhere the compiler isn’t able to determine the execution context
at compiletime, at the cost of only asingle calculation at VP loop entry.

The next question is what size value should be used as the base type. If we use 8
bit chars, which can represent from -128 to 127, we are guaranteed that in the worst case
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Program | # Everywhere | # Where | char RLE | short RLE | int RLE
amp 2 4 0.01302 | 0.01270 | n/a
col 0 384 0.22298 | 0.44370 | n/a
dens 1222 1827 0.00896 | 0.00286 | n/a
fft 1 65 0.12753 | 0.24615 | n/a
hist 100 0 n/a n/a n/a
hough 3 0 n/a n/a n/a
hyp 111 200 0.20903 | 0.41674 | n/a
jac 1 1 0.00788 | 0.01576 | n/a
mat 111 43 0.30528 | 0.60655 | n/a
obj 2 2 0.21810 | 0.43620 | n/a
det-arag | 25 41 0.01655 | 0.01914 | 0.03827
det-famp | 18 35 0.01515 | 0.01651 | 0.03298
cta-arag | 41 736 0.09490 | 0.18156 | 0.36313
cta-famp | 47 582 0.10705 | 0.20536 0.41072

Table 3.4: Context Encoding Frequency and Space Summary. Number of dynamic context forma-
tionsof each type, and fraction of space required by RL E relative to the charmap encoding.

(atiling where each run is 1 element long) the RLE encoding will take no more space
than the charmap encoding; while if the entire local subgrid is inactive, we must use
[num_local/127] bytes to store the context. A 32 bit integer encoding with a represen-
tation magnitude of at least 231 would eliminate the second problem by encoding the entire
run length in one word, at a potential cost of quadrupling the space requirementsfor atiled
context. Using a 16 bit short word is an intermediate aternative.

Weinstrumented a set of 10 test programs (from (Turner, 1994)) and four full image pro-
cessing programs to determine the effect of using run-length encoded contexts with various
datatypes. Theresultsare shownin table 3.4, and give the dynamic numbers of contexts—
separated into everywhere and non-everywhere—generated during onerun on asinglerep-
resentative input for each program on a single-node cluster. The data-sets were small to
medium-sized problemsfor each program, ranging from a256 x 256 sub-imagefor hist, a10
band 128 x 128 sub-imagefor hyp, upto 2048 x 1024 for det. The context mapswere exam-
ined, and the space requirementsto represent the non-everywhere contexts using run-length
encodings in each of the basic types—char (1 byte), short (2 bytes), and int (4 bytes)—
normalized to the charmap encoding (one byte per element), are presented. It is clear that
an RLE encoding with char base typesissufficient: although two of the fourteen programs
(amp and dens) got a small space improvement from using short base types, on average
using shortsincreased memory requirements by afactor of 1.93, very nearly the worst-case
increase of 2x. Therefore, for these types of programs, there is no benefit in using more
than 8 bits for the run-length encoding type: enough of the runs are short enough that the
increased representation range is unnecessary. In addition, the relative space requirements
show that RLE encodings tend to consume either around 1% or 10-20% of the space of the



CHAPTER 3. Implementation of Parallel Values and Context 51

shape S
0o 1 2 3
ol O 1|1
110 | 1|11
i nbound ctx = [1, -3, 1, -3, 1, -3, 4]
200|111
30| 0|]0]|O

Figure 3.17: Encoding of Boundary Context

full charmap encoding on these programs: this does not count the savingsfrom representing
everywhere contextsasnull pointers. (To help in understanding the effectiveness of thison
overall memory usage, other instrumentation on the image processing programs indicated
that the charmap context encoding consumed from 2% to 7% of the peak dynamic memory
used by the program.)

As an example of context encoding, consider the boundary restriction required to avoid
out-of-bounds access while executing the following code:

shape [4][4] S;

%iéh (S) where (inbounds) {
iv2 = [.+1][.-1]iv;
}

The source variable is shown in figure 3.17, along with the run-length encoding assuming
all elements appear on one node. The corresponding C code which performs the assign-
ment under context is shown in figure 3.18. Thisis the general method for implementing
contexted VP loops with run-length encoded context. PCS__ctx_nextseq iSamacro used
to determine the combined length of a context run. It detects an everywhere context by
noticing anull context pointer, and handlesit implicitly. If the context isnot everywhere,
it will combine adjacent runs of the same context type (active/inactive) yielding the total
length of the run. It updates the PCS__ctxcnt variable to give the length and type of the
next run. It requiresPCS__vpi and PCS__vplimit to ensureit doesnot go beyond the ends
of the context encoding, since the length of the encoding is not stored elsewhere.

3.3.2 Building Context

Onceitisdecided to use arun-length encoded context representation, methodsfor build-
ing the run encoding are fairly clear, though efficient implementation can be nontrivia. We
do not know the space required to hold the encoding until it is complete. Therefore, the
routines that allocate shapes ensure that there is a memory buffer called the context build
arena which is as large in bytes as the maximum number of local positionsin any shape.
The choice of chars as base elements, along with care in the generation method to ensure
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/* OMITTED: build the context */
/* OMITTED: perform grid read into PCS__gtmp */
/* OMITTED: initialize pvar pointers and strides */
PCS__ctx = PCS__current->context;
while (PCS__vpi < PCS__vplimit) {
PCS__ctx_nextseq (PCS__ctxcnt, PCS__ctx, PCS__vpi, PCS__vplimit);
if (0 > PCS__ctxcnt) {
do {
*x(int *)PCS__iv2p = * (int *)PCS__gtmpp;
++PCS__vpi;
PCS__iv2p += PCS__iv2s;
PCS__gtmpp += PCS__gtmps;
} while (0 > ++PCS__ctxcnt);
} else {
PCS__vpi += PCS__ctxcnt;
PCS__iv2p += PCS__ctxcnt * PCS__iv2s;
PCS__gtmpp += PCS__ctxcnt * PCS__gtmps;
}
}

Figure 3.18: Code for RLE-Contextualized Parallel-Value Assignment

no O-length runs are stored, ensures that thiswill hold any context which might be required.
Context builds proceed in an inverse of the way the context is used: we determine the
length and type of acontext sequence, then storethe RLE encoding for it. The simplest case
isbuilding aninitial context restriction: awhere construct which appears directly in scope
of an everywhere block. The code in figure 3.19 shows the build process, where expr
represents some parallel boolean expression. While the control flow may seem somewhat
baroque, it serves a purpose. Notice that we evaluate expr once for each position, regard-
less of whether at the time we correctly anticipated the value of the expression: if we were
wrong, we store the now compl eted sequence, change the sense of the current sequence and
reset the count, then jump back into the loop and continue. This also allows us to avoid
duplicating the code for incrementing the pointers which walk parallel values referred to
in expr. We take care to ensure that only non-zero values are stored in the context, so we
do not exceed the space bounds of the arena. At the end of the build code, we allocate a
block of ctxp-context_arena bytes, copy the new encoding into it, save (the pointer to)
the previous context in avariablein the block, and store the new context map in the shape.
If, after the where expression has executed, thereis an else expression which requiresthe
inverse context, we need only walk the map changing the sign on the saved run lengths.
Building a cumulative context is substantially more tricky, since we must preserve the
inactive sequences from the parent context, yet add new ones where the new restriction is
more stringent. Essentially the build loop islifted into a VP loop contexted on the parent
context: inactive sequences in the parent are immediately stored, while active sequences
proceed to execute the test code and store active or inactive sequences according to the
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vpi = 0;
vplimit = PCS__current->pernode [mynode] .num_local;
cnt = 0;

testval = 0;
ctxp = context_arena;
/* OMITTED: initialize pointers and strides for parallel variables
* in test expr */
while ((vpi < limit) && (testval == !!(expr))) {
ctx_1bl1l:
++cnt;
++vpi;
/* OMITTED: increment pointers for parallel variables in expr */
+
while (RLE_Limit < cnt) {
*ctxp++ = testval 7 -RLE_Limit : RLE_limit;
cnt -= RLE_Limit;
+
if (0 < cnt) {
*ctxp++ = testval ? -cnt : cnt;
}
if (vpi < vplimit) {
testval = !testval;
cnt = 0;
goto ctx_1blil;
}

Figure 3.19: Code for RLE Context Formation

boolean expression results. Care is taken to combine adjacent runs to decrease space: if
aparent inactive sequence isk«RLE_Limit +i long, the extrai will be combined into any
initial inactive sequence resulting from false expr valuesin the new context. The required
contortionsare not sufficiently interesting to reproduce here. Therearesimilar difficultiesin
producingacumulativeelse context, sincewe need to taketheinverse of the child encoding
while preserving inactive sequences in the parent: this becomes a sort of merge operation,
walking child and parent simultaneously and switching sequences which are active in the
parent, again merging adjacent runs.

3.3.3 Additional Context Optimizations

In addition to a run-length encoding, several steps can be taken to decrease the cost as-
sociated with context. In many cases, it is not necessary for the context to be stored at all:
if the body of the where (and/or else) construct is al parallel code, then the test can be
moved into the virtual processor loop and executed for each position. Similarly, any initia
portion of thewhere body whichwould appear insideaVVPloop can belifted into the context
build loop, at the point immediately following the ctx_1bl11 label inthe build loop in fig-
ure 3.19, avoiding the need for an extraloop construct immediately after the context build.
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Type Operation charmap | RLE
everywhere | build 0.10964 | 0.00002
body 0.24631 | 0.20538
boundary init build 0.18265 | 0.16101
cumulative build | 0.20747 | 0.15543
body 0.24429 | 0.20094
random init build 0.18612 | 0.20545
cumulative build | 0.17261 | 0.08345
body 0.16968 | 0.08376
tiled init build 0.10592 | 0.54829
cumulative build | 0.18654 | 0.81277
body 0.25197 | 0.53542

Table 3.5: Context Build/Reference Timings. Seconds for build/reference in rank-1 shape with 220
positions.

These features have been implemented in pC*, with some amount of additional complexity
to the context building code described in the previous section.

A significantly more powerful context optimizationisin handling of the boundary elim-
ination case. If the where expression consists of a conjunction of comparisons between
pcoord and ascalar integral expression, the resulting context can be generated directly us-
ing techniques similar to those of grid communication in chapter 6. In essence, we emulate
amultidimensional loop over thelocal subgrid, with lower and upper bounds corresponding
to the region of the subgrid owned by the node, but corrected for range restrictionsimposed
by the where expression. When an index of the iteration space wraps, we have reached an
out-of-bounds area, and store into the context an inactive sequence whose length depends
on how many axes wrapped and the bounds of each of them. A full description of the tech-
nique is reserved for chapter 6, sinceit is based on the same techniques as the method for
skipping or detecting out-of-bounds grid axes described therein. Since evaluating pcoord
at each element can be expensive even with the step/wrap implementation of section3.2.1.1,
this technique results in a significant speedup.

3.34 Evaluation of Context Optimizations

We have already seen from table 3.4 that run-length encoding can result in a 90%—99%
decreasein space requirements. However, it should be clear that the build loop ismore com-
plex than that for acharmap encoding, and theloop nesting required for contexted V P loops
is also more expensive than a simple boolean test. We should therefore examine the effect
of arun-length encoding on execution time.

Table 3.5 contains information about context build and reference for RLE and charmap
implementations of each of the context classes mentioned earlier. In al cases, the exper-
imental body consists of a call to a function which assigns from one parallel variable to
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another. Therefore, within the function the execution context is unknown, and no inlining
of bodies into context build loops was done, nor was context check code eliminated due
to asyntactically enclosing everywhere block. Except for everywhere the contexts were
built from a pre-computed boolean variable which reflected the type of mask—in essence,
acharmap encoding itself, although neither implementation took direct advantage of thisin
forming the context. Timings are in seconds, and are the median of five runs on a 50MHz
Supersparc. Operationswere performed on a 1024 x 1024 shape. Buildsfor initial contexts
recognized that the parent context was everywhere, and avoided the merge step; cumula-
tive contexts built the initial context, then timed the cumulative build using the same mask

again.

e Everywhere—Buildtimefor charmap requiresallocating ablock of memory and initial-
izingittoal 1s. For RLE, it requires assigning anull pointer, a constant-time operation
regardless of shape size. The improvement in RLE body time is due to the avoidance
of checking the charmap flag for each position; if the test had permitted the body to be
syntactically enclosed in an everywhere context, the compiler would have noted this
and the charmap time would be nearly identical to the RLE time.

e Boundary—The leftmost and bottommaost 5 columns and rows were disabled, leaving
99.03% of the shape active. Notice that the initial build times for both methods are ap-
proximately the same, while the cumulative build was faster for RLE, due mostly to
avoiding the context check for the active runs, and possibly aided by better cache be-
havior with the smaller context encoding. Execution of the body is 19% faster with the
RLE encoding, because context need not be examined for long runs.

e Random—5% of the internal elements, chosen at random, were made active, with the
rest inactive. The resulting map is not an accurate reflection of the type of “random”
contexts expected in image processing, because images would tend to group active ar-
eas into longer active and inactive runs, providing better amortization during builds and
loops. Theinitial buildis slightly more expensive for the RLE encoding, but the cumu-
lative one is twice as fast, mostly because it can skip the 95% inactive positions where
the charmap encoding must at least look at them. Using the resulting RLE context is
also twice as fast as using the charmap, for the same reason.

e Tiled—Odd numbered elementswere active, whileeven wereinactive. Thisistheworst
case for the RLE context: it consumes as much space as the charmap encoding, and
the overhead of storing and extracting the unit sequences, which is not amortized over
long runs, causes afour-fold slowdown during builds, and just over two-fold slowdown
during VP loops.

While the results in table 3.5 reflect a single simplistic test, experience with test and pro-
duction programs during development of the encoding tended to support a 10%—25% im-
provement in execution time using the RL E contexts. Thisismostly because theworst case
of tiled context does not occur in the image processing applicationswe currently use. In no



CHAPTER 3. Implementation of Parallel Values and Context 56

case did the RLE context result in a significant slowdown, and in all cases it saved more
than half the space required by charmap encodings.

Thetimesin table 3.5 indicate the cost of building a boundary context when the source
expression is a boolean variable and each position is tested. In many cases, especially for
the boundary context, the expression contains callsto pcoord. We describein section 6.1 a
method to build contexts more quickly in thiscase, i.e. without evaluating pcoord for each
element of the shape. For the experimental resultsin table 3.5, the time to build the bound-
ary context evaluating pcoord at each position (using the step/wrap method) was 0.34sec,
less than twice the time required to examine the pre-computed boolean value. When the
aforementioned optimization which takes advantage of grid restrictions to build boundary
contexts is used, the build time drops to 0.0029 seconds, over 100x faster: rather than per-
forming atest on each of one million elements, it need merely execute a loop body 1024
times and store a count on each iteration. Tests on other programs indicated that the time
required to build a boundary-safe context without the optimized build was approximately
half the time required to perform the grid communication it protected; with the optimized
build, the context formation time becomes insignificant. The optimized build method was
never applied to the charmap case; whileit would undoubtedly provide asignificant speedup
thereaswell, onewould expect to lose an order of magnitude dueto cache effectsrequired to
storeavalueat each of one million bytes, similar to the cost difference observed for building
an everywhere context in the charmap style.

Itisclear that, if the problem domains to be addressed by a system include frequent use
of tiled contexts, an RL E encoding may not be appropriate: infact, giventhe RLE encoding,
itisfaster in pC* to perform simultaneous overrelaxation operations at all positionsin the
shape, then generate the value for the next step using atiled context which can be wholly
inlined, avoiding the costly build/walk steps at the price of ignoring half of the computed
results. Alternatively, one can simply split the problem data into two separate pvars, one
each holding red or black data, and perform the computation by alternating between them
without contextualization. Since all functions which examine data must know the format
in which context is represented, and an RLE representation is significantly different from a
charmap encoding, it isimpractical to support both in the same system.

3.4 Conclusions and Related Work

WE' ve considered three major issues in language implementation in this chapter. Much
work on distributed computation presumes that data distribution is a critical component to
system performance (Tseng, 1993). While we do not wish to argue that thisisuntrue, it is
clear that data placement is not the whole story: we must also be able to convert between
global and local addresses, to know what values must be transferred between processors.
Even thefairly simple block-based distribution scheme discussed in this chapter can, if not
carefully optimized, require a significant proportion of execution or communication time
just to perform the conversions. Less regular schemes such as those described in (Crandall
& Quinn, 1993; Socha, 1991), which are designed to decrease the high-level communica-
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tion requirements by partitioning data with less regard to topological neighborhood or or-
thogonal boundaries, would intuitively require more effort for the conversion phases; the
descriptions of these placement methods do not address this issue. The appropriateness of
more complex placements for particular agorithms, such as block-cyclic for linear algebra
routines, should be tempered by the effect on the rest of the system of adding this support.
When all communication patterns and address resol ution can be discerned at compiletime,
thisis not such alarge issue, but it will affect general case implementations that are relied
on when compiler analysis fails to detect an optimizable case.

We have aso examined the value of interpreting the locally-owned data as linear se-
guences, regardless of the layout imposed on them by the user. This is done in the C
code generated from user C* code, in part because the necessary information (rank and ex-
tents) for generating nested loops for user-view access may not be available to the compiler
(though techniques described in chapter 6 would permit a simulation of nested loop if that
were useful). However, linear accessin library routinesis primarily desirablein order toim-
prove cache behavior. Fortran source usually presents sufficient information for the com-
piler to emit a nested-loop access scheme, but for code fragments such as DOALL loops
where the semantics does not require preserving the user’s access pattern there may be a
significant benefit to re-ordering or linearizing the loops so data are accessed in one-pass
sequences.

Issues of data access and address computation in the context of a sequential trandlation
from APL to Careconsideredin (Budd, 1988). Heretheinterest ismorein decreasing mem-
ory usage, and achoiceismadeto use anon-contiguous access pattern for complex primitive
operationsthat would otherwise require space for temporary intermediate values. Thework
also addresses the need for fast address cal cul ation, though in a uni-processor implementa-
tion and therefore not to the generality described here.

Finally, we have presented amethod of encoding context which requiresmuch less space
than the “natural” charmap encoding and reduces overhead in loops by making the cost of
context checking proportional to the number of context sequencesrather than the number of
elementsin the shape. Although this encoding isvaluable for the context types common to
image processing applications, it is clear that algorithmswhich usetiled contexts, asin red-
black simultaneous overrelaxation systems, can behave poorly. Implementers should con-
sider the target applications of their systems and choose the appropriate encoding accord-
ingly. Unlikethe previoustwo issueswhich can be applied to languages such as Fortran, the
C* notion of context is more general and requires communicating the activity information
to operations distant from the context formation, while Fortran 90 context is a purely local
phenomenon which does not reach into called functions, and it is not clear that storing the
context isrequired in that case.
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CHAPTER 4
BASIC COMMUNICATION PRINCIPLES

Areyou sitting comfortably? Then we'll begin.

— Julia Lang (introduction to BBC Radio programme Listen with
Mother)

In this chapter we examine in detail fundamental assumptions about interconnection
networks in the context of a highly portable yet high performance distributed lan-
guage. Thethree-level framework of pC*’s communications hierarchy is described.
A low-level interface permits target-specific implementation of alimited number of
functions, and delivers acommon quality-of-service when its requirements are met.
At the highest level are |language-specific communications operations, such as grid
and general communications patterns and more complex computations such as sort-
ing and prefix scans. Mediating these levels is a target-independent set of routines
which usethe low-level interface to implement communication of arbitrary amounts
of data, as well as basic group communications such as one-to-all broadcast and all-
to-all reductions. We describe how a message handling facility built into the mid-
level routines is required for correctness, but simultaneously reduces memory us-
age and will permit eventual implementation of |atency-hiding communications op-
timizations, given sufficient compiler support. We close with a case study which
implements broadcast and reduction operations with a variety of algorithms on both
point-to-point reliable Unix TCP sockets and multicast unreliable Unix UDP sock-
ets, coming to the conclusion that the benefits of a broadcast/multicast implementa-
tion, given their frequency of use in our benchmark suite, are negligible relative to
the system complexity that is introduced by imposing our reliability requirements
on them in a portable manner.

Distribution of dataamongst nodesin adistributed multiprocessor systemisamajor fac-

tor in the performance of the system, but regardl ess of the distribution chosen datawill even-
tually need to be moved between processors. Thisimpliesthat the communications subsys-
tem used isof similarly high importanceto total system performance. However, the path to
choosing an appropriate implementation framework is difficult because network issues—
especialy inasystemthat attemptsto be portable—are more complex than datadistribution,
amatter that ispurely internal to the system. In this chapter we will examine the issues that
led us to the communications system that is used in pC*, and describe the primary features
and design considerations of the system. We conclude with an extended |ook at the relative
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performance of two network-level message facilities to show how reliability, features, and
performance must be balanced to meet the needs of the pC* system.

Throughout this chapter, by “network” we mean any mechanism for communicating be-
tween processes. Most often this takes the form of connecting machines through a physical
path such as Ethernet, FDDI, or ATM, but it also includes Unix domain sockets, System
V messages, shared memory, a shared file system, or anything else upon which the func-
tionality demanded in section 4.3.1 can be imposed. The “network interface” is the set of
system-provided functions or capabilities that are used to interact with the network.

4.1 Portability versus Performance

The issue of connecting computers together to cooperate in tasks through some form
of internetwork is a major topic of investigation in computer science. There are virtually
limitless ways to approach the issue for a particular application, depending on the level at
which one cares to address the problem. Sufficient research issues exist in this component
alone that without sacrifices and compromises of some sort the primary goal of a portable
and reasonably efficient implementation framework for data-parallel languages would be
unreachable. Here we examine the aternatives across the spectrum from highly portable
communications packages which may be unable to take full advantage of particular plat-
forms, to highly optimized implementations which use the features of aparticular host con-
figuration to provide excellent performance while forgoing any hope of portability. While
there are research efforts to create systemsthat collapse the spectrum (M essage Passing I n-
terface Forum, 1994; Mitra, Payne, Shuler, van de Geijn, & Watts, 1995), those efforts have
not yet succeeded fully, preventing us from relying on them.

411 General Purpose Communication Libraries

In recent years, the cost of computer hardware has decreased, and scientists and other
programmers wish to connect a variety of small machines to solve problems that formerly
required large, expensive, and dedicated hardware. Issues of ease-of-programming and
compatibility across these systems have led to the development of a variety of libraries
which provide functions to aid in distributed computing across homogeneous or hetero-
geneous clusters of computers linked with various networks. These libraries provide rou-
tines for joining computations, passing data between computation processes, and perform-
ing high-level collective communications such as global reductions without burdening the
applications programmer with the need to implement these herself. Perhaps the most well
known of theseiscurrently the Portable Virtual Machine (PVM) of ORNL (Geist, Beguelin,
Dongarra, Jiang, Manchek, & Sunderam, 1994), though industry preference now seemsto
beturning towardsthe M essage-Passing I nterface (MPI) (M essage Passing I nterface Forum,
1994) which combines features of PVM with those from similar libraries in an attempt to
provide a standard library that will be supported by all vendors of high performance com-
puting devices.
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The primary goal of these libraries is to provide access to a set of common functions
while ensuring portability of the applications which use them. PVM has been adopted by
several vendorswho have provided optimized implementationswhich take advantage of the
particular features of their hardware platforms. Platforms which do not have specialized
implementations are still able to use the routines through standard hardware (e.g., Ethernet)
using common networking interfaces (e.g., Unix sockets). The PVM source comes with
configuration files to support fifty different platforms. Since portability is a major goal of
the pC* system, it isworth considering the use of ageneral library such as PVM or MPI as
the communi cations infrastructure of the system.

Though the benefits of using such libraries seem clear when coding applications using
languages which were not originally intended to provide support for multiprocessor com-
puting, such as C and Fortran, general communications libraries appear to be ill-suited as
a component of alanguage system which aready has parallel constructs. Though there are
routines provided to perform some high-level operations, such as global reductions, these
may not have the semantics required by the parallel |anguage, such asfollowing the C* no-
tion of context. There are other C* routines, such as the segmented scan operations, that
are not present and would need to be implemented using more primitive operations from
the library. Furthermore, the library necessarily constrains data layout and internal repre-
sentations to match its own requirements. If all these issues are addressed in the context
of the communication requirements of the language, the only components of the general li-
brary that are really useful are simple point-to-point message exchange, and perhaps some
form of broadcast.

An additional problemisthe performance of the general system. Although vendors may
provide an optimized library for high-cost hardware such asthe Cray T3D (Oed, 1993), they
arelesslikely to do so for lower cost systems, such as networked workstationsor PCs. The
effort required of the library implementorsto support the wholelibrary takes away from the
opportunities to make the few routines required by the pC* system run fast. For example,
we compared the execution time of PV M with that of a plain TCP socket implementation on
two 4 processor Sun SS20s connected by Ethernet, inaC* program which “transposed” (re-
versed) adistributed 1-dimensional parallel variable of 26 elementsten times: atest which
involved almost nothing but constant point-to-point communication. Even though the PYM
system wasinformed that it was on a homogeneous network and need not encode its param-
eters (PvmDataRaw), it was 35% slower (4.10 seconds versus 3.03 seconds) on four proces-
sors on the same machine, and 130% slower (10.8 versus 4.67 seconds) on eight processors
across both machines, than the plain socket implementation. Slow-downs of thismagnitude
are ahigh price to pay for portability, especially when already buying unneeded function-
ality.

Theseissues|ed usto avoid attempting to use ageneral purpose communication system
as the basic framework for the communication needs of the pC* runtime libraries, and net-
work and application-specific concerns outlined below drove the system design. For com-
pleteness and comparison purposes, though, PVM support has been added to the pC* sys-
tem, and hence the communications portion of pC*—which is the most system-dependent
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component—may be ported quickly to any system which implements PV M.

4.1.2 Direct Network Control

At the other end of the spectrum are communications infrastructures which are based
on the characteristics of particular networks, and permeate the entire communications sys-
tem with that knowledge. This could include assumptionsabout non-standard interconnects
such as hyper-cube routing networks, which are more common on high speed massively par-
allel systems such asthe TMC CM5 or Intel Paragon. Performance on these interconnects
can beimproved by ensuring that operations are performed in away to reduce network con-
gestion by delaying or re-routing message transmissions which could induce collisions, at
apotentially significant cost in code complexity and portability in our case.

Another possibility isto assumethat the host architecture provides some means of direct
access to the network device, afeature which is unusual in standard operating systems be-
cause of concerns for security of network data, but can be countenanced when considering
an isolated compute cluster dedicated to a single task (Turner, 1994). Without such direct
control, any program running at user level suffers dueto the overheadsinvolvedin crossing
protection domains to invoke code which is permitted to drive the network controller, and
in copying data between domains and processes (Druschel, 1994; Brustoloni & Bershad,
1993). A significant performance improvement could be induced if the C* system were
able to have data transmitted directly between the network adaptor and the memory loca-
tionswherethey are stored inthe C* program’s memory space. However, thesefeatures are
generally available only in research operating systems, or to those who have access to the
vendor source (Chang, Flower, Forecast, Gray, Hawe, Nadkarni, Ramakrishnan, Shikarpur,
& Wilde, 1994).

If one is constrained to write code which can be executed by a normal user on a nor-
mal operating system, in accordance with the pC* design goals, there are still restrictions
that could be made to improve performance. For example, we may choose to assume that
we will run on a Unix-based computer, and can use standard Unix system calls to access
network functions through the streams or socket libraries. In this case, we will probably
be able to use interrupt driven communications, where the kernel of the operating system
will detect the arrival of a message at a network interface, and asynchronously inform the
library system of its presence. The system can then immediately read the message and deal
withit appropriately, relieving thekernel of the burden of buffering the message until the C*
system gets around to looking for it. However, even assumptions such as this would cause
portability and usability problemsfor the pC* system. Since the entire systemis operating
at the same protection/user level, installing asignal handler removes a useful resource from
the programmer, who would no longer be able to use the same interrupt-driven 1/0 in her
own programs without interfering with basic system functionality. It would also be neces-
sary to ensure that the invocation of a message handler without warning could not corrupt
any data structures in the program, either in the library or in the user’s code.

Finally, even such relatively weak assumptionsturn out to affect portability. On shared-
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memory multiprocessors such as the Sequent Symmetry, or even distributed multiproces-
sors such as the Intel Paragon, the preferred method of communicating between processes
may not involve Unix system calls, and may not have anotion of interrupt-driven communi-
cation. By designing the system around those assumptionswe would have limited its porta-
bility to such machines. During the first year of development of the pC* system, we ex-
amined the requirements necessary to port the system to machines ranging from the Intel
Paragon to multiprocessor SGIs to Linux-based PCs. The assumptions we ended up using
allowed us to eventually perform these ports with limited effort.

4.1.3 Application Specific Libraries

The “middle ground” approach to networking for pC* isto design alibrary of commu-
nications routines which are specialized to the needs of the C* language, but not to any par-
ticular assumptions about the connection mechanism. By designing a hierarchy to isolate
the components of the library which are network specific, we get the best—and worst—of
both worlds: the bulk of thelibrary is platform-independent, and only the lowest level rou-
tines need to be written when porting the system to new hardware, while we are able to take
advantage of our knowledge of communication behavior within the system and the general
features of the expected target architectures to avoid unnecessary overhead. In return, we
pay the penalty of not taking full advantage of certain features such as direct adaptor control
when the low-level functionswhere we have access to these features are too far from where
they would do the most good.

It is safe to say that any inter-process(or) interface will have certain limitations on the
amount of datait can handle at any time, or the quality of service that it guarantees. How-
ever, given the complexity of some of the algorithms that must be generated, such as the
grid operationsdescribed in chapter 6 or the parallel prefix scan operationsnot explicitly de-
scribed inthisdissertation, itisimportant to limit the effect of these constraintson the higher
level functions. We can now go on to examine the restrictions we were willing to make on
the system, and how they affected the design of the communications hierarchy within the
pC* runtime system.

4.2 Network Assumptions

We must pause to review the philosophy under which pC* was designed, and how this
affectsthe assumptionswe are free to make about the execution network environment. First,
the most important aspect of the system isthat it must perform correctly, and operate on its
intended application—analysis of largeimages—without crippling limitations. Thismeans,
for example, that limitations on the amount of data that can be buffered by a network inter-
face must not be allowed to interfere with system behavior: we cannot permit deadlock if
akernel buffer would overflow and a system call block just because a user chose to invoke
an operation which sent a 32MB chunk across the network. Nearly asimportant is the re-
guirement that it be portable, so that we would not find ourselves bound permanently to a
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particular hardware platform again. We can make only the most general assumptions about
the implementation platform. Performance is the third most important goal. These issues
led us to design athree-level communications hierarchy:

e High-level functions include the C* grid and general communication routines, as well
as complex library routines such as scan and spread.

e Mid-level functionsare an abstraction of the unconstrained network interface, including
writing messages to other nodes, broadcasting, and performing simple reductions.

e Low-level functionsimplement a constrained interface to a particular communications
network, taking responsibility for providing any service requirements that are assumed
in the higher level routines but are not provided by the network.

Assumptions about network characteristics can reach throughout this hierarchy or be iso-
lated in one level, depending on their effect on the system as awhole.

Let usfirst consider the issue of message size. Almost every network fabric will have
some limitation on the amount of data it will operate on as a single entity. Thisis the net-
work’s maximum transfer unit, or MTU. It isvery likely that the MTU will be small com-
pared with the amount of data being transferred: for Ethernet, it is 1500 bytes, while for
ATM it may be as small as 56 bytes (though providers of ATM hardware will often imple-
ment alevel of abstraction which providesan interfacewith alarger MTU, say 4KB or 8KB
(FORE Systems, 1994)). Even in ashared memory system, it makes sense to operate on ob-
jectsthat are some multiple of the cache line or page size, depending on the granularity with
which memory isshared. Whileweareunwilling tofix aparticular MTU for all target archi-
tectures, we can parameterize the library routines by declaring that there will be a constant
MTU whose vaue will be available at runtime.

There are a variety of benefits from assuming that the network will operate at its peak
performance with messages that do not exceed a particular size, and the assumption can
be applied usefully at all levels of the communication hierarchy. Many algorithms do not
require that we bundle up a complete message, whose size may be data dependent, before
sending part of it. For example, the first stage of a general get involves sending a request
message to each node for each value that the remote node has and the local node requires.
Sending a separate message for each value is very wasteful, and it is common practice to
accumul ate the requests to amortize the cost of communication (c.f. message vectorization,
(Hiranandani, Kennedy, & Tseng, 1994)). However, if wewereto wait until we had thelist
of all remote valuesthelocal node requires, we would require abuffer of nearly unbounded
size for each remote node.

Though it is accepted wisdom (Balasundaram, Fox, Kennedy, & Kremer, 1991; Hi-
ranandani et al., 1994) that for small messages communications overhead is more closely
related to the number, rather than the size, of the messages, this is not so clear when mes-
sage size exceeds the network MTU. On many networks, the cost of sending a message of
sizek x MTU isroughly equal to the cost of sending k messages of size MTU, sincein both
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cases the bottleneck of the transmission interface must be entered k times, and thereislittle
if any benefit in allowing some intervening service to do the necessary fragmentation. Itis
valuableto impose areasonabl e limitation on the size of messages even when thisis untrue,
and transmission time is the cost of message startup plus a penalty directly proportional to
message size no matter how largethat may be. Without alimit, wewould need toretain arbi-
trarily large buffers into which messages would be built, and ensure that these buffers were
not improperly shared between functions that might be executing simultaneously through
some sort of multiprogramming to increase efficiency. In addition to the space wastage for
the accumulated request message, we would pay a penalty in latency by waiting until the
whole message is ready before sending any of it, while we could instead overlap the local
computation of what values are required from what nodes with at least some of the commu-
nication of the requests to the other nodes.

Even with an assumption that there is a preferred size for messages, we cannot refuse
to transfer messages which exceed that size—for example, if asingle element in a parallel
value is larger than the MTU—and it would be undesirable to force every part of the sys-
tem which might build a message for transmission to take responsibility for fragmenting
the message to satisfy the MTU requirements. Therefore, the MTU istaken only as a hint,
and we must retain the ability to transfer, when necessary, messages of whatever size might
be required. (We may reasonably require that the MTU be at least some minimum size so
that a common header along with some data may be transmitted; with the current system,
the header will consume 16 bytes on a 32-bit machine, so useful MTUs must exceed this
length.)

Related to thisisthe fact that most networkswill [imit the amount of datathat can travel
on the network at any time, or be buffered at aremote end. Aslong as processors can build
messages faster than the network can deliver them, some sort of flow control will berequired
to ensure these buffer limitations are handled. The issue of flow control when a communi-
cation transmits alarge amount of data does not seem to have been explicitly addressed by
most researchers. Deadlock avoidance impliesthat, at least for cluster-based architectures,
it isnot sufficient to precede aloop with asingle massivetransmit, perform local operations,
then read in datafrom other nodes. Unless one can assume the availability of asynchronous
transmit and receive operations, deadlock avoidance mechanisms can be sufficiently com-
plex that their integration into any communication optimization is non-trivial.

We do not wish to trouble higher level routines with flow control complexities, because
the particular warning signs and recovery actions will vary depending on the underlying
network. Flow control must be the responsibility of lower level routines, though we must
be willing to provide some sort of mechanism, such as calling a check function at regu-
lar intervals, to give the low-level functions the opportunity to detect the situation and take
compensatory action promptly.

1. For example, simple testing on Ethernet-connected Solaris workstations showed a performance loss of
only 5% when a 32K B buffer was transmitted in 23 fragments of at most 1480 bytes rather than in one 32KB
block.
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We can also profitably take advantage of assumptions about the quality of service pro-
vided by anetwork. For example, TCP/IPwill guaranteethat messagesare delivered exactly
once, and in the order in which they were sent. On the other hand, UDP/IP may duplicate
or drop packets, and messages may arrive out-of-order. Other protocols may guarantee that
duplicateswill not occur, but may fail to deliver apacket if some negotiated bandwidth limi-
tationisexceeded by the program. Clearly, thetypeof failureisdependent on theunderlying
network, and it would be an implementation nightmareif the details of error recovery were
able to propagate up into the higher levels of the communications hierarchy. Therefore, we
will require that the lowest level will guarantee in-order reliable delivery of packets.

For some agorithms this is stronger than is strictly necessary—for example, it is not
critical in the general get operation described above that requests for data be served in or-
der, aslong as all are eventually received (and this state isrecognizable). However, thereis
often some benefit even in these algorithmsin assuming that requestsarrivein the order they
were sent. State on the remote node, such asacurrent positionin adataor context structure,
as well as cache lines from previous requests, may require a sudden large shift if the order
of requests received is not monotonic. However, many network interfaces support the as-
sumed level of reliability, and even with those which do not the frequency with which the
desired service level is not actually met can be fairly low (Mosberger, Turner, & Peterson,
1994) (though the results in this study, based on C* communications patterns on an FDDI
token ring, conflict with an evaluation of C* communications patterns on Ethernet using
UDP (Chandranmenon, Russell, & Hatcher, 1994)). The value of alowing for out-of-order
reception of messagesin the high-level protocolsis therefore unclear.

Though some systems are intended to work on heterogeneous platforms (Skjellum,
1993; Weissman & Grimshaw, 1994; Crandall & Quinn, 1993), issues of byte re-ordering
and differences in the representation of primitive data types such as C ints and doubles
are orthogonal to the basic communications structure. In general, the C* communications
system is unaware of the internal structure of data that it is sending to other nodes (e.g.,
when transmitting parallel structswith arbitrary fields), and thereforeisunableto perform
atrandation to a common data representation. Rather than enter into the morass of struc-
tureinference or tagging datawith typeidentifiers, werestrict our attention to homogeneous
networks, which contain only one hardware or software architecture.

Onefinal question iswhether we should assume that all communications operations are
point-to-point, or whether we can rely on the availability of some sort of multicast or broad-
cast operation to propagate information amongst all nodes quickly. Though many interfaces
support one-to-many communications, there are often limitations on it: on standard Unix
interfaces to Ethernet, broadcast may require running as a privileged user, while multicast
isonly available with aprotocol that does not provide reliability guarantees, inducing extra
overhead to meet the quality-of-servicedemandsin thelow-level routines. Furthermore, the
most communi cation-intensive operations are inherently point-to-point: by number, very
few operationsinthe C* library could take advantage of abroadcast mechanism. Thehierar-
chy described in the next section is based on an assumption that only point-to-point message
passing is supported. Experimental results which cast doubt on the value of using multicast
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even for the operations in which it might be expected to be beneficial, given our other sys-
tem requirements, appear in section 4.4 after the details of the communications system are
presented.

4.3 The Communications Hierarchy

The communications subsystem of pC* is structured into a hierarchy of three levels.
The highest level routinesimplement core and library C* operations, such as grid and gen-
eral communications, axial operations such as spread and reduce, and the more complex
operations of scan and rank. These routines are almost completely divorced from any net-
work limitations, except that they may where appropriate take advantage of knowing the
network’s MTU to decrease communication latency and buffering requirements.

The mid-level routines implement a generic set of communication functions and serve
asan interface between the higher level routinesand thelowest level, network-specific func-
tions. Theseinclude:

e sending avalue to aparticular node
e reading from one (or any) node

¢ installing and invoking message handlers to decrease buffering requirements for incom-
ing messages

e broadcast (each node contributes a portion of a whole which must eventually be avail-
able on all nodes)

e reduction (each node contributes an operand, the set of which are combined to yield a
single value available on al nodes)

Theinterface presented accepts messages of any size, and performs all necessary fragmen-
tation and network-independent buffering.

Thelowest level routines have strong restrictionson what they can be askedto do, andin
return guarantee to meet thereliability needs of the higher level routines. Themid-level rou-
tines ensure that low-level routines are not asked to handle messages that exceed the MTU,
and that any incoming message is completely read before another is requested. In return,
the low-level routines allow messages to be read piece-by-piece, so that header information
can be used to determine where the remainder should be stored, and provide a mechanism
which informsthe mid-level routinesthat datafrom a particular node has arrived. This per-
mits the mid-level routinesto perform generic buffering operationsto aleviate pressure on
the network interface.

Figure 4.1 shows the hierarchy and dependencies between levels (solid lines) and rou-
tines within levels (dotted lines). Due to their complexity and number, not al high-level
routines are depicted. Because communications functions are globally visible, the names
are prefixed with PCS_ _ to remove them from the user’s namespace and avoid conflict with
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system functions of the same name; thisis reflected in the interface figures that follow, but
the prefix is removed from the text descriptionsto avoid unnecessary verbosity. A detailed
description of each level follows.

43.1 Low-Level Communication Routines

Three routines are sufficient to meet the needs of the network-dependent component of
the hierarchy; theinterface is shown in figure 4.2. These provide the ability to write ames-
sage to a destination, read a message from a source, and determine what nodes have sent
data. Nodes are named by their number within the cluster; where necessary, these must be
mapped within the low-level routines to any network-specific information associated with
the interface to the given node, such as IP address and port number, or Unix file descriptor.

prim_writev is the message transmission interface. The parameters to this proce-
dure are the partner, or node number to which the message is to be written, an array of
prim_iovec structureswhich point to the data to be sent, and the number of prim_iovec
structuresin the array. The prim_iovec structures are C structs, containing a pointer to
a data block and an integral size indicating the amount of data to be sent from the block.
This allows us to write to the network messages whose data are spread throughout mem-
ory; if the network does not support such a“gather” operation, the message can be packed
insidethe prim_writev implementation. It is assumed that there is alimit on the number
of prim_iovec structures accepted by the network interface; this value is available to the
system just asisthe MTU.

Support for gather is extremely important, since every message which goes out must
include a header, described in the section on mid-level routines, to identify the particular
operationto which the message pertains. Similarly, at the higher level wemay want tosend a
block of datafromwithina C* variablea ong with astructure containing instructionssuch as
where on the remote node the datashould be stored. Gather writes permit usto send directly
from the original location of the data in memory, without unnecessary copying, when the
interface alows this.

To aid in detecting network buffer overflows, the prim_writev routine is permitted to
return without sending any of its message if it detects that there are insufficient resources
to complete the message transmission. However, for correctness, it must guarantee that it
sendseither all or none of the message, lest the remote node read a header and attempt to go
on under the assumption that the entire message isavailable. While some networks (such as
fully-connected TCP socket meshes) keep all source/destination pairs separate, othersrely
on the header to determine the source of the incoming message, and will fail if messages
are not transmitted atomically (as with named pipes where each node has a single incom-
ing source through which al remote nodes send data to it). Failure to write a message is
asignal to the mid-level routines that they should buffer any pending incoming messages
to avoid network buffer overflow and deadlock as described in section 4.3.2. However, if
the network interface permits writing a partial message, thus committing prim_writev to
complete, the low-level routine may be obliged to take on some of this buffering roleitself.
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/* The structure used by the primitive readv and writev functions */
typedef struct PCSprim_iovec {

void * iov_base; /* Address of data block */

int iov_len; /* Size of data block */
} PCSprim_iovec;

/* Primitive read function. Read up to size bytes into buffer from
* partner. */

int

PCS__prim_read (int partner, /* Node number to read from */
void * buffer, /* Destination of data */
int size); /* Amount of data */

/* Write to the transport the combined data from the locations specified
* by iov, as one message. Guarantees no interleaving if total message
* length does not exceed PCS__prim_msglimit. */

int

PCS__prim_writev (int partner, /* Node number to write to */
PCSprim_iovec * iov, /* Specification of data sources */
int iovent ,  /* Number of specifications */
int blockp); /* Blocking/nonblocking write */

/* Generic polling function. onodes is where the worker node number of
connections that satisfy the poll request are stored; nonodes says how
many there is room for. Returns immediately if timeout is O; waits
indefinitely if timeout is -1; waits timeout milliseconds if timeout is
positive. Returns the number of entries filled in onodes; -1 if no
entries were filled and there was a non-zero timeout. Errors are

fatal errors to the system. */

* ¥ X ¥ X *

int

PCS__poll (unsigned int * onodes, /* Where output nodes should go */
unsigned int nonodes, /* How many output nodes can we handle */
int timeout); /* Timeout on wait for event, msec */

Figure 4.2: Communications hierarchy: low-level interface
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prim_read isthe message reception interface. It is given the partner from which a
messageisto beread, the size of thedata, and apointer tothedestination wherethe data
should be stored. The read routine will block until the requested data has arrived, so care
must be taken not to commit to aread unlessit isknown that the datawill be available. Itis
not necessary to read the entire message at once; in fact, the preferred use of theprim_read
routineisto read the header and use its contents to determine what should be done with the
remainder of the message. This allows the “scatter” analog of the gather write supported
by prim_writev, wherewe can storeincoming data directly into itsfinal location based on
information provided by the header, saving both buffer space and copy operations. Though
the mid-level routines may invoke prim_read multiple timesto read amessage, they guar-
antee that they will not attempt to read any other message until the partially consumed one
has been completely read.

Finally, poll isused to check for the presence of incoming messages. The parameters
include a onodes array to store the node numbers from which pending messages have ar-
rived, acount nonodes indicating the maximum number of nodes that can be stored, and a
timeout which permits usto control behavior when there are no pending messages: either
to return immediately, or to wait up to the given timeout for an incoming message. This
routine is used within the deadlock prevention scheme in the mid-level functions, and to
determine the partner passed to prim_read.

These three routines make up the network-dependent components of the system, and a
separate module (C source file compiling to a Unix object file) is maintained for each of
the networks supported by the pC* system. Currently, five multiprocessor mechanisms are
actively supported. Thesemodules, averaging approximately 500 lineseach, are maintained
separately from the primary runtime library, and the user can specify at link time which
network a particular C* program should use.

4.3.2 Mid-Levd Communication Routines

The mid-level communication routines are more numerous, and significantly more com-
plicated, than the low-level routines. They can themselves be partitioned into three sets:
basic read and write, buffer handling, and collective communication routines.

All messages which pass through the mid-level are associated with a transaction type,
whichisaninteger that indicatesthe type of operation with which the messageis associated.
There are approximately two dozen transaction types in the current system, most of which
name phasesin high-level routines; examplesinclude owner broadcast, grid read, and gen-
eral get request. Each type has an associated index number, which alows usto have severa
of the same transaction active at any time; the index number is incremented for each new
operation. When combined thetransaction type and index create atransaction code, an inte-
ger which uniquely associatesamessage with an operation. However, themid-level routines
are generally invoked with only the transaction type as a parameter; the code is constructed
internally based on the current index.

The mid-level routines are responsible for fragmentation of datainto M TU-sized pack-
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typedef struct IPCmsghdr {

int sender; /* Node number of origin */

int mcode; /* Type tag, for synchronization */

int size; /* Size of the data portion of the msg */
int index; /* Index of message if split =/

} IPCmsghdr;

Figure 4.3: Common message header

ets, and the corresponding reconstruction. To aid in reconstruction, each message passed to
the low-level routines begins with a header whose structure is given in figure 4.3. In addi-
tion to the type code, information is provided about who sent the message, the size of the
data portion of this message, and the index of the message when it is fragmented by the
mid-level routines. The low-level routines may need to examine this header in order to de-
termine who sent the message, or the appropriate order for returning message packetsif in-
order delivery is not guaranteed by the underlying network. If the low-level routines wish
to piggy-back additional information into the messagesthey transmit, such as checksumsor
acknowledgements of previous messages, it istheir responsibility to ensurethisinformation
does not propagate to the mid-level routines, which are not concerned with it.

Noticethat thefieldsin the IPCmsghdr areall of type int. One might consider whether
some space savings could be achieved by using types which are likely to be smaller. One
reason for not doing so isthe danger in limiting the ranges of thefield, especialy the index
used in fragmentation. A 16 bit index field, in conjunction with a512 byte MTU (reason-
able for some interfaces, such as named pipes or shared memory machines), would limit
single data transfers to 32MB. Though this sounds like a large message, we want the mid-
level routinesto behave asthough there were no practical limit to message size, and interms
of large images 32MB would be a practical limitation. A more interesting reason to avoid
the “non-native” word sizes is given in (Mosberger, Peterson, & O'Malley, 1995), which
describes an analysis of TCP protocol latency on DEC Alpha workstations connected by
Ethernet. The analysisfound that the largest savingsin the number of instructions executed
to implement a protocol was due to using ints instead of chars or shorts in state vari-
ables, because the Alpha does not have hardware support for accessing data in less than
32-bit chunks. As other architectures can also suffer from non-aligned memory accesses
(in terms of speed if not additional instructions), the minimal space savings from packing
structure fields was therefore not considered to be worthwhile.

43.21 Mid-level Write and Read

The mid-level routines shown in figure 4.4 include several methods of writing data to
other nodes. The basic write routineis given adestination node, a message type, a
buffer address, and asize, and sendsthe size byteswhich live locally at buffer to the
destination in as many MTU-sized messages as are required.
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/* Read an arbitrarily sized block of data of code type from partner.

* Handles interleaved messages and out-of-order delivery. If size is -1,
* reads until a partial primitive packet has been read. Returns total
* number of bytes read */

int

PCS__read (int partner, /* Who’s sending the data? */
MessageType type, /* Message type code */
void * buffer, /* Where to store the data */
int size); /* Amount of data to expect. */

/* Send an arbitrary sized amount of data to partner, tagged as type, from
* buffer. Encases data in primitive-level packets as required by the

* transport level. The final packet will be partial, so PCS__read can

* detect the end of an arbitrarily sized read. This will send a null

* message if size is 0. %/

int

PCS__write (int partner, /* Who to send to */
MessageType type, /* Message type tag */
void * buffer, /* Where data lives */
int size); /* Amount of data to send */

/* Package up the iovec along with any external data it references into a
* gsingle message, which is split as required by the network to avoid
* interleave problems. The message is sent to everybody in the dest
* list. */

int

PCS__multiwritev (int * dests, /* Who to send it to */

int ndests, /* How many are there */

MessageType type, /* Type tag of message */

PCSiovec * iov, /* Data to send */

int iovcent, /* Number of iov elements. */
PCS__Bool sendiovcnt); /* Send iovcnt in message? */

/* Package up the iovec along with any external data it references into a
* gingle message, which is split as required by the network to avoid

* interleave problems. The message is sent to the single partner

*x given. */

int

PCS__writev (int partner, /* Who to send it to */
MessageType type, /* Type tag of message */
PCSiovec * iov, /* Data to send */
int iovcent, /* Number of iov elements. */

PCS__Bool sendiovcnt); /* Send iovcnt in message? */

Figure 4.4: Communications hierarchy: mid-level read/write interface
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A somewhat more powerful routineiswritev, which instead of the buffer and size ar-
guments takes a pointer to a sequence of PCSiovec structures and a count of how many
structuresare in the sequence. These structuresare similar to the ones used for the low-level
interface, but include information about the source node (used in broadcast and high-level
functions) and have the option of storing ascalar type code and avalue (e.g., int or float)
instead of abuffer sizeand external address. The network-level messagethat isformed from
an invocation of writev consists of the sequence of PCSiovec structures followed by the
data pointed to by members of the sequence which refer to memory blocks instead of con-
taining scalar values. With the exception of the mid-level broadcast routine, al call sites
to writev invoke it with only two PCSiovec structures, the first of which generally con-
tains an integer which names an offset within an agreed-upon C* shape, and the second of
whichisapointer to thelocal datawhich areto be transmitted to the remote node and stored
in the given offset.

The third interface extendswritev to amultiwritev function which, instead of send-
ing the data to only one node, can send them to several or all the nodes in the computa-
tion. This permits higher level routines to assume that some sort of multicast one-to-many
mechanism is available and saves repeatedly fragmenting the same message, even though
the current implementation does not support broadcast directly. (In the code, writev isa
front-end tomultiwritev, so the fragmentation code is not duplicated.)

Incoming messages are received in one of two ways. Where synchronoustransfer isre-
quired, aread routineisprovided asource node, amessage type, adestination address,
and asize, and amessage with the current code for that typeisread from the source node
and stored intothedestination. size can be awild-card indicating “the whole message,
| don’'t know how bigitis,” or can be less than the whole message. In the latter case, read
will go on to read and buffer locally any remaining portion of the current network packet,
to maintain the invariant that partial packets are not left pending at the low-level interface.
More commonly, incoming messages are handled asynchronously through an extension of
the mechanism used to avoid network buffer l[imitations.

4.3.2.2 Mid-level Buffer Management

Recall our assumption that a given underlying network is likely to limit the amount of
datathat can bein transit or left unread. For example, experimentation under Sun’s Solaris
operating system indicates that stream sockets have an upper limit of approximately 40 KB
pending data, named pipes a limit of 9 KB, and the System—V message passing facility of
4 KB. If the limit has been reached, the interface functions will either block or refuse to
transmit more data (Papadopoul os & Parulkar, 1993). Though some of these limitationscan
be increased by modifying kernel variables, it is generaly either impossible or unreason-
able to extend them to the point where we can be sure the limitations will not be exceeded.
Consider, then, what will happen if two nodes attempt to exchange large buffers, say 1 MB
in size, during the same operation: each will start to fragment the buffer into MTU sized
chunks and send them out, but soon the low-level prim_writev routinewill indicatethat it
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is unable to transfer the data because the other end is al'so busy writing instead of reading.
Something must be done to alleviate the pressure on the network.

The problem is addressed with a cooperative buffer-management protocol. It is not
possible to inform a remote node that we are no longer able to write to it.> Therefore,
we must trust that it will notice this and deal with the problem itself. To avoid network
buffer limitations, we check the interface (using the low-level poll routine) just prior to
each prim_writev, andread in any messages which are pending at theinterface. Theseare
stored in buffer chains indexed by transaction code. When a write attempt fails, we pause
and clean up our incoming messages, then attempt to retransmit. Since execution on all
nodes is coupled (albeit loosely) by communication requirements, and all high-level com-
munication operations have an implicit barrier which ensures that the operation has com-
pleted, we can be sure that the remote node will eventually check its incoming queue and
remove enough pending material that we will be able to send more datato it. So long asthe
MTU islessthan the network buffer limits, and the low-level routines atomically deliver or
refuse to deliver messages in a bounded finite time, deadlock will be prevented.

It is not sufficient to check for pending messages only when we attempt to write, since
the communi cations pattern for an operation might not cause write to be invoked with any
regularity. Therefore, we provide acheck_messages routine at the mid-level, which takes
an optional timeout (described later) and reads in al pending messages and buffers them.
This routine should be called at regular intervals in any portion of the code in which mes-
sages might be expected to arrive while we are not calling communications routines our-
selves. for example, when walking the local portion of a shape in the grid communication
routines (chapter 6), we can expect data from other nodes to arrive during the walk.

Though preemptive buffering of messages in this fashion avoids deadlock due to net-
work buffer limitations, we have merely transferred the buffering requirements from the
network interfaceinto the mid-level communication module, which by design does not have
any fixed limitations on how much datait will accept (aslong asit can continue to allocate
buffer memory). In the example above of exchanging two IMB chunks, this meansthat af-
ter the transfer each side will have 1MB of data, buffered in chains of MTU-sized chunks,
to walk through and deal with appropriately. It would be far better if we could, at the time
we read the fragment, perform whatever operation was required immediately, thusavoiding
the buffer at the mid-level (aswell as the ensuing copy when it ismoved to itsfinal resting
place). The message handler component of the mid-level hierarchy was designed to address
thisissue; it is somewhat analogous to the Active Message concept of (von Eicken, Culler,
Goldstein, & Schauser, 1992), though more general and correspondingly of heavier weight.

Two functions complement check_messages by permitting it to detect expected mes-
sages and perform a specified operation on them (see figure 4.5). register_handler
takes a transaction code, a pointer to a function, and a pointer to some arbitrary parame-
ter, and records this information. When check_messages is informed through pol1 that

2. Thismay appear obvious; there are, however, interfaceswhich would permit transfer of out-of-band infor-
mation such as error conditions even when the normal band is blocked. These are not universally available,
hence cannot be relied upon in system design.
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/* Type of function invoked on handled messages */
typedef void (* ChkMsgFunction) (

unsigned int sender, /* Who sent it */

unsigned int mcode, /* Message code */

void * msgbody, /* Data in message */

void * otherparm); /#* Parameter paired with mcode */

/* Look for any incoming messages that are sitting on the input ports:
* we want to pull them off, because the other side might be blocking

* on a write. This function provides the ability to dispatch messages
* that we expect, and buffer those we don’t know what to do with. */
int

PCS__check_messages (int timeout);

/* Add a message handler: when a message with the given code appears
* on an input channel, call the given function with the message as
* a parameter. */
void
PCS__register_handler (unsigned int mcode, /* Code to look for */
ChkMsgFunction fn, /* Function to call */
void * params); /* Parameters to pass to fn */

/* Remove the handler associated with the given message code. */

void
PCS__unregister_handler (unsigned int mcode); /* Code to look for */

Figure 4.5: Communications hierarchy: mid-level buffer handler support

data are available from a given node, it reads in the header and compares the message’s
transaction code with the onesinits list. If no match is found, the remainder of the mes-
sage isread and buffered. But if an entry for the incoming transaction code is discovered,
check_messages readsthe message body into alocal buffer and invokesthe provided func-
tion on the message.® check_messages isthen free to avoid buffering this message, since
the handler is presumed to have done whatever is required. The additional parameter is
passed to the provided function along with message data, to allow the function access to
other state such as variablesinto which incoming data should be stored or detailed informa-
tion on the particular operation to be performed. A companionunregister_handler rou-
tineinformsthe mid-level that we have completed all operations corresponding to the given
transaction code and removes the handler from the list examined by check_messages.
There are a variety of complexities involved in the message handling interface, from

3. Althoughthisviolatesour desireto avoid copying buffersif the handler will simply movethe messageinto
place, most handler invocations, such as those from general and grid communi cations, need to pick values out
of the message and store them in various different locations. In this case, no particular location is preferable
for the message, and the overhead of asking the handler for a destination buffer is undesirable. Should our
perception of this change, it is obvious how to extend the system to handle both cases (cf. the following dis-
cussion of broadcast).
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trivial ones such as checking for buffered messages which arrived prior to the handler reg-
istration, to far more complex ones due to the fact that we do not restrict what operations
may be performed by the handler function. As described in chapter 5, the handler function
for ageneral get operation will read in alist of request values, which indicate what elements
should be sent to a remote node. 1t will then package up those requests and send the data.
The act of sending the datawill itself invokethe check_messages routine, which may read
in another request which arrived in the meantime. Were we to recurse into the handler for
the new request immediately, we would trample on data being used by the previous, still
active, invocation. Therefore, we must again buffer the incoming requests, being careful to
maintain order of arrival, yet be sure that when the first check_messages call hasfinished
it has dealt with not only messages pending at the network interface but also those which ar-
rived and were buffered by recursive callsto check_messages. Theissues of maintaining
correct message order in a multiply—re-entrant handler make this one of the more complex
routines in the system (based on the number of subtle, difficult-to-reproduce errors found
during testing and production use).

By policy, we do not permit the two methods of reading messagesto intermix in agiven
transaction type—messages which may be read may not have handlersinstalled for them,
lest the complex buffer management required of handled messages be corrupted, or state
maintained by the handler not be correctly updated. Thereforewe usethe timeout parame-
ter to check_messages whenwehave completed all local operationsand need to ensurethat
atransaction with aregistered handler has completed. We assume that compl etion is noted
by the handler on reception of the final message by setting some global state flag that can be
examined in the high-level communication routine; we simply loop, at theend of theroutine,
calling check_messages until either the completion flag has been set or check_messages
informsusthat it haswaited the expected time and has not received any additional messages.
This permits us to distinguish between aremote node which is ssmply slow to respond and
onewhichisnolonger operational: such afailureresultsinafatal runtimeerror, rather than
permitting the program to block indefinitely.

It ispossiblethat ahighly imbalanced computation might result in an erroneous timeout
if one node gives up before another has had a chance to complete its work. By default, the
timeout is one minute for each node in the system (e.g., an 8-node cluster will wait up to 8
minutesfor an expected message). Under normal processing in most applications, commu-
nication is common enough that nodes remain too closely coupled to exceed this timeout;
however, if this should change, a more complex method of failure detection, perhaps based
on a heartbeat system, could be implemented.

The message handler isused in almost al high-level communication operations, and the
broadcast mid-level collective routine described in the next subsection. Instrumentation
on the benchmark programsin chapter 7 running on el ght nodes with medium-to-large sized
tests indicates that 99% of messages intercepted by the check_messages routine are han-
dled immediately, requiring no buffering (the lowest nodal handle rate was 90.9%), while
the remainder were either unrecognized (arrived before the handler was installed), or re-
quired buffering to avoid out-of-order handling in nested calls to check_messages. The
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one benchmark that called ahigh-level routinethat does not use the message handler needed
to buffer half the messages it received, because they were for a different operation than the
one the node was expecting. Thisimplies that the message handler is saving a significant
amount of buffer space, in addition to preventing deadlock.

Though we have said that most high-level operations have an implicit barrier at the end
which indicates the communication has completed, the handler functions permit usto take
advantage of data dependence analysis and movethisbarrier from the end of the high-level
routine to a position in the code just before the result is to be used. For example, a genera
send operation may install a handler for incoming messages, send its data to remote nodes
as appropriate, then continue processing without waiting for incoming data to arrive, sav-
ing the transaction code as a key. Just prior to use of the communication result, code can
be generated to see whether the transaction has completed (based on the key which identi-
fiesit) and block until it has. Performing this operation would require a compiler analysis
to determine that a particular paralld value results from a communication operation with
amovable, handler-based barrier, and where the value will next be used. Thisanalysis has
not been implementedin pC*, so the optimization described hereremainstheoretical. How-
ever, it would appear that such an analysis would permit usto overlap the communications
of datawith local computationin almost every case, by making the compiler recognize val-
ueswhich are defined by operationswith handlers, including any high-level library routine.
We thus have aruntime system which, though designed without concern for compiler-based
analysisthat may or may not be available or applicable, integrates smoothly with such anal-
ysiswhen it can be done.

4.3.2.3 Mid-leve Collective Communication

Collective communications (Mitraet al., 1995) are interactions where agroup of nodes
cooperate to form a common result. There are two collective communications routinesin
themid-level suite, which are used to communicate amongst aset of nodesrather than apair.
Thesearethebroadcast and reduce operations, showninfigure4.6. Thoughin both cases
they involve communicating a contribution from each node, they have very different usage
patterns, and the implementations are correspondingly dissimilar.

The purpose of broadcast isto take a block of data from each node, and ensure that
after the broadcast every node has available to it the data from al nodes. The amount of
data originating on each node may be different, and it is generally the case that the total
amount of datais fairly large. For example, broadcast is used in the implementation of
read_from_pvar, which transfers data from a distributed parallel value into a scalar array
whichisreplicated on each node and containsall the valuesfrom thedistributed value. Sim-
ilarly, it isused for summary information when computing scan operations over all nodes,
to indicate where scan set boundaries break the normal incremental progression along an
axis. The size of data blocks in this case is proportional to the number of positionsin the
shape divided by the number of positionsin the axis being scanned. In addition, the results
of a broadcast operation are normally simply stored into some region of memory on each
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/* An array of iovec structures, one per mesh node, to use for creating
* and reading various broadcast data stuff =/
extern PCSiovec * PCS__iovecvec; /* Data to be broadcast */

/* Function to locate buffer for broadcast data from src */

typedef void *

RecvDataFunc (unsigned int src, /* Node which sent the data */
PCSiovec * iov, /* Data received */
void * params); /#* Parameters provided by caller */

/* Perform a broadcast involving the given nodes. This node must

have filled out PCS__iovecvec[0] with its own data. When the

function returns PCS__iovecvec will contain data from each node.

The handler function will have been called on the data from all

other nodes, but not this one. Each node will have the same final

data in its own PCS__iovecvec, but probably in a different order;

* the position of the data from this node may have changed. */

void

PCS__broadcast (RecvDataFunc rfunc, /* Function to execute on receipt */
void * rfparam, /* specific params to pass to rfunc */
unsigned int * bcmembers, /* Who’s in the broadcast */
int groupsize); /* Number of members in bcmembers */

* ¥ ¥ * X

/* The data type for a function which performs a particular operation on
* operands of known types. */
typedef void PCS__DoopFunction (void * lhsp, void * rhsp, size_t size);

78

/* General reduction operation, which applies doop to dest over all nodes.

* Fans in down to first node, then returns result back, so everybody
* agrees even if doop isn’t associative. */
void
PCS__reduce (void * dest, /* Our node’s source / destination */
int size, /* Size of data being spread */

PCS__DoopFunction * doop, /* Function to apply on receipt */

unsigned int * members, /* List of members in reduction */
int groupsize); /* Number of members in reduction */

Figure 4.6: Communications hierarchy: mid-level collective communications routines
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node, and are consulted unpredictably in further computation, rather than being condensed
or operated on immediately as they are received.

The implementation of broadcast follows a fairly standard butterfly exchange algo-
rithm (Mellor-Crummey & Scott, 1991) involving logP stages, since we have only point-
to-point communicationsfacilitiesavailableto us. Sincethe datainvolved arelarge, and we
already have fragmentation support available, we call mid-level communications routines
rather than low-level onesin theimplementation. The PCSiovec facility of writev isused
to allow usto read and write directly from and to the target buffers on each node. Thereisan
array of PCSiovec structures, one for each node in the mesh, which is reserved for broad-
cast operations. In preparation, each node initializes the first PCSiovec structure with the
information that it is contributing. The parametersto broadcast include afunction which
is called with the number of the originating node for ablock of datawhen thefirst fragment
of the data arrives, and which returns the memory address on the local machine into which
the dataisto be stored. Thisensuresthat each nodeisableto arrangethe datain a preferred
order, without requiring special computation in the calling routine to determine the order in
which blocks will be received during the log-based exchange.

To complete the exchange, each node first determines its partner for each stage, assigns
a transaction code to the messages for the stage, and registers a handler to do the storing
of incoming data. It also determines the number of elementsin the global PCSiovec array
which it must send to the partner, which contain the broadcast data that the partner has not
yet seen. The array is managed so that at each stage an initial sequence of elements of the
array must be sent: these consist of the data that originated on the node plus those which
were sent to it in previous stages, allowing us to transmit data for a stage in a single call
towritev. The handler routine associated with each stage will detect an incoming (frag-
mented) message, and store the data segments in the proper location, invoking the provided
routine to determine buffer addresses as necessary: the handler is aware of the fragmen-
tation algorithm used by multiwritev SO it can reconstruct the data. When the handler
detects that the last fragment of the message associated with a stage has completed, it calls
the provided routine one more time to perform any associated clean-up code, and marksthe
stage finished. This permitstheimplementation to store datainto their final location even if
the data correspond to a stage which the local node has not yet reached, because it doesn’t
have what it needs to send in that stage. Since we are operating on large blocks of memory,
thiswill avoid all buffering of datathat arrive after the broadcast operation starts but before
the data's stage is reached. The broadcast routine itself simply walks through the stages,
sending the local datato the partner for that stage and waiting in check_messages for the
necessary incoming data to arrive before proceeding to the next stage. At the completion
of the operation, al nodes have all data, though the order of PCSiovec entriesin the global
array will be different on different nodes.

Pseudo-code for an implementation on a mesh with 2K nodes is presented in figure 4.7.
The handler routine bcasthandler is not shown; it simply unparses the fragments from
writev and stores them appropriately. For meshes with 2¢ < P < 21 elements there are
initial and final steps in which nodes n where 2% < n send their data to a partner n — 2%,
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pmask = nnodes = 1;
sip = bcastsuminfo; /* Array of summary info */
while (pmask < groupsize) {
if (mynode & pmask) { /* Chose our partner within mesh */
sip->partner = mynode - pmask;

} else {
sip->partner = mynode + pmask;
}
sip->istart = nnodes; /* Where we start storing iovecs */

sip->nread = sip->nwrite = pmask;

sip->state = BST_Initial;

sip->mcode = NextMessageCode (MT_Broadcast);
register_handler (sip->mcode, bcasthandler, sip);

nnodes += sip->nread; /* Number of data available for next stage */
pmask <<= 1;
Sip++;

¥

pmask = 1;

sip = bcastsuminfo;
while (pmask < groupsize) {
/* Reset message index so writev uses correct code */
SetMessageCode (MT_Broadcast, sip->mcode);
writev (sip->partner, MT_Broadcast, PCS__iovecvec, sip->nwrite, 1);
/* Wait until we’ve received everything for stage, or error */
while (BST_Finished != sip->state) {
if (0 > check_messages (io_timelimit)) {
fatal ("broadcast: failed to complete stage %d\n", pmask);
}
}
unregister_handler (sip->mcode);
pmask <<= 1;
++sip;

Figure 4.7: Algorithm for Broadcast (Power-of-2 Mesh Case)

80
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then the exchange i's performed amongst the lowest 2 nodes and the partner sends the final
results back.

The reduce function differsin several waysfrombroadcast. First, the primary useis
to generate asingle scalar value which isacombination of the contributionsfrom all nodes.
The reduce function therefore takes a pointer to a function which, given two parametersd
and s which point to memory regions, combines the dataat sinto d in an operation-specific
fashion. Theroutineismost often used in C* reduction operationssuchass = += p, where
we are to store in the scalar s the sum of al active elements in the parallel value p. To
implement this, each node computes the sum of the valuesin theregion of p which it owns,
then performs aglobal add reduction on the resuilt.

One possibleimplementationisto usethebroadcast operation to distributeeach node's
contribution, then walk the resultslocally computing the combined result. But the broadcast
exchange resultsin atotal of O(P?) network traffic, because it must transmit datafrom each
of P nodesto each of P— 1 other nodes. We could reducethistotal traffic to O(P) if we could
perform the combination operation at each stage, thus receiving and sending only asingle
value. However, thereisapotential difficulty with this.

It iscritical for execution correctness that the results of areduce operation be the same
on all nodes, because scalar values determine control flow: a difference of only onebit can
result in adivergence of execution on different nodes, with catastrophic results. If nodesre-
celve reduction operands in different orders, this requirement may be violated. Depending
on the reduction algorithm chosen, it may be sufficient that areduction operator be commu-
tative (i.e., (a®db) = (b a)) or associative (i.e., ad (bdc) = (adb) @ c). However, as-
sociativity is not generally satisfied by arithmetic operations on floating point numbers, and
commutativity is not satisfied by some other C* operations (e.g., parallel-to-scalar casts).

Since the amount of datacommunicated for reduce operationsisgenerally very small—
8 bytes or less—and will fit into the PCSiovec structure directly, we may simply choose
to use broadcast without reducing in stages, since the amount of network traffic is small.
We could then walk the datain a defined order based on source node (available in the global
broadcast PCSiovec array) and perform the same sequence of combinations on each node,
to yield a common final answer. The problem in this case is not correctness, but perfor-
mance: the broadcast implementation was designed for transfer of large amounts of data,
and theintroduction of handler routines at the butterfly exchanges causes asignificant over-
head for such small messages. Comparing this method with the reduce a gorithm described
below on a variety of cluster sizes from 1 to 24 nodes, we found that the combination of
additional network traffic and handler invocation caused, on average, a 15% performance
penalty when performing reductions over 4-byte quantities; the difference was generally
higher for non—power-of-2 meshes.

Wewouldtherefore prefer an aternative a gorithm which maintainscorrectness but does
not cause a performance penalty from unnecessary buffer handling. There are many pos-
sibilities, including simply writing the (small) data packets to al nodes and reading them
in in order, or using log-based fan-ins to a single node which then distributes the answer
to the other nodes in some fashion. Various algorithmswere implemented and tested in the
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pmask = 1;
while (pmask < groupsize) {
if (0 == (mynode & (pmask-1))) { /* Do I take part in stage? */
if (mynode & pmask) { /* I’m source for this stage */
write (mynode - pmask, MT_Reduction, dest, size);

} else { /* Read from partner and combine locally */
read (mynode - pmask, MT_Reduction, buffer, size);
doop (dest, buffer, size);

}

}
pmask <<= 1;
}

Figure 4.8: Algorithm for Reduce (Power-of-2 Mesh, Fan-In Phase)

process of comparing point-to-point with multicast support at the low-level communication
routines; a discussion of theissues and resultsis given in section 4.4.

Theagorithmfinally chosen isthe second best considered in section 4.4, dueto amisap-
prehension about the correctness requirements for the best algorithm (cf. page 99). It uses
a log-based fan-in operation to send contributions to a single node, which then performs
the reverse fan-out operation to distribute the single result. Unlike the broadcast operation,
at each stage a node either reads a value or writes one, but not both. Each node sends its
value only once during the fan-in phase: after that point, it waitsto receive the final result.
Loca combination is done at each read step of the fan-in, since the bottleneck of the sin-
gle node ensures that there will be no disagreement on the answer. Since the data values
are small and the fan-in/fan-out algorithms do not involve all nodes at all stages, we do not
bother installing handlers to receive the incoming data, instead blocking on aread until the
dataarrive. (NB: the “blocking” mid-level read will detect and handle or buffer other mes-
sages which arrive in the meantime, so deadlock will not occur.) Pseudo-codefor thefan-in
phase appears in figure 4.8; the fan-out code is similar. For non—power-of-2 meshes initial
and final phases similar to those described for broadcast send contributions and resultsto
partners outside the primary fan-in group.

It is important to note that, in both these routines, the set of nodes over which the op-
eration is performed is not necessarily the complete cluster: thisis the purpose of the pa-
rameter which gives the set of nodes which cooperate. Synchroneity of control flow means
that al nodes in the cluster will enter a particular collective communication routine at the
same time. However, some invocations, such as the CSComm reduce function described
in section 3.2.4, partition the cluster into groups based on ownership of data. For example,
with a six-node cluster distributing a two-dimensiona shape in both dimensions as shown
in figure 3.2, a reduce along axis 0 involves two separate groups of nodes. nodes O, 2,
and 4 share information about the first two columns, while nodes 1, 3, and 5 share infor-
mation about the last six. This separation means that in many cases true broadcast support
would burden nodes by sending them information they do not need to know. Sincethere can
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be arbitrary partitioning of the cluster into broadcast/reduce groups depending on how the
user has chosen to distribute data, it is necessary that we use amoreinsular implementation
which ensures that data are distributed to exactly the nodes that require them. Of course,
we must ensure that all nodes agree on the set of nodes that make up their broadcast group.
A similar partitioning of clusters into node groups is recognized in other communications
libraries (Barnett, Gupta, Payne, Shuler, Geijn, & Watts, 1994).

4.3.3 High-level Communication Routines

High-level routines in the communication hierarchy implement operations that are di-
rectly visibleat the C* level, through core language operations such as | eft-indexed commu-
nication, parallel-to-scalar conversions, reductions, or communication-with-computation|i-
brary calls such as spread, scan, rank, etc. The operations are often very complex, and
we will not attempt to describe them in this section. Two particular examples of high-level
communicationsroutines are covered in other parts of thisdissertation: the general commu-
nication functions are described in chapter 5, and grid communications operations are de-
scribed in chapter 6. Both of thesetake advantage of variousfeatures of the communications
hierarchy, including message handlers and the assumptionsabout MTU limitations, and are
good examples of the integration of data layout, traversal, and communications decisions
made in the pC* system. The other high-level communications routines, while interesting
in their own right, do not provide fundamental insight to the issues that are the topic of this
dissertation, and are left unexamined.

4.4 Point-to-Point or Multicast? A Case Study

Although pC* was designed to be portable to avariety of architectures, it was expected
that for thefirst two years of development the primary target platform would be stock Unix-
based workstations linked together with standard network hardware, using standard Unix
system calls to perform communication. Under this environment there are two network in-
terfaces which are obvious potential building blocks for the low-level routines of the com-
munication hierarchy: stream sockets, generally implemented using TCP/IP, and datagram
sockets, generally implemented using UDP/IP. Stream sockets offer reliable point-to-point
delivery, while datagram sockets offer best-effort delivery and al so provide accessto amul-
ticast facility.* We used stream sockets for the first year of development because they are
reliable, but after some time it became clear that reduction operations were consuming a
large portion of the execution time on some a gorithms. For example, acommon idiom for

4. Multicast support is distinguished from broadcast support by the fact that it can (a) be invoked by any
user while broadcast requires superuser privileges (at least on common Unix/UDP implementations), and (b)
restricts delivery to members of a group of (hardware) interfaces, rather than every interface on a connected
subnet. While true broadcast might be useful in some applications, we prefer the safety of non-privileged
execution and limiting reception of packetsto machineswhich expect them.
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iteration until convergenceis:

do {
old = latest;
... /* compute new latest */
} while (0 < += (o0old != latest));

which loops until the number of differences between successive iterationsis zero. Though
syntactically short, the add-reduction is a high-cost operation (often due more to the time
it takes to communicate the reduction operands to all nodes than the time determining how
many differences there are on the local node).

Although the quality-of-service of the datagram interface isnot immediately adequate to
meet our needsfor alow-level implementation, common wisdom hasit that communication
over datagram sockets is significantly faster than over stream sockets. We wanted to know
whether adding the necessary wrappers to UDP to meet the reliability requirements would
yield afaster system, especially given that we could then (theoretically) take advantage of
the multicast facility to improve reductions.

We performed two experimentsto test this hypothesis. Thefirst consisted of aprogram
which simply timed a series of message exchanges between two processors, using a vari-
ety of message sizes and severa different message passing protocols. This provided ba-
sic information on the performance of the different protocols over a range of MTUs. In
the second experiment we examined the performance of two of the three core operations
which could take direct advantage of a multicast mechanism: owner-broadcast, in which
one node sends a single value to all nodes, and the mid-level reduce operation.®> Several
different algorithms were used to implement each operation, and their performance over
the different message passing packages and message sizes was evaluated. |n summary, the
overhead induced when grafting our reliability requirements on top of UDP at user-level
overwhelms any benefits from the faster underlying transport for point-to-point operations,
and even when multicast operations are available their use should be considered carefully.

In al results described below, the experimental hardware was a set of twelve dual-
processor Sun SPARC 20srunning 60MHz SPARC chipswith 256M B of memory, using So-
laris 2.3, and connected in a star network through 10BaseT Ethernet with a Kalpana Ether-
Switch EPS-2015 RS serving as hub. The primary purpose of the EtherSwitch is reducing
network collisionsdueto multiple nodes sending dataat the sametime. It hasbeen observed
(LaRosa, 1995) that the synchronous nature of data-parallel computation often means that
processors will enter communication phases at the same time. By putting each machine on
itsown leg of the star network with a switching hub at the center, point-to-point messages
between nodes 0 and 1 (say) will not be visible to, hence not affect, any other nodes. Com-
parison tests done at the time the Kalpana was installed showed performance benefits on a
wide variety of programs that ranged from a 10% slowdown to an 80% speedup, relative to

5. Mid-level broadcast was ignored, because some of the same algorithms that would be used for it were
among those used to implement reduce, and conclusionsabout their performanceon broadcast could be drawn
from their performance on reduce.



CHAPTER 4. Basic Communication Principles 85

anon-switching Ethernet hub. The bulk of the tests indicated a 20-50% speedup when six
or more machines were involved.

Because UDP multicast is to hardware interfaces, not running processes, we could not
use the dual processors to increase cluster sizesto 24, and tests were run with 2, 3, 4, 6, 8,
10, and 12 node clusters.® All programs were compiled using gec 2.6.3 with optimizations
-02 -msupersparc, and during the tests no other non-system programs were running on
the cluster. As a sanity check, the tests were also executed on a network of eight single-
processor Sun |PCs running 25MHz SPARC chips with 24MB of memory each, also using
Solaris 2.3 but connected on a standard 10Base2 Ethernet segment. The results observed
in this environment followed the same trends as those described here, though performance
tended to degrade more rapidly as cluster size grew, due to collisions on the Ethernet seg-
ment which were filtered out in the production cluster by using the EtherSwitch as a hub.

4.4.1 Ping-Pong Test

The first test program is similar to the Unix system utility ping(1).” A server process
runs on one machine, awaiting connections. A client process connectsto the server, and in-
formsthe server that it wishesto executei iterations exchanging packets of size p. Thetime
taken at the client end to perform the exchangesis recorded. The program can be compiled
to use a variety of communication packages. Here we used the following four packages
which implement an interface similar to the lowest level of the pC* communications hier-
archy, except that any necessary polling is handled implicitly within the routines.

e Optimistic TCP opened stream sockets and used the Unix read(2) and write(2) sys
tem calls to exchange messages. We call this protocol “optimistic” because it makes
no provision for recovery from or even detection of errors such as buffer overflow. No
problems with buffer limitations were encountered during the experiment runs below
(though limitations were exceeded when the packet size grew larger than is considered
here). Only point-to-point between two nodes was supported, sincethisinterfaceisonly
used in the ping-pong test.

e Optimistic UDP opened datagram socketsand used the Unix read(2) andwrite(2) sys-
tem calls to exchange the messages. In the experiments below, the machines ran fast
enough, and the total amount of data exchanged was small enough, that no packets were
lost between the server and client, so no additional reliability support was implemented.

6. l.e., amulticast message is delivered once to the machine's Ethernet interface, and only one of the two
processes would be able to read it. Supporting multiple processes on one machine would require forward-
ing the packet to the other processes through some other mechanism such as shared memory or inter-process
messages, at a significant increase in code complexity. Other experiencesindicate the second processor can
have asmall effect on execution time, either dightly improving it by off-loading work required to handle in-
terrupts, or dightly degrading it by moving the running process between the two CPUs which have separate
second-level IMB caches. Nothing indicated that the cumulative effect was significant on these tests.

7. To distinguish standard functions from those of the pC* hierarchy, throughout this section we follow the
Unix convention of marking, at their introduction, standard functions and programs with the section of the
Unix manual in which they are described; hence (1) for programs and (2) for system calls.
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Reliable TCP is a small extension to TCP to support an arbitrary number of nodes in
a communications mesh (a fully-connected graph of P nodes), and to support transac-
tion codes, which are required in the second experiment to avoid mixing data between
stages or iterations even when in-order delivery is guaranteed between node pairs. The
writeimplementation interposesafunction call which usesthegather writev(2) system
call to send the message code, data size, and data buffer. The read implementation is
somewhat more complicated, sinceit must po11(2) all sockets and buffer available data
according to source and transaction code, to avoid deadlock due to buffer overflow or
insufficient process read/write synchronization. To simulate alow-level interfacewhich
supports broadcast, there are separate functions to exchange point-to-point and broad-
cast messages; the implementation sets a bit in the transaction code to distinguish the
nature of an incoming message. In this case, broadcast writeisimplemented as a series
of P — 1 point-to-point writes; broadcast read isidentical to point-to-point read except
for the queues on which it looks for previousy-received data. Thereliable TCPimple-
mentation consists of approximately 400 lines of C code, some 75-100 of which could
be eliminated by merging the read functions.

Reliable UDPisamajor extension to UDP which, in addition to supporting transaction
codes and buffering incoming messages, must also save outgoing messages until they
areacknowledged, and retransmit themif theacknowledgementisnot receivedina“rea-
sonable”’ period of time. Two datagram sockets are maintained on each node: the first
isfor reading and writing multicast messages, and the second is for reading and writing
poi nt-to-point messages and acknowledgements of both message kinds. On awrite call
of either kind, the header and data are packed into an allocated message buffer, whichis
written to the destination node and placed onto an “ unacknowledged” list. On reception
of a message, a 20-byte acknowledgement containing source node id, sequence num-
ber, transaction code, and flags is sent to the originating node. Incoming messages are
sorted and buffered on point-to-point or broadcast queues as appropriate; out-of-order
and duplicate delivery due to dropped messages are also handled. Message retransmis-
sion isperformed if a message remains unacknowledged after 200 milliseconds; if only
one node hasfailed to acknowledge a broadcast packet, the retransmission will be done
along the point-to-point interface to avoid disturbing other nodes. Care wastaken to use
poll1(2) to detect available messages and acknowledgement timeouts reasonably effi-
ciently. The implementation is approximately 1300 lines of C code.

The last two implementations are sufficient to serve as communications primitives for the
second experiment, though not quite adequate for a low-level facility in pC*: the reliable
UDP implementation does not implement flow control, viz. thereisno limit on the amount
of unacknowledged datait will transmit and save. Thiswas safe for the current application,

which did not attempt to exceed the Ethernet MTU on any operation and had very close

synchronization with almost no local processing, but would beinadequate for C* programs.

Although both implementationsinclude broadcast write and read functions, only the point-

to-point interfaces were tested in the first experiment.
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Figure 4.9: Ping-Pong Tests of Low-level Interfaces

Theround trip timesfor each implementation are given in figure 4.9, along with aleast-
squares fitted linear approximation to give basic start-up and per-byte costs. The times that
appear in the graph are the median of ten runs for each packet size, to abstract away from
outliersdueto network or processor interference, taken using amicrosecond resol ution real -
time timer. Each run consisted of 100 packet exchanges; the final time was divided by 100
to yield the time in microseconds for a single [client write]{server read]—{server write]—
[client read] sequence.

Theresultsfor the optimistic protocol s are as expected. UDP performs significantly bet-
ter than TCP, with an overhead 448usec (34%) less than TCP8 The per-byte cost for both
isapproximately 1.7usec, only 0.1usec (6%) higher than the lower bound of 1.6psec dueto
10Mbps transfer over 10BaseT Ethernet. The numbers are in concord with ones expecta-
tionsfor bidirectional exchange over Ethernet, implying the test is measuring what we want
it to measure.

8. For reference, the Kalpana EtherSwitch introduces a 40usec routing delay on all packets.
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Thereliable TCP implementation adds approximately 260usec to the basic TCP imple-
mentation. Though we were unableto discretize the low-level implementation to determine
exactly where thetime is going, it islikely that the bulk of thistime is due to the complex
control flow around the po11(2) operations required to check incoming ports before read-
ing data, plusoverhead for checking buffer queues. Though the ping-pong test would never
induce buffering or require checking more than one descriptor, these operations must bein-
cluded in the general case implementation.

The biggest surprise comes with the reliable UDP implementation, which has an over-
head 220usec higher than that for the reliable TCP implementation, twice as large as the
optimistic UDP implementation. Here there are many plausible culprits, including:

1. Copying the datafrom their original location into a buffer on write

2. Queueing thewrite buffer, regularly checking the queue for acknowledgement timeouts,
and retransmitting when necessary

3. Thecomplexity of polling to check for incoming data on both point-to-point and multi-
cast sockets

4. Sending an acknowledgement for every data packet read and moving newly read data
to the appropriate read queue

5. Unqueuing acknowledged packets

The above operations require multiple crossings of the user/kernel protection boundary to
executeread, write, and poll system calls, measurements on separate programsindicate
these system call stake between 15 and 30 psec each for the smaller packet sizes (48 bytes).
Whilewefed that thereliable UDPimplementation has taken reasonabl e stepsto ensure ef -
ficiency, it is clear that operations such as this, as well as some of the buffer management,
would be better done inside the operating system kernel where domain crossing is not nec-
essary and fewer copies need be made.

It is interesting to note that, unlike the other three interfaces, reliable UDP has a non-
linear performance curve for packets that are less than 125 bytes. A second sequence was
run with afiner discretization of packet sizes, and is shown in figure 4.10. It confirms that
the reliable UDP implementation starts out faster than the reliable TCP implementation,
and crosses over somewhere around 20-byte payloads (thefirst to exceed 32 bytes message
buffer size, including header). We hypothesize that this non-linearity is dueto cache effects
in copying data to and from larger buffers as the packet size increases. If aleast-squares
fit istaken for the reliable UDP data shown in figure 4.9 for packets at or above 125 bytes,
we get an approximation of 1935.6269+ 1.8010/b, which more accurately reflects the true
start-up costs and brings the per-byte cost much closer to the expected value of processing
time plus 1.6usec for network transmission.

Naturally, further effort could improve the performance of the reliable UDP interface:
imposing a reliable interface on an unreliable network fabric is a fundamental issue in
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Figure 4.10: Ping-Pong Tests of Low-level Interfaces. Small Packets

network-based computing, and many issues such as timeout handling and flow control have
avariety of solutionsthat can be judged based on intended use and the level of effort theim-
plementor iswilling to apply. However, wefeel theimplementation used hereisdefensible.
Since we are precluded for reasons noted in section 4.2 from using certain features such as
interrupt driven 10 and interval timers, there are limits on how much improvement can be
achieved by grafting on wrappersat the user level. For example, we do not attempt to piggy-
back acknowledgements on normal messages sent to remote nodes, because we do not know
that an appropriate message will be sent soon enough, and cannot detect that enough time
has passed that we should send an acknowledgement by itself. It seems unlikely that per-
formance comparable to reliable TCP could be achieved, given the gap that must be closed
and our implementation constraints. The only reason for going through the extra work, in-
cluding extensions necessary to support flow control for exchanging multi-megabyte data
blocks, would be a significant improvement in the C* algorithms which could take advan-
tage of the multicast features. Aswe shall see, the improvement is not that impressive.
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4.4.2 Broadcast and Reduction Algorithms

The second experiment consisted of a program which implemented two operationswith
avariety of algorithms, and linked to alow-level interface, similar to that described in sec-
tion 4.3.1, which provided point-to-point and broadcast support. In the results presented
here the reliable TCP and reliable UDP implementations of the previous section were used
as the low-level interface. In each case, each algorithm was invoked in aloop of 100 iter-
ations; the maximum time taken to execute the loop on any node was recorded. Each run
of the program yielded one such time for each algorithm; the program was run five times
for each cluster / data size pair, and the median number for each algorithm was recorded.
We ran the above agorithms using both low-level interfaces on seven clusters from 2 to
12 nodes, and ten data sizes from 4 to 1400 bytes.® To conserve our nation’s woodlands,
we restrict the graphical results presented here to those for 4 byte and 1400 byte packets:
most operations will be on scalar data such as ints or floats, which are represented by
the 4-byte values, while the behavior on more rare large element types such as structures,
or broadcast operations on large scanset summaries, can be inferred from the large packet
results.

Thefirst functionto beimplemented is C* owner broadcast: thisiswhat isinvoked when
ascalar left index expression is used to distribute a single value to all nodes in the cluster,
to be used as thevalue of ascalar expression. In thiscase, we haveasinglewriterand P— 1
readers. Three methods of performing this distribution were implemented:

MWRITE The source node invokes P — 1 point-to-point write operations, sending the data
to each of the nodes that require them.

LOGFAN A log-based fanout similar to the one used in the mid-level reduce function is
used to distribute the value in [logP| stages of point-to-point transfers.

Bcast Thelow-level broadcast operation was invoked to transmit the data.

Because algorithms MWRITE and BCAST are not inherently synchronous, the time taken
to execute them on the source node would be drastically different from the time on other
nodes. To alleviate the extent to which this obscuresthe true performance of the algorithms,
the iterations cycled the source node through the entire cluster.1°

9. Intheinitia stages of developing pC*, we were unsure of the exact layout and payload of an Ethernet
frame through various interfaces like TCP. We therefore chose a 1400 byte message limit (cf. section 4.2) as
a safe upper bound for the socket system: thisincludes 16 bytesfor the pC* 1PC header, but does not include
space for any headers added by the host system during transmission. Thisinitial estimation remained in place
until the late stages of preparing this dissertation, when instrumentation on the Solaris/TCP cluster indicated
that the pC* message limit could be increased to a maximum of 1463 [sic] bytes before sending a message
required multiple Ethernet frames. Testing done at that time showed no significant performance differences,
on the benchmarksin chapter 7, between Solaris/TCP runs with 1400 and 1463-byte message limits.
Therefore, although later versions of pC* use the larger value, most performance results throughout this
dissertation, including those of chapter 7, assume only 1400 bytes of user payload are available under ageneric
hosted Ethernet implementation.
10. This was not donein the synchronous L oGFAN, which always used node O as the source.
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Graphs showing the execution time per operation over the cluster sizes for both inter-
faces and ahybrid to be described later arein figure 4.11. Thetime scales onthe graphsare
the same for each packet size, enabling visual comparison of performance between inter-
faces. For the point-to-point interface, BCAST and MWRITE are almost i ndistinguishable—
as we would expect, since the broadcast operation in reliable TCP isimplemented by mul-
tiple write statements. For both small and large packets the extra steps required for the log
fan-out algorithm cause it to perform worse than the P — 1 write operations. Performance
for log-fanout is even worse using reliable UDP, where point-to-point messages are signif-
icantly more expensive. However, true multicast shows its value by performing in nearly
constant time regardless of cluster size. At 12 nodes, the multicast owner-broadcast im-
plementation runs 60% faster for 4-byte packets, and nearly five times faster for 1400-byte
packets, than the multiwrite implementation. So for thisfunction multicast support appears
to be beneficial.

The second function to be tested is the mid-level reduce operation. Each node con-
tributes abuffer of somefixed size; each algorithm tests adifferent communications pattern
which would propagate the results to all nodes allowing application of abinary function to
them (though in fact no such function was used, since we were interested only in commu-
nication times). Eight implementations of this operation were tested:

NAIVEMW Each nodeinvoked P — 1 write operations to send its data to the other nodes.
It then looped reading P — 1 statements from other nodes, in the order they arrived
(using awildcard source node).

MASTERMW Each node other than node 0 wrote its data to node 0, which performed the
necessary combination and wrote the answer back to therest of the cluster usingP— 1
write operations.

MASTERBC Each node other than node 0 wrote its data to node 0, which performed the
necessary combination and wrote the answer back to the rest of the cluster using a
broadcast operation.

REALBC The low-level broadcast operation was used to transmit each node’s data to all
other nodes, then the broadcast read operation was invoked to read the P — 1 remote
valuesin arbitrary order.

LoGLocEXx A butterfly implementation to exchange data with all other nodesin [logP]
stages (alog exchange with local calculation of the final result).

LoGMW A log fan-in to node O, which then used P — 1 point-to-point write operations to
send the final result to the other nodes.

LoGLoG A log fan-in to node 0, with a corresponding log fan-out back to the remainder
of the cluster: thisisthe algorithm described in section 4.3.2.
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LoGBC A logfan-into node 0, which used the broadcast write operation to send the result
to the remainder of the cluster.

Since reduction operations are synchronous by nature, we did not vary the master node in
MASTERMW and MASTERBC as we did with the corresponding owner-broadcast ago-
rithms. Note also that NAIVEMW and REALBC do not satisfy correctness requirements
for non-associative operators, though they could be modified to do so. LOGLOCEX can
yield an incorrect answer with a non-commutative operator.

Graphs showing the performance of these algorithms under the variousinterfacesarein
figure 4.12. Entriesin the legends are sorted by decreasing runtime at 12 nodes. The time
range ontheY axiswas chosen to give agood overview of the relative performance of most
algorithms, even when one or two agorithms performed significantly worse than the upper
limit used. For example, the LOGM W and L oGBC operationswith the point-to-point inter-
face (both of which have identical communication behavior due to emulation of broadcast)
suddenly jump to 50 millisecondsper iteration as soon asthe cluster size reachesfour nodes,
and remain at 50msec up to 12 nodes. This appears to be due to an inefficiency in Solaris
2.3 TCP code with this particular communications pattern, since similar behavior was not
seen in the UDP implementation. It does not occur with the MASTERMW or NAIVEMW
algorithms, so is not due solely to attempting to write P — 1 packets to different nodesin a
very short time.

For reliable TCP, thelog based algorithmsthat do not invoke amultiwrite operation have
a flatter performance profile for the range of packet sizes, though they are slightly slower
than the other implementations for small packets on small clusters, becoming fastest when
cluster size exceeds 8 nodes. Thelog-based methods show their superiority on large packets
where they cause significantly less data to be transmitted than any of the multiwrite-based
algorithms; for smaller packets the difference between algorithmsis much smaller.

The performance using reliable UDP with multicast support is much more intriguing.
The REALBC implementation using multicast from each node has the second worst perfor-
mance with 6 or more nodes and small packets, coming in at over four times slower than
LoGBC for 12 node clusters (only two times slower for 1400-byte packets). Again log-
based fan-in algorithms prove to be the fastest, though use of broadcast by the bottleneck
node to distribute the result proves to be valuable.

These results imply that the most effective use of multicast isin a supplementary role,
implementing aone-to-many rather than a many-to-many communications pattern. Though
LoGBC isfastest in the reliable UDP implementation, it is still 53% slower than the reli-
able TCP implementation of LOGLOCEX on small packets. The results of the ping-pong
test imply that thisis due to the high overhead of reliable UDP on point-to-point messages,
which make up thefirst phase of the LoGBC algorithm. Therefore we constructed a hybrid
interface combining thereliable TCP and UDP implementations, where the TCPimplemen-
tation was used for all point-to-point operations, and UDP restricted to multicast operations.
Theresults of using thisinterface on the same algorithms are also shown in figures4.11 and
4.12; itis clear that the algorithms which depend highly on point-to-point communications



CHAPTER 4. Basic Communication Principles

Time (usec)

Time (usec)

Time (usec)

Reliable TCP Results: 4 Byte Packets, Eth, Reduce

14000

12000

LogLopEX[8] -+-- ]

10000
8000
6000
4000
2000
0 L L L L
2 4 6 8 10 12
Cluster Size
Reliable UDP Results: 4 Byte Packets, Eth, Reduce
NaiveMW[4] —— T i T
14000 | RealBC[7] -+--
MasterMW([5] -=-
LogMWI[9] -
12000 | MasterBC[6] -&--
LogLog[10] -*:-
LogLocEX[8] e~
10000 } LOgBC[11] -+--
8000
6000
4000
2000
0 L L L L
2 4 10 12
Cluster Size
Reliable Hybrid Results: 4 Byte Packets , Eth, Reduce
LogMWI[9] —— T T T
14000 | RealBC[7] -+- / E
MasterBC[6] & /
NaiveMIW[4] -x
12000 FMasterMIWI[5] -&-- / E
LogLog[10] -x-- i
LogBC[11] -~
10000 | LOGLOEEX[8] -+ ]
8000
6000
4000
2000
3
0 L L L

8
Cluster Size

10 12

Time (usec)

Time (usec)

Time (usec)

94

Reliable TCP Results: 1400 Byte Packets, Eth, Reduce

40000

35000

30000

25000

20000

15000

10000

5000

4 6 8 10 12

Cluster Size

Reliable UDP Results: 1400 Byte Packets, Eth, Reduce
T T

40000

35000 [

30000

25000

20000

15000

10000

5000

MasterMW([5]

NaiveMWI[4] —-—

-
LogMWI[9] -
RealBC[7]
LogLog[10]

MasterBC[6] -*-

LogLocEX[8] e~

LogBC[11] -+~

x @

A

4 6 8 10 12

Cluster Size

Reliable Hybrid Results: 1400 Byte Packets , Eth, Reduce
T T

40000

35000

30000

25000

20000

15000

10000

5000

6 8
Cluster Size

Figure 4.12: Reduce Function Algorithm Comparisons

12



CHAPTER 4. Basic Communication Principles 95

retain their reliable TCP performance, while those which use broadcast follow the reliable
UDP performance curves. The performanceof LoGBC usingthehybridrelativetothe UDP
interface improves 21% on 4-byte packets and 11% on 1400-byte packets through use of the
more efficient point-to-point communications, and remains the fastest method for all packet
sizes (though it is closely challenged by LOGL OCEX).

4.4.3 Evaluation and Conclusions

We have collected a large amount of data that compares two implementations of low-
level communications operations, plus a hybrid that combinestheir best features. We must
now evaluate the results and determine which implementation is most useful, not merely for
the broadcast and reduce operations tested here but for pC* asawhole.

There are two axes along which the performance of low-level communication imple-
mentations vary: the size of the cluster, and the size of the data packet. Evaluation of al-
gorithms for owner-broadcast is relatively simple: the multicast features of reliable UDP
uniformly besat the point-to-point implementations required with reliable TCP, with small-
est improvement 6% faster at 1400-byte packetswith 2 nodes, and largest improvement 66%
faster at 1400-byte packets with 12 nodes. Theimprovement on 4-byte packets rangesfrom
20%to 36%. We must consider thisin context with thefrequency of use of owner-broadcast,
however. It is common in some numerical analysis algorithms (e.g., it would be used to
broadcast the selected pivot element in LU-decomposition), but is relatively rare in image
processing algorithms, andin almost all casesonly small singlescalar elementssuch asints
or floatswould be distributed.

Reduction operations are more common and, unfortunately, the performance issues are
more complex. The major contenderswithin the reliable TCP implementation are LOGL O-
CEX, LOGLOG, and NAIVEMW. LOGLOG is slower than LOGLOCEX amost uniformly,
but improves as packet size increases. For small packets NAIVEMW (or, equivalently for
this implementation, REALBC) performs better but it degrades as packet and cluster sizes
increase. The trends exhibited by the graphs indicate that the log-based routines will con-
tinue to perform well on larger clusters, while NAIVEMW does not scale as well. See ta-
bles 4.1 and 4.2 for the performance of LOGL0OG and NAIVEMW respectively, relative to
LoGLOCEX.

We can reject the pure reliable UDP implementation because of its poor performance on
the point-to-point communi cations which make up the vast majority of C* communications
outside the operations of owner broadcast and reduce. Within the hybrid scheme, the top
three contenders over al cluster and packet sizesare LOGBC, LOGLOCEX, and LOGL OG.
It isinteresting to note that, even with the improved performance by using TCP for point-
to-point communications, LOGBC is still dlightly slower than the pure log-based method,
though it does do better on larger packets and cluster sizes. The performance of LOGBC
and LoGLOG relativeto LOGLOCEX on all cluster and packet sizesis givenin tables 4.3
and 4.4, respectively.

Having narrowed the field, and with no obvious reason to prefer an agorithm which
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Packet Cluster Size Geometric
Size 2 3 4 6 8 10 12 Mean
411225 0979 1185 1.147 1.227 1198 1.149 1.156
8(1203 0994 1171 1113 1134 1219 1172 1.141
16 | 1.302 1.003 1.234 1.146 1.221 1219 1.145 1.178
3211358 0989 1.201 1137 1251 1.246 1.101 1.178
64 | 1.191 1.008 1.161 1.145 1.201 1.206 1.110 1.144
128 | 1.196 1.023 1.173 1.089 1177 1.200 1.179 1.146
256 | 1.149 1.035 1.157 1.082 1.145 1.080 1.187 1.118
512 | 1.146 1050 1.112 1.120 1.109 1.125 1.104 1.109
1024 | 1.092 1.036 1.079 0999 1.056 0982 1.031 1.039
1400 | 1.076 1.030 1.092 0977 1.057 0.960 1.012 1.028
GMean | 1.191 1.014 1.155 1.094 1.156 1.139 1.118 1.123
Table 4.1: Reliable TCP: LOGL OG relativeto LOGL OCEX
Packet Cluster Size Geometric
Size 2 3 4 6 8 10 12 Mean
410948 0.799 0.739 0.875 1.067 1358 1.361 0.995
80943 0802 0.726 0.848 0959 1.373 1.505 0.989
16 | 1.008 0.749 0.748 0.845 0.913 1.230 1.374 0.957
321007 0763 0.726 0860 1.054 1.188 1.312 0.967
64 | 0935 0.855 0.731 0.880 0.973 1.289 1.309 0.976
128 | 0.992 0.857 0.740 0.947 1.003 1.316 1.406 1.015
256 | 0.946 0918 0824 1.064 1.171 1428 1.601 1.107
512 | 1.000 1.132 1.000 1.323 1.393 1.727 1.987 1.325
1024 | 0997 1.305 1.330 1525 1.729 2.013 2.248 1541
1400 | 0996 1.343 1.420 1626 1.885 2.078 2.372 1.615
GMean | 0.977 0.931 0.869 1.046 1.177 1.472 1.608 1.127

Table 4.2: Reliable TCP: NAIVEMW relative to LoGL OCEX
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Packet Cluster Size Geometric
Size 2 3 4 6 8 10 12 Mean
411530 1304 1.110 1.012 1.007 1.137 1.027 1.148
8| 1542 1161 1125 1.026 0977 1.097 1.050 1.128
16 | 1.615 1.242 1.078 1.002 0.993 1.081 1.066 1.138
3211662 1172 1.093 1.022 0.890 0.999 1.032 1.104
64 | 1.487 1.236 1.026 0979 0.946 1.121 0.984 1.098
128 | 1.579 1.147 1.023 0.972 0.855 1.000 0.865 1.042
256 | 1.399 1.207 0949 0.929 0.835 0.952 0.868 1.004
512 | 1.302 1.188 0901 0.894 0.759 0.830 0.780 0.932
1024 | 1.267 1.081 0.870 0.870 0.739 0.738 0.757 0.886
1400 | 1.230 1.013 0.859 0.818 0.751 0.727 0.721 0.859
GMean | 1.454 1.172 0999 0.950 0.870 0.956 0.906 1.029
Table 4.3: Reliable Hybrid: LoGBC relative to LOGL OGEX
Packet Cluster Size Geometric
Size 2 3 4 6 8 10 12 Mean
411205 1026 1229 1115 1.206 1.120 1.086 1.139
8(1262 1001 1.260 1.097 1199 1.135 1.139 1.153
16 | 1.211 1.000 1.196 1.182 1.207 1.098 1.152 1.147
3211286 1.000 1.217 1124 1.094 1.052 1.090 1.120
64 | 1185 1.034 1165 1092 1166 1.157 1.157 1.135
128 | 1.252 0.998 1.169 1.148 1.124 1.146 1.025 1.120
256 | 1.168 1.058 1.114 1.087 1.148 1.110 1.040 1.103
512 | 1.096 1.113 1.089 1.125 1066 1.135 1.114 1.105
1024 | 1.121 1.077 1.061 1.030 1.077 0.973 1.070 1.057
1400 | 1.077 1.058 1.083 1.002 1.064 0.947 1.021 1.035
GMean | 1.184 1.036 1.156 1.099 1.134 1.085 1.088 1.111

Table 4.4: Reliable Hybrid: LOGL OG relative to LOGL OCEX

97



CHAPTER 4. Basic Communication Principles 98

Packet Cluster Size Geometric
Size 2 3 4 6 8 10 12 Mean
411599 1338 1109 1.099 1034 1220 1.120 1.205
81605 1385 1.08 1.107 0922 1127 1.116 1.175
16 | 1.684 1.253 1.089 1.084 1.025 1200 1.118 1.192
321705 1284 1.099 1.112 0.997 1.123 1.095 1.185
64 | 1.533 1.353 1.038 1.114 0.966 1.179 1.046 1.162
128 | 1.604 1.358 1.046 1.038 0.896 1.036 0.974 1.115
256 | 1.404 1.244 0978 1.004 0.864 0.959 0.975 1.048
512 | 1.357 1.156 0915 0919 0.775 0.805 0.809 0.943
1024 | 1.222 1.087 0.885 0.849 0.744 0.747 0.762 0.884
1400 | 1.233 1.016 0.863 0.813 0.749 0.730 0.742 0.863
GMean | 1.485 1.242 1.007 1.008 0.891 0.995 0.964 1.069

Table 4.5: Reliable Hybrid LOGBC relative to Reliable TCP LoGL OCEX

comes in second or third overall, we can now make a choice between using LOGL 0G with
the reliable TCP interface and using LoGBC with the hybrid interface. The relative per-
formance numbers are given in table 4.5. On average, using hardware multicast does not
give usaspeedup over the point-to-point algorithm. Thisistrueacrossall clustersfor small
packets. However, we would get a benefit, peaking at about 25%, by using the hardware
multicast algorithm on large packets and clusters.

Qualitatively we must weigh these results against the following mitigating factors.

e The only time using the multicast support could provide an improvement isin owner-
broadcast, reduce, and broadcast operations. Far more frequent in terms of amount
of data sent across the network are general communication and grid communica-
tion, neither of which would benefit from multicast, and complex computation-plus-
communication functions such as scan and spread which could only benefit if data
distribllJiionswere restricted to one axis, so that all nodes participated in each reduction
group.

e Itis specifically communications latency and the fact that the implementation blocks
until data arrive which causes bad performance on reductions on small data. Using the
compiler analysis suggested in section 4.3.2 to move the synchronization operation up
to the point where the reduced value is needed would allow us to perform other useful
computationsduring thislatency time (though we would add overhead by using the mes-

11. Counting static call sto communication routinesin the benchmarksdescribed in chapter 7, wefind fourteen
arefor grid communications, ninefor general communications, threefor other complex communications, and
only fivefor reduce or broadcast-type operations. Of thosefive, two would requirethe single-axis-distribution
restriction to allow hardware broadcast to be used. In the benchmarks examined there are more general and
grid communicationscalls in loops than there are reduction or broadcast operations, so dynamic frequency of
operations that can make use of multicast support is even less.
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sage handler facilitieson small messages). Thisimpliesimplementation effort would be
better directed to this analysis, which would improve other operations as well.

e The source for the hybrid interface is roughly four times as long as that for the TCP
system. Its internal complexity is aso much higher, with more buffering and polling
being required. Thismakes correctness verification and maintenance significantly more
complex.

e Neither multicast implementation has been tested inside the pC* system, where commu-
nications often invol ve data bl ocks that are much larger than the network MTU, nor with
other communications patterns. Experience writing the TCP-based low-level module
for pC* indicates that there can be issues that will only arise in such a communication-
intensive environment.

e The current primary production platform is networked multiprocessors. As noted pre-
viously, supporting multicast with multiple processes on a single network node would
require internal forwarding of packets. Given the small improvement in performance,
there is a high probability that the additional overhead will overcome the benefits of
supporting multicast.

e While the current TCP implementation in pC* is relatively ssmple and hence should
be portable, a more complex UDP implementation, especially bound to a (most likely
platform-specific) inter-process forwarding mechanism, isfar lesslikely to be usableon
adifferent target platform.

Taking all these issues into account, we have chosen not to attempt to use any UDP-based
communicationsin the current pC* system, and all performance results in the remainder of
thisdissertationrely on other low-level interface modules. The decisionisbased on our own
understanding of the goals and tradeoffs relative to our own application; we hope that the
experiences related here will prove useful to other researchers faced with similar choicesin
their own systems.

4431 Why pC* Didn’t Usethe Best Algorithm

Recall that the LoGL oCEX a gorithm considered in this section does not satisfy correct-
ness requirements when the operator is not commutative. Thiswas originally discoveredin
pC* when a particular operation—parallel-to-scalar cast, which selects an arbitrary active
element of apvar and returnsit as a scal ar—caused problemsbecause nodes disagreed onthe
chosen value. We initialy assumed that the disagreement came from the non-associativity
of the operator, and therefore that LOGLOCEX was unacceptable as a general-purpose re-
duction algorithm because floating point arithmetic is non-associative.* As a result, we
choseto use LOGL 0G as the reduction algorithm, and the experimental resultsin chapter 7

12. This is due to the fixed-point nature of most hardware implementations of floating point arithmetic, ex-
pressed as 0.m x 2¢ where m and e are integers represented with a fixed number of bits. Consider forming
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use thisalgorithm. The comparison in table 4.1 showsthat using the sub-optimal agorithm
could cost us about 12% on average, andislikely to be responsiblefor someof the problems
we encountered rel ative to the performance of reduction on power-of-2 sized meshes (note
that 2-, 4-, and 8-processor clusters are generally much slower relativeto LOGL OCEX than
the other sizes). We have since redlized that LOGLOCEX is perfectly acceptable to non-
associative operators because it combines values in pairs at each stage, where at most the
left and right operands are swapped. The few non-commutative operators used in pC* have
been modified to enforce an order on their operands, making them commutative, and we
now use the LOGL OCEX agorithm instead of the LOGL 0G one described in section 4.3.2.

45 Conclusions

This chapter has presented an overview of the issuesinvolved in choosing acommuni-
cations infrastructure on which to build a runtime system for a distributed language. The
trade-offs along the spectrum from portability to performance were examined, and a mid-
dle ground chosen which embodies a three-level hierarchy to isolate target-specific code
from the routines invoked by the C* programmer. At the highest level, language-specific
functions are coded using full knowledge of the expected behavior of the runtime system,
without much concern for the details of the actual communications network. At the lowest
level, we must provide a very few functions with clearly delimited rights and responsibili-
ties, making it relatively simpleto add support for anew network interface. Anintervening
level links the two, providing an essentially unconstrained communicationsinterface to the
highest level while ensuring the lowest level need not be burdened with message fragmen-
tation or buffering which are common to all possible platforms for distributed computing.
The next two chapters will examinein detail high-level functions which use this hierarchy
to good effect.

This hierarchy has resulted in reasonable performance (to be shown in chapter 7) and
proven portability, with five underlying networks currently supported, ranging from TCP
sockets over a cluster of workstations to shared and distributed memory machines like the
Sequent Symmetry and Intel Paragon. Providing definitions for the three low-level func-
tionsonanew platformisrelatively straightforward, taking on average one programmer-day
each for the last three modules implemented (none of which required extensive enhance-
ments for reliability).

Though portability is our second goal in this project (reliability over the range of po-
tential applications taking precedence), the system has still been designed to integrate with
advanced techniques to improve communications performance, such as better management
of buffers (supported through the scatter/gather interfaces and message handlers) and direct
control of the network system. Integration has not been proven, and with some thought it

the sum of a, b, and c, where (a,b) <« c. If evaluation proceedsas a+ (b+ c), and a and b are smaller than
0.00...01 x 25, thenb+c=cand a+c = ¢, so thefinal result isc. However, if a and b are large enough that
a+bisatleast 0.00...01 x 2% then (a+b) +c#c.
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is clear that dight changes may be necessary. For example, on some architectures perfor-
mance could beimproved by using asynchronouswrites where the low-level routines queue
atransmission (perhaps through a separate DMA controller) but data must remain in their
original buffer until thetransmissioniscomplete. Since some high-level routinesplacetheir
datadirectly into MTU-sized buffers, provision must be made to tell the high-level routine
to switch to a new buffer until the previous one is again available. Similar changes would
be necessary to allow use of kernel-provided buffers that are mapped into multiple protec-
tion domains, obviating buffer copying (Druschel, 1994). An approach to providing nearly
direct control of network adaptors on IBM RS/6000s in support of MPI collective commu-
nicationsroutinesis described in (Bruck, Dolev, Ho, Rosu, & Strong, 1994); the lower lev-
els of their hierarchy would seem to fit well into our lowest level, with perhaps some small
modifications to our mid-level. The extent of the changes necessary to support advanced
network optimizationsin the pC* communications hierarchy cannot be known until the at-
tempt is made, but we are confident that the changes should be minimal.

Portability desires prevent us from doing the sort of vertical integration observed in
(Turner, 1994), where data-parallel agorithmswere coded in-kernel using a primitive mes-
sage system, which was specifically adapted for the underlying FDDI interface, to imple-
ment some of the communications patterns described in this thesis. The characteristics of
the FDDI network, the in-kernel implementation, and the limitation of testing to a fixed set
of programs around which the system was designed permit very good performance, which
pC* isonly ableto match on thelargest problem sizes. The FDDI ring used in that research,
though technically able to drop packets, proved to be sufficiently reliable that a “careful”
protocol which assumed the network fiber would not drop packets was acceptable (Mos-
berger et al., 1994); avoiding acknowledgement and retransmission support provided asig-
nificant performance improvement (roughly 20% of communication time). Although using
a star network with EtherSwitch to connect our twelve machines resulted in a noticeable
decrease in collision rate over a standard same-segment network, the synchronous commu-
nications behavior of data-parallel programs still results in periods where the network is
overloaded and packets are dropped.

We have aso examined closaly the performance issues in attempting to impose a reli-
able protocol on top of UDP at user level, and the behavior of avariety of global reduction
algorithms comparing the resulting system which supports multicast with a simpler point-
to-point system. For our own current needs, the benefits of multicast are not sufficient to
outweigh the costs of implementing areliable system, and effort would be best directed to
more general optimization techniques.

One such techniqueis a compiler analysis to permit communications routines to return
before all messages have been received, leaving a key which can be used to block at the
result’s point-of-use until the communication has completed. The runtimeinfrastructurefor
this is ailmost complete, inherent in the message handling facility of the communications
hierarchy which is needed anyway to deal with buffered messagesin atimely manner. Only
the analysis to detect the opportunities remains.

Version: comm.tex,v 1.14 1996/04/09 16:50:51 pab Exp



CHAPTER 5
ALGORITHMSFOR GENERAL COMMUNICATIONS

If alistener nods his head when you’ re explaining your program, wake him up.
— Alan J. Perlis, Epigram #17

Using the communications framework of the last chapter we describe an implemen-
tation of general communications—nodes send data to arbitrary nodes in arbitrary
order. Our assumptions, for examplethat there is a fixed optimal message size, per-
mit packing operationsthat would not otherwise be available without excessive data
copying. We describe how a particular class of communi cations—those which send
many values to the same address, or read the same address many times—can be de-
tected at runtime and redundant data transmission avoided. The heuristic involved
can determine that the overhead it is introducing outweighs its benefits, and turn it-
self off; when it is active, it can decrease runtimes by more than 50%. The heuristic
can be tuned to a particular host platform and interconnect. We close with an ex-
perimental evaluation of the described system, comparing its common use with an
implemented C* extension similar to other optimizations which pre-compute com-
munications schedules. We argue that evidence implies our more straightforward
runtime-only approach is likely to be more effective, at least on our target applica
tions.

In the last chapter we presented the details of the pC* communi cations hierarchy, cover-
ing the functionsthat are available and the features that we can use in high-level operations
to improve performance. We will now use these features to implement two of the simpler,
yet most expensive, high-level communications operations. general send and get. We will
start with areview of the semantics of these operations, then proceed to see how the fea-
tures of the communications hierarchy are used to implement them. We then examine a
specia case in which the performance of the original implementation can be significantly
improved. We close with acomparison with methods of handling the same problemin other
data-parallel languages, where it isknown in the literature as “irregular communication”.

5.1 Semanticsof General Communication
Recall that communications operations in C* are expressed through the use of |eft-

indexing, a syntactic construct similar to array indexing in C but moved to the left side of
the indexed expression to make it clear that the operation may involve communication with
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Figure 5.2: General Communications Results

other nodes. In the case of genera communications, the index expressions are parallel in-
tegers of the current shape; however, the expression being indexed need not be of the cur-
rent shape. Thereis an index expression for each axis of the indexed shape. Unless other-
wise noted, throughout this chapter we restrict the notion of “left-indexed expression” to be
specifically aleft-indexed expression which resultsin ageneral communication, in contrast
to scalar or grid left-indexing (cf. section 2.1.2).

When a left-indexed expression is used as a C rvalue or basic expression value, thisis
a“get” operation, and it resultsin aparallel value of current shape. The value at each local
position consistsof the scalar valuefrom theindexed parallel expression at the”remote” po-
sition named by the global address specified by the local elements of theindex expressions.
For example, consider the system in figure 5.1. When evaluating the expression:

getres = [10][i1]iv;

the current shape must be the one-dimensional 4-element shape OneD, so the index expres-
sions are valid. Conceptually, each active position forms a global address using the index
expressions and requests the corresponding element of the indexed parallel value. There-
sulting value of getres isshown in figure 5.2. Note that positions that are inactive in the
indexing shape have no defined value, while positionsthat are inactivein the indexed shape
will be read.

When used as a C Ivalue, i.e. asthe target of an assignment, a“send” operationisin-
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voked. Theresultsare similar, except in this casetheindex expressions name aremote posi-
tion to which the value in the current position on the right-hand-side of the assignment will
be sent. For example, we can modify certain positionsin aparallel value with code similar
to the following:

[i0] [i1]liv = pcoord (0);

Here we use the index expressions to change the values in certain positions of iv. Again
context isperformed in theindexing shape, and becausethethird position of OneD isinactive
the corresponding element of iv remains unmodified, as do any positions which were not
named in the communication. However, thefact that position (0, 3) of TwoD isinactive does
not prevent its value from being overwritten.

Note that in get operations we may read from the same position multiple times, and in
a send write to the same position multiple times. Reading the same position results in no
difficulties, since the value is replicated as many times as necessary. However, writing to
the same position will result in “collisions’. C* permits these collisions to be resolved in
different ways, using the compound assignment operators. If regular assignment isused and
acollisionoccurs, exactly one of thevalueswill be stored in thetarget position; thelanguage
does not specify which value will be stored. If compound assignment is used, theincoming
values are combined with each other and the original value in the target position using the
assignment’soperator. Thiswas exhibited in theidiom for image histogramming, described
insection 2.1.2.

5.2 BasicImplementation Techniques

We have argued the value of walking through parallel datain linear fashion, to preserve
good cache behavior (section 3.2.4). We would also prefer not to walk the shape more than
once, for the same reason. Therefore the general communications implementationsin pC*
are based on a sequential walk through the current shape, converting index expressions to
physical addressesin turn, and communicating with all nodes simultaneously. To avoid ex-
cessive memory use and improve communications latency we take full advantage of the
features of the mid-level functions of the communications hierarchy.

The implementation of general send is straightforward. We maintain an MTU-sized
buffer for each remote node. We proceed along the positions of the current shape in lin-
ear order. For each active position, we trandate the global address from the index values
into anode/offset pair. If thetarget node is our own node, we simply store the source value
directly into its destination, performing combination as necessary. Care is taken to ensure
the source and destination pvarsare different, to avoid overwriting data before they are read.
If the target node is remote, we add to the buffer for the remote node an integer naming the
target position, and the value from the source pvar. When the buffer for aremote nodefills,
we transmit it and continue processing. Hence we are implicitly performing message vec-
torization (Hiranandani et al., 1994) by combining values that are to be sent to the same
nodeinto larger groups to amortize transmission overhead, and achieve a degree of latency
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reduction by sending data as soon asthey are available. Weinstall amessage handler which
walks incoming buffers, storing the values into the locations specified by the source node;
if a combining operator was specified, the operator is applied during the store.

Theformat of the send buffer isof someinterest. To operate on datain or from the mes-
sagedirectly (desirablefor the optimizationin section 5.3), alignment requirementsfor both
offsetsand datamust be satisfied. Aninitially plausible method isto useastructure, contain-
ing one offset and one data element, to represent each packet, and placing these structures
consecutively in the buffer. Thisiswasteful in several senses.

e Spaceislost dueto padding required between the end of the dataelement and the start of
the next structure, aligned for offset access. In the case of sending character (one-byte)
data, roughly 3/8 of the message space islost.

e Thesize of the structure must be determined dynamically, based on the size of the data
element. This meansthat accessing elements of the buffer in turn requires a more com-
plex address cal culation (based on arun-time, rather than compile-time, stride).

e Larger datatypes, such as eight-byte doubles, may not have their alignment require-
ments met by implicit structure alignment. Addressing thisrequires either an additional
modification of theinter-packet stride, or copying dataout of the messageinto an aligned
region with an expensive general copy routine.

Fortunately, because we know the length of the buffer, we can separate the offset informa-
tion from the data blocks, and store the offsets in a contiguous aligned region at the start of
the buffer, and the datain a contiguous region immediately following the off sets somewhere
in the middle of the buffer. The start location for data can be determined by computing the
maximum number of offset-plus-data elements that will fit in the buffer, and adjusting it
for data alignment requirements. The number of elements actually present in the buffer is
stored in the header of the send message. In the more common case where a buffer is com-
pletely filled no data moves are required. For the final buffer, where there is a potentially
large amount of unused space between the last offset and thefirst data element, we can shift
the data values down to the next aligned address following the offsets. Thisformat ensures
that both offset and data values are aligned in the buffer exactly as required for operations,
and that space lost to satisfying the alignment requirements is minimized. Such an opti-
mization is more complex when there is no bound on the length of a message; in that case
we would have to maintain separate buffers for offsets and data, possibly combining them
at the time the message is sent.

General get issimilar, but two separate buffers are maintained for each node, since two
communications are going on simultaneously: data requests and data responses. Again we
walk the local shape computing node/offset pairs for each position. If the nodeislocal, we
read the value from the offset and store it into the result. If the node is remote, we add a
packet to the request buffer, including the remote offset (where the data are to come from)
and the local offset (where they are to be stored on reception). Again buffers are flushed as
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they fill. Two handlers are registered for a get operation. The first recognizes request mes-
sages and responds to them with the data requested and their target offset. The responses
are in the same format as send data messages, so the second handler isthe send handler de-
scribed above: it readsin datafrom the remote node and storesthemin thedesired locations.

It isclear that some amount of bandwidth iswasted by sending the local destination off-
set to the remote node, to be returned along with the data. The aternative is to divine the
destination offset fromlocal information when therequested dataarrive. Thispresentssome
complexity with respect to the possibility of receiving message buffers out-of-order (con-
sidered in section 4.2), and would at a minimum require either a temporary table propor-
tional to the number of active positions on the receiving node, or re-walking the destination
to detect active elements where incoming data should be stored. We prefer to leverage off
the send implementation described above, and have not attempted a detailed examination
to determine which implementation is better, leaving that for future work.!

Pseudo-code for the general get operation, including what each handler does, is given
infigure 5.3. The add* routines pack their parametersinto the proper format and add them
to the buffer associated with the remote node, first sending off the current buffer if adding
the new value would exceed the MTU. The f1ush* routines send off final packetsto each
node, marking each one as the last one for this communications operation. The handlers
thus detect the completion of a given phase, allowing progress to the next phase: note that
it isthe handler for the request phase which flushes the responses (since no more requests
will arrive). It isclear that after the initial walk of local data the node is doing nothing but
waiting for messagesto arrive and processing them insidethe handlers. Here may be agood
opportunity to take advantage of latency by moving thewait for completion of responses out
of the communications routine back up into the user’s code, right before the resulting value
isreferenced, as proposed in section 4.3.2.

The implementation here takes advantage of standard message-passing optimizations
such as vectorization by combining information into MTU-sized buffers. There are rare
cases where the size of a scalar element exceeds the network MTU; for example, when op-
erating on a parallel value with structure elements. We detect the situation during the ini-
tialization phase, and allow the addresp and handler routines to operate on each element
as asingle message.

5.3 Optimized Send Operations

The implementation of general send described above places a message packet—a des-
tination offset and a data value—into the buffer for each position in the shape; gener-
ally, somewhere between severa dozen and several hundred packets fit into an MTU-sized
buffer. This means that the number of network transmissionsis proportional to the number
of positionsin the shape, scaled by the number of packets that fit into the MTU. Recall that

1. Theenhancement described here was added subsequent to the completion of this dissertation. Though we
cannot present an analysisin this footnote, initial resultsindicate that caching destination offsets locally cuts
in half the execution time of get operationswith no collisions on an Ethernet-linked cluster.



CHAPTER 5. Algorithms for General Communications 107

resp_handler (sender, msize, msg, parm) {
for (i = 0; i < msg->npacks; it++) {
parm->doop (&parm->target [msg->pack [i].offs], msg->pack[i] .data);

}
if (msg->lastresp) {
--nrespleft;
}
}

req_handler (sender, msize, msg, parm) {
for (i = 0; i < msg->nregs; i++) {
addresp (sender, msg->reqli] .doffs, parm->spvar, msg->req[i].soffs);
}
if (msg->lastreq) {
--nreqleft;
if (0 == nreqleft) {
flush_resp_packets (); /* Send off final response packets */
}
}
}

/* dpvar = [indices] spvar */
genget (spvar, indices, dpvar) {
/* OMITTED: initialize parameters for resp and req handlers */
nreqleft = nrespleft = MeshSize-1;
register_handler (NextCode (MT_Send), resp_handler, &rpparm);
register_handler (NextCode (MT_Get), req_handler, &rgparm);
for (vp = 0; vp < numlocal; vp++) {
(rnode, roffs) = convert_index (indices, vp);
if (mynode == rnode) {
dpvar [roffs] = spvar [vp];
} else {
addreq (rnode, roffs, vp);
}
}
flush_req_packets (); /* Send off final request packets */
while (0 < nrespleft) { /* Wait until we’ve received everything x*/
if (0 > check_messages (io_timelimit)) {
fatal ("timed out waiting for get.");
}
}
}

Figure 5.3: Pseudo-implementation of General Get
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we have mentioned the possibility of collisionson both get and send operations, where mul-
tiple communications come from or are sent to the same position of ashape. When thereare
no collisions, the amount of network traffic is essentially optimal (modulo detailed analyses
which obviate the need for some offset information), but in the case of collisions we waste
bandwidth by performing collision resolution at the destination instead of the source.

To see this, consider again the image histogramming idiom of section 2.1.2. Under the
above naive implementation we require as many packets asthere are positionsin the source,
Image, shape; generally on the order of one million. However, the destination shape nor-
mally hasvery few positions, say 256. If the addition combination for the histogramisdone
on the source node, we can drastically decrease the amount of communication required. We
need only note that we already have a packet for a particular destination, and do the com-
bination into the data region of that packet rather than creating a new packet. The trick be-
comes to recognize that a particular general send has this collision behavior, and take ad-
vantage of it. There are two issues here: the method used to detect that collisionsare likely,
and the method used to find the previously-buffered packet and form the combination.

Unfortunately, it is not easy to tell at the start of a general send whether it will or will
not result in collisions. The case of histogramming, where the target shape is significantly
smaller than the source, is one where we can be reasonably sure of collisions. However
there are other high-collision cases where this does not occur—we may want to attribute to
certain regions of animage (say elevation peaks) values from each pixel, sent to the nearest
region center; for example, to determine the size of the surrounding area. In this case we
have large numbers of collisions but the source and destination shapes are the same, and
are often large. Similarly, experience with test and production programs showed that we
cannot assume that sends with combination operatorswill result in collisions, nor that those
with overwrite operations will be collision-free. Even a particular instance of general com-
munication in agiven source program may have strongly data-dependent collision behavior,
causing compile-timeanalysestofail. Therefore, the general solution requires either anim-
plementation where collision detection isfree, or one where we can turn the detection on or
off within a particular communication operation depending on our success rate.

The simplest approach to collision detection is to scan through the buffer looking at
packets already deposited, and stopping at a match. There is reason to believe that col-
lisions are likely amongst close neighbors—in the case of histogram, adjacent pixels are
likely to have nearly the same value. We can decrease detection time by first checking to see
if we match thelast value we stored, and if not scan from the end of the buffer backwardsto
dlightly decrease the expected timeto finding amatch. From atheoretical viewpoint, there-
sulting linear scan through the buffer for each position is costly—O(MTU)—and we might
want to use a more complex method with better asymptotic behavior, such as hashing on
the offsets or binary search. Initially we chose not to implement these, because we felt a
straightforward tight-loop scan through a relatively small contiguous area would be faster
in practice than the alternatives, all of which require extra book-keeping that complicates
both control flow and memory access. Experience from implementing the corresponding
get optimization, described in section 5.4, led usto reconsider this assumption; we will ex-
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Cluster | No Always Scan; Varying Collision Rates
Size |Scan | 0% 20% 40% 60% 80% 100%

4 380 | 536 468 411 346 288 0.61

8 216 | 280 256 219 193 164 033

12 157 1203 171 161 138 117 024

Table 5.1: Send Communication Times; With and Without Collision Detection. Time in seconds to
send 10° elements, clusters with 4, 8, or 12 nodes.

aminetheissuein somedetail later in this section. However, the collision detection method
isnot essential to the exposition here; the point isthat any method will induce some amount
of work, and that work is wasted when collisions are not occurring. It is the wasted work
that we wish to avoid.

An understanding of the time taken in send operations, and in collision detection, can
be taken from the performance numbers shown in table 5.1 and figure 5.4. The results are
from tests performed on the star-network using each machine as a single worker, from 2 to
12 nodes. The test program used general send to store a constant 1 into certain elements of
aone-million—element parallel int. Theindex pvar was carefully initialized so that stores
were randomly distributed amongst the remote nodes (no local stores), and the collision rate
within the send buffer—the likelihood the back-scan would find a match—was kept at a
particular level. The program was run on different clusters with the backscan optimization
both enabled and disabled, on index variableswith collision rates from 0% (no collisionsin
abuffer) to 100% (all values went to the same position on each remote node). The depicted
times where collision detection was enabled are the fastest runtime of five runs for each
collision rate.? Testing indicated that, as expected, when collision detection was disabled,
runtime isindependent of the collision rate; the value given is the minimum of thetimesin
five detection-disabled runs.

The cost of collision detection is observed by the difference in table 5.1 between the
never-scan column and the always-scan column with a 0% collision rate. The experiment
indicates that a 30—40% overhead is induced by scanning without success. Thisisafairly
high price to pay, especially in situations where we expect most send operations will have
few if any collisions. However, the benefits of scanning are clear by comparing never-scan
with always-scan on high collision rates. Scanning with a 100% collision rate is 85%—
five times—faster than sending the values without scanning. Though the speedup hereisan
overestimate in general because the single index value was always found immediately, the
histogram equalization algorithm with a 256-value pixel will also generaly have a nearly
100% collision rate because the total number of positions per node is less than the number
of packetsthat fit in a buffer. Tests on a histogram program indicate that the speed-up even
with additional search timeisover 65%.

2. Thoughwe generally use the median as our statistic-of-choice for summarizing results, this particular test
occasionally induced very bad network behavior, especially with low collision rates (i.e. high network traffic).
The minimum was found to be a better filter of extreme results.
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Figure 5.4: Send Communication Times relative to Collision Rates. Linear Scan

It is clear from these results that in some casesit is beneficial to search for collisionsin
send operations, and in someit is better not to do so. Since we are unable to determine col-
lision behavior prior to beginning the communication, we wish to determineit asquickly as
possible during the communi cation, so we can choose whether or not to perform backscan-
ning.

Our solutionto the problemisaheuristicwhichinitially assumestherewill becollisions,
but keeps track of its success rate in searching for collisions. If the observed collision rate
drops below athreshold value, the heuristic stops performing the search for acertain period
of time, after which it restarts to see if the collision behavior has changed. In more detail,
we use the following parameters:

R isthe threshold scan probability, which isthe lowest observed collision rate at which
it is still worth backscanning.

B, isthe number of buffers that we scan while computing the collision rate.
[ ]

By is the maximum number of buffers that we will commit to scan based on past colli-
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sion behavior. Thisensuresthat if collision behavior varies over asingle send operation
we will not commit to scanning far into alow-collision region.

e Bgisthe number of buffers on whichwewill not use detection if the collision rate drops
below R. After this hiatus, we will recompute the collision rate.

The observed collision rate is estimated using an integer counter collctr, to which at each
position aweight ds isadded if a collision is detected, and aweight &+ subtracted if no col-
lision is detected. The weights are computed so that if the observed collision rate is B the
counter will, on average, remain at itsinitial value, whileif the observed rate exceeds R it
will grow. |.e., we choose integer values for ds and ¢ such that:

Ot

A~ 5f+5s

The initial value of collctr gives us awindow in which we can compute the observed
collision rate without decrementing the counter to O, which would cause usto stop scanning
(hence stop observing the collision rate). To decrease the overhead of rate maintenance and
dampen the effects of collision rate variance, we only examine the approximated rate when
abuffer hasfilled. Hence, when a new buffer is started and scanning is turned on, we will
continue to scan until the buffer fills, regardless of the behavior of the rate variable. The
effect of thisis that, if the rate counter is positive at the start of the buffer, we will scan
throughout that buffer. Therefore, assuming that N, packetswill fit in an MTU-sized buffer,
we set theinitial counter to:

collctr = 1+ (B; — 1)« Ny s

This guarantees that, even if no collisions are observed, we will scan at least the first B
buffers to compute our observed collision rate. Though thisinitial value biases the rate ap-
proximation, over time the effect is decreased.

There are two reasons for maintaining the maximum buffer value By;. Thefirst is that,
when R, islessthan 0.5, &s > &; and the closer R, isto 0, the larger the difference. If we
encounter aregion of high collision, thismeansthat col1lctr will becontinually increasing.
With values of P, near 0, the magnitude of &s eventually may cause collctr to overflow,
resulting in an apparent negative value and inappropriate disabling of detection. Secondly,
if the collision rate varies over the shape, aperiod of high collisionin thiscase may resultin
an extended period of detection even when the rate within the region is low, because many
subtractions of & are required to compensate for each past addition of &s. Therefore, we
set an upper limit on collctr of

collctr_max = 14 (By — 1)« Ny Of

which ensuresthat, no matter how good past successwas, if the collision rate dropsto O we
will scan no more than By, buffers before disabling detection.
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When the observed collision rate drops low enough that detection is disabled, we will
stop the scanning step which is necessary to maintain the rate approximation. Sincetherate
may vary over ashape, we would like to re-sample therate later on to seeif it has changed.
Therefore, when scanning is disabled we reset collctr to Bs, and decrement it each time
the buffer fills. When it reaches zero, we reset it to itsinitial value and start scanning just
aswedid at the start of the communication.

Pseudo-code for the detection mechanismisgivenin figure 5.5. We maintain a separate
detection flag doscan and collision rate approximation counter collctr for each remote
node, because collision rates may differ depending on the destination of the send.

The final issue to be addressed is the choice of values for the parameters on which the
heuristic depends. The appropriate value for B is dependent on a wide variety of system
parameters, including processor speed (which affects scanning time), network transmission
overhead and MTU, the size of the cluster, and the number of elements being sent. While
an equation might be developed to calculate P, for a particular configuration, perhaps at
runtime, it is not immediately clear how al the system parameters interact (e.g. cache size
versus buffer size), and it may be difficult to obtain the necessary system parameters. It is
significantly ssmpler and intuitively more reliable to determine empirically the appropriate
value from tests such as those depicted in figure 5.4. The cross-over points where scanning
becomes beneficia are 50% for four nodes, 42% for eight, and 44% for twelve. We chose
P = 0.45 asavaluelikely to perform reasonably well on all clusters. Aslong asan MTU-
buffer holds a sufficient number of elements, say N, > 25, we can get agood approximation
of the collision rate within a single buffer, so we set B; = 1. The remaining parameters are
perhaps less critical, and we arbitrarily chose Byy = 2 and Bs = 50.

With these values, the performance is shown in figure 5.6. It isinteresting to note that
using the heuristic adds little cost when the collision rate is below the threshold, though
a minute improvement could be gained by decreasing the threshold slightly for the eight
and twelve node clusters. Thisis because the collctr value immediately drops below the
threshold, and only one out of every Bs of the tens of thousands of message buffers created
isscanned. Asthe actual collision rate increases, afew more buffers are scanned each time
detection is re-enabled, resulting in a slight improvement due to collision resolution until
the approximation again drops below the threshold. Finally, when the actual collision rate
exceeds the threshold, scanning remains on throughout the communication and there is a
significant drop in execution time.

The experimental results presented so far used alinear scan to determine whether are-
mote offset had been seen before. This seemed a reasonable choice, because the number
of elements that fit in an MTU-sized buffer is relatively small: given a 1400 byte Ethernet
packet (reduced by other message headers as described in chapter 4),3 we can fit 172 4-byte
packets and 275 1-byte packets, with offset information, in each buffer. Thislimitation does
not hold for the get optimization described in the next section, because we wish to perform
collision detection over the entire communication rather than within a single buffer. Since

3. Seefootnote 9 on page 90 for why sizes were limited to 1400 bytes.
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if (Pt < 0.5) { /* Fixed value of 10 provides good approx */
dfail = 10;
dsucc = (int) (0.5 + dfail * (1.0 - Pt) / Pt);
} else {
dsucc = 10;
dfail = (int) (0.5 + Pt * dsucc / (1.0 - Pt));
}
initctr = 1 + (BI - 1) * Nb * dfail;
maxctr = 1 + (BM - 1) * Nb * dfail;
doscan = 1;
collctr = initctr;
reset buffer;
for each element in sequence do {
if (doscan) {
scan for element;
if found {
collctr += dsucc;
/* perform any necessary combination in buffer */
continue;
}
/* failed: adjust rate and fall through to store */
collctr -= dfail;
}
/* Either not scanning, or failed to find element. Flush an already
* full buffer, since we’re going to need another space. */
if buffer is full {
send off buffer;
reset buffer;
if (doscan) { /* we were scanning---should we continue? */
if (0 > collctr) { /* no, rate too low */
if (collctr >= - Nb * dfail) { /* dropped below during walk */
doscan = false;
collctr = BS;
} else /* neg because of overflow */
collctr = maxctr;
} else /* yes, truncate rate */
collctr = MIN (collctr, maxctr);
} else { /* we were skipping---should be restart scanning? */
if (0 >= --collctr) { /* yes %/
collctr = initctr;
doscan = 1;

}

}
add element to buffer;

Figure 5.5: Pseudo-code for scan collision detection heuristic
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Figure 5.6: Send Communication Times relative to Collision Rates, with P, = 0.45

the number of offsets we wish to track in that caseis bounded only by the number of offsets
on each remote node, we chose to implement an AVL search tree (Knuth, 1973) to improve
collision search time. Imagine our surprise when we discovered that the cross-over point
for an improvement using collision detection in the get implementation was essentialy a
collision rate of 0%: it cost us nothing to perform the collision search, even when it failed
every time.

Toresolvethisanomaly, we re-examined the performance of alinear insertion compared
with an AVL-based insertion for various numbers of elements, all with no collisions, and
on our primary target hardware (Sun SparcStation 20/612). In each case, insertion required
verifying that a particular key was not present in the search structure, then adding it to the
structure. We verified that for small numbers a linear implementation is faster because the
overhead isless: with 30 elements, linear insertion istwice asfast as AV L insertion (43psec
to linearly insert 30 elements, compared with 86usec for AVL). However, the cross-over
point is around 79 elements (275usec each), and at 172 an AVL insertion is twice as fast
(680psec) as linear (1255usec), and almost three times as fast with 275 elements. The net
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Figure 5.7: Send Communication Times, 4-byte Data, Linear and AVL Scan Methods. Buffers hold
172 elements.

effect of thisis to reduce the overhead of search to the point where it is absorbed in the
normal latency induced by the network and flow control, asfurther examinedin section 5.5.4

We naturally modified the send implementation to use AVL trees to store collision in-
formation, and the resulting performance isshownininfigure 5.7 for integer data (172 ele-
ments per buffer). The 30-40% overhead observed for linear scan when no collisionswere
detected disappears with an AV L-based scan. It is satisfying to note that the real-time im-
provement using AVL instead of linear search is consistent across all but the very highest
collision rates, making AVL twice asfast as linear at an 80% collision rate.

With character data (figure 5.8, 275 elements per buffer), the number of elementsislarge
enough that not all AV L search overhead can be absorbed into normal latency, and the cross-
over point is somewhere around 20%. Comparing the two search methods, it is clear that

4. A similar effect isobserved when areasonabl e proportion of the datais sent to positionson the source node,
thus bypassing the network entirely. Thislocal work isalso absorbed into communication latency, but reduces
the proportion of time spent searching for collisions even more because no search is required to perform the
combination/store to alocally-owned position.
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Figure 5.8: Send Communication Times, 1-byte Data, Linear and AVL Scan Methods. Buffers hold
275 elements.

our choice of B = 0.45 when using linear insertion is very bad for 1-byte sends on small
clusters, and would yield a significant search penalty; a useful cross-over would be some-
where around 95% or higher.

The choice of an appropriate constant P for all send operations is less clear now that
we have seen the effects on different sized data packets. Rather than further complicate the
implementation by attempting to pick arateat runtime, we now use AV L search consistently,

with athreshold B = 0.05 to detect non-colliding sends.

54 Optimizing Get Operations

Collisions can occur in get operations as well as in send operations. In this case, we
have a situation where multiple positions request the same (remote) value. Network traffic
can be decreased if we recognize the case, request only one copy of the value, and when it

arrives store it locally in the positions that need it.

116
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The difficulty with optimizing get operationsisthat it requires saving state information,
or walking the shape multiple times, to detect that a value requested some time previously
and which has now arrived must be stored in several locations. To see this, recall that a
general get is atwo-phase operation. In the case of no collisions, it can be translated into
two send operations at the C* source level. For example, with a rank-one shape, the get
operation:

d = [idx]s;
can be written as:

[idx]ridx = pcoord (0);
[ridx]d = s;

The effect of thisisto send our address to remote nodes which own the data we want, then
have them send the data back. The complication with collisions arises because of the first
send operation: if idx isnot asimple permutation of the positions of the shape, then two or
more address values from pcoord (0) will be sent to the same position of ridx, and only
onewill survive. The other ispermanently lost, and the corresponding position of d will not
receive the required value. We must retain this information.

Toimplement aget optimization similar to the previous section’ ssend operation we must
note, at thetimethe packet containing remote (source) offset and local (destination) offsetis
to bewritten into the request buffer, that a previous packet with the same source has already
been requested. However, in this case we must perform the additional step of recording
somewherethat when the requested datacomein they should be stored in multiplelocations.
In the get implementation described in section 5.2, the store location is sent to the remote
node to be returned along with the data, but there is only room for one store location in
the send packet. Rather than attempt to expand the send packet to give multiple storage
offsets, which would neutralize the benefits of not requesting the data multiple times, we
must keep the multiple location information on the requesting node. When a packet comes
in, we must determine whether it isto be stored in asingle or in multiplelocations, and what
those locations are.

To support this, we maintain an AV L tree (Knuth, 1973) for each remote node. Each tree
node contains as its key the source (remote) offset from which the value will be requested,
and alist of local offsets into which the value should be stored. Since we have no bound
(except the size of the shape) on the number of positionsinto which anincoming value must
be stored, we arbitrarily choose alimit Mc (currently 6), and define a structure type which
can hold Mc destination locations, plusalink to another object of the sametypein casemore
than Mc destinations are required. As an optimization, we can detect when a series of gets
are made from a single source position into a contiguous block of local elements, and store
only the endpoints of the block. Thus we can handle arbitrary numbers of destinations, but
in reasonably sized chunksto cut down on memory usage.

We use the detection heuristic of the previous section to determine whether the search
islikely to be worthwhile, based on the observed collision rate. When collision detectionis
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enabled and a new remote source/ local destination pair isto be added to a request buffer,
we first perform an AVL search to see if we already have collision data for the source posi-
tion. If we do and the data have already been received, we ssimply copy the data over from
asaved canonical location into thelocal destination. If we have acollision structure but the
required data are not yet available, then we add the new local destination to the store list,
and continue. If we have no collision information for the source offset, we scan through the
current buffer of request packets looking for acollision. If we find one, we add anew entry
to the collision tree and initialize its destination list to the destination from the packet in the
buffer and the new local destination. We then replace the destination in the buffer packet
with the value —(s+ 1) where sisthe source offset on the remote node. Legitimate offsets
are aways non-negative, and we will assumethat no shape will have so many positionsthat
a positive offset will appear to be negative due to overflow (i.e., for a 32 bit system we as-
sume no more than 2 billion positions of a particular shape will be held on asingle node).

When a data response arrives from a node, we walk each packet performing stores as
before. However, if a destination offset in the packet is negative, we convert it back into
a positive source offset and use its value to search the AVL tree for the current collision
information for that offset. We then copy the value from the message buffer into al local
elements where it isto be stored, and save a pointer to one of them as a* canonical source”
in case additional requests for the value are made.

The performance of this optimization, relative to gets without collision searching, is
shown in figure 5.9 for character data, and figure 5.10 for integer data. The benefits of col-
lision search are apparent immediately, with any nonzero collision rate, and yield up to 8x
performance improvement with a 100% collision rate. Asthereisavery minimal overhead
when no collisions are encountered, we set P = 0.01 for the get optimization.

The optimization here is a heuristic, and there are high-collision cases that it does not
detect. An exampleis spread communicationsin two-dimensional shapes. Consider an N x
N shape, where each position reads its value from column O of its own row. Because we
perform alinear walk which proceeds along columnswithin rows, thefirst position requests
the value from column O; the second noticesthat the val ue has been requested and addsitself
to the list; and so forth. In this case, each value is requested only once, and is then stored
into all positions on the row.

If, on the other hand, each position reads its value from row 0 in its own column, then
the linear walk means there are N intervening requests, all for different remote elements,
before aredundant request is made. 1f N exceeds the number of el ementsthat can befit into
the request buffer, that buffer will be flushed and a new one started before the next row is
started, and the existence of collisions will not be detected.

Handling this case would require storing information about each request inthe AVL tree
immediately, rather than waiting until a duplicate is noticed. Thiswould result in an AVL
node for each remote request, yielding an extremely large search structure in the case of
no collisions. Furthermore, since the distance between colliding el ements may exceed the
window in which collision rates are computed, we must either never disable search, or face
the chance that we will turn off the search before we detect any collisions, thus wasting the
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Figure 5.9: Get Communication Times, 1-byte Data

effort we spent building the search tree. Neither option is appealing, and we simply admit
that there are colliding communications which are not detected by these heuristics.

5.5 Evaluation and Related Work

Implementation of the general case of what C* calls general communications has not
been amajor area of research, though at |east one special case has received much attention.
Most implementations use the same paradigm as Kali (Koelbel & Mehrotra, 1991) for these
operations. Theinspector/executor system inserts code prior to aloop which involves com-
munications. Theiterates of the loop areinspected in this code to determine the remote ref-
erence pattern and build aschedul e that indicateswhat elements needed to be sent off-node,
and where elementsreferenced locally could befound (either inthe original local data, or in
buffers holding off-node data). Then theloop itself isexecuted, using the schedule to speed
up communication and indexing. This method has since been adopted and extended in cur-
rent distributed Fortran implementations for a particular type of communication pattern, as
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Figure 5.10: Get Communication Times, 4-byte Data

will be described below.

The University of New Hampshire C* compiler uses a more complex mechanism de-
signed for a hypercube network architecture (Lapadula & Herold, 1994). Each node walks
itslocal data and builds up a single large buffer that holds all data to be sent off-node. The
buffers are then exchanged in alog-swap method, with receivers at each stage extracting the
elements that are addressed to them, and adding new ones from previous steps. The need to
buffer everything at once, and the multiple exchange steps which transmit values to nodes
that are not interested in them, yield suboptimal performance on networked workstations.
Recent versions of the UNH C* compiler support avariant of the schedul e-based communi-
cation described bel ow, memoizing the communications pattern the first timeit is used and
using point-to-point communication operations for further exchanges with the same pattern
(Mason et al., 1994). Thisimplementation requires data-flow analysis to detect instances
where the optimization is both valid and likely to be beneficial.

Several research programs in high performance distributed computing have addressed
the issue of general communications in the context of “irregular problems’ (Bozkus et al.,
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1994; Chapman, Zima, & Mehrotra, 1994; Das, Uysal, Saltz, & Hwang, 1994; Ponnusamy,
Saltz, Choudhary, Hwang, & Fox, 1995; Ponnusamy, Hwang, Das, Saltz, Choudhary, &
Fox, 1995; Sharma, Ponnusamy, Moon, shin Hwang, Das, & Saltz, 1994; Brezany, Gerndt,
Sipkova, & Zima, 1992). These are problems such as molecular dynamics and particle sim-
ulations where inter-element communication behavior is highly dependent on the data set,
and is often adaptive, changing as the computation proceeds (e.g., as particles move about
and affect different neighbors). The primary motivation for research into irregular problems
issupportingirregular distributions, which ensurethat the distribution of dataissuch that as
little communication as possible is required between nodes: array elements are distributed
based on the access patterns, as determined at runtime. For example,
DOALL i=1,ni
DOALL j=1,nj
A (i, j) = functionof (A (n1(i), n2(j)));
END DO
END DO

wheren1 and n2 are indirection arrays which map each array element to adifferent el ement
(presumably, a“neighbor” in some sense), and DOALL indicates a data-parallel 1oop (which
may ignore order dependencies). In C*, the computation would be expressed using general
get and implicit data-parallelism:

A = functionof ([ni1][n2]A);

It is generally the case that the indirection arrays involve references sufficiently far away
that a block distribution would require inter-node communication for almost all references:
thereisno locality.

The most mature support for irregular distribution seemsto be the Chaos runtime system
devel oped at the University of Syracusefor the Syracuse Fortran-90D compiler (Ponnusamy
et al., 1995). The Chaos system supports irregular distributions at runtime through a six-
phase sequence at each major computation loop:

e Data partitioninginvolves consulting auser-provided routine or directivesto determine
which processors should own particul ar elementsof adistributed array. Theresult of this
phase is alook-up table to map from array index to owning processor.

e Data remapping redistributes array elements in accordance with the distribution from
the previous phase.

e lteration partitioning determines which iterations of a parallel loop are to be executed
on each processor.

e lteration remapping redistributes the indirection arrays so that |oop iterates own thein-
direction elements to which they will refer.

e Inspector examines the array indices for the node's iterates, and determines a commu-
nication schedule which indicateswhat values should be sent off-node, what valueswill
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arrive from off-node, and where off-node values will be stored locally.

e Executor performsthe computation and communication using the resultsof the previous
phases.

The lookup table of the data partitioning phase in essence defines a completely uncon-
strained data distribution (see section 3.1). Because there must be an entry in the table for
each array element giving its owning processor and offset, the table must have as many ele-
mentsasthearray. In many cases, thisrequiresthat the tableitself be distributed, lest mem-
ory requirements grow too large. Though Chaos attempts to limit the cost of accessing the
distributed table by splitting it into pages which can be cached on nodes that normally do
not own them, in the worst case determining the new owner of each position could involvea
remote table lookup. Data mapping itself resultsin ageneral communication, sending data
from their original owner to the processor appropriate for the upcoming computation loop.

Iteration partitioning is not directly relevant to C*, because loops over the scalar ele-
mentsin parallel values areimplicit, and are partitioned based on ownership of positionsin
ashape. Iteration remapping is intended to modify the owner-computes rule, by assigning
responsibility for computing avalue to the node which ownsthe bulk of the datainvolvedin
the computation. This has no analog in the pC* system, which uses owner-computes con-
sistently, though other C* systems might differ.

Theinspector/executor paradigm first introduced in Kali provides ameasure of commu-
nication aggregation and latency removal, by collecting information that allows all sendsto
occur prior to loop execution, rather than performing acommunication operation at each po-
sitioninthearray. Thereissupport within Chaosand similar librariesto detect where acom-
munication schedule can be re-used between iterations and in some cases between differ-
ent code sections, and where values from off-node may be re-used without being requested
again (Das, Ponnusamy, Saltz, & Mavriplis, 1992; Agrawal, Sussman, & Saltz, 1993; Pon-
nusamy, Saltz, & Choudhary, 1993). This re-use may be aided by compile-time analysis,
or determined at runtime by destroying a schedule when an index expression on whichiitis
modified.

The problem domain addressed by the Chaos library is quite different from that com-
monly encountered in image processing applications, and thisisreflected in the very differ-
ent communi cations implementations of Chaos and pC*. For example, the multiple phase
preparation of Chaos can induce a significant overhead: in many reports of timing results
using theinspector/executor paradigm, theinspector phaseitself generally takesaslong asa
single executor phase (Agrawal et al., 1993; Koelbel, Mehrotra, & Rosendale, 1990; Koel-
bel & Mehrotra, 1991; Ponnusamy et al., 1993). When data partitioning and remapping is
involved the preparation can be aslong as 3040 executions (Ponnusamy et al., 1995). Asa
result, the cost of the preparation must be amortized over alarge number of repetitionsusing
the same communi cations pattern before an absol ute improvement could be observed.

For the most part, a particular general communications pattern in a C* image process-
ing program is used once, or perhaps a small number of times: for example, sending band
data to a new shape as in example 3.2.3.1 need be done only as many times as there are
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bandsin the multispectral image. If aC* program does use a pattern which is repeated mul-
tiple times, there is support within pC* to remove at least some of the overhead involvedin
determining the pattern at each communication. An extended datatype, CMC_sendaddr_t
(Thinking Machines Corporation, 1993), provides a representation of the address of a spe-
cific element in a specific shape; i.e. it encodes what would normally be an index vector as
some internally-appropriate address. In the case of pC*, the CMC_sendaddr_t type holds
the remote node and offset corresponding to a position in the shape. TMC C* and pC* both
support library functionswhich transate agroup of parallel index expressionsinto aparallel
value which has a CMC_sendaddr_t at each position; there are also library get and send
functions which use these address values instead of index expressions to perform general
communication. This means that the address translation described in section 3.2.3 can be
performed once prior to the communication, and the addresses used directly in communi-
cation operations.

This feature can be considered a crude approximation to a communications schedule-
based approach. Experimentation in pC* indicates that the value of using this feature is
highly dependent on the amount of communication involved and on network overheads. We
devised a program to time several general send operations on a two-dimensional shape:

e Local stores—theindirection arrays named the local position as the target. No commu-
nication was involved.

e Shift—theindirection arrays shifted each node’s datato the next node. For clusterswith
2 or more nodes, al values were sent off node, but each element went to the same node
as its predecessor.

e Cyclic distribution—the indirection arrays sent each position to a different node than
the previous position. For clusters with P nodes, (P — 1)/P of the elements were sent
off node, and there was no locality in sends.

Two send mechanisms were timed: the first performed the index-to-node/offset-pair trans-
lations on every communication, while the second first computed the CMC_sendaddr_t in-
formation for the communication into a parallel variable, then used the communi cation op-
eration which read the pre-computed node/offset data from the parallel value.

To see the performance effects of pre-computing the node/offset information, we mea-
sured the time to perform each of the sends with each implementation from one to five
times in sequence, on a 1024 x 1024 shape with one byte per position. The programs were
run on clusters with 1, 2, 4, and 8 nodes. For each cluster size and communications pat-
tern, wefitted the data to an estimator function appropriate for the send model: normal |eft-
index sends with address recomputation cost a particular amount for each repetition, while
CMC_sendaddr_t sends have afixed overhead plus a different amount for each repetition.
The estimator functions, yielding runtimes in seconds, are given in table 5.2.5

5. Testswere performed on the compute cluster using the reliable TCP interface, with one process per phys-
ical machine. Times for per-iteration costs were found by taking the median of five runtimes for each of 1,
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Cluster | Send | Recompute | CMC_sendaddr_t | Per-lter %lmp | Min Iters
Size | Pattern Send Send Using SA to SA Faster

1 local 2.34n 2.9540.99n 58 3
shift 2.35n 2.9540.99n 58 3

cyclic 2.39n 2.954+1.04n 56 3

2 local 1.44n 1.7540.49n 66 2
shift 4.75n 1.74+4.59n 3 11

cyclic 2.52n 1.724+2.30n 9 8

4 local 0.78n 0.92+0.25n 68 2
shift 2.57n 0.93+2.49n 3 13

cyclic 1.99n 0.88+41.88n 5 9

8 local 0.45n 0.53+0.13n 71 2
shift 1.29n 0.53+1.26n 2 17

cyclic 1.28n 0.49+41.25n 3 14

Table 5.2: Time estimators for n repetitions of various send communications (sec)

In al cases, the precomputation itself is more expensive than computing the address
in the context of the send operation. This is mostly due to the need to allocate and fill
a paralel variable containing node numbers and offsets for each element in the shape—
the analog of a communi cations schedule—and may be a cause of the similar overhead in
inspector/executor implementations. When we consider the total cost of communication,
things become more murky. With one processor—forcing al moves to be loca—address
pre-computation isbeneficial if three or more sends are to be performed; the resultsindicate
that about 60% of the per-iteration cost is due to address calculation. With multiple nodes,
where sends actually invoke communication costs, only the send pattern with no off-node
transmissionyields an impressiveimprovement with pre-computation. Intheother patterns,
the cost per repetitionisvery nearly the same with each method, with about 3% savingswith
address pre-computation. It would require between 8 and 17 iterations before the overhead
incurred by precomputation was recaptured. This is surprising, considering the result in
chapter 3 which implied that address cal cul ation would be 10% of the communication cost;
only one communications pattern / cluster size supports an overhead that high.

The conflict can be resolved by recalling that the previous estimate of 1msec for send-
ing a 1400-byte Ethernet packet did not take into account overhead from flow control.
More than 100K B of data are transferred off-node in each iteration of shift and cyclic pat-
terns in these tests. To prevent deadlock due to filled the system network buffers, the
check_messages routinewill beinvoked to read and manage incoming data while the out-

2, 3, 4, and 5 repetitions of the communication. Four per-iteration costs were found by subtracting pairwise
(5-4,4-3,3-2,2-1). The mean of these costs is the value given in the table. The variance of the four costs was
generally around 1% of the mean, with a maximum of 8% for the 8-node cluster, indicating that the approxi-
mations are a close fit to the dataindependent of number-of-iterations. Thetime for the send-addressbuild is
the mean of the measured time for the build, rather than an extracted intercept from fitting the recorded times
toaline.
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going data are till being prepared and sent. While these invocations are critical for cor-
rectness, the additional overhead increases the per-buffer cost to between 2.4 and 3.2 msec
for the communication times in table 5.2. Tests indicate that the same behavior holds for
smaller shapes as well, because latency is small enough that incoming messages arrive be-
foreall local messages can be sent off-node. Though the underlying network would be capa-
ble of buffering the entire communication, the system cannot know this, and transmissionis
delayed to handle the incoming messages. The larger transfers are also slowed due to oper-
ating system-induced flow control (e.g., writers must wait until areader has acknowledged
receipt of previous data before more data can be queued).

Whileit isstill beneficial to perform address pre-computation when most communica
tion is intra-node, the inherent costs of communication, both in overhead and in latency,
make pre-computation less valuable for heavy communication patterns. To some extent,
thisis due to the choices made in pC*’s communications hierarchy: for example, avoiding
unportable, specialized network-specific optimizations that could reduce the overhead, and
using fixed-sized buffers rather than sending all datain one buffer. However, the results do
imply that the communi cations schedul e approach may have certain limitationswhich make
it lessappropriatefor systemswhere communications operationsare removedto library rou-
tines, not specialized to a particular source-program loop. Few papers have compared com-
munication times using a schedul e implementation with a well-optimized implementation
which computes addresses at each position. The small fractional improvement we observe
with our approximation to schedule-based communication implies that other systems may
seesimilarly littleimprovement when compared with non-schedul eimplementationswhich
do not have the overhead of the inspector loop, especially for patterns with few repetitions.

The University of New Hampshire C* system supports an optimization which builds a
communication schedule during the first execution of a communication pattern, and uses
it for subsequent repetitions (Mason et al., 1994). This optimization yields speedups of
10% or more per repetition on networked workstationswhen the schedul e approach isused,
but this seems mostly because the unoptimized approach uses a log-based communication
which passes values through intermediate nodes on the way to the final destination. Both
implementationsare generally two to three times slower than the corresponding code in pC*
running with the same network interface (PVM) (cf. section 7.8). The experimental results
in (Mason et al., 1994), which use the Intel Delta architecture for which the non-schedule
implementation in UNH-C* was designed, do not clearly quantify the expected benefit of
the optimized implementation.

One clear benefit of the communication schedul e approach of Chaos and Kali isits po-
tential to accesslocal elementsdirectly, by providing aschedulewhich pointstolocal datain
their local positionsand remote datain aseparate buffer. Buffersfor remote datain commu-
nication schedul e systems are often allocated as “ ghost cells” at the end of thelocal portion
of aparalel value (Das et al., 1992). In the worst case of accessing only remote data, the
external buffers must be the same size as the local data, meaning that no space savingsis
achieved; in fact, more space is required to store the schedule itself. However, the copying
cost will be avoided for intra-node references. Thisisin contrast to pC*, which uses atem-
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porary paralel value into which both local and remote values are copied, to place values at
the element at which they will be referenced. This simplifies the implementation consider-
ably, at a cost in extramemory and copying.

The performance resultsin (Ponnusamy et al., 1995) indicate that the bulk of improve-
ment using the Chaos runtime system comes directly from its support for irregular distribu-
tion: the system ran twice asfast in its executor phase when data was re-distributed to limit
inter-node references, athough the preceding five phases took somewhat longer to perform
the more complex preparation. The partitioning scheme is algorithm and data dependent,
and isnot adirect part of the Chaos system. If irregular algorithms with repeated execution
are to be coded in C*, the same functionality can be achieved within the core C* language
without additional compiler support, assuming arepartitioner is available. Thisis done by
noting that data redistribution is essentially a renumbering of the distributed elements, so
that communi cations nearness is reflected in their ordering.

For example, let d denote a (rank-one) parallel value, i anindex vector, and m amapping
vector taking position k to position [k]1m. That is, m encodes a partitioning (a permutation
of element addresses) designed to decrease inter-node communications while performing
communicationssuch as [1]1d. Thentheparallel valued may beredistributed with ageneral
send:

[mlrd = 4;
and index expressions remapped through a general get:
ri = [i]m;

After this redistribution, get operations of the form [rilrd yield the same parallel vaue
astheoriginal [1]d, though with less inter-node communication (assuming m represents a
better distribution). Redistribution of higher-rank data can be supportedinasimilar fashion.
This technique is used in the Julia-set benchmark given in section B.6, to impose a cyclic
distribution of rows so the computational load is balanced.

Theseidioms show how any arbitrary distribution may be supported in pC* even though
the underlying system supports only block-based distribution. The cavest is that the user
must undertake to specify the required distribution and perform the redistribution steps her-
self. However, thisis not much different from HPF and Fortran-D which similarly require
source-level hints or calls to extrinsic repartitioners to provide the necessary distribution
information (Chapman et al., 1994; Bozkus et al., 1993; Ponnusamy et al., 1995).

5.6 Conclusions

Two of the core communications operations of C* involve sending and getting values
from positionswhich arerelated in arbitrary waysto the target position. In this chapter, we
have presented a straightforward yet effective implementation of these operations using the
communicationshierarchy described in chapter 4. We have a so presented aheuristic which,
at essentially no cost, detects at runtime a specia case where the amount of data sent over
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the network can be reduced, resulting in a significant performance improvement.

The contents of this chapter are only distantly related to other work on similar commu-
nications patterns, which are focused on pre-computing send and receive behaviors to ag-
gregate messages and take advantage of latency. These methods tend to involve sufficient
overhead that for the common (in image processing) case of few executions of each pattern
wefeel the straightforward, one-passimplementationis preferred. We achieve message ag-
gregation through the use of MTU-sized buffers, and take advantage of latency by sending
buffers as soon as they are filled, or (in the future) by delaying the barrier that verifies all
data has been received until the resulting value is to be accessed.

Whiletheirregular communicationspatterns addressed in thischapter haveinherent lim-
itations on runtime optimization simply because they can distribute dataarbitrarily, patterns
with regular behavior, such as shifting data along a vector, admit a highly optimized imple-
mentation which can be up to ten timesfaster than ageneral communicationsoperation with
the same communications behavior. These optimized grid communications are the subject
of the next chapter.
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CHAPTER 6
GRID COMMUNICATION

You can’'t communicate complexity, only an awareness of it.
— Alan J. Perlis, Epigram #105

Here we develop an optimized method of calculating the communications require-
ments for grid-based sends and gets completely at runtime, in contrast to most other
systems which require that knowledge of shape (array) size and runtime environ-
ment be available when code is generated. The mechanism works on shapes of any
dimension or size, shiftsin any number of dimensions simultaneously, clusters of
any number, and any data layout conforming to the generalized block distribution
described in chapter 3. It permits a common contextualization operation to be per-
formed roughly 100x faster than a method which looks at each position. Experi-
mentation on grid communication indicates it imposes no more than a 5% increase
over the cost of smply copying data, up to the point network latency interferes. Ex-
perimentation on a single processor indicates its performance is nearly independent
of shape rank, is competitive with hand-coded optimized implementations for one-
and two-dimensional send operations, and is orders of magnitude faster than a gen-
eral method which performs translations at each position in the shape.

Many algorithmsin both image processing and scientific computation use neighborhood
or stencil operations where elements near a position are combined to create anew vaue for
that position. These operations use grid communications. €lements get values from posi-
tions that are a fixed offset from them through one or more dimensions. In the case where
array bounds, offsets, distribution, and number of processorsare al known at compiletime,
determining what values are required can be done by the compiler, which can then emit ex-
plicit callsto message passing routines to send datato the nodes which will want them, read
data from other nodes, and perform local computation.

With C*, none of thisinformation, including potentially the rank of the array being in-
dexed, may be known until runtime. We must still provide away to read values from fixed
offsets with as little overhead as possible. In this chapter we will describe a method of
global-to-local address computation for grid-based communication which is completely re-
solved at runtime, up to and including the rank of the shapesit isto work on. The imple-
mentation ismore than competitive with previous runtime resol ution schemes, and provides
ability to overlap communication and computation both within the library routines which
accomplish the communication and, with the addition of some compiler support, acrossthe
user’s code as well.

128
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Because of the intricacies of afully-general resolution scheme handling arbitrary dis-
tributions (of the sorts described in section 3.1), we build up to the grid algorithm by first
examining the ssmpler but related case of forming the run-length encoded context map for
boundary-restricted contexts, which uses the same fundamental concepts.

6.1 Forming Grid Boundary Contexts

In most of this dissertation, we have viewed thelocal component of adistributed parallel
value as a linear sequence, abstracting away from whatever multi-dimensional system the
user hasimposed on it. Thisallows usto handle arbitrarily ranked shapes without concern,
but causes difficulties when working with operations that inherently depend on the users
view of the data, such as grid offset computations.

If the shape’srank isavailableto the compiler, an dternativeto thelinear VP sequenceis
aset of nested for loops, one in each dimension, ranging from O to the extent of the shape
in that dimension. In the case of distributed data, the bounds for a particular node would
consist of the subgrid that the node owns. Thisisthe approach taken by most compilersfor
distributed systems (Tseng, 1993), and makes computations which rely on the user’s view
of the datafairly easy to implement, since the global positionsalong particular axes areim-
mediately available through simple transformations of the index variables. However, the
approach generaly relies on having not only rank but also extent, grid offset, data distribu-
tion, and the number of processorsin the target system available for the compiler.

Asnoted previously, C* does not guarantee us knowledge of shaperank at compiletime,
and our implementation is required to work with code where shape dimension and cluster
size are not specified until runtime. To support run-time specification of shape rank, not
all communication in C* uses the left-indexing syntax introduced in section 2.1. There are
grid communication library routineswhich handle arbitrarily-ranked shapes, with the offset
vector specified either through C's stdarg support for variadic functions, or though an ar-
ray of integers. If the system implemented one version for each rank of shape that might be
handed to theroutines, it is clear that unreasonable code bloat would occur and only asmall
number of ranks could be supported. Therefore, we need away of simply but effectively em-
ulating a multidimensional nested for loop using a single-nested iteration construct. Code
to perform this operation is shown in figure 6.1, and forms the foundation for all the meth-
odsused in thischapter. Briefly, weuseaninteger array idx [] to represent theloop indices,
and increment them from highest axis (deepest |oop) to lowest axis (outermost loop) inturn,
wrapping when each reachesits upper bound, until the outermost loop wraps, at which point
weterminate. Since dataare laid out in row major order, we encounter each positionin turn
initslinear order, preserving good cache behavior. Asalagniappe, the code automatically
resets all index values so it is ready to execute again. Let’s now see how this approach can
be used to generate the run-length encoded context for a boundary-restricted context.

Boundary contexts were described in section 3.3 as blocking off regions of a shape cer-
tain distances from the boundaries of each axis, to prevent out-of-bounds access through
grid operations or preserve border information in iterative agorithms. The type of restric-



CHAPTER 6. Grid Communication 130

/* Assume 1b and ub are initialized to the lower and upper bounds,
* depth to the number of dimensions, and idx[k] to 1lb[k]. Generates
* cross-product from [1b_k,ub_k). */
do {
/* OMITTED: Perform op for idx[0],idx[1],...,idx[depth-1] here. */
k = depth;
while ((0 <= --k) && (++idx [k] == ub [k]1)) {
idx [k] = 1b [k];
}
} while (0 <= k);

Figure 6.1: Emulation of Arbitrarily Nested for Loops

tion recognized by the pC* compiler is a conjunction of one or more comparisons between
apcoord call and a scalar integer expression. As an example, consider again the context
which prevents undefined behavior when executing the communication of figure 2.2:

where ((dimof (current,0)-1 > pcoord (0)) &&
(0 < pcoord (1))) {
iv2 = [.+1][.-1]iv;
}

The bounds for the active region use the same values as distribution partitions use for node
boundaries: the lower bound names the first active position along the axis, while the upper
bound names the first following inactive position, so the desired rangeis [1b,ub). Thefirst
conjunct in the example lowers the global upper bound on active sequences along axis 0
from dimof (current,0) by one; the second raises the global lower bound on axis 1 to 1.

The pC* compiler will recognize where restrictions of thisform, and translate them to
callsto alibrary routine which is given the current shape, parent context, and a sequence of
triples naming axis, comparison operator, and integer bound value. Each node then initial-
izes the bounds of its subgrid using the boundaries for the portion of each axisthat it holds.
Where arestriction is given that blocks off part of the region held on this node, we move
the corresponding bound inwards to note where the active region starts or ends.

Conceptually we then have the following information for each axis k: the lower bound
of data held on this node dl'(, the upper bound of data held d, the lower bound of the active
region aL and the upper bound of the active region a;. Since we are interested only in the
active region on this node, we can ensure that d}, < al, and & < di!. Therefore, we could
form the context by walking the loop using the (d', d¥) pairs as bounds, and at each position
checking to see whether idx falls within the (a,a") bounds. However, we can do much
better than this.

First, note that the active sequence on the highest axis is a contiguous block fromal_;
up to a' ;. Therefore, we never need to increment through the highest axis point-by-

point: for each index set of lower axes, we get an active sequence of size (& ; —al )
positions. Furthermore, if it should happen that &l ; = d! , and & ; = d" ,, then the
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Name mulfact | noob | nb Loop O Loop 1 Context
1b ub oob|1lb ub oo0b
unrestr 24 0 O |na nfa na | na na n/a | 24a
bottom 6 0 110 3 6 nfa n/a n/a | 18a6i
1r 1 1 210 4 0 1 5 2 1li 4a 2i 4a 2i
4a2i 4ali
rtb 1 6 2|1 3 12 | 0 5 1 6i 5ali 5a7i

Table 6.1: Context Build Info for Example Boundary Restrictions

same contiguity argument propagates down to axisr — 2, giving active sequences of size
(¥ ,—al_,)(d" ,—d_,), and we do not have to walk the highest axis at al. By similar
reasoning, unrestricted internal loops can be merged and replaced with a new loop which
iterates up to the product of the ranges of the unrestricted loops.

The second thing to noteis that the length of inactive sequencesis also known immedi-
ately. 1f dl_, < a _,, then westart with an inactive sequence of length (&l _, —d!_,). When
we wrap around an axis k, we are skipping an inactive sequence of length

m<r

(o — &) + (3 —dy) rL(dr‘# —dy)

which skips the lower and upper inactive areas and scales by the number of positions on
higher axes which are disabled by out-of-bounds indices on axis k. Taken together, these
observations mean that we can restrict the bounds of the iteration space to those of the ac-
tive region, with axes that have no limitations merged together, and detect inactive regions
in chunks when we wrap an axis in the loop emulation. The code in figure 6.2 builds the
necessary data. At the end of this code, nb indicates the depth of nesting that we must use
to generate the context. noob contains the length of theinitial out-of-bounds (inactive) se-
guence; al other inactive sequences arise from wrapping around axes during the iteration
emulation, and awrap on axis k yields an inactive sequence of length oob[k]. mulfact
gives a scaling factor representing unrestricted axes at the high end of the iteration space.

Severa example contextson 4 x 6 grids are shown in figure 6.3, with the corresponding
loop and context information in table 6.1. Notethat if there are no restrictions, nb = 0, and
we canimmediately store an encoding for an everywhere-active context. The corresponding
everywhere-inactive sequence can be detected by finding a case where 1b [k] = ub [k].

We can now generate the run-length encoded context using the template in figure 6.4,
assuming the parent context is everywhere-active. The omitted code is essentially that re-
quiredto storean RL E sequence, asshownin section 3.3. Inthe presence of aparent context,
the codeissomewhat but not informatively complicated by the need to mergeinactive/active
sequences with the restriction imposed by the external context.

The time taken by the context forming loop is proportional to the number of context
sequencesin the resulting RLE encoding, with aslight overhead to wrap the loop counters.



CHAPTER 6. Grid Communication 132

mulfact = 1; /* Scaling factor for unrestricted axes */
nb = 0; /* Number of nested loops to simulate */
k = 0; /* Axis number being examined */
pprod = ShpNumLocal (current); /* Number of pos per index at axis */
noob = 0; /* Number of positions out-of-bounds at start */
while (k < rankof (current)) {
pprod /= ShpDimLocal (current, k);
if ((al [k] == dl [k]) && (au [k] == du [k])) {
/* Combine unrestricted axis with adjacent unrestricted axes */
mulfact *= du [k] - d1 [k];
} else {
if (1 < mulfact) {
/* Store a loop to cover combined unrestricted axes */
idx [nb] = 1b [nb] = 0;
ub [nb] = mulfact;
oob [nb] = 0;
nb++;
mulfact = 1;
}
/* Set the bounds */
idx [nb] = 1b [nb] = al [k];
ub [nb] = au [k];
/* Compute leading out-of-bounds region */
oob [nb] = (1b [mb] - d1 [k]) * pprod;
noob += oob [nb];
/* Compute trailing out-of-bounds length */
oob [nb] += (du [k] - ub [nb]) * pprod;
nb++;
}
k++;

¥

Figure 6.2: Build Procedure for Boundary Contexts

For atwo-dimensional shape with N x M positions, the number of context sequences will
be at most O(N) with arestriction on axis 1, and a constant at most 3 with an unrestricted
axis 1, in essence eliminating the factor of M from the context formation time. As noted in
section 3.3, the ability to avoid evaluating multiple pcoord expressions at each positionin
the shape can provide a significant improvement in speed.

6.2 Application to Grid Communications

Aswith general communications, grid communications come in two flavors—send and
get—and an overview of their propertiesand implementationisinorder. In both cases, com-
munication involves moving elements along a constant vector in one or more axes, the vec-
tor is specified by an array of signed integers, with as many elements as the rank of the
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2 3 4 5 0 1 2 3 4 5
00|12 |3|4]|5 000|112 |3|4]|5
1110|1112 |13 |14 |15 1/10(11 (12|13 |14 |15

unrestr bott om

202012122 |23|24 |25 202012112223 |24 |25
3/30131(32|33|34 |35 3]30|31(32|33|34 |35

0 1 2 3 4 5 0 1 2 3 4 5

o0o0o|1}2|3|4]|5 00|12 |3|4]|5

1110|1112 |13 |14 |15 110|111 /12 13|14 |15

' 2020|2122 23|24 |25 rth 2020|121 |22|23|24|25

3130(31|32|33|34|35 3/30|31|32(33|34|35

Figure 6.3: Example Boundary Restrictions

communicating shape.

In agrid send operation with offset vector v, each active position at global location p
sendsitsvalueto the position p+ V. The position receiving the value may either combineit
with the current value at that position or replace its value with the new one, just as general
send may combine or replace. If the target position is out-of-bounds, the value is not sent.
However, someinterfacesto the basic grid operation permit afill valueto be specified: when
the sourcelocationisout-of-bounds(i.e., an element hasnothing sent toiit), thetarget instead
reads avalue fromits position in thefill value. This can be used to define boundary values
which are used by default when communications extend beyond the area we are primarily
interested in (and for which we defined the shape). Grid get operationsare dlightly different,
in that each active position p requests the value from position g+ V. If the latter position
isout of bounds, afill value may be read instead. In both cases, if the grid operation does
not provide afill value, we would like the option of having the system detect where out-of-
bounds positions are accessed, since this may result in undefined behavior on other systems
or future versions of the pC* system.

At a high level, both communications require the same operations: we walk through
the positions on this node, sending data or requests to other nodes, and using the incoming
data or fill values. Naively, for each local position we would need to compute its global
address, add the grid offsets, then convert back to find the owning node and offset to classify
the position. These conversion operations are extremely expensive when repeated for each
position, and we would like to use amore efficient method. With the datalayout restrictions
imposed in chapter 3—i.e. block decomposition—when an element at local offset i has a
partner on node p at offset j itisfairly likely that the partner of the element at offset i +1is
on node p at offset j + 1. If we can detect the runswhere alocal sequence correspondsto a
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/* OMITTED: store sequence of noob inactive positions */
VP = noob;
/* Scale mulfact for effect of contiguous active seq in highest axis */
mulfact *= ub [nb-1] - 1b [nb-1];
do {
/* OMITTED: store sequence of mulfact active positions */
vp += mulfact;
k = nb-1;
noob = oob [k];
/* Iterate through loops, wrapping axes and adding 00B */
while ((0 <= --k) && (++idx [k] == ub [k])) {
noob += oob [k];
idx [k] = 1b [kI;
}
/* OMITTED: store seq of min (noob, vplimit-vp) inactive positions */
vp += noob;
} while (0 <= k);

Figure 6.4: RLE Storage Procedure for Boundary Contexts

0 3 0 1 2 3 3
000|123 0 ?21°? o0011|2]| 3
1101|1112 |13 110|112 |3 1111|1213 | ?

src s0O sl
202012122 |23 2110|1112 |13 2(21122(23| ?
3/30|31(32|33 3120|2122 |23 3/31/32(33| ?

Figure 6.5: Block-based Grid Sends

sequence on a (local or remote) node, we can treat them all identically, without needing to
perform the address calculations at each position.

One way to do thisisto specialize the grid communications functions by rank and type
of shift. Figure6.5 showsan example using atwo-dimensional shape allocated on one node,
moving one step along axis 0, and separately one step along axis 1. For the first case, the
send can be accomplished with asingle move of atwelve-element sequencefromlocal offset
0to offset 4; in the second, it is accomplished with four moves of three-element sequences.
Though the example does not involve communication between nodes, distributed shapes
permit similar behavior, sending whole blocks at once. By detecting at the start of the send
which axisisbeing offset, sends along only one axis can be handled with routines optimized
for these cases.

While such an approach works on the particular cases that are implemented, it does not
improve the general case, and results in a large performance penalty when the user codes
a grid operation which does not match one of the specialized versions. say, a shift along
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Figure 6.6: Example Grid Send Sequences: [.-3]1[.-3]dest = src

two axes at once. It is also necessary to make the system work when the source or des-
tination variable is afield of a parallel structure (in which case the “chunks’ are not con-
tiguous and we must move them element-by-element), when send communications require
a per-element operation, and with all the various actions desired on out-of-bounds access:
reading fill elements, warning, aborting, or ignoring. The resulting code, filled with spe-
cial cases, is a software maintenance nightmare, and poorly satisfies the C* programmer’s
needs. Therefore, we would much rather spend the effort designing ageneral case whichis
more easily verified, very near though perhaps not quite as efficient asthe special cases, and
performs equally well on the more unusual shiftsa ong multiple dimensions simultaneously
or on higher-ranked shapes. Such ageneral case implementation isthe goal of this chapter.

A measure of the complexity of the problem can be achieved by examining thegrid send
depicted in figure 6.6. In this operation, none of the target positions exist where nodes0, 1,
2, or 4 would send data, while node 3 sends data only to nodes 0 and 1, and node 5 sends
datato al nodes. Nonetheless, all data can be interpreted as contiguous regions which are
treated alike. Theseregions are listed in table 6.2, where the notation n — a@b indicates a
sequence of n elementsthat is sent to offset a on node b.

To complete agrid send, each node must know what blocks it must send to which other
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Node | Region Operations
0 6—00b

1 18— 00b

2 2—00b
3
4
5

1—o00b; 2—0@0 ; 3—0@1
8—00b

1—o00b; 2—2@0; 3—6@1;
1—o0b; 2—4@0; 3—12@1;
1—o00b; 2—0@2; 3—0@3;
1—o00b; 2—0@4; 3—0@5

Table 6.2: Region Decomposition of Grid Send in Figure 6.6

2 3 4 5 6 7
4 |blofof1|1]1 > 3 4 5 6 7
5 bjojoj1|1]|1 0 3|3|3|F|F]|F
6 bl]2|2]3]3]3 1 5/5|5|F|F|F
7 bl]4|4]5|5]|5 2 5/5|5|F|F|F
Node 5 sends Node 3 receives

Figure 6.7: Nodal Region Info for Grid Send in Figure 6.6

nodes; an overlay indicating sent datais outlined with dashed linesin figure 6.6. Similarly,
to detect that all data have been received, nodes must know what other nodeswill be sending
them data. Thisinformationisfound by negating the offset vector, asis shown by the dotted
outline. In both cases, the superposition of the inter-node boundaries of the shape onto the
local subgrid breaksthelocal datainto regions. Examples showing the send regions of node
5 and the receive regions of node 3 are in figure 6.7. The cells with numbers indicate the
remote partner with which the cell communicatesin the operation; those with valueb in the
send case would be sent out of bounds, hence are ignored; and those with value F in the
receive case are ones where the corresponding sending positions are out of bounds, hence
must be read from the fill variable.

In conjunction with the loop simulator discussed earlier, figure 6.7 gives the basic idea
which allows us to recognize and treat sequences of similarly-handled data. Essentially, we
emulate the loops which iterate over the positionsin row major order, and detect whenever
an axis index crosses over one of the darkened lines which indicates that the target posi-
tion has stepped onto a different remote node. These split points are found for each axis by
adding the grid shift offset for the axis to the axis indices and recording the places where
the resulting offset crosses into another node, or out of the shape. The walk code which
recognizes cross-oversis a straightforward extension of the loop emulator described in the
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previous section. Just aswith boundary contexts, we do not have to step through the highest
axis one element at atime: we can take the whole region between split points (at columns
2, 3,5, and 8 for the node 5 send example) and deal with each region asablock. Itiseasy to
determine the remote node, by adding and subtracting distpprod values (cf. section 3.2)
as split pointsof an axisare crossed. By executing theloops and computing offsetsfor each
region, this method yields exactly the sequences listed in table 6.2.

The sole complication is determining the remote offset to which the sequence should be
sent. Doing this requires tranglating the global subgrid indices for the source sequence to
local subgrid indices on the remote node, and computing the corresponding offset. Since
both sequences are contiguous regions on their respective nodes, the difference between lo-
cal and remote offsetsisa constant for a particular sequence. By using index valuesthat are
global positions (rather than relative to the start of a particular node’s portion of the axis),
the trandation is fairly straightforward. The offset of the currently indexed position on the
local nodeis:!

rankof (S)-1

00 — Z} ((idx [K] — DimAbove'®? [K]) % NPA'* [K])
k=

which performs the global-index-to-local -offset translation using information about the lo-
cal subgrid. The offset on the corresponding remote nodeis:

rankof (S)-1

glemote _ ZO ((1dx[K] +deltalk] —DimAbove™™°[k]) x NPA"™™¢[k])
K=

Thus, given a local offset, we can compute the corresponding remote offset by adding
oremote _ glocd to jt, For example, the sequence of three elements at offset 3 on node 5 that are
to be sent to node 1 begin at global position (4,5). Trand ated by the grid shift (—3, —3) this
becomes global position (1,2), whichis (1, 0) in thelocal subgrid of node 1, corresponding
to offset 6. Using the subgrid information from figure 3.4 in the above formula, we get:

0" — 0 — ((4-3-0)-6+(5-3-2)-1)—((4—4)-6+(5-2)-1)=6-3=3

The difference value varies depending on the sequence location and remote node, and can
be ssimplified to be a linear function of the index values. The scaling factor and constant
term of the resulting linear functions would be different for each axis and remote node. We
could dynamically allocate atable to hold the scaling factor and constant offset, but feel that
the cal culation time savingsin so doing (a coupleinteger arithmetic operations) isnot worth
the additional code complexity.

While thiswalk to find sequences of each type (local, remote, out-of-bounds) could be
donein one pass with some complication to control flow, grid communicationstend to par-
tition the shape into fairly long blocks of data, each of which is associated with only one

1. WeuseNPA'%% [k] asshorthand to represent thenum_per_axis valuefor the kth axis of the current shape
with respect to the local node’sdistribution; similarly for DimAbove, and the remote node’ sdistribution infor-
mation. Refer to section 3.2.1 for details on distribution parameters.
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operation (send off-node, move locally, read from off-node, copy from fill, ignore). The
cache advantages of alinear access pattern areless significant in this case, but performance
will be adversely affected if data which are sent off-node are found and sent only in the
last stages of the operation. Therefore, grid communications routines are the exception to
our rule favoring linear walksthrough data, and we perform several consecutivewalks, first
gathering and sending off-node data (to take advantage of latency), then performing local
moves and fills (or bounds checks), and finally storing data from off-node into their desired
local area. Thelast step can be handled implicitly by using the communications handler in-
frastructure described in chapter 4: on entry to the communications routines, we register a
function which reads the incoming data and places them in the appropriate location.

The need to perform multiple passes through the data when searching for regions of a
particular type can have undesirabl e performance effects, since in each pass we want to find
only asubset, often small, of theregions. Using the example of figure 6.7, if we are looking
only for regions which are stored on the local node, we will examine and reject eleven re-
gionsin node 5 before finding the onewe want. Inthe general case, each passwould require
examining every region and picking those that are associated with our node, or any remote
node, or an out-of-bounds area. However, by modifying the portion of the loop emulation
control flow that determineswhen index values need to wrap, we can drastically reduce this
overhead.

Consider in particular the send regionsfor node 5 when scanning for local data (the sin-
gle region going to node 5). We necessarily start at the beginning of the shape, at global
position (4,2). The key point to noteisthat, if we complete the scan of row 4 without find-
ing aregion of interest, we need not examinerow 5 because the types of regionsencountered
will be the same as the previous row, until we cross over the next split point along axis 0.
Therefore, once we' ve rejected all regions at a given axis, we can skip immediately to the
next split point on alower axisrather than iterate through it index-by-index. When scanning
for a particular region type which does not appear between given split points, this reduces
the number of regions examined from being on the order of the dimension of an axisto the
order of number of distribution partitions along the axis.

The details of the implementation for grid communication, considering all these issues,
are too complex to present in the body of this dissertation. The source code for grid-based
communication, which includes both get and send, and amodification of the split-point han-
dling which allows torus get and send (out-of-bounds references wrap around the shape),
consists of 3500 lines of heavily-commented C code. A subset of this code corresponding
to agrid send operation, including code to identify sequences and walk the different classes
of sequence, is presented in appendix A. The comments in the code, in conjunction with
the high-level overview presented here, should provide the determined reader with enough
information to implement these operations in her own runtime system.
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6.3 Evaluation and Related Work

We are unaware of any other general approaches to optimizing runtime resolution of
regular communications. For many years, systemsfor parallel languages, especialy deriva-
tives of Fortran, have been able to detect certain cases at compile-time and generate calls
to send and receive data, but these are most often restricted to times where the cluster size,
shape size, and shift values are known at compile time.

Kali (Koelbel, 1990) detects, at compiletime, communications patternsthat are a super-
set of our grid communications operations, and emits code to compute sets of positions that
are to be sent to or received from other nodes. The general framework described in (Koel-
bel, 1990) supports both block and cyclic distributions, and could be extended to multiple
dimensions. The representation of elements as sets rather than as sequences implies that
the data structures and emitted code for multi-dimensiona distributions and shifts such as
that in figure 6.6 would be highly complex. Though the Kali framework is relatively inde-
pendent of shape dimensions and the size of the target cluster, it does require knowledge of
shape rank at compiletime. It isnot clear that the framework could be reasonably extended
to a completely genera runtime system that was rank-independent; on the other hand, it is
not clear that Kali’starget applications would require such an extension.

Experimentation using a specially-instrumented grid send implementation within pC*
indicates that the cost of runtime resolution isfairly low. Performing grid sends on atwo-
dimensional shape with 2048 x 2048 positions on clusters from 1 to 12 nodes, the initial
step which builds the loop bounds is on average 0.21% of the total communication time,
with a maximum of 3%. For communications which had more than one in-bound local se-
guence (e.g., one per row), an average of 4% of the communication timewent to overhead in
computing sequence | ocations and remote node i nformation; when there was only one such
sequence, the overhead was less than 0.1%. These overheads are sufficiently low that we
feel the runtime mechanism described hereislikely to be quite competitive with acompile-
time implementation such as Kali’'s. When dimensions or shift offsets must be specified
at runtime, both systems perform much the same calculation. Our system could easily be
adapted to save the sequences of each type as a communication schedule, and could bein-
tegrated with Kali or the schedul e-based mechanismsfor general communication described
in section 5.5.

Another measure of performance is to compare grid communications with a general
communication which involves the same communi cations pattern. For this experiment, we
used the torus version of the grid routines to implement a shift along the (1,1) diagonal of
arank-2 shape. Figure 6.8 shows the communications pattern for a shift of half the shape
sizein each axis.

We compared the timeto perform the shift from a source pvar into a destination pvar on
clustersfrom oneto twelve nodes and a shape with 1024 x 1024 four-byte elements.? Three

2. Had we used one-byte elements as we did in the previous chapter, the effect of location overhead would
taint the comparison: general send has a 4-to-1 overhead when using one-byte elements, while four-byte ele-
ments have 1-to-1 overhead.
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Figure 6.8: Torus shift used for grid versus general communications comparison

different times were measured:

e Thetimeto copy the datafrom the source pvar to the destination pvar with no communi-
cations routine involved. Thisyields alower bound for any communication operation.

e Thetimeto perform the shift using the torus adaptation of the grid mechanism described
in this chapter.

e Thetimeto perform the shift using left-indexed general send, as described in chapter 5.

The results are presented in table 6.3. Times are in seconds, for one send of each type, and
are the median of five experiments, except for copy, which is the median of the fifteen ex-
periments for the given cluster size.

Three shift amounts are given for each cluster size. A shift of 0 is intended to mea-
sure the overhead involved in merely invoking the communications, even though it never
requires exchanging data with another node. In this case, the grid routines perform the ini-
tial loop construction, then notice that no shifts will occur and simply copy the data. The
Torus/Copy ratio column indicates that the overhead of merely invoking grid communica-
tions and building the loop bounds is less than the timing measurement noise (hence the
incongruous result that it is apparently often faster to perform a zero-offset torus shift than
copy avariable). However, the general routines still incur a cost, both in converting ad-
dresses to perform the moves and in global synchronization to determine that no data will
be arriving from off-node.

A shift of one position along each axisisamore common case. Sincewe used thedefault
row-distribution for shapes, each node writes values to the node “below” it, and reads them
fromthenode“above”. Thetorusoperation on 2 and 4-node clustersindicatesthat the oper-
ation is only 5% more expensive than copying the data with no communication. This com-
binesthe overhead of determiningthe moveswith thetimerequired to transmit data between
nodes. Itislikely that the portion of overhead attributable to the grid mechanismis smaller
than 5%: with larger clustersthetime required to perform the operation remains constant at
60msec, indicating communications overhead or latency is the primary consumer of time.
Thedifference between grid and general communi cation isapparent, with the general mech-
anism taking about ten times|onger, except where the torus had reached its network-limited
lower bound.
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Cluster | Shift | Copy | Torus | General | Torus/Copy | General/Torus

Size | Amount | Time | Time | Time Ratio Ratio
1 0 0.171| 0.170 | 2.036 0.995 11.948

1 0.171| 0.250 | 2.049 1.463 8.183

512 0.171 | 0.179 | 2.034 1.047 11.342

2 0 0.087 | 0.086 | 1.285 0.989 14.885

1 0.087 | 0.092 | 1.294 1.057 14.025

512 | 0.087 | 3.697 | 7.320 42.354 1.980

4 0 0.056 | 0.056 | 0.706 1.000 12.614

1 0.056 | 0.059 | 0.717 1.050 12.201

512 | 0.056 | 1.881 | 3.682 33.593 1.957

8 0 0.015| 0.014 | 0.419 0.919 30.831

1 0.015 | 0.060 | 0.428 4.054 7.130

512 | 0.015| 0951 | 1.867 64.270 1.963

12 0 0.008 | 0.007 | 0.324 0.843 46.329

1 0.008 | 0.060 | 0.337 7.205 5.629

512 | 0.008 | 0.672 | 1.295 81.012 1.926

Table 6.3: Grid versus General Communication comparison. Timesin seconds to send 22 four-byte
values.

Thethird case performs ashift half way along each axis. Thisrequiresall datato be sent
off-node in both mechanisms. Here we can see that the torus and general communications
are within afactor of two of each other. Thisis exactly what one would expect in the case
where the network performance is the sole determining factor. Recall that in general com-
munications each element sent off-node has an associated offset sent along with it. This
means that, for a four-byte element, eight bytes are sent for each position. With the grid
algorithm, we send packed sequences consisting of an offset, acount, and arun of count el-
ements. Sequences for the 512-position shift are 512 elements long, so the amount of data
sent in the torus operation is slightly more than half the amount sent in the general commu-
nication. This means that the best we should expect of general communicationsisthat it be
2x slower than torus communicationsfor these patterns. Asshown in section 5.5, with high
communications behavior, even the overhead of general communications is overwhelmed
by network latency.

In section 6.2 we mentioned that certain grid communication operations can be recog-
nized and handled as special cases. Theinitial version of pC*, based on the University of
New Hampshire C* compiler (Lapadula& Herold, 1994), did this, with special casesfor one
and two-dimensional grid get operations, and a general algorithm which performed point-
wise address calculation for other cases. Astimewent on more cases became important: in
particul ar, send operations, which do not have theinherent two-phase structure of get opera-
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tions, are heavily used in code originally written for the Connection Machine.3 Torus oper-
ationsare also used in severa agorithms, and to prevent alarge and confusing performance
discrepancy between grid and torus operations, these should al so be special-cased. Astime
went on, the grid/torus implementation modul e became a morass of conditionals and ques-
tionably reliable code. The final straw was the support for general block distributions de-
scribed in section 3.2, which invalidated several assumptions in the special-case code. To
clean up this maintenance and reliability problem, we designed the algorithm described in
this chapter. However, it is still natural to question whether a special-case implementation
is sufficiently faster to be worth maintaining for the most common cases.

To address this, we compared pC* with a more recent implementation of UNH-C* 4
on both sends and gets with one-position shifts in various directions using one, two,
and three-dimensional shapes. To avoid bias due to differences in the network imple-
mentation of each system, we ran the tests on a single processor. The results, with
times in seconds on a SS20/612, are presented in table 6.4, and in graphical form in fig-
ure fig:gridops:eval :pcsvsunh.

We started by determining the base time to copy data from the source value to the des-
tination. Both systems implement this with a VP loop performing the assignment to each
active element in turn. In contrast, calling aroutine which performs the same copy but over
the entire shape at once, rather than element-by-element, runs twice as fast. This routine
isonly implemented in pC*, but is essentially the operation performed by the torus shifts
of 0 positionsin table 6.3, and on sequences of data in both pC* and the UNH optimized
routines.

Following thisin table 6.4 are the performance results for get and send operations for
all three shapes. The shapes all had 7529536 one-byte elements, and were allocated to be
“square’: i.e., shapes were 7529536, 2744 x 2744, and 196 x 196 x 196. One key point
in understanding the resultsis that get operations store their resultsin a compiler-allocated
temporary, which is then copied into the active positions of the dest variable by element-
wise assignment. Thisisbecause in most cases the results of the get are used from the com-
piler temporary in a complex expression; if only the communicated results are desired, a
C* send communication would generally be coded instead. Neither compiler recognizesthe
opportunity to store the resultsdirectly in dest, though this could be done in both systems,
modulo some complications related to context.

Taking this (roughly 0.5sec) overhead for get operations into account, we can see that,
inpC*, grid get and send have the same performance when all communicationisintra-node.
Communications which do not involve shifts along the highest (right-most) axis are gener-
ally dlightly faster than those that do, because the sequences of values operated on arelonger

3. Althoughin the absence of context agrid get may be implemented in asingle phase by interpreting it asa
send in the reverse direction, when context isinvolved this can result in performance problems. Since context
is determined on the requesting node, pre-emptively sending data may result in higher communication costs
than arequest/reply implementation. For small enough shapes, the advantagein avoi ding one communications
phase may be worthwhile.

4. Version 9506009.
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UNH pC* UNH/pC* | Operation
0.517716 | 0.55136 0.93898 | dest = src
n/a 0.3062755 | n/a memcpy (&dest,&src,boolsizeof (src))
1.535910 | 0.8570395 | 1.79211 | dest = [.-1]src
53.620190 | 0.365047 | 146.886 [.-1]dest = src
0.948832 | 0.850059 | 1.1162 dest = [.]1[.-1]src
0.868239 | 0.828215 | 1.04833 | dest = [.-1]1[.]src
0.870376 | 0.8391835 | 1.03717 | dest = [.-1]1[.-1lsrc
73.510028 | 0.331552 | 221.715 [.1[.-1]dest = src
73.589463 | 0.31381 234.503 [.-1]1[.]dest = src
73.519656 | 0.336797 | 218.291 [.-1][.-1]dest = src
92.688201 | 0.995749 | 93.0839 |dest = [.I1[.1[.-1lsrc
92.809967 | 0.91927 100.961 |dest = [.J[.-11[.]src
92.684462 | 0.846993 | 109.428 |dest = [.-11[.1[.1src
92.777239 | 1.010195 | 91.8409 | dest = [.-11[.-11[.-1]src
94.027049 | 0.5133385 | 183.168 [.J[.J[.-1]dest = src
94.060914 | 0.297252 | 316.435 [.1[.-11[.]ldest = src
94.021485 | 0.3156275 | 297.887 [.-11[.1[.]1dest = src
94.076640 | 0.4722375 | 199.215 [.-1][.-1]1[.-1]dest = src

Table 6.4: pC* General Grid versus Special Case code. Time in seconds to send 7529536 (196°)
one-byte values on a single-processor.

in those cases. Thisaso holds for the specialized implementationsin UNH C*. There are
avariety of interesting conclusionsthat can be drawn from the results:

Thegrid agorithm described in this chapter isnot particularly sensitiveto therank of the
data being operated on, or the number of axes along which shifts occur simultaneously.
The performance differences observed can be explained by differences in the average
length of a sequence.

The genera algorithm in pC* is faster than the special-case code in UNH-C*. In the
case of one-dimensional operations, the difference is nearly two-fold. It isnot immedi-
ately clear why this should be so, since in the case of single-node clusters both systems
perform a small amount of pre-computation prior to acall to memcpy.

The general algorithm in pC* iswell over 100x faster than a genera algorithm which
performs address computation at each position.

The memory requirements of both systemsto execute these tests are also informative. pC*
has a peak usage of roughly 31MB, with about 24MB resident at peak. The usage breaks
down into 7.5MB for each of src and dest, 7.5MB for the compiler temporary used in
the get assignment, and 7.5MB for the context build arena (which was not used in the test



CHAPTER 6. Grid Communication 144

1.6

14 F .

12 | -

08 | -

Seconds

06 | -

) Jﬂm mm

1d2d3d 1d2d 1d2d3d 1d2d 1d 2d 3d 1d Zd 1d2d3d 1d2d
pC*  UNH-C* pC*  UNH-C* pC*  UNH-C*
P=1 P=2 P= 4 P=8
Figure 6.9: pC* General Grid versus Special Case code. Time in seconds to send 7529536 (196°)

one-byte values, 1, 2, 4, and 8 processors.

program). In contrast, the UNH-C* program had a peak usage of 119MB, most of which
was listed as resident memory throughout execution. It is unclear where the memory was
being used or what effect this had on the performance of UNH-C*, though no swapping
occurred during the execution (the benchmark machine had 256MB of physical memory).
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CHAPTER 7
EVALUATION OF PC*

The proof of the pudding isin the eating.

— Miguel de Cervantes, Don Quixote de la Mancha, bk. 1V, ch. 10,
p. 322

In which we walk the walk. We evaluate pC* on a set of eight benchmarks: four de-
signed to test the operations described previously in this dissertation, two image pro-
cessing problems, and two general problems. We prove portability by giving results
on a cluster of Ethernet-networked SPARCstations, a multiprocessor SGI, and an
Intel Paragon. Efficiencies (speedup per processor added) range from 45% to 90%
on the primary target platform. When contrasted with optimized sequential C im-
plementations on the same hardware, pC* outperforms C on two benchmarks with
as few as two processors, and on three more with as few as four processors. When
compared with the Thinking Machines Corporation implementation of C* on a 64
node Connection Machine CM5, pC* on a twelve SPARCstation Ethernet cluster
outperformsthe CM5 in real terms on three benchmarks, duein large part to the op-
timizations described in this dissertation. On aper-processor basis, pC* outperforms
the CM5 on six of the eight benchmarks.

7.1 Target Platforms

Evaluation testswere performed on atotal of six architecturesusing pC*, aswell astwo
architectures using other C* implementations. The number of processors available for pC*
testing ranged from one to twenty-four. The particular platforms that will be referenced in
this chapter are:

the cluster The primary computational cluster for pC* isanetwork of twelve Sun SPARC-
station 612s, with two 60MHz SuperSPARC processors each, 1IMB of external cache
per processor, and 256MB of memory per machine. The machines are connected
with 10baseT Ethernet (10Mbps) in a star network through a Kalpana 2015 RS
EtherSwitch. The host operating system was Solaris 2.3, and communication was
performed through TCP sockets (AF_INET, SOCK_STREAM). Compilations were per-
formed with GNU gcc version 2.6.3, using flags -02 -DNDEBUG -msupersparc.
The cluster is operated by Oasis Research Center, Inc.

145



CHAPTER 7. Evaluation of pC* 146

the SGI To determine performance on a different interprocessor model, we used a Sili-
con Graphics 4D340, with four 33MHz MIPS R3000 processors, primary data and
instruction caches of 64KB each, a secondary data cache of 256KB, and 64MB of
physical memory. The worker processes communicated through the System V Mes-
sage Passing (msgct1(2)) interface under the host operating system, Irix 5.2. Com-
pilation was performed with the SGI ANSI C EOE version 3.18 compiler, using flags
-02 -DNDEBUG. The SGI is operated by the Department of Computer Science at the
University of Arizona.

the Paragon As a second check of portability and other IPC interfaces, we used an Intel
Paragon XP/S Model A4, with 16 compute nodes each with two 50MHz Intel i860
processors (one reserved for network management), and 16MB of memory per node.
The host operating system, Paragon OSF/1 Release 1.0.4 Server 1.3, consumed ap-
proximately 8MB of memory on each node, drastically limiting the problem sizes
which could berun. Worker processes communicated using the built-in Intel NX mes-
sage passing library over the Paragon’s 30M Bps mesh network, with 1000-byte mes-
sages. Compilations were performed with GNU gcc version 2.6.3, using flags -02
-DNDEBUG. The Paragon is operated by the Department of Computer Science at the
University of Arizona.

the CM5 We compared the system with the defining implementation of C* by Thinking
Machines Corporation, on a set of Connection Machine CM5swith 64, 256, and 512
nodes (Hillis & Tucker, 1993). Each node consists of one 32MHz Sparc chip cou-
pled tightly with a specially-designed four-processor vector unit, and has 32MB of
memory available on each node. The nodes are connected through a 20MBps fat-
tree network. Compilations were performed with TMC C* version 7.2, using flags
-02 -DNDEBUG. The CM5isoperated by the Army High Performance Computing Re-
search Center at the Minnesota Supercomputer Center in Minneapolis, Minnesota.

7.2 Target Applications

Though there are a variety of applications that can be used to measure the performance
of the pC* system, we have chosen atotal of eight. To provide an honest evaluation of the
performance of pC* (Sahni & Thanvantri, 1996; Bailey, 1991), we tested both C* and C
implementations of these, in each case with an implementation that a reasonably skilled
programmer would consider to be appropriate to solve the problem. Here we describe the
benchmarks and their C* implementations. The C* source code for the benchmark pro-
gramsis presented in appendix A, and contains more details on the algorithms used.

The first four problems were chosen specifically to exercise components of the library
that were described in the previous chapters.

fft A straight-forward butterfly implementation of the Fast Fourier Transform using
complex floating point numbers. The normal divide-and-conquer FFT algorithmis
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parallelized using a loop with log(n) iterations performing pairwise combinations
of 2-element FFTs, using general send to exchange the operands between paired
virtual processors. Thetest performsthetransform, and then theinverse transform.
This benchmark exercises general communication with no collisions.

histeq Histogram equalization of a digital image with eight bits per pixel. The intensi-
tiesin the image are histogrammed using the method introduced in section 2.1.2,
then the bin values are used to spread the image range over the pixel range, and the
equalized pixel values are read back into the image shape. This benchmark exer-
cises general communication with high collision behavior.

njac A standard Jacobi iteration program. Boundary and internal elements are initial-
ized, then 100 iterations of four-point-stencil (North-East-West-South) averaging
is performed over the internal region. This benchmark exercises grid read.

roadnet The program is given a map with certain pixels distinguished as belonging to a
“road”. Pixels adjacent to roads are set to their distance from the road, using con-
textualized grid send of the adjacent four elements with a minimization operation.
Thetest isinitiated with “roads’ which superimpose an “X” reaching to each cor-
ner and a“+” to each edge, centered on the middle of the map. By setting the active
context to the most recent road perimeter only, thisbenchmark testsoperationswith
ahighly inactive context.

The C codeimplementationsof three of these four programs are highly optimized, aswill be
discussed in section 7.6, and comparisons between the C* and C versionsdo not give area-
sonabl e representation of the system’s performance on more complex programs. We evalu-
ated four additional benchmarks, which do not necessarily exercise components of pC* that
were described in thisdissertation, but al so represent the type of operationsthat are common
inour real target applications and provide a better representation of the pC*’s capabilities.
Theseinclude:

amp  Animage amplitude screener. The value of each pixel is compared with the aver-
age value of its surrounding 8 pixels, and a boolean pvar is set to indicate the pix-
els which are above some threshold percentage of their surrounding pixels. This
benchmark primarily exercises the prefix scan operation, though it also performs
grid sends.

julia Essentially a Mandelbrot set calculation. Thisis an “obscenely parallel” bench-
mark; no communication takes place in the computation loop. The Mandelbrot
set develops large inactive regions, and block distribution leads to load imbalance.
Therefore we precede the computation loop with a general send which distributes
the computation field in a cyclic manner, as described at the end of section 5.5.

mm Thestraightforward C* implementation of matrix multiply. Working on square ma-
tricesonly, we start by transposing one of the operands using general send, then use
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the extended library routines copy_spread and reduce to spread each columnin
turn acrossaparallel value, do a point-wise multiply, then reduce each row into the
appropriate column of the result.

rf An image rank filter. The value of each pixd is replaced with the median of the
values in the 3 x 3 window surrounding it. This benchmark exercises torus grid
sends, and inlined context.

Each of these tests was run on data sizes ranging from afew thousand to roughly thirty-
two million elements, one per virtual processor, with larger data sizes skipped on architec-
tures which lacked sufficient computational capacity or memory to run them. The experi-
mental method wasto run each benchmark over itsrange of datasizeson all subsetsof a par-
ticular architecture, then repeat thisfour moretimes. The measured timefor any multi-node
run was the maximum elapsed time observed on any node; some nodes may have finished
more quickly, if work was not evenly distributed, but since the problem is not solved until
all nodes are finished, the maximum elapsed time measures the real solution time. Perfor-
mance resultsin this chapter are the median of the resulting five runsfor each benchmark—
host cluster—data size.

7.3 Performanceof pC* On the Cluster

We ran the benchmarks on the cluster, with 1, 2, 4, 8, and 12 workers, running only
one worker on each machine.> The raw performance is shown in the graphs in figure 7.1.
Throughout this chapter, the legends in the graphs indicate the host architecture (e.g, “cl1”
for the SS20 cluster, “Fd340” for the SGI 4D340, “pgon” for the Intel Paragon), with
the number of processors involved appearing in parentheses following the host code (e.g.,
“cl1(4)” for afour-processor SS20 cluster).

Tests histeq, amp, and julia appear to have consistent performance for a given cluster,
once they reach their optimal operating size. fft implementsan O(nlogn) agorithm, so the
slight decrease in capacity as size increases is appropriate; similarly for the O(n3/ 2) dgo-
rithm used by matrix multiply.? The roadnet benchmark continuesto increase, again aswe
should expect, since the number of road elements in the test increases with the lengths of
the sides of the map, not the total number of pixelsin the map.

rf performs well on small to medium problems, then drops to a lower plateau on larger
problems. This behavior, which is more obvious in the SGI results to follow, is explained

1. Experienceshowed that using both processorsresulted in inconsistent performanceacross different bench-
marks, due perhapsto contention for the network interface and the memory bus, and the differenceinin-kernel
control flow when transmitting packets between two workers on the same machine, and between two work-
ers on different machines. Testing with one processor disabled indicated that having the additional processor
present and unused did not affect runtimes significantly, except for the smallest data sizes where the newly
forked worker could execute simultaneously with the daemon which controlled distributed execution.

2. Notethat the datasize n =t2, for 2d matrices with sidet—for n an odd power of 2, we chose at such that
In —t?| was minimized. When times are divided by square-root powers of the scaled size to correct for the
algorithm time complexity, the performance curves becomeflat, as expected.
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by noting that, as problem size increases, the working data will no longer fit in the cache.
Thecurvesinrf indicate that if peak performance for size n isreached with a cluster with P
nodes, peak performance for size 2n isreached with a cluster with 2P nodes, maintaining a
consistent amount of memory per-processor.

One might expect njac to have a flat performance profile since the algorithm is linear
in the number of elements, but in fact it takes afairly steep dive at larger problems. Part
of thisis due to the cache thrashing also seen in rf, but the remainder, especialy the large
drop in performance with eight nodes at 22° elements, is more significant. Runs of this par-
ticular benchmark consistently had significantly higher idle times than the same program
and data size on other configurations—in fact, the same problem run on seven nodes exe-
cuted in half the time required on eight nodes. The njac implementation performs a global
reduction on each iteration, to check convergence and the need for an additional iteration.®
Initial evidence indicates that the slowdown is due to differences in perceived latency us-
ing the LOGL OG reduction algorithm from chapter 4: the master node spends one tenth the
timein the reduction than doesnode P/2. Further analysisisrequired to determinewhy this
is occurring and an appropriate fix, and whether it occurs to the same degree when a better
reduction algorithm is used (cf. page 99). We have found the Solaris 2.3/Ethernet platform
to be susceptible to bad behavior with certain communications patterns,* and we currently
believe the bad performance on reductionsis duein part to latency effectsin the fan-in and
fan-out stages. A plausible solution is to use a different master node for each reduction,
distributing communications patterns more evenly.

Other apparently anomalous results are the small dip at 512K with fft on eight nodes
(experimental noise; not visible in a second set of experiments); the peak in histeq at 1M
on eight nodes (experimental noise); the dip in amp at 4M on eight nodes (idle times in
calsto reduce); and the performance drops for mm at 642 elements with four nodes and
912 elementswith eight nodes. Thislast seems dueto bad handling in Solaris Ethernet code
of the communication pattern that arises from these problem sizes; idle times areincreased,
due perhapsto the fact that mm isthe only benchmark that sends significant amounts of data
in an operation that does not have a registered handler (cf. chapter 4). The performance
dropsfor these problems are regularly reproducible using the Kal pana EtherSwitch, but are
not visible when the same systems are linked with a Fore Systems ATM switch.

More interesting is the measure of speedup we get by increasing the cluster size. This
comparisonisshowninfigure7.2. Asexpected, many of the programs perform worse with

3. The benchmark actually ignores this value, since the benchmark is expected to iterate a specific number
of times and not drop out early, but areal-world program would requireit.

4. For example, the torus version of the grid routinesin chapter 6 sends data to a node in one direction, and
reads data from a different node. It istwice asfadt, in terms of elapsed time, to send the data one element
too far, then send it back one element, than to send the data exactly the distance required. The differenceis
consumed in system idle time during the single-phase communication. Using a different interprocess com-
muni cations package (e.g., the System V Message Passing Facility) on the same hardware, the two-step send
is two times slower than the one-step send, as we would normally expect. The only explanation we have for
thisisthat the paired callsresult in acommunication pattern where each node both sendsto and receives from
both neighbors, and the Solaris TCP execution path is optimized for such exchanges and sufferswhen unequal
exchanges occur.
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Figure 7.2a. Cluster Speedup (Relative to pC*—1 processor) (Part 1)
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Figure 7.2b: Cluster Speedup (Relative to pC*—1 processor) (Part 2)
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larger clusters for the smallest data sizes: the overhead of communication synchronization
overwhelmsthe speedup from multiple processors. Thisismost clear in the graphsfor amp
and histeq. julia does not have communication in the timed loop, so does not suffer this
overhead, and the smallest size used in fft is large enough that the overhead is absorbed.

A more clear understanding of scalability can be obtained from the efficiency graphs
infigure 7.3. The efficiency is smply the speedup divided by the number of processors
in the cluster. Most of the tests seem to converge toward a constant efficiency dependent
on the program; roughly 45% for histeq, and closer to 95% for roadnet. The efficiency of
fft is affected more strongly by cluster size than the other programs, which do not stress
network communications so much. Super-linear speedup (efficiencies in excess of 100%)
isobserved for three programsat several problem sizes, occurring when thelarger amount of
cachememory allowsfaster execution for aparticular problem sizethan did smaller clusters.

7.4 Performance of pC* on the SGI

The benchmarks were run on the SGI machinewith 1, 2, and 4 processors. Raw perfor-
mance in elements-per-second is shown in figure 7.4. The major difference between these
results and those of the cluster isthe clear effect of small cache memory on problemswhich
require large amounts of data. Trends for each benchmark follow those of the cluster, un-
til acertain (benchmark-dependent) data size is reached, at which point performance drops
precipitously to anew plateau. Thefailure point doublesas number of workers (hence, total
cache size) doubles. The efficiency resultsin figure 7.5 are affected by this, where super-
linear speedup isobserved in all tests except histeq; the efficiency generally exceeds 100%
around the data size where the single-worker test exceeded its cache size and slowed down.
Histogram equalization, which has a relatively small memory load per virtual processor,
and does not re-visit data frequently, does not suffer as much from the small cache, and ef-
ficiency measurements are roughly the same for the SGI as they were on the cluster. The
roughly 100% efficiency of fft, in contrast to its consi stently decreasing behavior ontheclus-
ter, is explicable by noting that fft exceeds the first level cache with its smallest data size,
and rapidly exceeds the second level cache aswell. It is plausible that in the baseline one-
processor runs, the bulk of timeis spent waiting for datato be loaded to a cache level where
the code may read them, and adding processors allows the memory loads to be pipelined,
distributing the latency equally amongst the processors.

7.5 Performance of pC* on the Paragon

The performance results on the Paragon are shown in figure 7.6 and exhibit perhaps the
cleanest curves of any test architecture. Most interesting isthe performance of histeq at the
largest data sizesthat we even attempted to run, where not just cache but al so physical mem-
ory was exceeded during execution, resulting in adrop to a constant performance limited by
the access speed of the paging device. Clearly, execution of real-world problems requires
systems with more than toy amounts of memory.
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Figure 7.3a: Cluster Efficiency (Relative to pC*—1 processor) (Part 1)
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Figure 7.3b: Cluster Efficiency (Relative to pC*—1 processor) (Part 2)
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Figure 7.4a. SGI Performance (Part 1)
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Figure 7.4b: SGI Performance (Part 2)
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Figure 7.5b: SGI Efficiency (Relative to pC*—1 processor) (Part 2)
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Figure 7.6a. Paragon Performance (Part 1)
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The efficiency results for the Paragon do not exhibit any surprises (figure 7.7). They
tend to be higher than corresponding cluster efficiencies for problems that are dependent
on network performance, such as fft and njac. Relative performance figures comparing the
cluster with the Paragon when equal numbers of processors are used in each are shown in
figure 7.8. It isinteresting to note that the 50MHz i860 chips in the Paragon result in per-
formance which is roughly two to four times slower than the 60MHz Sun systems, with
Paragon performance best on the most communications-intensive benchmark, fft, where
10M bps Ethernet cannot compete with the Paragon’ slow-latency 30M Bps (240M bps) mesh
system.

7.6 Performance of pC* Contrasted with Sequential C

All previous results have been intra-system: i.e., they compared pC* with itself on dif-
ferent architectures or cluster sizes. To gain a proper understanding of the absolute per-
formance of the system, it is necessary to compare it to independently developed systems
running, where possible, on the same hardware.

For the first comparison we will consider how the C* benchmarks described in sec-
tion 7.2 compare with sequential ANSI C solutions of the same problems. In all cases, the
C implementation was one involving at least some thought; all obvious, and afew unobvi-
ous, algorithmic optimizations were performed. In particular, the C implementations differ
in the following ways from the C* ones:

fft In the most major difference, the Fast Fourier Transform code used was taken from
the netlib ffitpack version 4, written in Fortran by Paul Swarztrauber at the National
Center for Atmospheric Research.® It was translated to C using f2c 19950110, a
Fortran-to-C translator from AT& T Bell Labs.® Theinterfacetothese FFT routines
uses apre-processing step whichisshared by both theforward and inversetransfor-
mations, amortizing cost between the two phasesin away that is not done with the
C* butterfly implementation. The Cimplementation istherefore highly optimized,
and the C* version will suffer accordingly when compared with it; nonetheless, if
aFourier agorithmisrequired in a C program, re-use of packaged codelikethisis
the appropriate choice.

histeq The histogram equalization implementation can simply use the pixel values asin-
dicesinto an array, whose el ements are incremented immediately; the overhead is
significantly less than the C* invocation of general send.

njac  TheJacobi iterationimplementation benefitsfrom not requiring four temporary val -
uesthat are the size of the array when computing the stencil.

5. Availableviaftpfromnetlib.att.com:netlib/fftpack.
6. Availableviaftpfromnetlib.att.com:netlib/f2c.
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Figure 7.7a. Paragon Efficiency (Relative to pC*—1 processor) (Part 1)
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Figure 7.7b: Paragon Efficiency (Relative to pC*—1 processor) (Part 2)
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Figure 7.8a. Relative Performance Cluster / Paragon (Part 1)
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roadnet The C implementation of the distance-to-road problem maintains alist which con-
tains exactly the points which are on the current road perimeter, sorted by x and y
coordinates (in an array, and linked list per array bin, respectively, to permit fast
searches). Therefore it, like the C* implementation, gains from operating only on
positions of interest, but does not have to examine the entire map to determine the
current perimeter.

amp  The amplitude screener is a reasonable implementation, performing a scan of all
elementsin the window around each pixel inturn to compute the average. Depend-
ing on thewindow size tested, a prefix-scan implementation similar to theinternals
of the C* version could decrease the computation cost, by maintaining a running
sum and subtracting the value from one side of the window when adding the value
from other side. We chose not to implement this more complicated agorithm for
benchmark purposes alone, since we use a constant window size (3 x 3) in all tests.

julia. Thereisno essential difference between the C* and C implementations.

mm The C version usesastraightforward triply-nested |oop with accumul ation of vector
dot productsinto atemporary value.

rf The region around each pixel is scanned, and a bubble-sorted list of neighbors
yields the window median. The implementation is much more cache-friendly than
the C* one, which hasthe samegeneral algorithm but, dueto data-parallel treatment
of theimage, puts the “loops’ over rows and columns within the sorting code.

The speedup of the cluster relative to the C implementation running on a single cluster
node is shown in figure 7.9. The trends are essentially the same as those for speedup rel-
ative to pC* on one cluster node, except for roadnet where the C version improves faster
with larger problem sizes than the C* version. In three benchmarks—fft, histeq, and road-
net—the C* version does not succeed at outperforming the C version, even with twelve
processors. However, al three do approach to nearly half the sequential performance, with
fft continuing to improve as problem size increases.

The other benchmarks perform better in comparison to C onthe cluster. julia isbest, out-
performing C with two processors, and continuing to improve with an efficiency of about
80%. On larger problem sizes, matrix multiplication is faster with two processors, while
the remaining three benchmarks require four processors to outperform the sequential im-
plementations.

On the SGI (figure 7.10), performanceis lessimpressive, due for the most part to the
fact that the C implementations uniformly require less memory than the C* ones, so rela-
tive performance suffers as the C* versions quickly result in bad cache behavior. julia per-
forms quite well with 80%—90% efficiency until data sizes exceed the cache, and rf has a
respectable 50% efficiency on the smaller problem sizes. The most interesting result is for
matrix multiply, where the C* version uses more memory but accesses it in amore cache-
friendly manner, resulting in efficiencies of 60%—100% for the larger data sizes.
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Figure 7.9a. Speedup of Cluster pC* Relative to C (Part 1)
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Figure 7.10a: Speedup of SGI pC* Relativeto C (Part 1)
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7.7 Performanceof pC* Contrasted with TMC C*

The next comparison is to run the C* benchmarks on an architecture with a highly op-
timized special vector processor and fast network, and a compiler designed specifically for
that hardware: to wit, TMC C* 7.2 on a CM5 supercomputer. Raw performance numbers
aregiveninfigure7.11. Theefficiency of the TMC implementation on its native architec-
tureisimpressive, with all benchmarks except the communications-intensive histeq having
efficiencies in excess of 80%, and often in the high 90%s. The CM5 implementation does
not do the sort of communication collision detection that we describein chapter 5, so perfor-
mance drops considerably on histeq due to the bottleneck of data transfer between nodes.”

A very interesting performanceissue, first raised in chapter 3, can be seeninthebehavior
of matrix multiply, where to increase the data size by (roughly) doubling at each step while
retaining a square shape, we were obliged to specify shapes that did not have a power-of-
two extent along each axis. Shapes with power-of-two sideswere perfectly allocated on the
CM5with square subgrids stored on each node, but this could not be donefor the oddly sized
shapes. The CM2 SIMD implementation of C* padded shape sides to powers-of-two; the
CM5isnot quiteso restrictive, but still requires decomposing the vector unitsinto aphysical
grid whose sides are powers of two; the subgrid assigned to each vector unit must be the
same; and the subgrid size must be amultiple of 8 (see Appendix B of (Thinking Machines
Corporation, 1993) for details). The effect of these restrictionsis to cause elongated node
subgridsand wasted space. For example, on the 256 node (1024 vector unit) CM5, the shape
whichis724 x 724 isalocated as 1024 subgrids of size 92 x 6, causing an overallocation of
7.8%, aswell as afifteen-to-oneimbalancein thelength/widthratio of the nodal subgrids. It
isto be expected that, had we not chosen powers-of-two for the input data sizes on the other
benchmarks, similar undesirable behavior would have been exhibited on them aswell. The
ability of pC* to partition the shape into subgrids which need not be the same on all nodes
isasignificant benefit.

The speedup of the cluster relative to the 64 node CM5 is shown in figure 7.12. For the
most part, the results are as expected when comparing a multi-million dollar 64-processor
supercomputer with aset of twelve workstations connected by Ethernet. However, itisvery
heartening to notice that the cluster outperforms the CM5 in absol ute performance on three
of the eight benchmarks: histeq, due to the general communications optimizationsin chap-
ter 5, will be faster with eight nodes; roadnet, with the context optimizations described in
chapter 3, will be faster with as few as four nodes; and rf, due to the efficient grid commu-
nications routines of chapter 6 and use of the context inlining mentioned in chapter 3, will
be faster with eight to twelve nodes, depending on data size.

In terms of raw compute power, the CM5 should be three (64 32MHz SPARCs com-
pared with 12 60MHz SPARCs) to twelve times faster than the cluster, depending on how
well the benchmarks take advantage of the four-processor vector units available on each

7. Thelibrary implementation of general get in TMC C* has an additional parameter that specifies the ex-
pected collision behavior of the operation, but the descriptionimpliesthisis mostly intended to decrease mem-
ory requirements on large shapes. Thereis no documented analog for colliding sends.
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Figure 7.11a: Performance of Benchmarks on CM5 (Part 1)
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Figure 7.11b: Performance of Benchmarks on CM5 (Part 2)
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Figure 7.12a: Speedup of Cluster Relative to CM5-64 (Part 1)



177

CHAPTER 7. Evaluation of pC*

(sdA) 8zi1s wajgoud

(sdA) 8z1s wijqoud

10+3T 90+3T 00000T 0000T 000T 10+3T
w [%2]
B B
(17 @D
Q L Q
c c
el ©
3 3
5 5
< L <
@ ()
53 5]
o o
3 3
{ F Y
-x- (957)poud - e .y & -x- (957)p9uI ]
| - (D1 v ’ 1z = -v- (2D =
x (Q)TI v ™ L.T\x‘*Amv.:m"‘*\"*‘\\*"‘*\"*\\‘x:\*:‘*\\‘x‘\\*:‘ T
= (P)TI —m (P)TI
—+- (212 -+ (2110
—— (DT —= (DT
. . . 5z . L . 1
JJ JO dduew0pIad wiwl JO sduew.oiad
(sdA) 8zi1s waejqoud (sdA) 8z1s wiejqoud
80+9T L0+9T 90+8T 00000T 0000T 000T 10+9T 90+9T 00000T
g - g
3 LT\‘*‘\lx"‘*\"*‘\\*"‘*\"*\\‘x"\/M.‘/nu*\lm\%‘\\*_w.:.,._” 2
- Q o, " o
c C
o o
@ L g7 2o
= )
L < <
@ ()
53 L z 5]
(=] o
3 3
F 2 2
-x- (952)youid & [ -x- (952)yowd 5 »
—-w- (ZD)TIP = -—w- (DT =
o x va.E\o"*\\*"*\\*"Ax\\‘*‘\*:*‘\*:*‘\\*:*\ --x T x va._”_u
= (P)TI F e ()T €
—+- (2)TI2 - ()T
— (D1P — (D1
. . . . z1 . . . ot

dwe Jo aouewIoLIad

e1n[ J0 soURWIOMIAd

Figure 7.12b: Speedup of Cluster Relative to CM5-64 (Part 2)
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node. In fact, its advantage, when scaled to per-processor performance, is lessimpressive,
asshown in figure 7.13. Only on fft does the CM5 clearly outperform the cluster, due no
doubt to its high speed interconnect. It also outperformsthe cluster on thelarger mm bench-
marks, though not to such a marked degree. On the rest of the benchmarks, per-processor
performance seems to be between one half and one eighth that of the cluster. Note that,
although (for example) the 64 node CM5 has 256 vector unit processors, we are taking the
conservativeview that these processorsare not effective for the benchmarks considered, and
instead assume each CM5 has as many processors asit has Sparc nodes. The per-processor
advantage of the cluster is multiplied by four if the alternative interpretation is taken.

7.8 Performanceof pC* Contrasted with UNH C*

The final comparison is between pC* and the most recent version of its parent system,
the UNH C* compiler from the University of New Hampshire.® To permit a reasonable
comparison between the systems, we use the PVM inter-process mechanism for each, and
modified the UNH job startup mechanism to match that of pC*.° We were able to test only
three of the eight benchmarks—fft, njac, and roadnet. julia encountered a bug in the UNH
trandator, and the remaining programs rely on auxiliary routines that are not available in
the UNH runtime library.

The relative performance of the two systemsis shown in figure 7.14. The performance
of fft indicates that the communi cations method described in chapters 4 and 5isroughly two
times faster than the mechanism in (Lapadula & Herold, 1994). The latter algorithm falls
down in particular when the cluster size is not a power of two (cf. the performance curve
for twelve nodes).

On njac, pC* outperforms UNH by approximately afactor of three, except at higher data
sizes on clusters with 2K nodes where the performance drops to a factor of 2, and at small
data sizes with large clusters where the UNH implementation is faster. Degradation of pC*
in both these casesisdueto the performance problemswithreduce described in section 7.3.
The UNH system implements an algorithm equivalent to our LOGL OCEX of section 4.4.2,
which uses half the exchange steps that pC*’s algorithm does and does not suffer as badly
on power-of-two meshes. Comparing njac to a version without the reduction operation in-
dicates that, on a 2M-element problem with eight nodes, 10% of the UNH runtime goesto
reductions, compared with about 21% of the pC* runtime. On small problems, pC* per-

8. We used UNH C*, version 950609 from June 1995, available from ftp.cs.unh.edu:pub/cstar. The
runtime library was compiled with the same flags as that of pC*: -02 -DNDEBUG -msupersparc, Using gcc
2.6.3. C* programswere translated using flags -02 -DNDEBUG -msupersparc -debug=308, the latter be-
ing recommended to us by Phil Hatcher asturning on thelargest number of useful compile-time optimizations,
such as schedule-based communications (Mason et al., 1994).

9. Initia tests with PVM indicated that pvm_spawn, when permitted to assign processes to machines under
its own rules, did not provide a sufficiently fine control over what machine executed worker jobs, sometimes
putting two workers on the same machine while an available machine was left idle. The pC* and UNH im-
plementations described here assign jobs to all machines listed in the PVM configuration in a round-robin
order.



179

CHAPTER 7. Evaluation of pC*

(sdA) 8zi1s wajgoud

(sdA) 8z1s wisjqoud

80+3T L0+9T 90+9T 00000T 000T 80+3T L0+T 90+3T 00000T 0000T 000T
e ¥ 0 0
“:‘M\\*..*\\*
3 00005
3 oooos | 00000T T
3 3
S| 0000ST 3
3 3
e} el
F g s " ] 00000T & 3 00000z 2
G LB T ..m......m m m
@B g B 8 L 000052 3
R o —+ W- nUV
L A {oooost B | t 00000 B
- (ZTG)ZTGWOS o - (ZTG)2TGWOS o
- (957)9Gzwas 8 L o (952)9G2Was 1 gooose S
- MvwwvoEom 3 - MwmwvoEum 3
| v (DIP - g| L e (DT - 8
x- ()19 00000 <2 x- (8)T1 000007 <
- ()T @ (p)TI0
-+ (2)TP 3 -+ ()11 4 oooosy
—— (DT —— (DT
L L L L 000052 L L L 00000S
baisiy Jo sduewlopad 18UpPeO JO 8dURWI0MIB]
(sdA) 8zi1s waejgoud (sdA) 8z1s wiejqoud
L0+9T 90+8T 00000T 0000T 000T 10+9T 90+9T 00000T 000T
T T T 0 0
ek Mﬁmwmﬁm&ow
-o- (9G)9GzwWos
[oo-ox- Avwvwoptom -1 00§ r 000T
~-9- (2D)TI0 m m
- (8)TI0 ) @
s )T Vmoe 4 000T W o 0002 Wu
- (@1 . =1 3
— (DI g &
R 4 00ST 3 - 000€ 8
% 2
3 {000z 8 3 ooy 8
> >
o —_— o
° BN o
L - 2 t - 2
00se o -t (ZTG)ZTGWOS 0005 o
] o Mwmwvmmmeom ]
| e | @ | -~ (¥9)youids 2
o 000€ g N (14N 0009 2
*._ = * meﬁ_u =
L J L = ()11
005€ B AL 000
— (D1
L L L 000% L L L 0008

144 JO BoURWIOMAY

2e[u Jo dduBWLIOMEd

Figure 7.13a: Cluster and CM5 Performance: Elements Per Second Per Processor (Part 1)
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forms dlightly faster than UNH when the reductions are removed; on the larger problems,
pC*’s advantage returns closer to the factor of 3 improvement.

In the final benchmark, roadnet, the effect of the context optimizations of chapter 3 is
clearly shown, with pC* rocketing above UNH C* at approximately eight times faster for
the larger problem sizes.

Version: eval.tex,v 1.11 1996/04/09 02:06: 52 pab Exp



CHAPTER 8
CONCLUSIONS

Parallel computing is founded upon the premise that, if one worker can dig a
post-hole in sixty seconds, sixty workers can dig a post-hole in one second.

— Origin unknown

In this dissertation, we have considered many issuesin the implementation of aruntime

systemfor dataparallel languages on stock networked workstations. We have supported our
observations with extensive experimentation throughout the text, both in small programs
designed to carefully test particular issues such as global-to-local address conversions and
dataaccess patterns, and in more complex programswhich verify that the material described
herein integrates well in a complete system.

Among the contributions of this dissertation we include:

A heightened awareness of performance implications of local/global address conver-
sion, and the way that distribution decisions can affect this (chapter 3). The techniques
developed also alow us to use uniformly a cache-sensitive access pattern throughout
the entire runtime system.

A novel method of encoding the lists of active processorsin C* programs, through run-
length encoding, which saves space (up to 99% of a straightforward charmap encoding)
and time by not requiring checks on each inactive position in a shape (chapter 3).

A framework for portable but efficient communications support for the C* language
(chapter 4). The approach described here should also work for other parallel languages
which require extensive runtime support.

A heuristic to measure the success rate of a runtime test and avoid performing the test
when the test itself overwhelms the benefits that its result can enable (chapter 5). We
apply the test to detect colliding general communications, yielding in some common
cases afour-fold performance improvement.

A method of handling arbitrary grid communicationsover block distributed shapesor ar-
rays, which has extremely low overhead and is competitive with optimized special-case
implementations of communications on shapes with one or two dimensions (chapter 6).

We have found that careful and considered design of one part of the system often yields op-
portunities for additional optimizationsin arelated part. For example, finding a method of
uniformly walking all data in a strict sequential, contiguous order—desired independently

183
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to elicit good cache behavior—permits us to use an improved encoding of contexts, saving
both space and time. Similarly, the communi cation handler functions—required for system
correctness given limitations on network buffering—uwill permit an overlap of communica-
tion with computation by allowing the system to proceed with future computations during
the latency periods of a communication whose result is not needed immediately.

We have proved the performance of thepC* system by contrastingit with both optimized
sequential C solutions of a set of eight problems, and the latest C* implementation on a
specially-designed supercomputer, the CM5. Except for algorithmswhich admit highly op-
timized sequential implementations not conducive to parallelization, a four-processor pC*
system generally meets or exceeds the performance of the optimized sequential algorithm.
A twelveworkstation cluster connected with Ethernet outperformsa64 node supercomputer
with 5GB/sec interconnection on three of the eight benchmarks.

The portability of the system has been proved by giving performance results on net-
worked Unix workstations, a symmetric multiprocessor, and a distributed memory muilti-
processor. The system has been ported to a total of eight hardware platforms using five
inter-process communications mechanisms. Porting the system is a straightforward task,
taking roughly one programmer-day for each of the last three targets.

The methods described in thisdissertation are applicableto avariety of parallel systems,
not just C*. Many of the issues apply directly to the proposed Data Parallel C Extensions
(Numerical C Extensions Group of X3J11, 1994). Others, especially the communications
optimizations, can be integrated into any data-parallel system, such as Fortran 90 (Adams
et al., 1992) or High Performance Fortran (HPF Forum, 1993). The resulting synergism
will increase the performance of compilers that perform extensive compile-time analyses
by decreasing the performance gap when the analyses are unsuccessful, due to lacunae in
the source program.

Version: concl.tex,v 1.5 1996/04/09 02:06:52 pab Exp



APPENDIX A
CODE FOR GRID COMMUNICATION

A little inaccuracy sometimes saves tons of explanation.

— Saki (H.H. Munro), The Square Egg (1924) “Clovis on the Alleged
Romance of Business”

This appendix contains verbatim source for the grid algorithm described in chapter 6.
To reduce space and confusion, only the material pertinent to the grid send operationisin-
cluded, and conditionally compiled code relating to benchmarking or debugging has been
removed.

Id: ngridrw.c,v 2.33 1995/12/15 00:21:01 pab Exp

A.1 Datatypesand accessors

/* Dimensions in the n-dimensional loop we emulate during grid operations
* can be of one of these types */
typedef enum GridShiftType {

ST_noshift, /* Group of axes that don’t have shifts */
ST_block, /* Axis has shift, but is entirely local */
ST_distributed /* Axis has shift, with data across two rnodes */

} GridShiftType;

/* Essential information about the boundaries of the n-dimensional
* shift walk loop. Note that number of split points depends on the
* distribution of the axis, and can’t be predetermined; it’s
* dynamically allocated during setup. */

typedef struct GridShiftAxisInfo {

int axis; /* Axis this boundinfo applies to */

int shift; /* Amount of shift along axis */

int idelta; /* Change in offset when incrementing by 1 */

int wdelta; /* Change in offset when wrapping back to 1llim */
int walked; /* Have we walked this axis during skip? */

int wrapsplit; /* Index where torus wraps */

int cnt; /* Upper limit position in count */

int nsplit; /* Number of splits along axis */

int idx; /* Current loop index */

int * split; /* Split limit points */

} GridShiftAxisInfo;

#define GSIData(_gsi, _k) ((_gsi)->sinfo + (_k))
#define GSIaxis(_gsi, _k) (GSIData(_gsi, _k)->axis)
#define GSIshift(_gsi, _k) (GSIData(_gsi, _k)->shift)
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#define GSIincrdelta(_gsi, _k) (GSIData(_gsi, _k)->idelta)
#define GSIwrapdelta(_gsi, _k) (GSIData(_gsi, _k)->wdelta)
#define GSIwalked(_gsi, _k) (GSIData(_gsi, _k)->walked)
#define GSIcnt(_gsi, _k) (GSIData(_gsi, _k)->cnt)

#define GSInsplit(_gsi, _k) (GSIData(_gsi, _k)->nsplit)
#define GSIsplit(_gsi, _k) (GSIData(_gsi, _k)->split)

#define GSIidx(_gsi, _k) (GSIData(_gsi, _k)->idx)

#define GSIwrapsplit(_gsi, _k) (GSIData(_gsi, _k)->wrapsplit)

typedef struct GridShiftInfo {

int validp; /* Nonzero iff info set is initialized */

int irnode; /* Initial rnode */

int irshift; /* Initial rshift x/

int inib; /* Initial IB size */

int inoob; /* Initial 00B size */

int nshift; /* Number of active shift axes */

int mulfact; /* Number of positions in highest nonshift set */
int hascomm; /* If nonzero, grid shifts along dist. axis */
int ninbounds; /* Number of positions in bounds */

PCS__Shape shp; /* Shape the grid is for */

GridShiftAxisInfo sinfo [PCS__MAX_RANK]; /* Info about shift axes */
} GridShiftInfo;
#define GSIvalid(_gsi) ((_gsi)->validp)
#define GSIirnode(_gsi) ((_gsi)->irnode)
#define GSIirshift(_gsi) ((_gsi)->irshift)
#define GSIinoob(_gsi) ((_gsi)->inoob)
#define GSIinib(_gsi) ((_gsi)->inib)
#define GSInshift(_gsi) ((_gsi)->nshift)
#define GSImulfact(_gsi) ((_gsi)->mulfact)
#define GSThascomm(_gsi) ((_gsi)->hascomm)
#define GSIninbounds(_gsi) ((_gsi)->ninbounds)
#define GSIshape(_gsi) ((_gsi)->shp)

/* For pre-determining how we’re going to handle certain blocks of data */
typedef enum MoveMode {

MM_ignore, /* Ignore it */

MM_blockzero, /* Fill block with Os */

MM_blockmove, /* Move over in one chunk */

MM_elementzero, /* Fill with Os, element-by-element */

MM_elementdoop /* Perform doop element-by-element */
} MoveMode;

A.2 Loop Initialization

/* This function builds the loop emulator bounds and split points
* associated with a particular grid shift on a particular shape. */
static int
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setup_grid_bounds (PCS__Shape shp, /* Shape we’re operating on */
int * offset, /* Offsets for shift */
int sign, /* Direction of shift */
GridShiftInfo * sip) /* Where boundary info goes */

{
int ashift; /* Axis shift, from offset * sign */
int nshift; /* Number of dimensions in shift loop */
int mulfact; /* Scaling factor, combining nonshift axes */
int noob; /* Number of 00B elements starting region */
int ninbounds; /* Number of inbounds elements over all dims */
int k; /* Index over axes */
int rnode; /* Remote node we start with */
int rshift; /* Shift corresponding to rnode */
int bcol; /* Which block along distributed axis are we at */
int blimit; /* Number elements along axis on current node */
PCS__shape_pernode * rpn; /* Information about dist. on remote node */
int axis; /* Axis along which shift occurs */
int 1lim; /* Lower limit of comm */
int ulim; /* Upper limit of comm */
nshift = 0;
mulfact = 1;
noob = 0;

ninbounds = 1;

/* Mark the info valid. Whoever passed this in should have cleared
* the valid field at the start. The field is used to detect
* whether there is dynamic memory in the structure (for split
* points) which needs to be freed later. */

assert (! GSIvalid (sip));

GSIvalid (sip) = 1;

/* Start with our node; if nothing shifts, we keep this, otherwise
* we adjust it for the axes along which we shift. The result is
* the node that owns the first position we’re looking at. */

rnode = PCS__nodenum;

GSIhascomm (sip) = O;

/* Loop through all the axes of the shape, classifing each one as a
shift or nonshift. Aggregate the adjacent nonshift ones
together, since we can treat them as a contiguous block. For
shift ones, determine the lower and upper bounds for that
portion of the shift loop, as well as information required to
get the target processors if we cross out of the initial
* node. */
for (k = 0; k < PCS__ShpRank (shp); k++) {

ashift = sign * offset [k];

if (0 == ashift) {

/* Accumulate all adjacent non-shift axes */

* X ¥ ¥ *
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mulfact *= PCS__ShpDimLocal (shp, k);
continue;

if (abs (ashift) >= PCS__ShpDim (shp, k)) {
/* Shifts beyond the extent are equivalent to shifts to
* exactly the extent; doesn’t matter which direction in this
* case, all values will show up as out-of-bounds. */
ashift = PCS__ShpDim (shp, k);

if (1 < mulfact) {

/* Save a set of non-shift axes. We associate these with the
* lowest axis in the set, and set the range to cover the

* whole thing with no skips. We offset the range by the

* DimAbove for the highest axis, so that the rshift change
* is accurate. */

assert (0 < k);

GSIaxis (sip, nshift) = k-1;

GSIshift (sip, nshift) = 0;

GSInsplit (sip, nshift) = 1;

/* Allocate 2 split points. */

GSIsplit (sip, nshift) = malloc ((1+GSInsplit(sip, nshift))

* sizeof (int));

assert (NULL != GSIsplit (sip, nshift));

GSIsplit (sip, nshift) [0] = PCS__ShpDimAbove (shp, k-1);
GSIsplit (sip, nshift) [1] = GSIsplit (sip, nshift) [0] + mulfact;
GSIincrdelta (sip, nshift) = PCS__ShpNumPerAxis (shp, k-1);
GSIwrapdelta (sip, nshift) = 0;

GSIidx (sip, nshift) = GSIsplit (sip, nshift) [0];

GSIcnt (sip, nshift) = 1;

ninbounds *= mulfact;

mulfact = 1;

nshift++;

}
GSIaxis (sip, nshift) = k;
GSIshift (sip, nshift) = ashift;

/* In the worst case distribution, we may cross an internal node
* boundary DistNumBlocks-1 times. This plus the two external
* node boundaries determines the number of split points
* needed. */
GSIsplit (sip, nshift) = malloc ((1+PCS__ShpDistNumBlocks (shp, k))
* sizeof (int));
assert (NULL != GSIsplit (sip, nshift));

/* Compute the lower and upper limits of the targets to which
* our subgrid extent along axis k will map. Truncate to the
* ends of the full shape. We’ll use global index coordinates
* rather than local ones, to aid in offset calculations. */

1lim = PCS__ShpDimAbove (shp, k) + ashift;
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ulim = 11im + PCS__ShpDimLocal (shp, k);

if (0 > 1lim) {
1lim = 0;

} else if (PCS__ShpDim (shp, k) < 1lim) {
1lim = PCS__ShpDim (shp, k);

}

if (0 > ulim) {
ulim = 0;

} else if (PCS__ShpDim (shp, k) < ulim) {
ulim = PCS__ShpDim (shp, k);

}

assert (1lim <= ulim);

assert (0 <= 1lim);

assert (0 <= (11lim - ashift));

assert (PCS__ShpDim (shp, k) >= ulim);

assert (PCS__ShpDim (shp, k) >= (ulim - ashift));

/* Set up the increments based on the axis and the out-of-bound
* portion of the local axis */
GSIincrdelta (sip, nshift) = PCS__ShpNumPerAxis (shp, k);
GSIwrapdelta (sip, nshift) = (PCS__ShpDimLocal (shp, k)
- (ulim - 1lim))
* GSIincrdelta (sip, nshift);

/* Compute which block along the axis the first source position
* goes to---that’s where we start. First, subtract out any
* component of this axis that is already reflected in rnode
* because of our node number. Then add the absolute
* contribution from the walk. */
if (1 < PCS__ShpDistNumBlocks (shp, k)) {
/* Retrench to basis for processors handling this axis. */
bcol = (rnode / PCS__ShpDistPProd (shp, k))
% PCS__ShpDistNumBlocks (shp, k);
rnode -= bcol * PCS__ShpDistPProd (shp, k);

if (11im == ulim) {
/* Nothing live on this node: just set up the walk range. */
GSIsplit (sip, nshift) [0] = 11im - ashift;
GSIsplit (sip, nshift) [1] = ulim - ashift;
GSInsplit (sip, nshift) = 1;
} else {
/* Walk up to find the node that owns 1lim. */
bcol = 0;
blimit = PCS__ShpDistBlockSizes (shp, k) [0];
while (11lim >= blimit) {
bcol++;
assert (bcol < PCS__ShpDistNumBlocks (shp, k));
blimit += PCS__ShpDistBlockSizes (shp, k) [bcoll;
}
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/* Adjust node number by the shift to get 1lim */
rnode += bcol * PCS__ShpDistPProd (shp, k);

/* Figure out all the break points along the axis: these are
* computed by noticing when a target crosses a distribution
* split, but are stored in terms of the source offset to
* ease address translation */

GSIsplit (sip, nshift)[0] = 1lim - ashift;

GSInsplit (sip, nshift) = 1;

/* As long as the upper limit exceeds what the range we’ve
* looked at covers, we’re going to cross into another
* node. */

while (ulim > blimit) {

assert (GSInsplit (sip, nshift) <

(1+PCS__ShpDistNumBlocks (shp, k)));

GSIsplit (sip, nshift) [GSInsplit (sip, nshift)] =
blimit - ashift;

++GSInsplit (sip, nshift);

++bcol;

assert (bcol < PCS__ShpDistNumBlocks (shp, k));

blimit += PCS__ShpDistBlockSizes (shp, k) [bcoll;

+

/* We end up in the final block; save the upper bound of the
* transfer. */
assert (GSInsplit (sip, nshift) <
(1+PCS__ShpDistNumBlocks (shp, k)));
GSIsplit (sip, nshift) [GSInsplit (sip, nshift)] =
ulim - ashift;

/* Add the contribution of this axis to the in-bound region. */
ninbounds *= (ulim - 11lim);

/* If the shift is backwards, any 00B block from this axis

* occurs at the start. */

if (0 > ashift) {

¥

noob += GSIwrapdelta (sip, nshift);

/* Set up to start at the beginning of the in-bound region on

* this axis */
GSIidx (sip, nshift)
GSIcnt (sip, nshift)

GSIsplit (sip, nshift) [0];
1

/* There’s communication if there’s shifting along a distributed

* block. */
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GSThascomm (sip) |= PCS__ShpAxisIsDistributed (shp, k);

nshift++;
}
/* Either the base mulfact is positive, or there’s nothing on this
* node. */
assert ((0 < mulfact) ||
((0 == mulfact) && (0 == PCS__ShpNumLocal (shp))));

/* Scale the values that are in blocks by the number of elements
* per base block. */
ninbounds *= mulfact;

~
*

Compute the delta which we add to a local offset to get the
right offset for a remote node. Note that the loop bounds and
index values are in global values along the axis. Therefore,
the local offset is:
lo = sum (idx_k - Above_k{locall}) * NPA_k{local}
and the remote offset will be:
ro = sum (idx_k + delta_k - Above_k{remote}) * NPA_k{remote}
We want to find rshift = ro - lo. This value differs depending
on the remote node and on the axis. Though we could precompute
some of the terms in (ro-lo), it’d be a pain to dynamically
allocate the array to hold them for each grid operation, so we
just recompute them at each stage. (Note that if there is no
shift along an axis, both local and remote have the same NPA for
that axis, and so there’s no component for that axis in rshift.)
* x/

rshift = 0;
rpn = PCS__ShpNodeLocalDist (shp, rnode);
for (k = 0; k < nshift; k++) {
axis = GSIaxis (sip, k);
rshift += (GSIidx (sip, k) + GSIshift (sip, k)

- PCS__SPNAbove (rpn, axis)) * PCS__SPNNPA (rpn, axis)

- (GSIidx (sip, k) - PCS__ShpDimAbove (shp, axis))
* PCS__ShpNumPerAxis (shp, axis);

¥ OX X K X K K X X X ¥ X *

}

if (0 == ninbounds) {
GSIinoob (sip) = PCS__ShpNumLocal (shp);
} else {
GSIinoob (sip) = noob;
}
if (0 == ninbounds) {
GSIinib (sip) = O;
} else if (0 == mnshift) {
GSIinib (sip) = mulfact;
} else {
GSIinib (sip) = (GSIsplit (sip, nshift-1) [GSIcnt (sip, nshift-1)]



APPENDIX A. Code for Grid Communication 192

- GSIsplit (sip, nshift-1)[0]) * mulfact;
}
GSImulfact (sip) = mulfact;
GSInshift (sip) = nshift;
GSIirnode (sip) = rmnode;
GSIirshift (sip) = rshift;
GSIninbounds (sip) = ninbounds;
GSIshape (sip) = shp;

return ninbounds;

A.3 Region Search Support

Routines that find particular regions, given current position.

/* For restricted loop iterations, what type of sequence do we want to
* stop at? */
typedef enum IBSkipTo {
IBST_local, /* Stop at blocks on this node */
IBST_remote, /* Any block not this node */
IBST _remote_um_get, /* Any remote block not marked for get */
IBST_remote_um_send /* Any remote block not marked for send */
} IBSkipTo;

/* Conditions that implement each of the above stopping cases. */
#define IBST_TestNode(_ibst,_rn) ( \
(IBST_local == (_ibst)) ? (PCS__nodenum == (_rn)) : \
(IBST_remote == (_ibst)) ? (PCS__nodenum !'= (_rn)) : \
(IBST_remote_um_get == (_ibst)) ? ((PCS__nodenum != (_rn)) && \
! SGNgneed (_rn)) : \
(IBST_remote_um_send == (_ibst)) ? ((PCS__nodenum != (_rn)) && \
! SGNsneed (_rn)) : \
(assert (0), 0))

/* Jump to the next out-of-bounds region, updating offs to the proper
* offset for that. Returns the size of the oob region. */
PCS__INLINE static int
skip_to_grid_oob (GridShiftInfo * sip, /* Shift info */
int * offs) /* Current offset */

{

int k;

int noob;

k = GSInshift (sip) - 1;

x0ffs += (GSIsplit (sip, k) [GSInsplit(sip, k)] - GSIidx (sip, k))
* GSIincrdelta (sip, k);

GSIidx (sip, k) = GSIsplit (sip, k) [0];
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GSIcnt (sip, k) = 1;
noob = GSIwrapdelta (sip, k);
while ((0 <= --k) &&
(++GSIidx (sip, k) == GSIsplit (sip, k) [GSInsplit (sip, k)]1)) {
noob += GSIwrapdelta (sip, k);
GSIidx (sip, k) = GSIsplit (sip, k) [0];
GSIcnt (sip, k) = 1;
}
return noob;

¥

PCS__INLINE static int

skip_to_grid_inbound (
IBSkipTo skipto, /* Criterion for accepting target */
GridShiftInfo * sip, /* Information about shifts */
int * offs, /* Current offset in local shape */
int * rnodep, /* Node *offs maps to */
int * rshiftp) /* Delta to get to target on rnode */

{
int ib; /* Size of in-bound block */
int k; /* Index to shift group being walked */
int mink; /* Minimum k visited, for setting walked flags */
int clearforskip; /* Is it OK to skip to split when we loop */
int validr; /* Is the rnode value correct */

/* Note to all readers: This is probably the most terse and complex
* function (along with skip_to_torus) in the entire pC* system.
* There is not a single aspect of control flow that isn’t critical
* to correct behavior. Modify at your own peril. */
clearforskip = 1;
validr = 1;
k = mink = GSInshift (sip) - 1;
do {
/* See if we go to the next split point along the current axis */
if (clearforskip ||
(++GSIidx (sip, k) == GSIsplit (sip, k) [GSIcnt (sip, k)1)) {
if (GSIcnt (sip, k) < GSInsplit (sip, k)) {
/* Internal split point. Jump offset to split point, and
* up the remote node as well. */
x0ffs += (GSIsplit (sip, k) [GSIcnt (sip, k)]
- GSIidx (sip, k)) * GSIincrdelta (sip, k);
GSIidx (sip, k) = GSIsplit (sip, k) [GSIcnt (sip, k)1;
GSIcnt (sip, k)++;
assert (0 !'= GSIshift (sip, k));
*rnodep += PCS__ShpDistPProd (GSIshape(sip),
GSTIaxis (sip, k));
/* Normally, the resulting node is valid. However, if
* there are nodes with O elements along this axis between
* nodes that have data, there will be adjacent split
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points with the same value. Those must be skipped
over, each one inducing another step of node number
along the axis. We ensure the step is taken by
blocking the validity of the rnode, and setting
clearforskip true so we don’t increment the index
during the loop back. (We want clearforskip true
anyway, so at worst this means we move it out of the
conditional since it’s always true when k==nshift-1.)
* */
validr = (GSIsplit (sip, k) [GSIcnt (sip, k)-1] <
GSIsplit (sip, k) [GSIcnt (sip, k)1);
clearforskip = 1;
if (validr && (k < (GSInshift (sip) - 1))) {
/* Clear walked field, indicating we haven’t checked
* higher axes for this split region. Restart at
* highest axis. */
while (k < (GSInshift (sip) - 1)) {
GSIwalked (sip, k) = 0;
k++;

H
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}
}
} else {
/* Wrap at end of axis */
x0ffs += (GSIsplit (sip, k) [GSIcnt (sip, k)]
- GSIidx (sip, k)) * GSIincrdelta (sip, k)
+ GSIwrapdelta (sip, k);
GSIidx (sip, k) = GSIsplit (sip, k) [0];
GSIcnt (sip, k) = 1;
if (0 !'= GSIshift (sip, k)) {
xrnodep -= (GSInsplit (sip, k) - 1) =*
PCS__ShpDistPProd (GSIshape (sip), GSIaxis (sip, k));

/* Decrement down to the next lower axis so we adjust its
idx value. Mark clearforskip false so we don’t
short-circuit around the increment. Mark validr false
to guarantee we re-enter the loop to execute the
* increment. */
clearforskip = 0;
validr = 0;
k--;
if ((k < mink) && (0 <= k)) {
/* First time at this axis: clear the walked field */
GSIwalked (sip, k) = O;
mink = k;

* * *

}
}
} else {
assert (k < (GSInshift (sip) - 1));
/* The increment of idx for this axis was done in the second
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* branch of the logical OR in the conditional we failed to
* get here. */
validr = 1;
clearforskip = GSIwalked (sip, k);
GSIwalked (sip, k) = 1;
if (! clearforskip) {
/* Gotta go back and look at things again. Up axis to
* highest, clearing the walked fields. */
while (++k < (GSInshift (sip) - 1)) {
GSIwalked (sip, k) = 0;
}
clearforskip = 1;
}
X

} while ((0 <= k) && ((! validr) ||

(! IBST_TestNode (skipto, *rnodep))));

if (0 <= k) {

PCS__shape_pernode * rpn; /* Distribution info for remote node */
PCS__Shape shp; /* Current shape */
int axis; /* Axis for each loop */

/* Compute the appropriate shift value added to local offsets to
* get the remote offset for a particular node. */
assert (validr);
*rshiftp = 0;
assert (0 <= *rnodep);
assert (*rnodep < PCS__mesh_size);
shp = GSIshape (sip);
rpn = PCS__ShpNodeLocalDist (shp, *rnodep);
assert (0 < PCS__SPNNumPos (rpn));
for (k = 0; k < GSInshift (sip); k++) {
axis = GSIaxis (sip, k);
assert (0 <= axis);
assert (axis < PCS__ShpRank (shp));
/* See setup_grid_bounds for explanation of this formula */
xrshiftp += (GSIidx (sip, k) + GSIshift (sip, k) -
PCS__SPNAbove (rpn, axis)) * PCS__SPNNPA (rpn, axis)
- (GSIidx (sip, k) - PCS__ShpDimAbove (shp, axis))
* PCS__ShpNumPerAxis (shp, axis);

}

k = GSInshift (sip) - 1;

ib = (GSIsplit (sip, k) [GSIcnt (sip, k)] - GSIidx (sip, k))
* GSIincrdelta (sip, k);

} else {

}

ib = 0;

return ib;
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A4 Grid Send

/* Do a grid write from srcp into destp, performing dest op= src, with
* a shift given by offset. Where the corresponding source position
* is out of range and fillp is not null, use fillp. */

/* !'!Begin PCS__defs!! */

void

PCS__grid_send (PCS__PvarPtr destp, /* Dest. pvar */

PCS__PvarPtr srcp, /* Source pvar */
PCS__PvarPtr fillp, /* Fill source for oob source */
PCS__Type dtype, /* Type of dest */
PCS__Type stype, /* Type of src */
PCS__size_t size, /* Size of operand */
PCS__Red0p op, /* Reduction operator */
int offset[]) /* Offsets */
/* 11End PCS__defs!! x/

{
int offs; /* Local offset */
PCS__ctx_rletype * ctxp; /* Pointer to context */
int vplimit; /* Maximum local vp index */
int ctxvpi; /* Context VP index */
int ctxcnt; /* Encoded context sequence */
int nib, noob; /* Number in and out of bounds for block */
PCS__Shape shp; /* Shape being walked */

GridShiftInfo nsi; /* Negative shift summary info */
GridShiftInfo psi; /* Positive shift summary info */

int rnode, rshift; /* Remote node and offset delta */

MoveMode fillmode; /* How to move from *fillp to *srcp */
MoveMode sendmode; /* How to move from *srcp to message */
MoveMode recvmode; /* How to move from message to *destp */
PCS__DoopFunction * movedoop; /* Function to perform moves */
PCS__DoopFunction * opdoop; /* Cached function to perform doop */

ENTER_FUNCTION;

/* Invalidate skip information, so we don’t free unallocated
* pointers */

GSIvalid (&nsi) = GSIvalid (&psi) = 0;

shp = PCS__PPshape (srcp);

vplimit = PCS__ShpNumLocal (shp);

movedoop = PCS__lookup_doop (PCS__NOP, dtype, stype);

opdoop = PCS__lookup_doop (op, dtype, stype);

/* Under normal circumstances, the source and dest are disjoint, so
* we don’t buffer local stuff, but just stuff it right where it’s
* supposed to go. Of course, if they aren’t disjoint, that’1ll
* break big-time, so we make sure they are. */

if (PCS__PPdata (destp) == PCS__PPdata (srcp)) {

PCSRTMemMark PCS__cplrtemp_mark; /* Temporary mempool marker */



APPENDIX A. Code for Grid Communication 197

PCS__Pvar tvar; /* Created temporary value */
PCS__PvarPtr tvarp; /* Pointer to tvar */
int 1i; /* Index over local elements of dshp */

/* Mark the current state of the temporary mem pool. Allocate a
* temporary which we can use for the source. Copy the original
* destination into the temporary. Call ourselves with the same
* arguments except the source. Free the temporary, and
* return. */
PCS__cplrtemp_mark = PCS__RTMMark (PCS__RTMC_CompilerTemp) ;
tvar = PCS__PvarAlloc (shp, size, PCS__RTMC_CompilerTemp) ;
PCS__PPSetPointTo (tvarp, PCS__PVdata (tvar), tvar);
if (PCS__PPstride (srcp) == PCS__PPstride (tvarp)) {
assert (PCS__PPstride (tvarp) == size);
memcpy (PCS__PPdata (tvarp), PCS__PPdata (srcp), vplimit * size);
} else {
for (i = PCS__ShpNumLocal (shp) - 1; i >= 0; i--) {
movedoop (PCS__PPelement (tvarp, i), PCS__PPelement (srcp, i),

size);
}
}
PCS__grid_send (destp, tvarp, fillp, dtype, stype, size, op,
offset);

PCS__RTMReclaim (PCS__cplrtemp_mark, PCS__RTMC_CompilerTemp) ;
LEAVE_FUNCTION;

return;
}
if (PCS__PPshape (destp) != shp) {
PCS__Fatal ("grid_send: Destination shape doesn’t match"
"source shape.\n");
}
if ((! PCS__is_null_pvar_ptr (fillp)) &&
(PCS__PPshape (fillp) != shp)) {
PCS__Fatal ("grid_send: Fill shape doesn’t match source shape.\n");
}
/* Set up the operation modes for fills and local receives, so we
* don’t have to check these in the body of the loop. */
if (PCS__is_null_pvar_ptr (fillp)) {
fillmode = MM_ignore;
} else {
if ((PCS__PPstride (fillp) == PCS__PPstride (destp)) &&
(PCS__PPstride (fillp) == size)) {
fillmode = MM_blockmove;
} else {

fillmode = MM_elementdoop;
}
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/* Mode for applying data from source or incoming message to
destination. Must be conservative (message will [probably]
always be contiguous, but srcp might not). If source and dest
types aren’t the same, they might be different sizes, so we need
to ensure conversions are done. */
if ((PCS__NOP == op) && (dtype == stype) &&
(PCS__PPstride (destp) == PCS__PPstride (srcp)) &&
(PCS__PPstride (destp) == size)) {
recvmode = MM_blockmove;
} else {
recvmode = MM_elementdoop;

* X X *

}

/* Mode for copying from source area into outging message buffer x/
if (PCS__PPstride (srcp) == size) {
sendmode = MM_blockmove;
} else {
sendmode = MM_elementdoop;
}

CSafety_00B_Reset ();
setup_grid_bounds (shp, offset, 1, &psi);

if (0 == GSInshift (&psi)) {
opassign_var (destp, srcp, recvmode, dtype, stype, size, op);
free_gridshiftinfo (&psi);
LEAVE_FUNCTION;
return;

if (GSIhascomm (&psi)) {
init_addsdat (0, destp, dtype, stype, recvmode, op, size);
assert (ASD_datactx != asdtype); /* This is only for gets */

/* Walk through sending off data to the other side. */
offs = GSIinoob (&psi);
nib = GSIinib (&psi);
rnode = GSIirnode (&psi);
rshift = GSIirshift (&psi);
ctxvpi = O;
ctxp = PCS__ShpContext (shp);
PCS__ctx_nextseq (ctxcnt, ctxp, ctxvpi, vplimit);
while (offs < vplimit) {

if (PCS__nodenum != rnode) {

int toffs = offs; /* Mutable offset value */

assert (0 <= rnode);
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assert (rnode < PCS__mesh_size);
SGNsused (rnode) = 1;
while (0 < nib) {

int cnt;

PCS__ctx_skiptovpi (&ctxcnt, &ctxp, &ctxvpi, vplimit,

toffs);
if (0 > ctxent) {
/* Active sequence: package up to min (bsize, ctxcnt) */

cnt = -ctxcnt;

if (cnt > nib) {
cnt = nib;

}

addsdata (srcp, toffs, cnt, sendmode, movedoop,
rnode, toffs + rshift, size);
} else {
/* Inactive sequence: skip to min (nib, ctxcnt) */
cnt = ctxcent;
if (cnt > nib) {

cnt = nib;
}

}

nib -= cnt;

toffs += cnt;

}

}
nib = skip_to_grid_inbound (IBST_remote, &psi, &offs, &rnode,

&rshift) ;

}
reset_shift_info (&psi);

/* Send the final packets on their way */
flush_addsdat ();

/* Now walk looking the other way, and see who’s going to be
* sending us something, so we’re sure we’ve finished */
setup_grid_bounds (shp, offset, -1, &nsi);
offs = GSIinoob (&nsi);
nib = GSIinib (&nsi);
rnode = GSIirnode (&nsi);
while (offs < vplimit) {
if ((PCS__nodenum != rnode) && ! SGNsneed (rnode)) {
SGNsneed (rnode) = 1;
sdat_nleft++;
}
nib = skip_to_grid_inbound (IBST_remote_um_send, &nsi, &offs,
&rnode, &rshift);
}
sdat_flready = 1;
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/* Walk handling the local stuff */
offs = GSIinoob (&psi);
nib = GSIinib (&psi);
rnode = GSIirnode (&psi);
rshift = GSIirshift (&psi);
ctxvpi = O;
ctxp = PCS__ShpContext (shp);
PCS__ctx_nextseq (ctxcnt, ctxp, ctxvpi, vplimit);
while (offs < vplimit) {

if (PCS__nodenum == rnode) {

int toffs = offs; /* Mutable offset value */

/* Make sure everybody will be in range */
if (toffs + nib >= vplimit) {
nib = vplimit - toffs;
}
assert (0 <= toffs);
assert (toffs < vplimit);
assert (0 <= toffs + rshift);
assert (toffs + rshift < vplimit);

/* Send is contexted from sourcep position */
while (0 < nib) {
int cnt;

PCS__ctx_skiptovpi (&ctxcnt, &ctxp, &ctxvpi, vplimit, toffs);
if (0 > ctxcnt) {
/* Active sequence: package up to min (nib, ctxcnt) */

cnt = -ctxcent;

if (ent > nib) {
cnt = nib;

}

switch (recvmode) {

case MM_blockmove:

memcpy (PCS__PPelement (destp, toffs + rshift),
PCS__PPelement (srcp, toffs), size * cnt);

break;

case MM_elementdoop: {
int i;
char * dp, * sp;
int ddp, dsp;

dp = PCS__PPelement (destp, toffs + rshift);
sp = PCS__PPelement (srcp, toffs);

ddp = PCS__PPstride (destp);

dsp = PCS__PPstride (srcp);

i = cnt;

while (0 < i--) {
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if

opdoop (dp, sp, size);

dp += ddp;
sp += dsp;
}
break;
}
default:
assert (0);
}
} else {

/* Inactive sequence: skip to min (nib, ctxcnt) */
cnt = ctxcent;
if (cnt > nib) {

cnt = nib;

}
}
nib -= cnt;
toffs += cnt;
}
}
nib = skip_to_grid_inbound (IBST_local, &psi, &offs, &rnode,

&rshift);

Warn about any attempts to send out-of-bounds. */
(! CSafety_00B_Ignore ()) {
offs = 0;
ctxp = PCS__ShpContext (shp);
ctxvpi = O;
PCS__ctx_nextseq (ctxcnt, ctxp, ctxvpi, vplimit);
reset_shift_info (&psi);
noob = GSIinoob (&psi);
while (offs < vplimit) {
assert (0 <= noob);
if (0 < noob) {
/* We have a sequence of 00B positions who we "send" to.
* If any are active, this is illegal, so do a warning. */
if (offs + noob > vplimit) {
noob = vplimit - offs;

}
while (0 < noob) {
int cnt;

PCS__ctx_skiptovpi (&ctxcnt, &ctxp, &ctxvpi, vplimit,
offs);
if (0 > ctxent) {
/* Active sequence. Skip to min (ctxcnt, noob) and
* warn. */
cnt = -ctxcnt;
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if (cnt > noob) {
cnt = noob;
}
PCS__00BWarn ("grid send", PCS__current, NULL);
} else {
/* Inactive sequence. Skip to min (ctxcnt, noob). */
cnt = ctxcent;
if (cnt > noob) {
cnt = noob;
}
}
noob -= cnt;
offs += cnt;
}

}
noob = skip_to_grid_oob (&psi, &offs);

}

/* Handle any 00B reception actions. */
if (MM_ignore != fillmode) {
if (GSIvalid (&nsi)) {
/* Already created nsi during send walk */
reset_shift_info (&nsi);
} else {
/* Create nsi so we can see what incoming sends come from 00B */
setup_grid_bounds (shp, offset, -1, &nsi);

}
offs = 0;
noob = GSIinoob (&nsi);

while (offs < vplimit) {
assert (0 <= noob);
if (0 < noob) {
/* We have a sequence of positions who are '"sent" to by
* 00B. Do a context insensitive move from the fill value
* into the region. */
if (offs + noob > vplimit) {
noob = vplimit - offs;
}
switch (fillmode) {
case MM_blockmove:
/* Fills in send operations are uncontexted. Blow
* the data in. */
memcpy (PCS__PPelement (destp, offs),
PCS__PPelement (fillp, offs), size * noob);
break;
case MM_elementdoop: {
int i;
char * dp, * sp;
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int ddp, dsp;

dp = PCS__PPelement (destp, offs);
sp = PCS__PPelement (fillp, offs);
ddp = PCS__PPstride (destp);

dsp = PCS__PPstride (fillp);
for (i = 0; i < noob; i++) {
opdoop (dp, sp, size);
dp += ddp;
sp += dsp;
}
break;
}
default:
assert (0);
}
}
offs += noob;
noob = skip_to_grid_oob (&nsi, &offs);

}

/* If we’re communicating, wait for the last of the incoming data */
if (GSIhascomm (&psi)) {

finish_sdat ();
X

/* Free any dynamic memory allocated during gsi setup, looking at
* the valid flag to see if there was any. */

free_gridshiftinfo (&nsi);

free_gridshiftinfo (&psi);

LEAVE_FUNCTION;

return;

\ersion: appgridops.tex,v 1.5 1996/04/09 02:06:52 pab Exp



APPENDIX B
C* BENCHMARK CODE

Where's the beef?

— Cliff Freeman (advertizing slogan for Wendy’s Hamburgers; words
spoken by Clara Peller)

This appendix contains source for the C* benchmarks used in chapter 7.

B.1 Fast Fourier Transform

/* Id: fft.cs,v 1.1 1996/01/09 15:23:21 pab Exp

%

* FFT: Implements a 1 dimensional complex FFT. The real and

* imaginary parts are presented separately in two poly floats.
* The length of the data array is n, and n is 27p. */

#include <stdio.h>
#include <stdlib.h>
#include <cscomm.h>
#include <math.h>
#include <assert.h>
#include <cm/timers.h>

#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif /* M_PI */

shape []Shapeld;
void fft_1d (float:Shapeld *realpart,

float:Shapeld *imagpart,
bool inversep)

{
int 1i; /* General index value */
int spacing; /* Stride in butterfly loop */
int iteration = 0; /* Which iteration of loop? */
int nbits; /* Number of bits in loop mask */
double pi; /* Value of pi for forward/invert */

float:current sin_factor; /* Trig factors of pi/spacing */
float:current cos_factor;

float:current real_assoc; /* Temps for communicated values */
float:current imag_assoc;

204
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float:current ftemp; /* Temp for source for trig factors */
unsigned int:current name; /* Bit mask for partners */
unsigned int:current name_shift;

unsigned int:current assoc;

bool:current assoc_flag; /* Which type of partner? */

/* Set nbits to floor(log_2 (dimof (current, 0))) */
i = dimof (current, 0);

nbits = 0;
while (1 < i) {
++nbits;
i>>=1;
}
if (dimof (current, 0) != (1 << nbits)) {

fprintf (stderr, "fftld: Error: Incoming shape must have power-of-2"
"dimension (has %d)\n", dimof (current, 0));
exit (1);
+

everywhere {

/* Reverse the bits in the processor numbers */
name_shift = name = pcoord(0);
assoc = 0;
for (i = 0; i < nbits; i++) {
assoc = (assoc << 1) | (name_shift & 1);
name_shift >>= 1;
}

name_shift = name;

[assoc] #*realpart = *realpart;
[assoc] *imagpart = *imagpart;

pi = inversep 7 -M_PI : M_PI;

/* top of butterfly loop */
for (spacing = 1; spacing < dimof (current, 0); spacing = 2*spacing) {
iteration++;

/* assign associate processor */
where (name_shift % 2) {
assoc_flag = 1;
assoc = name - spacing;
} else {
assoc_flag = 0;
assoc = name + spacing;

¥

/* exchange data between associated processors */
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[assoc] real_assoc = *realpart;
[assoc] imag_assoc = *imagpart;

/* prepare data in primary processors */
where (assoc_flag) {

ftemp = *realpart;

*realpart = real_assoc;

real_assoc = -ftemp;

ftemp = *imagpart;

*imagpart = imag_assoc;

imag_assoc = -ftemp;

}

/* Obtain phase factors. For FFT inversion, the value of pi has
* been negated so the sign difference in the sin component for

* the fft inverse formula is effected. */
ftemp = (pi / spacing) * (name 7 spacing);
cos_factor = cos (ftemp);
sin_factor = sin (ftemp);

206

xrealpart += (cos_factor * real_assoc) + (sin_factor * imag_assoc);
ximagpart += (cos_factor * imag_assoc) - (sin_factor * real_assoc);

name_shift >>= 1;

}

/* Normalize for inverse transform */

if (inversep) {
float tmp = 1.0F / dimof (current, 0);
*realpart *= tmp;
*imagpart *= tmp;

}

}
}

main(int argc, char **argv)
{

int len;

int loglen;

len = 65536;
if (1 < arge) {

len = atoi (argv [1]);
}

loglen = 0;

while (1 < len) {
++loglen;
len >>= 1;
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en = (1 << loglen);

llocate_shape(&Shapeld, 1, len);

ith (Shapeld) everywhere {

float:current realpart, imagpart; /* Data we’re operating on */

float:current rpO, ipO; /* Original values, for comparisons */

rp0 = (prand () % 10000) / 100.0 - 50.0;
ip0 = (prand () % 10000) / 100.0 - 5.0;

realpart = rpO;
imagpart = ip0;
CM_timer_clear(0);
CM_timer_start(0);

fft_1d(&realpart, &imagpart, 0);
fft_1d(&realpart, &imagpart, 1);

CM_timer_stop(0);

printf ("# Maximum difference is (%g, %g)\n",
>7= fabs (rp0 - realpart),
>?= fabs (ip0 - imagpart));

printf ("%10.4f %10.4f %10.4f # fft Jd ; VP %d ; P %d\n",
CM_timer_read_elapsed (0), CM_timer_read_cm_busy (0),
CM_timer_read_cm_idle (0), len, positionsof (Shapeld),
positionsof (physical));

eallocate_shape (&Shapeld);

B.2 Histogram Equalization

~
* X X X X X X X *

* *

*
~

Id: histeq.cs,v 1.1 1996/01/09 15:23:21 pab Exp
Created: Tue Jun 6 13:36:36 1995

Peter A. Bigot (pab@clotho)

Last Revised:

Description:
C* version of the histogram equalization filter benchmark.

Update Information:

End of updates
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/¥ —m e */

/* Include Files */

#include <stdio.h> /* Standard input/output routines */
#include <stdlib.h> /* Standard library routines */
#include <assert.h> /* Debugging assertion macro */

#include <cscomm.h>
#include <cm/timers.h>
#include <string.h>

/K e */

/* Constant and Macro Declarations */

/¥ —mmm e x/

/* Type Declarations */

/¥ —m e *x/

/* Variable Definitions */

JK mm e */

/* Function Definitions */

/* Enhance an image by assigning intensities based on the frequency of
* intensities in the original image. Sets a new image. */
void
histogram_equalization (
unsigned char:void * imp, /* Pointer to source image */
unsigned char:shapeof (*imp) * newimage,
unsigned int outpelrange) /* Number of intensities in output image */
{
shape [] PixelVal;
unsigned char maxpel;

with (shapeof (*imp)) everywhere {

/* Find the maximum pixel value, and set up a shape to histogram
* into. */

maxpel = >7= *imp;

allocate_shape (&PixelVal, 1, maxpel+1);

with (PixelVal) everywhere {
unsigned int:current hist;
unsigned int:current histrc;
unsigned char:current newpel;

/* Count the number of times each pixel value appears in the
* image. */
hist = 0;
with (shapeof (*imp)) everywhere {
[*imp] hist += (int:current) 1;

}
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/* Do a running sum of the histogram values, then normalize them
* over the real pixel range, assigning each original pixel
* value to a new pixel value in the normalized histogram based
* on the midpoint of the histogram bins. */
histrc = scan (hist, O, CMC_combiner_add, CMC_upward, CMC_none,
CMC_no_field, CMC_exclusive);
newpel = (unsigned char:current)
(outpelrange * (histrc + hist/2.0)
/ (float:current) positionsof (shapeof (*imp)));
/* Read the normalized pixel values from the "normalized"
* histogram bins. */
with (shapeof (*imp)) everywhere {
*newimage = [*imp] newpel;

}
}
deallocate_shape (&PixelVal);
+
}
int main (int argc, /* Number of command line arguments */
char * argv []) /# Array of command line arguments */
{
int nrows; /* Rows in image */
int ncols; /* Columns in image */
shape Image; /* Image shape */

nrows = ncols = 512;
if (1 < arge) {
nrows = atoi (argv [1]);
}
if (2 < arge) {
ncols = atoi (argv [2]);

}

allocate_shape (&Image, 2, nrows, ncols);
with (Image) everywhere {

unsigned char:current img;

unsigned char:current mfimg;

img = 25 + (prand () %% 200);

CM_timer_clear (0);

CM_timer_start (0);

histogram_equalization (&img, &mfimg, 256);

CM_timer_stop (0);

printf ("%12.5g %12.5g %12.5g # histeq %d %d ; VP %d ; P %d\n",
CM_timer_read_elapsed (0), CM_timer_read_cm_busy (0),
CM_timer_read_cm_idle (0), dimof (current, 0),
dimof (current, 1), positionsof (current),
positionsof (physical));
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}
deallocate_shape (&Image);
return (0);

¥

B.3 Jacobi Iteration

S
*

Id: njac.cs,v 1.1 1996/01/09 15:23:21 pab Exp
Created: 77

Peter A. Bigot (pab@alecto)

Last Revised:

Description:
Jacobi iteration benchmark.

* ¥ ¥ X X ¥ X *

Update Information:

* %

End of updates

*
~

/¥ —m e */
/* Include Files */

#include <stdlib.h>
#include <stdio.h>
#include <cscomm.h>
#include <math.h>
#include <cm/timers.h>

shape []1[] Field;

int
main (int argc, char * argv [])
{

float delta;

int niters;

int maxiters;

int nrow, ncol;

ncol = nrow = 128;
maxiters = 100;

if (1 < arge) {

nrow = atoi (argv [1]);
}
if (2 < arge) {

ncol = atoi (argv [2]);
}

210
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if (3 < arge) {
maxiters = atoi (argv [3]);

}

allocate_shape (&Field, 2, nrow, ncol);
with (Field) everywhere {
float:Field field;

where (0 == pcoord (1)) {
field = 65.0F;

} else where (dimof (current, 1)-1 == pcoord (1)) {
field = 55.0F * pcoord (0) / dimof (current, 0);

} else where (dimof (current, 0)-1 == pcoord (0)) {
field = 55.0F;

} else where (0 == pcoord (0)) {

field = 0.0F;
} else {
field = 30.0F;

}

niters = maxiters;
CM_timer_clear (0);
CM_timer_start (0);
while (0 < niters--) {
float:current tmp;

where ((0 < pcoord (0)) &%
(0 < pcoord (1)) &&
((dimof (current, 0)-1) > pcoord (0)) &&
((dimof (current, 1)-1) > pcoord (1))) {
tmp = ([.-1][.]field + [.+1][.]field +
(.1[.-11field + [.]J[.+1]1field) / 4.0F;
/* Normally, we would use delta to determine convergence;

* since this is a benchmark, we compute the necessary value,

* but instead use iteration counts to determine how long we
* should run. */
delta = >7= fabs (field - tmp);
field = tmp;
}
}
CM_timer_stop (0);
printf ("%12.5f %12.5f %12.5f # njac %d %d %4 ; VP %d ; P %d\n",
CM_timer_read_elapsed (0), CM_timer_read_cm_busy (0),
CM_timer_read_cm_idle (0), nrow, ncol, maxiters,
positionsof (current), positionsof (physical));
}
deallocate_shape (&Field);
}

211
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B.4 Road Distance

/* Id: roadnmet.cs,v 1.1 1996/01/09 15:23:21 pab Exp
* Created: Wed Dec 6 08:17:52 1995
* Peter A. Bigot (pab@alecto)
* Last Revised:
*
* Description: Test to measure distance of points from roads: all
* points within maxiters 4-connected steps from a "road" (marked as
* 0s in the pvar) are labelled with the number of steps it took to
* get there from some road point.
*
* Update Information:
K o
* End of updates */
/¥ —mmm */
/* Include Files */
#include <stdio.h> /* Standard input/output routines */
#include <stdlib.h> /* Standard library routines */
#include <assert.h> /* Debugging assertion macro */

#include <cm/timers.h> /* Timing support */

int main (int argc, /* Number of command line arguments */
char * argv []) /* Array of command line arguments */
{
int height; /* Rows in map */
int width; /* Columns in map */
int maxiters; /* How far away from road do we go */
int 1i; /* Index over iters */
shape S; /* Shape of map */

height = width = 1024;
maxiters = 10;
if (1 < arge) {
height = atoi (argv [1]);
}
if (2 < arge) {
width = atoi (argv [2]);
}
if (3 < arge) {
maxiters = atoi (argv [3]);

}

allocate_shape (&S, 2, height, width);
with (S) everywhere {
int:current map;
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/* Initialize the map: everywhere but a road is set to a maximum
* value; road locations are set to 0. For the benchmark, the
* road network consists of an overlaid cross and X at the center
* of the map, extending to all edges. */
map = (int:current) (l+maxiters);
where (((dimof (current, 0) / 2) == pcoord (0)) ||
((dimof (current, 1) / 2) == pcoord (1)) ||
(pcoord (0) == pcoord (1)) ||
((dimof (current, 0) - 1 - pcoord (0)) == pcoord (1))) {
map = 0;
}

CM_timer_clear(0);
CM_timer_start(0);

for (1 = 0; 1 < maxiters; i++) {
/* Restrict attention to regions known to be on the edge of
* roads. */
where (map == i) {
int:current tmap; /* Source map values */

/* For each point known to be near a road, let its neighbors
* know that they’re at most one further away. */

tmap = map + 1;

where (0 < pcoord (0)) {
[.-11[.] map <?= tmap;

¥

where ((dimof (current, 0)-1) > pcoord (0)) {
[.+11[.] map <?= tmap;

¥

where (0 < pcoord (1)) {
[.1[.-1] map <?= tmap;

}

where ((dimof (current, 1)-1) > pcoord (1)) {
[.1[.+1] map <?= tmap;

¥

¥
}

CM_timer_stop(0);

printf ("%10.4f %10.4f %10.4f # roadnet %d %d %d ; VP %d ; P %d\n",
CM_timer_read_elapsed (0), CM_timer_read_cm_busy (0),
CM_timer_read_cm_idle (0), height, width, maxiters,
positionsof (current), positionsof (physical));

}
deallocate_shape (&S);
return (0);
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B.5 Amplitude Screener

/* Id: amp.cs,v 1.1 1996/01/09 20:40:52 pab Exp
* amp.cs - scan-based amplitude screener

*/
#include <stdlib.h> /* General support routines */
#include <cscomm.h> /* Scan and communication routines */

#include <cm/timers.h> /* Timing support */

/* Maximum image value */
#define MAX_VAL 256

/* Detect all pixels which are more than threshold times the average
* of their surrounding pixels within a wsize window in both
* directions. */
int amp_screener (
unsigned char:current *image, /* IN: Image data */
int wsize, /* IN: Window size */
float threshold, /* IN: Threshold for brights */
unsigned char min_threshold, /# IN: Min pixel threshhold for brights */
bool:current *bright_return) /* OUT: Boolmask indicating brights */

{
int:current iimage; /* Temporary used for image window sums */
int lwsize; /* Extent of window strictly below center */
int uwsize; /* Extent of window strictly above center */

/* Determine portion of window that falls to right of center pixel.
* We allot (wsize/2) to left, and discount the center. This
* correctly handles even-sized windows (although there is a bias if
* you use them). */

lusize = (wsize / 2);

uwsize wsize - lwsize - 1;

everywhere {

/* Determine the sum of the pixels in the wsizeXwsize window
* centered on each pixel, using scan/subtract. DNote that we use
* an integer-valued temporary to avoid problems with overflow. */
iimage = scan ((int:current) *image, 1, CMC_combiner_add, CMC_upward,
CMC_none, CMC_no_field, CMC_inclusive);
where (pcoord (1) >= wsize) {
iimage -= [.]J[.-wsize] iimage;
}
iimage = scan (iimage, O, CMC_combiner_add, CMC_upward,
CMC_none, CMC_no_field, CMC_inclusive);
where (pcoord (0) >= wsize) {
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}

}

iimage -= [.-wsize][.] iimage;

}

/* iimage holds window sums, with sum appearing in lower right
* (higher along axes) corner of the window. Shift them back to
* the center. */
where ((pcoord (0) >= uwsize) &&
(pcoord (1) >= uwsize)) {
[.-uwsize] [.-uwsize] iimage = iimage;

}

/* Subtract the center pixel from the total sum of the wsize,
* yielding the sum of the surrounding pixels */
iimage -= *image;

/* Mark a bright if the window sum is valid (*center_pixel), the
* image value meets the minimum threshold, and the image value is
* more than threshold times the average of the surrounding
* pixels. */

/* Scale threshold to do average of surround when scaling center
* value. */
threshold /= wsize*wsize - 1;

/* Only set brights within the active area; the edges are
* non-bright. */
where (((wsize / 2) <= pcoord (0)) &%
((wsize / 2) <= pcoord (1)) &&
((dimof (current, 0) - uwsize) > pcoord (0)) &&
((dimof (current, 1) - uwsize) > pcoord (1))) {
xbright_return = (min_threshold < *image) &&
((threshold * iimage) < *image) ;
} else {
*bright_return

0;
}

return += *bright_return;

int main(int argc, char **argv)

{

shape Imageshape; /* Shape to use for images */
int wsize; /* Window size for screening */
int nreturns; /* Number of bright returns */
float thresh; /* Threshold for brights */

int num_cols; /* Columns in image */

int num_rows; /* Rows in image */

215
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num_cols = num_rows = 128;
wsize = 3;
thresh = 1.1;

/* Usage: amp nrows ncols winsize threshold */
if (1 < arge) {

num_rows = atoi (argv [1]);
}
if (2 < arge) {

num_cols = atoi (argv [2]);
}
if (3 < arge) {

wsize = atoi (argv [3]);
}
if (4 < arge) {

thresh = atof (argv [4]);
}

printf ("# Amplitude Screener: Image [%d x %d], ws: %d, thresh: J%g\n",
num_rows, num_cols, wsize, thresh);

Imageshape = allocate_shape (&Imageshape, 2, num_rows, num_cols);

with (Imageshape) {
unsigned char:current image; /* Image being amp’d */
bool:current bright; /* Which positions are brights */

everywhere {
/* We could use randoms, but this varies with numbers of
* processors, and would be difficult to match in the C version.
* Use an image with intensity based on geometric value:
* essentially, a mountain range laid out on grid interstices.
* Not a good representation of reality, but the algorithm isn’t
* data-dependent anyway. */
int:current gval;
int vrange;

gval = pcoord (0) + pcoord (1);
vrange = MAX_VAL / 4;
where (0 == (gval / vrange) %4 2) {
image = vrange + (gval %% vrange);
} else {
image = vrange - (gval %% vrange);
}
gval = (dimof (current, 0) - pcoord (0)) + pcoord (1);
where (0 == (gval / vrange) %% 2) {
image += vrange + (gval %) vrange);
} else {
image += vrange - (gval %} vrange);
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CM_timer_clear(0);
CM_timer_start(0);

nreturns = amp_screener(&image, wsize, thresh, 1, &bright);
CM_timer_stop(0);

printf("# %d bright returns detected (out of %d).\n", nreturns,
positionsof (current));

printf ("%12.5f %12.5f %12.5f # amp %d %d %d %g ; VP %d ; P %d\n",

CM_timer_read_elapsed (0), CM_timer_read_cm_busy (0),
CM_timer_read_cm_idle (0), num_rows, num_cols, wsize,

thresh, positionsof (Imageshape), positionsof (physical));

+
}
B.6 Julia Set
/* Id: julia.cs,v 1.1 1996/01/09 20:40:52 pab Exp
* Another example program from Justin R. Smith. Modified for
* correctness and appropriateness as a benchmark. This version also
* modified for load balance: rows use a cyclic decomposition so
* adjacent rows appear on adjacent processors. */

#include <stdio.h>
#include <cm/timers.h>

shape [][] plane;

int main (int argc,

{

char * argv [])

int nrows;

int ncols;

int niters;

float rmin, rmax, cmin, cmax;
float p_r, p_c;

nrows = ncols = 512;
niters = 100;
if (1 < arge) {

nrows = atoi (argv [1]);
}
if (2 < arge) {

217
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ncols = atoi (argv [2]);
}
if (3 < arge) {

niters = atoi (argv [3]);

}

rmin = cmin = -2.0;
rmax = cmax = 2.0;
p_r = 0.23;

p_c = 0.13;

allocate_shape (&plane, 2, nrows, ncols);
with (plane) everywhere {

float:plane r, ¢, ri;

bool:plane injulia;

int:current pivot;

int i, j;

/* Set up plane to range from -2..+2 %/

/* Set up pivots to be a permutation of pcoord (0) such that when
* row R is on processor N, row R+l is on processor N+1. This
* should improve load balance when whole rows are inactive */
i = dimof (plane, 0) % dimof (physical, 0);
j = dimof (plane, 0) / dimof (physical, 0);
if (0 < i) {
jt+t;
}
pivot = (pcoord (0) / dimof (physical, 0)) + j * (pcoord (0) %
dimof (physical, 0));
if (0 < i) {
where ((pcoord (0) % dimof (physical, 0)) > i) {
pivot -= (pcoord (0) % dimof (physical, 0)) - i;
}

= rmin + (rmax - rmin) * pivot / dimof (current, 0);
cmin + (cmax - cmin) * pcoord (1) / dimof (current, 1);

C

/* Initially assume that all points are in the Julia set. */
injulia = 1;

CM_timer_clear (0);
CM_timer_start (0);

/* Compute the first niters z’s for each point of the selected
* region of the complex plane. */
for (i = 0; i < niters; i++) {
/* We only work with points still thought to be in the Julia
* set. *x/
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where (injulia) {
rl=r*r -cx*xc+ p_r;
c=2.0x%r1r % c+ p_c;
r =rl;
/* If sqr(lptl) is less than 5, we’re still active. */
injulia &= (5.0 >= (r * r + ¢ * ¢));
}
}
CM_timer_stop (0);
printf ("# %d of Jd are active at end.\n", += injulia,
positionsof (current));
printf ("%12.5f %12.5f %12.5f # julia %d %d %d ; VP %d ; P %d\n",
CM_timer_read_elapsed (0), CM_timer_read_cm_busy (0),
CM_timer_read_cm_idle (0), nrows, ncols, niters,
positionsof (current), positionsof (physical));

}

deallocate_shape (&plane);
}

B.7 Matrix Multiply

/* Id: mm.cs,v 1.1 1996/01/09 20:40:52 pab Exp
* Basic matrix multiplication benchmark.

*/

#include <stdio.h>
#include <stdlib.h>
#include <cscomm.h>
#include <cm/timers.h>

shape [][] Matrix;

void

matmult (float:current * ma,
float:current * mb,
float:current * res)

{

int col;

everywhere {
float:current mbt;

[pcoord (1)][pcoord (0)] mbt = *mb;

/* For each column of mb, spread it across, do an element-wise
* multiply, and reduce into the answer */

for (col = 0; col < dimof (current, 0); col++) {
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reduce (res, *ma * copy_spread (&mbt, O, col), 1, CMC_combiner_add,

col);
}
}

return;

int
main (int argc, char * argv [])

{

}

int order;

order = 128;
if (1 < arge) {
order = atoi (argv [1]);
}
allocate_shape (&Matrix, 2, order, order);
with (Matrix) everywhere {
float:current mat;
float:current mi;
float:current m2;

ml = (prand () %% 1000) / 500.0;
m2 = (prand () %% 1000) / 500.0;
CM_timer_clear (0);
CM_timer_start (0);

matmult (&ml, &m2, &mat);
CM_timer_stop (0);

printf ("%12.5g %12.5g %12.5g # mm %d ; VP %d; P %d\n",
CM_timer_read_elapsed (0), CM_timer_read_cm_busy (0),
CM_timer_read_cm_idle (0), order, positionsof (current),

positionsof (physical));
}
deallocate_shape (&Matrix);

B.8 Rank Filter

/* Id: rf.cs,v 1.2 1996/01/22 15:38:38 pab Exp

Created: Tue Jun 6 13:36:36 1995
Peter A. Bigot (pab@clotho)
Last Revised:

Description:
C* version of the rank filter benchmark.

* ¥ ¥ ¥ ¥ *
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/* Include Files */

#include <stdio.h> /* Standard input/output routines */
#include <stdlib.h> /* Standard library routines */
#include <assert.h> /* Debugging assertion macro */

#include <cscomm.h>
#include <cm/timers.h>
#include <string.h>

/* Rank filter: assign each pixel the ridx’th largest value in the win
* ¥ win window surrounding it. */

void

rank_filter (unsigned char:void * imp,

{

unsigned char:void * outp,
int win,
int ridx)

int wdnhalf = win / 2;

int wuphalf

with

win - wdnhalf - 1;

(shapeof (*imp)) everywhere {

unsigned char:current timage;
unsigned char:current wval;
unsigned char:current * rvals;
unsigned char:current swaptmp;
int dc;

int i, j, k;

/*
*
*

Allocate a parallel array to hold the first ridx elements in
the window in sorted order. Imnitialize it to the max value of
a pixel, so propagation occurs properly. */

rvals = palloc (current, (ridx+1l)*boolsizeof (unsigned char));
memset (rvals, 255, (ridx+1)#*boolsizeof (unsigned char));

~N
¥ X X K K K X X X X *

ot
(]

dc

Start by shifting the image so that the upper left corner of
the window each pel is interested in is positioned at the
current position. (We use torus so we don’t have to worry
about shifting necessary values out of bounds during the walk,
then shifting back in the fills.) Then we walk each row of the
window, and insert the value from that position in the window
into its sorted order in the rvals array. Values that go past
the ridx’th element fall off the end. The walk is
snake-row-major, rather than spiral, because this allows most
shifts to be along axis 1, which generally requires no
communication. */

_torus (&timage, imp, boolsizeof (*imp), wdnhalf, wdnhalf);

= _1;

for (i = 0; i < win; i++) {

J

:O;

221
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while (j < win) {

}

/* Propagate the value from this position into its proper
* position in the sorted array. */
wval = timage;
k = 0;
while (k <= ridx) {
where (wval < rvals [k]) {
swaptmp = rvals [k];
rvals [k] = wval;
wval = swaptmp;
}
k++;

}

/* Shift over one column if we’re not at the edge */
if (++j < win) {
to_torus_dim (&timage, &timage, boolsizeof (timage), 1, dc);

}

/* Shift up to the next row. The next row shifts in the opposite

* direction, to get the desired snaking effect. */

if (14 < win-1) {

}
dc

}

to_torus_dim (&timage, &timage, boolsizeof (timage), 0, -1);

= -dc;

/* Pull out the desired value from the sorted set. */
xoutp = rvals [ridx];
pfree (rvals);

}
}
int main (int argc, /* Number of command line arguments */

char * argv [1) /* Array of command line arguments */

{

int nrows; /* Rows in image */

int ncols; /* Columns in image */

int window; /* Window size */

int rankid; /* Desired statistic of window */

shape Image; /* Image shape */

nrows = ncols = 32;

window = 3;

if (1 < arge) {

nrows = atoi (argv [1]);
}
if (2 < arge) {

ncols = atoi (argv [2]);
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}
if (3 < arge) {
window = atoi (argv [3]);
}
rankid = (window * window) / 2;
if (4 < arge) {
rankid = atoi (argv [4]);
}

allocate_shape (&Image, 2, nrows, ncols);
with (Image) {

unsigned char:current img;

unsigned char:current mfimg;

img = prand () %% 256;
CM_timer_clear (0);
CM_timer_start (0);
rank_filter (&img, &mfimg, window, rankid);
CM_timer_stop (0);
printf ("%12.5g %12.5g %12.5g # rf %d %d %d %4 ; VP %d ; P %d\n",
CM_timer_read_elapsed (0), CM_timer_read_cm_busy (0),
CM_timer_read_cm_idle (0), nrows, ncols, window, rankid,
positionsof (current), positionsof (physical));
}
deallocate_shape (&Image);
return (0);

¥

Version: appbmarks.tex,v 1.2 1996/04/09 02:06:52 pab Exp
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., Seepcoord

active position, see context
address conversion, 25, 31
alocation
paralel variables, 40
reclamation, 20, 38
shapes, 10, 28, 40, 44
AVL search tree, 114, 117

block distribution, see distribution,
block

broadcast, 77
network support for, 65

buffer management, 73

cache sensitivity, 4548, 104, 129,
138
CM5, 146
collective communications, 77
colliding communications, 13, 104,
108
communications
torus, 139
compiler temporaries, 18
context, 13, 13-15
boundary exclusion, 51, 129
building, 51
charmap encoding, 48, 54
in shapes, 14
representation of, 48-51
RLE encoding, 49, 54
copy avoidance, 61, 68
current, 9
cyclic distribution, see distribution,
cyclic

data distribution, see distribution
data-paralel, 3

232

dimension, 9

dimof, 14

distribution, 23-27
cyclic, 26, 126, 147, 217
irregular, 24
types of, 25

element, see position
everywhere, 15

ghost cells, 19, 125

heterogeneity, 65
hic dracones, 192
histogram equalization, 13

image processing, 4, 41
inactive position, see context
inlining, 37
inspector/executor, 119

Intel Paragon, 146

intrinsic function, 11

left-index, 10
scaar, 36
linear search, see search mechanisms
LU decomposition, 26
Ivalue, 11, 103

maximal transfer unit, 63
message fragmentation, 64, 70
message handlers, 74

message headers, 71

message padding, 105

MTU, see maximal transfer unit

network, 59
network interface, 59

packet, 106
parallel prefix, 16, 26
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parale variable, 9 where, 14
paralelizing compilers, 2

pcoord, 11, 32, 130

pivot, see LU decomposition

pointer-to-parallel, 40

poll, 70

portability, 59

position, 9

pvar, see paralel variable

guality of service, 65, 85

rank, 8
reduce, 77
C* library function, 46
correctness requirements for, 81
correctness requirements for, 99
reliability, see quality of service, 85
rvalue, 11, 103

scalar left index, 10
scalar left-index, see left-index, scalar
scalar type, 9
scan, see paralle prefix
scanset, 46
search mechanisms, 108, 112
shape, 8
current, 9
fully specified, 29
fully unspecified, 28
implementation of, 28
partially specified, 28
shape diasing, 41
Silicon Graphics, 146
SIMD, 8
SPMD, 17
strength reduction, 35
stride, 40

vectorization, 2

virtual processor, 9
virtual processor loop, 18
VP, see virtual processor



