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Abstract

Distributed shared memory (DSM) alleviates the need to program message passing

explicitly on a distributed-memory machine. In order to reduce memory latency, a

DSM replicates copies of data. This paper examines several current approaches to

controlling thrashing caused by false sharing in a DSM. Then it introduces a novel

memory consistency protocol, writer-owns , which detects and eliminates false sharing

at run time. In iterative computations, where the data is accessed similarly every

iteration, the writer-owns protocol can have tremendous bene�ts because the overhead

of eliminating false sharing is only incurred once. Performance results show that the

writer-owns protocol is competitive with and often better than existing approaches.
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1 Introduction

Distributed-memory multicomputers are used to achieve scalable high-performance computing. A

convenient way to program such machines is to use a distributed shared memory (DSM), which

provides logically shared memory and hence obviates the need to use explicit message passing. A

DSM is responsible for transferring data between nodes and for maintaining consistent memory.

However, because data travel on the interconnection network, there can be considerable delays in

accessing non-local data. Therefore, modern DSM systems employ various techniques to reduce

this latency, such as replicating local copies of data on many nodes. However, replicating data may

result in false sharing, which in turn may cause thrashing.

False sharing occurs when two or more nodes access distinct data elements in the same unit of

consistency (i.e., a DSM page) and at least one of them writes. Thrashing caused by false sharing

can be controlled in several ways; the primary solutions are to reduce, avoid, or tolerate it. A DSM

can reduce false sharing by using a small unit of consistency. Although thrashing may still occur,

it is much less likely [BZS93, RLW94]. Second, a program can avoid false sharing by correctly

placing data elements. This avoids thrashing but requires extensive static analysis [JE95]. Lastly,

a DSM can tolerate false sharing by employing a weak memory consistency model in which there

are multiple writers and hence the memory becomes inconsistent [GLL+90]. Eventually, memory

must be made consistent, however, and this can be costly.

This paper introduces a new memory consistency protocol, writer-owns , that at run time detects

false sharing and then eliminates it. When false sharing is �rst detected, writer-owns tolerates it.

At the next point at which the memory is made consistent, the system remaps the o�ending

data to unused memory belonging to the writing node. This protocol has been implemented in

the Filaments package [FLA94], and has very little overhead; programs using writer-owns are

competitive with programs that avoid false sharing, and are better than ones that tolerate it.

The writer-owns protocol has several advantages over current methods. Because writer-owns

dynamically detects false sharing, no static analysis is required. Moreover, it detects false sharing

when it occurs; therefore, it discovers exactly every occurrence and no more. Because writer-owns

eliminates false sharing, it incurs the overhead of detection and elimination only once; therefore, in

iterative problems this overhead is amortized over all the iterations. Finally, writer-owns does not

require any protocol-speci�c annotations or subroutine calls; consequently, writer-owns programs

are simple and portable.

The remainder of this paper is organized as follows. Section 2 discusses false sharing in a DSM.

Section 3 gives the details of the writer-owns protocol and compares it to a protocol that must

avoid false sharing (write-invalidate) and one that can tolerate it (write-shared). It also describes

an implementation of the writer-owns protocol. Section 4 compares the performance of write-

invalidate, write-shared, and writer-owns on a number of application programs. Finally, Section 5

gives a few concluding remarks.

2 False Sharing in Distributed Shared Memory

The following example illustrates thrashing caused by false sharing in a DSM. We assume that the

consistency unit is a page, data elements x and y are on the same page, there are two nodes A and

B, and A and B execute the following:

Node A: Node B:

for ( ... ) for ( ... )

x = ... y = ...
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for ( ... )
  write y

y:x: y:x:

write write

for ( ... )
  write x

Node BNode A

Shared Page

(1) Initial State None

(2) Page fault & request

(3) Service request

(4) Page reply RdWr

(5) Page fault & request

(6) Service request None

(7) Page reply

(8) Page fault & request

(write y blocks)

(write y succeeds)
RdWr

None

RdWr
(write y succeeds)

(write x succeeds)

(write x blocks)

(write x blocks)

Figure 1: Thrashing example using write-invalidate.

In this example, there is false sharing because A and B update distinct locations on the same page.

If there is only one copy of the page, there will be thrashing as the page bounces back and forth

between the nodes.

Write-invalidate is a single-writer, multiple-reader protocol [LH89] that illustrates the issues

involved. It provides sequential consistency in which memory updates must be made visible to

all other nodes immediately [Lam79]. Write-invalidate (WI) is the canonical protocol and is the

simplest to understand; consequently, it is the model programmers expect. In WI there can be

multiple read-only copies or one writable copy of a page. The page remains consistent because

updates occur only when a node exclusively owns the writable copy of the page.

Figure 1 shows how WI leads to thrashing in the above example. Initially, B has the single

writable copy of the page. Node B is able to update y; however, when A attempts to update

x, it must request the writable copy from B, which must invalidate its copy of the page before

transferring it to A. Later, when B attempts to update y, it must request the single writable copy

of the page from A. Since A and B are continuously updating x and y, the page will thrash.1

There are three methods for controlling thrashing caused by false sharing. The �rst uses a small

unit of consistency in order to reduce the likelihood of false sharing. In the above example, choosing

a smaller unit of consistency such that x and y are in distinct units will eliminate false sharing (and

1Thrashing also occurs even if A is only reading location x. Instead of transferring the page, node B sends a

read-only copy to A and makes its local copy read-only. When B wants to update y, it sends an \invalidate" message

to A before making its copy writable. The next time A reads x, it will re-request the page from B.
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Strip Boundaries

(a) Packed (b) Padded

Padding

Page Boundaries

Figure 2: Padding a data object into four equal-sized strips.

hence eliminate thrashing). The size of the unit of consistency must be chosen carefully, however.

If it is too large, there will be false sharing; if it is too small there will be extra overhead. Therefore,

this method requires static analysis in order simultaneously to avoid false sharing and minimize

overhead.

The second method places data statically in order to avoid false sharing. In particular, the

program must place data so that each node has exclusive access to the pages it updates between

synchronization points. We refer to this placing of data as padding . Consider a 2-dimensional array

that will be updated in parallel by N nodes. The simplest way to pad the array is to partition it

(and the tasks) into N strips, and assign one to each node (this is block distribution). Instead of

laying the array out contiguously in memory, there is a break between the strips, so that each strip

resides on a distinct set of pages. Figure 2 shows how data could be padded when a data object

is partitioned into four strips. Each strip is three-quarters of a page; therefore, the object spans

three pages when packed and four when padded. Avoiding false sharing in this manner can require

extensive static analysis [JE95].

The third method employs a weak memory model in order to tolerate false sharing. One such

example is the release consistent memory provided by the write-shared (WS) protocol [CBZ91]. It

is a multiple-writer protocol, where each writer records its updates to a page locally; later, these

changes are merged into a consist copy of the page. When the node �rst acquires a page that has

multiple writers, the permission is set to read-only. The �rst update of the page generates a fault,

at which time the page is \cloned" and made writable. All subsequent updates to the page succeed

without delay. When the page is released, the clone is compared to the current page; all di�erences

are stored in a \di�-list" and propagated to the other nodes sharing the page. Because all nodes

have cloned the last consistent copy of the page, all di�-lists reect changes to the same copy. After

merging the di�-lists, each node will now have the same, consistent image of the page in memory.

Figure 3 shows false sharing in WS. The example begins with the same initial state as the WI

example: node B exclusively owns the page. When node A requests the page, B returns a writable

copy of the page. Node A immediately creates a clone because it is updating the page. Node B also

creates a clone so that it can update the page. At this point both nodes have a writable copy of the

page. If either node updates its copy of the page, the page is inconsistent. At the next consistency

point, each node creates a di�-list for every cloned page and exchanges them with the other nodes.

The write-shared protocol has two signi�cant drawbacks. First, false sharing is not eliminated;

therefore, in iterative problems WS incurs the overhead of tolerating false sharing every iteration.
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for ( ... )
  write y

y:x: y:x:

write write

for ( ... )
  write x

Node BNode A

Shared Page

(1) Initial State None

(2) Page fault & request

(3) Service request

(4) Page reply

(5) Clone page

RdOnly

RdWr

At consistency point

(write y succeeds)

(write y succeeds)

RdOnly

RdWr

RdWr

(write y blocks)

(write x succeeds)

(write x blocks)

(6) Merge diff lists

Figure 3: Thrashing example using write-shared.

Second, the number of messages required grows as the square of the number of nodes accessing a

shared page because every node requires all the di�-lists.

3 The Writer-Owns Protocol

Writer-owns (WO) dynamically detects false sharing and then eliminates it by migrating data.

In iterative computations, where the data is accessed similarly every iteration, eliminating false

sharing can have tremendous bene�ts|not only is it eliminated, but the cost of eliminating it can

be amortized over the subsequent iterations. Moreover, WO imposes very little overhead, so it is

e�cient even in non-iterative computations.

3.1 The General Writer-Owns Protocol

The writer-owns protocol has six steps:

1. detect false sharing,

2. tolerate false sharing until the next consistency point,

3. create the migration list of (falsely) shared pages,

4. migrate any data causing false sharing,
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5. disseminate migration information to all nodes, and

6. remap user data structures to reect the migration.

The �rst two steps occur for each falsely-shared page; the last four are performed by every node

at the next memory consistency point. Each node determines which locations have been updated

for each shared page in order to create a migration list , which is a list of the migrating data.

Using the migration list, each node migrates the data it has updated to pages it owns. Then,

migration information is collected and disseminated to all nodes so that the nodes can remap user

data structures.

Data migrate to new locations in order to eliminate false sharing. An atom is the smallest unit

of data that can migrate, the size and details of which depend on the implementation. However,

an atom must able to be remapped and migrated.

Occurrences of false sharing are detected and tolerated while servicing DSM page requests. If a

node receives a request for a page that it is updating, there is false sharing. At this point it changes

permission to allow the update to proceed; however, the local updates must be recorded. Cloning

is a simple and e�cient method of recording local updates; therefore, each node that is updating

a shared page clones the current (consistent) copy of the page before updating it. Later, the node

determines the updates that were made by comparing the page to the clone.

Instances of false sharing that were discovered are eliminated at the next consistency point.

After arriving at this point, the node determines what atoms were updated by comparing the

cloned, consistent copy of the page to the current updated page. This operation is very similar to

what is done in WS; however, because the updates are migrated and not merged, the migration

list of WO is much smaller than the di�-list of WS. A migration list has an entry for each atom

that has been updated, whereas a di�-list contains an entry for each location that was updated.

A migration list cannot have more elements than a corresponding di�-list; in general, it will have

many fewer.

Next, WO migrates data onto new pages in order to eliminate false sharing. All atoms that

were updated are moved to pages that are owned by the writer of the data. In order to eliminate

false sharing, each atom must only have a single writer. Otherwise, two nodes would try to migrate

the same atom to di�erent pages.

The �fth step is to collect migration lists from all nodes, merge them into a single list, and

disseminate this list to all nodes. During this step WO discovers if an atom has more than one

writer. An atom cannot be migrated to both writers. However, there are two reasonable actions

that can be taken. First, the system could abort, alerting the user to the problem. The expectation

is that the programmer would then re-write the program. Second, the system could attempt to

merge the changes in a way similar to that taken in the write-shared system described above.

In the last step, each node remaps user data structures so that the program will access the data

in the new locations. The speci�cs of this operation depend on how the atom is implemented.

In WO, false-sharing causes a sequence of events that is very similar to that shown for WS in

Figure 3. The di�erence is the actions at the consistency point. In WS, each node merges the

di�-lists from others nodes and applies the changes to its copy of the page. In WO, one node

merges migration lists and disseminates it to the other nodes, which then migrate data and remap

data structures.

3.2 An Implementation of Writer-Owns

The writer-owns protocol exists as a user-de�ned page-consistency protocol in the Filaments DSM.

This section describes the implementation. It focuses on the critical design decisions.
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The implementation of the atom has the most wide-ranging e�ects. An atom has at least one

level of indirection (implemented by a pointer), so that remapping the atom only requires changing

the value of the pointer. For example, a 2-dimensional array is implemented as an array of pointers

to arrays of elements. To remap, we execute a statement similar to the following:

a[i] = new;

This remaps the ith atom (row) in the user data structure a so that it points to the location (new)

into which the original contents have migrated.

Detecting and tolerating false sharing is straightforward in our implementation. Detection

occurs when a page request is made. If the request is for a page that has been updated, there

is false sharing. In order to tolerate it, WO makes a clone of the page. Then the page is made

writable, which allows multiple writers. There are two choices for cloning the page: clone it as

soon as sharing is detected (eager) or clone it later when the page is �rst updated (lazy). Our

implementation uses lazy cloning. After sending a copy of the shared page to the remote node,

the permissions on the local copy of the page are set to read-only. If the node tries to update a

location on that page, it will generate a page fault; at this point the clone is made. If there is a

subsequent update of the page, then lazy cloning requires an extra page fault over eager cloning.

However, if all updates have already been applied, then eager cloning will compare identical pages

when creating the migration list and lazy will not.

In order for WO to remap user data structures and create the migration list, the programmer

must use the allocation routines provided by WO. These routines maintain a database of all user

data objects; the database contains the location of the base pointer and information about the

structure (including sizes) of each object. Using the database, WO can follow the base pointer

to any atom pointer, and hence remap the atom. Similarly, WO uses the atom pointer and size

information from the database to determine the extent of an atom.

The WO system creates the migration list by comparing the clone to the current copy of the

page. For every di�erence between the two, WO inserts an entry into the migration list to identify

the atom that was modi�ed. Thus, the migration list contains an entry for every atom that was

modi�ed by this node since the last consistency point. Once an atom is inserted into the migration

list, WO skips forward in memory to the beginning of the next atom; therefore, creating the

migration list is most expensive when the current page and the clone are identical because then

every location on the page must be checked.

After the migration list is constructed, all the atoms in it are migrated to unused, locally owned

pages. Our current implementation moves each atom onto its own exclusive page (or set of pages).

Although this can waste space, it reduces the chance of further false sharing. An alternative is to

conserve space by packing atoms next to each other on the new pages.

An entry in the migration list has three �elds:

obj atom loc

The �rst �eld, obj, identi�es the user object and the second �eld, atom, identi�es the atom within

it. These �elds are set when the entry is initially created. The third �eld, loc, identi�es the new

location to which the atom has migrated.

Figure 4 shows the e�ect of migrating and remapping a two-dimensional array, in which the

rows are the atoms. The migration list consists of two elements; the �rst maps atom 3 of object

0 to page 11, the second atom 5 of object 0 to page 10. The e�ect of the migration is that two

atoms (rows) migrate to new pages. Additionally, the top-level pointers are remapped to reect

this migration.
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(a) Before migration
      and re-map

(b) After migration
      and re-map

Top-level pointers
to atoms

obj: 0 loc: 11atom: 3 obj: 0 loc: 10atom: 5

Migration
of data

2-element migration list:

Figure 4: Migrating and remapping in a two-dimensional array.

In our implementation, the consistency points are barriers . A barrier is a point at which all

nodes must arrive before any are allowed to proceed past. WO piggybacks both the local migration

lists and the complete migration list on the barrier messages. Therefore, the migration information

is transferred without any additional messages. The barrier messages become longer, but only

when there is remapping. Furthermore, their length depends only on the number of atoms that are

remapped, not on the size of the data or the number of nodes.

There are some limitations imposed by our design. First, because there must be a level of

indirection to the remappable unit, certain data structures are not supported. For example, the

individual elements of an array cannot be remapped. A simple technique to overcome this is to use

pointers to the elements of the array; however, this can result in too much overhead. (Fortunately,

the current solution works for a large number of applications.) Second, because an atom is the

smallest data unit that can migrate, only one node can update an atom between consistency points.

A programmer must ensure that a program obeys this exclusive-writer rule.

4 Performance

This section compares the writer-owns protocol, which dynamically eliminates false sharing, to

two protocols: one that statically avoids false sharing and one that tolerates it. We consider four

applications: Jacobi iteration, Tomcatv, matrix multiplication, and LU decomposition. For each

we created three programs to evaluate the three page consistency protocols (PCP) discussed in this
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paper: write-invalidate, write-shared, and writer-owns. The only di�erences in the programs are

the initialization of the protocol and the placement of the data structures in memory. The write-

invalidate programs statically pad data structures; the write-shared and writer-owns programs pack

data structures contiguously in memory. All protocols are implemented in the Filaments package.

Below, we briey describe the four applications, present the results of runs on 1, 2, 4, and 8

nodes, and examine the parallel speedup. All tests were run on an isolated cluster of 8 Sun IPCs

connected by a 10Mbs Ethernet. We used the gcc compiler, with full optimization. The execution

times reported are the average of at least three test runs, as reported by gettimeofday. The tests

were performed when the only other active processes were Unix daemons. For each application, we

also created a purely sequential program in order to compute the speedup of the parallel programs.

The speedup reported in this paper is the ratio of the sequential program time over the parallel

program time.

In addition to overall times for all four applications, we present times for individual iterations

in Jacobi iteration in order to show the overhead of migrating data in WO. To further evaluate the

overhead of WO, we show the results of matrix multiplication on two di�erent sized problems: one

requires that WO remap data and the other does not.

4.1 Jacobi Iteration

Laplace's equation in two dimensions is the partial di�erential equation

@2u

@x2
+

@2u

@y2
= 0:

Given constant boundary values for a region, its solution is the steady-state values of the interior

points. These values can be approximated numerically by using a �nite di�erence method such as

Jacobi iteration, which uses the following equation to compute the (k + 1)th approximation of U

from the kth approximation:

u
(k+1)

i;j =
1

4
(u

(k)

i�1;j + u
(k)

i+1;j + u
(k)

i;j�1 + u
(k)

i;j+1): (1)

Thus the new value is the average of four neighboring points from the old grid. There are two n�n

grids in the Jacobi iteration programs. On each iteration, the points in one grid are updated using

the points in the other. For the next iteration, the roles of the grids are reversed. The algorithm

iterates until the solution converges; i.e., until the maximum change that occurs at any point is less

than some threshold.

We use a �ne-grain Jacobi iteration program to compare the PCPs. A very lightweight thread

(�lament) is created for each of the n2 points in the grid. Each �lament updates the new grid point

by averaging the values of the neighboring points in the old grid. These �laments are distributed

among the nodes such that each owns one horizontal strip of the grid. After all grid points are

updated, the program checks for convergence. If all the points have converged, the program ter-

minates; otherwise it executes another iteration. Although there is very little work per �lament

per iteration, the program is still e�cient, because the Filaments package e�ciently implements

�ne-grain parallelism.

On every iteration, each node updates all the points in its strip of the new grid. This necessitates

reading its strip of the old grid, plus reading a row from the strip of each neighbor. Thus, each

strip of the new grid is written exclusively by the owner; the boundary rows of the old grid are

read-shared between two neighboring nodes; and the interior of the old grid is read exclusively by

the owner.
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Nodes 1 2 4 8

Write-inv. Time 165.2 86.48 49.88 32.70

Write-inv. Speedup 0.99 1.89 3.28 5.01

Write-shared Time 165.9 88.45 52.51 43.73

Write-shared Speedup 0.99 1.85 3.12 3.75

Writer-owns Time 165.2 86.42 48.62 31.89

Writer-owns Speedup 0.99 1.89 3.37 5.14

Sequential Time 163.8

Table 1: Jacobi iteration, 500� 500 (times in seconds).

Iteration 1 2 3-100

Write-inv. 0.9175 0.4817 0.4958

Write-shared 0.9545 0.5865 0.5283

Writer-owns 0.9522 0.5300 0.4809

Table 2: Jacobi iteration on four nodes, 500� 500 (seconds per iteration).

Since the old grid becomes the new grid on the next iteration, the boundary rows of the new

grid are shared at the beginning of most iterations. In WI, the owner must invalidate remote copies

of the boundary rows in order to perform the update. Furthermore, the nodes must receive the

boundary rows of the old grid, which were updated in the previous iteration, from each neighbor.

Therefore, on each iteration, each node in the WI program sends an invalidation message to its

neighbors and requests a page from each of them. (Additionally, it receives an invalidation message

and services a page request from each neighbor.)

In the WS programs, the boundary rows of the new grid have multiple writers; therefore, di�-

lists must be exchanged between neighbors. Furthermore, the boundary rows of the old grid are

shared by multiple readers only (no writers). Therefore, the nodes exchange empty di�-lists. On

every iteration, each node must create, exchange, and merge the di�-lists.

The WO program performs identically to the WI program on the later iterations: for each

neighbor, a node sends and receives an invalidate message, and it generates and services a page

request. However, on the �rst two iterations, the WO program also must detect, tolerate, and

eliminate false sharing. It takes two iterations to eliminate false sharing because false sharing

only occurs while the grids are being updated and the second grid is not updated until the second

iteration.

The WS program must exchange and merge di�-lists on each iteration; this accounts for the

overhead relative to the other programs. The number of messages sent per iteration grows with

the number of nodes. When there are 8 nodes, the number of messages saturates the network and

results in a large increase in overhead relative to the other programs.

Table 1 shows the results of Jacobi iteration programs on a 500�500 matrix. The WO program

is slightly faster than the WI program. Because of this surprising result, we evaluated the times

of the individual iterations of the program, as reported in Table 2. There are 100 iterations in the

test; the times for the �rst two iterations are shown along with the average of the last 98 iterations.

The �rst iteration is always longest because the cache is cold. Because there are two grids in Jacobi
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Nodes 1 2 4 8

Write-inv. Time 391.1 202.0 109.7 73.75

Write-inv. Speedup 0.99 1.94 3.57 5.30

Write-shared Time 392.0 204.8 114.7 81.50

Write-shared Speedup 1.00 1.91 3.41 4.80

Writer-owns Time 391.5 202.2 110.2 64.45

Writer-owns Speedup 1.00 1.93 3.55 6.07

Sequential Time 391.1

Table 3: Tomcatv, 250� 250 (times in seconds).

it takes two iteration for the programs to reach a steady state. During the �rst two iterations, the

WO program tolerates and eliminates the instances of false sharing.

It is surprising that the WO program is faster than the WI because WO has more overhead to

detect and eliminate false sharing. However, the programs employ di�erent data placements, which

results in slightly di�erent memory references and di�erent cache utilization. It turns out that the

�nal placement arrived at by WO utilizes the cache more e�ciently than the block distribution

of WI. The WS program is always slower because it is cloning pages and merging di�-lists every

iteration.

4.2 Tomcatv

Tomcatv is a mesh-generation algorithm obtained from the SPEC benchmark. The Fortran program

in the benchmark was translated into a Filaments program. This application uses 7 shared n � n

matrices, and there are two phases in the computation. The �rst phase computes residuals; the

second uses the residuals to update a tridiagonal matrix. There is a barrier after the �rst phase,

and a reduction, to obtain the maximum residual, after the second phase. The program iterates

until the maximum residual is small enough. The sharing patterns in Tomcatv are very similar to

Jacobi iteration. The big di�erence is there are seven shared matrices in Tomcatv, whereas Jacobi

iteration only has two.

Table 3 contains the results for a 250 � 250 matrix. Again the WS program has the most

overhead, which increases with the number of nodes. The WI and WO programs are very similar

except for the 8-node test, which we cannot explain.

4.3 Matrix Multiplication

The programs compute C = A�B, where A, B, and C are n� n matrices. Each node computes a

horizontal contiguous strip of the rows of the C matrix. The nodes exclusively access portions of A

and C; however, every node reads every element of B. Each node initializes part of the A matrix;

one node initializes B, and the others acquire the pages of B through page faults.

Because matrix multiplication is not iterative, WO is not able to amortize the overhead of

eliminating false sharing. However, WO is still competitive with WI, as shown in Table 4. Our

implementation of WS requires that nodes exchange di�-lists for all shared pages, even those which

are not updated. Because all 489 pages of the B matrix are shared by all nodes, there is tremendous

overhead. A more elaborate WS implementation, such as the lazy release consistency protocol

[KDCZ94], does not require nodes to exchange di�-lists unless the data is changing. The results
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Nodes 1 2 4 8

Write-inv. Time 227.5 114.5 58.26 30.80

Write-inv. Speedup 0.97 1.93 3.80 7.19

Write-shared Time 224.2 118.0 61.65 38.44

Write-shared Speedup 0.99 1.88 3.59 5.76

Writer-owns Time 228.7 117.1 59.44 31.39

Writer-owns Speedup 0.97 1.89 3.73 7.06

Sequential Time 221.5

Table 4: Matrix Multiplication, 500� 500 (times in seconds).

Nodes 1 2 4 8

Write-inv. Time 245.7 125.5 63.71 33.31

Write-inv. Speedup 0.97 1.90 3.74 7.15

Write-shared Time 245.7 126.2 64.08 35.02

Write-shared Speedup 0.97 1.84 3.72 6.80

Writer-owns Time 245.6 125.5 63.67 33.26

Writer-owns Speedup 0.97 1.90 3.74 7.16

Sequential Time 238.1

Table 5: Matrix Multiplication, 512� 512 (times in seconds).

shown are for a hybrid program: The A and B matrices use the WI protocol, and only C uses WS.

Consequently, only N � 1 di�-lists must be exchanged. The hybrid program has message tra�c

that is similar to lazy release consistency.

Table 5 shows results for the special case where there is no false sharing. In a 512� 512 matrix

of type double, the rows require 4096 bytes, which is the size of a page in our system. Therefore,

every row begins and ends on a page boundary, and the padded data layout is the same as the

packed layout. The WS program does not exchange di�-lists and the WO program does not migrate

data. Thus it is no surprise that the times of the three programs are nearly identical.

4.4 LU Decomposition

LU decomposition is used to solve the linear system Ax = b. It is an example of an application in

which the load is not balanced. After a row is pivoted, it is never accessed again; on iteration i, only

an (n�i+1) by (n�i+1) sub-matrix is accessed. On each iteration, the workload decreases by one

row and every node must read the pivot row (row i), which is written by its owner. Communication

is constant over all data placements. Therefore, strict block decomposition leads to severe tail-end

load imbalance, because only one node is working during the last n=N iterations. To assure good

load balance, many strips of contiguous rows of the matrix are distributed cyclicly among the nodes.

Table 6 shows the results using 160 strips of four rows each. Because each strip of four rows

occupies exactly �ve pages, there is no false sharing. Consequently, the WS program does not

exchange di�-lists and the WO program does not migrate data.

We further tested the programs using 320 strips of two rows each. In this case, there is false
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Nodes 1 2 4 8

Write-inv. Time 281.8 151.8 85.53 53.94

Write-inv. Speedup 0.99 1.84 3.27 5.19

Write-shared Time 282.1 157.2 90.32 58.04

Write-shared Speedup 0.99 1.78 3.10 4.82

Writer-owns Time 288.5 154.0 86.11 56.13

Writer-owns Speedup 0.97 1.82 3.25 4.99

Sequential Time 280.0

Table 6: LU decomposition, strip size of 4 rows, 640� 640 (times in seconds).

Nodes 1 2 4 8

Write-inv. Time 281.8 151.9 85.49 54.02

Write-inv. Speedup 0.99 1.84 3.28 5.18

Writer-owns Time 288.5 154.2 86.18 56.01

Writer-owns Speedup 0.97 1.82 3.25 5.00

Sequential Time 280.0

Table 7: LU decomposition, strip size of 2 rows, 640� 640 (times in seconds).

sharing between two nodes on one out of every �ve pages. The WS program must exchange di�-

lists for all of these pages on every iteration. There are 800 pages, so initially there are 160 shared

pages. The WS program takes a tremendously long time and is not reported. The performance of

the WI and WO programs using a strip size of two rows is shown in Table 7; it is very similar to

the performance using a strip size of four. The bene�t of slightly better load balancing is o�set by

the less e�cient use of the cache.

5 Conclusions

This paper has shown that false sharing can be detected and eliminated at run time and has

presented an e�cient implementation of the writer-owns (WO) protocol. WO migrates data to new

locations in order to eliminate false sharing. In our implementation, eliminating false sharing has

minimal overhead. Moreover, because false sharing is eliminated, the overhead can be amortized

over subsequent iterations.

We have shown that the writer-owns protocol has advantages over the write-invalidate and write-

shared protocols. With write-invalidate, avoiding false sharing requires detecting and eliminating it

statically. In contrast, writer-owns detects all false sharing as it occurs; hence, detection is simple

and exact. The write-shared protocol tolerates false sharing, but di�erences between pages have to

be resolved after every iteration of an iterative application. Consequently, WO requires signi�cantly

fewer consistency operations in iterative computations than WS. We have shown that programs

using WO perform as well as those using write-invalidate and better than those using write-shared.
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