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Abstract

With the increasing growth of electronic communications, it is becoming important to provide a

mechanism for enforcing various security policies on network communications. This paper discusses our

implementation of several previously proposed protocols that enforce the Bell LaPadula security model.

We also introduce a new protocol called \Quantized Pump" that o�ers several advantages, and present

experimental results to support our claims.



1 Introduction

With the explosive growth of electronic communications over the past few years, secure communication and
data security in general are becoming increasingly important. In particular, there is the question of how
to prevent sensitive data from falling into the wrong hands. Various security policies and security systems
have been proposed that address this issue. One of the simplest and most common security policies is the
Bell-LaPadula security model [1], which can be summarized as \no read up, no write down," where \up" is
an entity with a high security level and \down" is an entity with a low security level.

This paper examines various proposed methods for enforcing the Bell-LaPadula security model in the
context of network communications. We implemented all of the major protocols discussed here. Comparative
results derived using TCP over an ethernet are presented in this paper. Our studies are concerned with four
parameters:

� Overall throughput | how much data can be sent from the low security side to the high security side
per unit of time;

� Covert channel throughput | how much data can an intruder on the high security side send to the
low security side per unit of time;

� Space utilization | how much bu�er space is required to adequately control the covert channel;

� Reliability | is the communication reliable?

Starting with the simplest and most straightforward protocols, we discuss the basic problems and pitfalls
of enforcing one-directional data 
ow in section 2. We also examine the basic notion of covert timing channels
and why they are inherent in reliable communications.

In sections 3, 4, and 5, we move on to more complex protocols: SAFP (Store and Forward Protocol), the
Pump, and the Upwards Channel. We discuss their distinct features and analyze covert channel capacities.
We then discuss our implementation of these protocols, mention various implementation pitfalls to avoid,
and compare experimental performance of these protocols.

In section 6, we introduce a new protocol called \Quantized Pump" that o�ers a number of advantages.
Its design goals were to make it extremely easy to analyze and easy to control. Covert channel bandwidth
can set to precisely any value desired. We present three di�erent versions of the Quantized Pump that have
di�erent throughput/space tradeo�s. We discuss our implementation of all three versions and the results of
our experimental measurements of the protocols.

The following table shows a brief summary of features of various protocols we discuss in this paper:

Protocol Covert Channel Precise Bound Reliable Throughput Bu�er Size

SAFP Yes No Yes 1 |

Pump Yes No Yes 0.9 |

Upwards Channel No Yes No | |

Quantized Pump Yes Yes Yes 1 Quadratic

Log. Quantized Pump Yes Yes Yes 0.9 N logN

Linear Quantized Pump Yes Yes Yes 0.4 Linear

Protocol Summary

Most of the column names in the above table are self-explanatory. The Precise Bound column refers to
whether or not it is possible to set the covert channel bandwidth to an exact value. The Throughput column
lists relative throughputs which are expressed as a fraction of SAFP's throughput. The Bu�er Size column
describes the space complexity of the protocols with respect to the maximum rate at which the sender on the
low security network can send data. The \|" signs are present in the entries where the respective parameter
is preset at startup time and thus cannot be meaningfully compared to the other entries in the table.
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2 Simple Solutions

There are several simple ways to enforce the Bell-LaPadula security policy. Note that we want to be able
to do this without modifying any programs on the sender side or on the receiver side. The reason for this is
quite simple: we do not trust either the sender or the receiver; after all, that is why we are concerned with
enforcing the security policy in the �rst place. In this section we discuss some of these methods and also
discuss the reasons why they are inadequate for most general scenarios.

2.1 Isolation Method

One easy way of enforcing the Bell-LaPadula security model is physically isolating the sensitive information
from the outside world by dividing networks into high security and low security classes that are not inter-
connected. There is no exchange of information between the two classes of networks and thus no danger of
unauthorized information 
ow.

While the simplicity of such a setup is certainly a virtue, it is by no means an ideal solution in most
cases. Most applications require some information exchange. We should mention however, that this is one
of the preferred methods of the military where security concerns outweigh everything else.

2.2 ACK Filter

Another solution is to connect a low security network to a high security network with a special gateway called
\ACK Filter." This gateway forwards any data from the low security network to the high security network
but only forwards acknowledgments of data receipt | which are necessary for reliable communication |
from the high to the low network. This seemingly solves the problem of protecting highly sensitive data in
the high security network, since the data cannot actually be sent to the low security network | only the
acknowledgments | but there is a problem: covert channels.

An intruder on the high security network can use the times of acknowledgments to signal the low security
network. For instance, the intruder might acknowledge some packets immediately and use that as a code for
0, and acknowledge other packets after half a second delay and use that as a code for 1. This is known as a
covert timing channel, since it is the time that is used to convey unauthorized information.

The problem of covert channels is a well known and relatively well studied problem that appears in
various places in computer security. Detailed description and analysis of such channels can be found in
[2, 3, 4, 5].

Data acknowledgments are necessary to insure reliable communication and yet they introduce a covert
channel, so we have a con
ict between security and reliability. Fortunately, there are ways to minimize such
covert channels.

2.3 Blind Write-Up

We can sacri�ce reliability and use the blind write-up method, i.e. eliminate all acknowledgments and hope
that all data gets through. This eliminates the covert channel, but now the data is not guaranteed to be
received. Some data may be lost due to congestion, it may be sent to a machine that is currently down, the
receiving machine may not be fast enough to process the data, etc., so this method is not really acceptable
in practice.

It turns out however, that this approach can be improved signi�cantly by introducing a bu�er to enhance
reliability. This protocol is the \Upwards Channel" or \One-Way Forwarder" and is discussed in section 5.

3 Store and Forward Protocol (SAFP)

The Store and Forward Protocol is the simplest conventional protocol for reliable communication across two
networks. Its usefulness for eliminating covert channels is limited at best; we mention it here because it is a
useful benchmark against which to compare the performance of more complex protocols.
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The idea of this protocol is very simple: we have a gateway between a low security network and a high
security network. When the gateway receives a packet from the low side, it stores it in a bu�er and sends
an acknowledgment back to the low side notifying it that the packet has been successfully received. Then it
transmits the packet to the high side and waits for an acknowledgment. When it gets the acknowledgment
back, it deletes the message from its bu�er. If it doesn't receive the acknowledgment or it receives a
negative acknowledgment, it can retransmit the message because it still has it in its bu�er. All data except
for acknowledgments from the high security network is ignored and is not forwarded to the low security
network. (Fig. 1)
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Figure 1: SAFP

3.1 The Covert Channel

The covert channel appears when the SAFP bu�er �lls up. This will happen if the high side processes
messages slower than the low side is sending them. When the bu�er is full, SAFP cannot store the messages
in the bu�er immediately upon receiving them and must wait for space to become available before it can
store the message and send an acknowledgment to the low side. In other words, the time it takes to free the
bu�er space (i.e. the time it takes to receive an acknowledgment from High) is directly related to the time
it takes SAFP to send an acknowledgment to Low. The high side can control the rate of acknowledgments
to Low by keeping the bu�er full and varying the time of its acknowledgments.

Fig. 2 plots acknowledgments versus the time it takes to get that acknowledgment as seen from the point
of view of the sender on the low security network. This illustration has no covert channel and hence all of
the times are uniformly and randomly distributed near zero.

Fig. 3 shows the same communication but with a covert channel present. In this case, High is trying to
send alternating zeros and ones to Low, encoded by \no delay" | 0 and \500 ms delay" { 1. This illustration
was produced by running SAFP over TCP Reno.
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Figure 2: SAFP, no covert channel Figure 3: SAFP, covert channel present

The covert channel in SAFP was substantially analyzed in [6], section 3.1. We approached the analysis
of this channel from a slightly di�erent perspective, from the perspective of average tra�c analysis in our
implementation of the protocol, and we were able to get some concrete numbers for the maximum capacity
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of the covert channel.
Assume the simplest possible situation, where High is trying to signal Low by using long acknowledgment

delays for 1 and no delay for 0. For the sake of simplicity, let's further assume that it takes exactly twice
as much time to send a 1 as it takes to send a 0. (This ratio of 2:1 was found in our experiments to be the
lowest ratio where 1s are still reliably detectable.) Then, since the \cost" (time) to send a 1 is di�erent from
the cost of sending a 0, the optimal encoding no longer consists of 50/50 ratio of 0s to 1s.

We can �nd this optimal ratio as follows: let the cost of sending a 0 be C and the cost of sending a 1 be
2C; also, let the probability of a 0 be p and the probability of a 1 be q = 1 � p. The average information
transmitted per symbol is �(p log p+ q log q). The average cost per transmitted symbol is Cp+ 2Cq, so the

amount of information transmitted per unit time is I = �(p log p+q log q)
Cp+2Cq . The maximum of this expression is

found at p =61.8%.
From experimental results obtained by running SAFP over TCP Reno, we found that the error per

acknowledgment of transmitting a 0 is very low: less than 1%, where as the error in transmitting a 1 is very
high: close to 75% (i.e. only one of every four acknowledgments was carrying su�cient timing information
to identify it as a code for 1). This is caused by number of factors, but one of the most important ones is
the in
uence of the TCP sliding window. (See Section 3.2.3 for further details on the TCP window.)

Now we can �nd the exact maximum bandwidth of the covert channel by using the standard formula

for binary information transfer in noisy channels (see [7], section 4.2): I(xy) =
P
x

P
y p(xy) log

p(xy)
p(x)p(y) ,

where x refers to 1s and y refers to 0s. When we apply this formula to our previous results, we get that the
information content of an acknowledgment from the high side is approximately 0.1 bits, i.e. it takes about
10 acknowledgments to send 1 bit of data. The average transmission rate in our experiments was about 3
milliseconds/acknowledgment (see Table 2 and section 3.3 for more details), so the covert channel present
in our system was about 33 bits/second.

This is a fairly high bandwidth covert channel but it might be acceptable in some situations. The virtue
of SAFP is that it is simple to implement and easy to analyze. The drawback is that it allows a high
bandwidth covert channel.

3.2 Implementation

The Store and Forward Protocol was implemented as an xkernel protocol above TCP. Its implementation is
as simple as its description. Fig. 4 demonstrates the protocol stack used on the gateway.

SAFP

TCP/1 TCP/2

IP/1 IP/2

Eth/1 Eth/2

Low Security Network High Security Network

Figure 4: SAFP gateway protocol stack
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3.2.1 TCP Gateway

Both TCP and IP protocols were modi�ed to play the role of a gateway. The main modi�cation was to make
both of them direct all packets up the stack of protocols to SAFP, even if the IP number does not match the
IP number of the gateway machine and even if TCP does not know of the port being connected to. They
were also modi�ed to \spoof" IP addresses and TCP port numbers. In essence, SAFP is pretending to be
High to Low and pretending to be Low to High. This provides a clean and completely transparent paradigm
for both High and Low. In fact, neither High nor Low is aware of the fact that there is a gateway in between.

3.2.2 Reliable Open

There is a problem with this spoo�ng of IP addresses and TCP ports: performing a reliable open. When
Low opens a connection to High, the gateway running SAFP will intercept the message, and establish the
connection with Low while masquerading as High. Then it will connect to High, pretending to be Low. The
problem is in doing this reliably.

Since SAFP is running above TCP, by the time SAFP is noti�ed about an incoming connection, TCP
has already established the connection with Low. Moreover, Low's TCP can send data to the gateway
immediately afterwards and before SAFP has anything to say about it. Now suppose that when SAFP tries
to connect to High, the connection is refused. By this time, Low may have already sent some data to SAFP,
since SAFP already established a connection with Low, and that data already had been acknowledged by
gateway's TCP. Reliability is lost because the data that was acknowledged will never be delivered to High.

There is not much that can be done about this problem as long as SAFP is running above TCP. It is
possible to prevent Low from sending any data until SAFP establishes a connection to High by setting the
size of the TCP receive bu�er to zero. But even the fact that the connection has been established is already
a violation of a reliability issue. In our implementation we decided that since it is impossible to achieve a
completely reliable open without running at TCP level, we might as well use it to our advantage to speed
up data transfers by accepting the data from Low at the highest possible rate while the connection to High
is being opened. By the time SAFP �nally establishes the connection to High, Low may have already sent
many kilobytes of data to SAFP. If it is a small data transfer, Low may even be completely done before High
is even ready to receive any data, then SAFP turns in the Big Bu�er scheme of [13].

3.2.3 E�ects of the TCP Sliding Window

TCP's sliding window comes in handy in combating covert channels. The sliding window allows the sender
to send several packets in a row, without waiting for any acknowledgments, until the window is �lled up.
Likewise, the receiver can acknowledge several packets at once.

The window helps to add timing noise to the covert channels in the following way. When the sender
sends several packets back-to-back and the receiver acknowledges them all with one ACK, we have only one
piece of useful timing information for several packets. For every group of packets sent, only one will get an
acknowledgment that carries useful timing information. This is conceptually the same thing as timing noise.
Hence, with a standard TCP window we were able to get the �gure of about 75% timing noise in our tests, i.e
on average only 1 out of every 4 packets got an acknowledgment with useful timing information. (This result
will vary with the network environment and the details of the TCP implementation.) A direct corollary of
the observation is that by increasing the size of the TCP window | applications have full control over the
receive bu�er within TCP | we may increase the amount of noise on the covert channel, which in turn will
decrease the amount of information that can be sent over the covert channel per packet of data.

3.2.4 Gateway Performance

If the SAFP protocol is running on a workstation and instead of a dedicated gateway, the workstation has
to be at least twice as fast as the sending and the receiving workstations to achieve optimal performance.
SAFP has to do roughly twice as much work as either the sender or the receiver in the same time period:
SAFP has to receive the data from one network and simultaneously send the data to the other network, thus
employing two TCP/IP stacks at once, while both the sender and the receiver use just one TCP/IP stack
at the same time.
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3.3 Experimental Results

Our experimental tests were run on Intel 80486 processors with 66Mhz clock speed running Mach operating
system version 3.0 [8]. The protocols were running in the xkernel environment version 3.2 [9]. The xkernel
processes which contained the gateway protocols were running at a high priority level. The sender and
receiver protocols were running on identical machines with an identical setup as the gateway.

Data Transferred 360KB 720KB 1.4MB

Transfer Time 37 s 71 s 152 s

Transfer Rate 9.7 KB/s 10.1 KB/s 9.2 KB/s

Bu�er Size 102400 bytes 102400 bytes 102400 bytes

Average Packet Size 1382 bytes 1483 bytes 1477 bytes

Average Delay 25 ms 28 ms 31 ms

Table 1: SAFP, covert channel present

Table 1 summarizes the performance of SAFP with a covert channel present. The covert channel was
created by sending a random set of bits. It used a 250 millisecond delay on an ACK to signal a 1 and no
delay to signal a 0. Such a long delay was chosen to make the behavior of the protocols with a covert channel
more pronounced and easier to analyze. As a point of reference, the minimumuseful delay for covert channel
transmissions seemed to be around 25-50 milliseconds.

The data rates are quite low | only about 10 Kilobytes/second. Such low rates are due to several factors:
a fairly slow processor, ine�ciencies caused by running the protocols on Mach OS as a user process, and the
fact that a covert channel is present. We do not consider such slow data rates to be a big drawback in our
experiments, since all the rest of the protocols we implemented and examined were running in exactly the
same environment and thus we can still e�ectively compare their performance.

The TCP send and receive bu�ers were the standard 4K bu�ers. The test application was giving TCP
a continuous stream of data blocks, each 1024 bytes long. By comparison, the average packet size of actual
TCP packets that were going onto the wire was larger, as shown on the table, all due to TCP repackaging.
Still, the ratio of the TCP bu�er sizes to the size of the packets was nearly 3:1, which means that the
arguments of the previous section about the in
uence of the TCP window on the covert channel bandwidth
fully apply here.

Data Transferred 360 KB

Transfer Time 12 s

Transfer Rate 30 KB/s

Bu�er Size 102400 bytes

Average Packet Size 1334 bytes

Average Delay 3 ms

Table 2: SAFP, no covert channel

The next table, Table 2, presents the summary of SAFP behavior without a covert channel. The covert
channel introduced a factor of three slowdown into the channel as compared to Table 1. We were unable to
get much above the rate of 30K/s for data transfer in our experiments.

No Covert Channel Covert Channel Present

Transfer Time 2 s 29 s

Transfer Rate 180 KB/s 12 KB/s

Data Transferred 360 KB 360 KB

Table 3: No gateway between sender and receiver

Finally, Table 3 provides a basis for comparison of gateway protocols to communication between the
sender and receiver when there is no gateway in between. Our SAFP protocol was 6 times slower than
optimal without any covert channels but only 1.3 times slower than optimal with the covert channel present.
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This shows that in our tests when a covert channel is present, much of the slowdown is due to arti�cial delays
involved in creating a covert timing channel and not necessarily to the gateway software.

Using native Mach OS TCP in place of the xkernel TCP gave virtually identical performance.

4 The Pump

The Pump protocol (M. Kang and I. Moskowitz [6, 10, 11]) substantially reduces covert channel bandwidth
from that of SAFP.

The idea is to improve the throughput and reduce the covert cannel bandwidth by using a historic average
of High's rate of acknowledgments as the rate of sending acknowledgments to Low. The Pump consists of
three parts: trusted low process, trusted high process, and the communication bu�er.(Fig. 5)

High
Security
Network

Low
Trusted
Process

High
Trusted
Process

PUMP

Data

Data

ACK

ACK

M
es

sa
ge

   
B

uf
fe

r M
oving

A
verage

  V
alue

Low
Security
Network

Figure 5: Pump

When the trusted low process receives a message from Low, it will insert the message into the bu�er,
consult the current value of the moving average of the last m acknowledgment times from High, use a
probabilistic function to add some random timing noise to the channel, then delay the acknowledgment by
that amount of time. By doing this, the low trusted process forces the low side to send messages at the rate
that the high side can receive them but it does that indirectly and with random noise.

The trusted high process of the Pump simply sends messages from the bu�er to the high side and
computes the moving average based on the acknowledgment times.

4.1 Covert Channel

The Pump is a big improvement over SAFP in terms of covert channel reduction. The moving average
increases the time it takes for High to go to a di�erent rate of acknowledgments, thus slowing down the
covert channel. The probabilistic function that introduces randomness into the channel also helps to reduce
covert bandwidth.

However, despite being an improvement over SAFP, the Pump still has covert channels. Fig. 6 illustrates
one such channel. The communication is exactly the same as illustrated on Fig. 3 for SAFP but now we
have the Pump protocol in place of SAFP. Here, the size of the moving average was chosen to be deliberately
low (30 packets) as compared to the number of packets per covert bit (approximately 100 packets), thus
allowing a big and pronounced covert channel, in order to better illustrate its appearance.
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Figure 6: Pump, covert channel present

So the question is: what is the covert channel bandwidth of the Pump? Kang and Moskowitz [6] have
analyzed three possible exploitation strategies in terms of dependency on two variables: the number of
packets in the moving average and the size of the bu�er. Unfortunately, this does not say much about the
total covert channel bandwidth possible with the Pump, since it is entirely possible that other strategies
might be found or various combinations of these strategies might yield higher covert channel bandwidths.

There is a substantial amount of information 
owing from the high trusted process to the low trusted
process on every packet. It consists of two pieces:

� Bu�er full/not full | this is necessary to make communication reliable;

� The moving average | an n bit quantity of information passed from the high trusted process to the
low trusted process on every packet.

This multi-bit quantity is 
owing from the high security network to the low security network on every
acknowledgment from the Pump! This is a violation of the Bell-LaPadula policy because this information
originates in the high security network and makes it all the way down to the low security network. The
violation is diminished because High cannot arbitrarily change this multi-bit value and has to follow certain
rules in changing it, but the fact remains: many bits of data 
ow from High to Low on every packet. The
random noise helps to reduce the amount of information 
owing down but certainly does not eliminate it
completely. Because we have this multi-bit quantity 
owing from High to Low, we can conclude that the
covert channel is no greater than that many bits per packet but that is too high an upper bound to be of
any use. (A corollary to the above observation is that the more precision we have in the clock, the more
bits 
ow from the trusted high process to the trusted low process.) The exact bound is hard to calculate
in general because we have a continuous channel with a gradual, limited change behavior. The authors of
the Pump protocol simply considered several possible attacks, concluded that the covert channel bandwidth
can be adequately controlled for those attacks by setting the size of the moving average and the size of the
bu�er, and left it at that.

In section 6, we propose a new protocol based on the Pump which is easily analyzable, has an easily
controlled covert channel bandwidth, and can be proven to have that covert channel bandwidth and no more.

4.2 Implementation

The Pump was implemented as an application layer protocol over TCP in the xkernel environment. The
original Pump was described as having the trusted high process and the trusted low process as separate
entities and we talked about them as such in the preceding section. Logically they are a part of the same
protocol, so in our implementation we made them into two separate threads instead of separate processes.
Communication between the trusted high process (thread) and the trusted low process (thread) is accom-
plished by a shared variable which conveys the value of the moving average from the trusted high process to
the trusted low process.

Fig. 7 illustrates the protocol stack used for the pump.
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Figure 7: Pump gateway protocol stack

The Pump runs above TCP. Both TCP and IP protocols were modi�ed as with SAFP. Since TCP
automatically acknowledges all packets that it receives before it forwards them up to the application layer,
the Pump has to rely on setting the size of the sliding window for 
ow control, i.e. opening the TCP window
instead of explicitly sending an acknowledgment to Low.

The original protocol described in [6] does not deal with the fact that the Pump may run over a sliding
window protocol such as TCP. As we pointed out in our discussion of SAFP, the sliding window may actually
introduce additional timing noise into the covert channel and is thus a useful artifact that should not be
neglected.

TCP's sliding window is denominated in bytes rather than messages. Extra care needs to be taken in
opening the window in order to avoid introducing a new covert channel. The window should be opened
either by some �xed constant number of bytes or by the number of bytes of the last message, not by the
number of bytes that High just acknowledged. Otherwise a new covert channel of up to 16 bits per packet
is opened.

4.3 Experimental Results

Tables 4, 5, and 6 summarize behavior of our implementation of the Pump with various parameters changing.
In all three cases there is a covert channel present. As with SAFP, 1 was encoded with a 250 millisecond
delay and 0 was encoded with no delay.

Data Transferred 360 KB 720 KB 1.4 MB

Transfer Time 41 s 78 s 173 s

Transfer Rate 8.8 KB/s 9.2 KB/s 8.1 KB/s

Bu�er Size 102400 bytes 102400 bytes 102400 bytes

Moving Average 60 packets 60 packets 60 packets

Average Packet Size 1362 bytes 1373 bytes 1379 bytes

Average Delay 23 ms 30 ms 31 ms

Table 4: PUMP, covert channel present

Comparing Table 1 to Table 4, we see that the Pump's throughput is lower than SAFP by 10% to 12%.
It is also 1.4 as slow as the no-gateway throughput. This is an acceptable slowdown, since the Pump is a
substantial improvement over SAFP in terms of reducing the covert channel bandwidth.
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Moving Average 60 packets 120 packets 240 packets

Transfer Time 41 s 39 s 38 s

Transfer Rate 8.8 KB/s 9.2 KB/s 9.5 KB/s

Data Transferred 360 KB 360 KB 360 KB

Bu�er Size 102400 bytes 102400 bytes 102400 bytes

Average Packet Size 1362 bytes 1388 bytes 1361 bytes

Average Delay 23 ms 26 ms 26 ms

Table 5: PUMP, covert channel present

In Table 5 we show what happens when the number of packets in the moving average is increased.
Contrary to what we expected, this slightly improved the performance. The small improvement is due
to the fact that with longer moving average it takes a lot longer to slow down the connection. Without
changing the size of the covert bits, the value of the moving average never reaches the highs that it did with
a shorter moving average. This behavior is particularly pronounced at the very beginning of a connection
and exists only until enough packets have gone through the gateway to construct a complete moving average.
This phenomenon is only noticeable if the size of the moving average is comparable to the amount of data
transfered through the gateway. When more data is transfered, the phenomenon disappears.

Bu�er Size 102400 bytes 204800 bytes 309600 bytes

Transfer Time 41 s 37 s 35 s

Transfer Rate 8.8 KB/s 9.7 KB/s 10.3 KB/s

Data Transferred 360 KB 360 KB 360 KB

Moving Average 60 packets 60 packets 60 packets

Average Packet Size 1362 bytes 1375 bytes 1368 bytes

Average Delay 23 ms 14 ms 6 ms

Table 6: PUMP, covert channel present

Table 6 shows the behavior of the Pump when the bu�er size is changed. As expected, the throughput
of the protocol is increased with the increase in bu�er space. This is primarily due to the fact that our
implementation allows Low to send data while the Pump establishes communication with High. The more
data can be sent through during that time, the better the performance. Again, this e�ect is really noticeable
only when the size of the bu�er is comparable to the amount of data that goes through the gateway for any
particular connection.

5 The Upwards Channel (One-Way Forwarder)

The Upwards Channel protocol is a protocol that eliminates all covert channels by sacri�cing some reliability.
This protocol is similar to \blind write-up," except here the use of a bu�er and preset rate control mechanisms
provide some assurance of delivery. It was �rst published by David Goldschlag [12]; a similar protocol was
implemented by Andy Bavier under the direction of Sean O'Malley at the University of Arizona prior to the
publication of [12]. This protocol is also similar to the Big Bu�er scheme of [13] except in this case it does
not require any trusted components.

The idea of this protocol is very simple: to eliminate all covert channels, we physically isolate the high
and low network and put a special gateway in between. This gateway comes in two parts: one computer is on
the low network and the other computer is on the high network. They are connected by an optical link, which
is a commercially available �ber-optic based device in which data can only 
ow in one direction.(Fig. 8)
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When the low side of the gateway receives a message from Low, it simply forwards it on to the high side
via the optical link and acknowledges receipt of the packet. The high side of the gateway places the message
into a bu�er and forwards messages from that bu�er to High.

The obvious problem with this protocol is that if a message gets corrupted or the bu�er becomes full,
some data will be lost with no possibility of automatic recovery. However, this may be an acceptable protocol
if the high receiver is su�ciently reliable and su�ciently fast to prevent the gateway's bu�er from �lling up.

5.1 Downgraders

Goldschlag further proposed to improve the protocol by providing some downward 
ow of information
through downgraders. A downgrader is a trusted device that is located between the high and low sides
of the gateway and provides the only 
ow of information from High to Low.(Fig. 9)
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Figure 9: Upwards Channel with a Downgrader

One proposed 
avor of a downgrader, called \capacitor," works as follows: every time the low side
of the gateway sends a packet to the high side, it signals the capacitor. When the high side receives an
acknowledgment for that packet, it also signals the capacitor. At the end of a prede�ned time period, the
capacitor will signal the low side that the packet has been received by High. If the packet has not been
acknowledged by the end of the prede�ned time period, the capacitor will shut down all communication and
a manual reset will be required. This allows Low to request information from High at a prede�ned rate in
such a way that it does not carry any timing information (or rather almost no timing information | a lack
of a signal certainly does carry a small amount of timing information, although it also causes an immediate
termination of operation).

Another 
avor of a downgrader proposed by Goldschlag can provide some 
ow control. This downgrader
works just like a capacitor but it also provides 
ow control by delaying the signal to the low side of the
gateway by the moving average of the last m acknowledgment times from High instead of signaling at the
end of a prede�ned time period. Again, if the packet has not been acknowledged by the end of the prede�ned
time period, the capacitor will shut down all communication and a manual resetting will be required.

Both of these schemes of downgraders work reasonably well if the communication is maintained within a
certain prede�ned bandwidth. Outside of this bandwidth communication is not possible.

5.2 Implementation

The Upwards Channel was implemented as two protocols: the high gateway protocol and a low gateway
protocol, both above TCP. The communicationover a one way link was accomplished using the UDP protocol.
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A virtual protocol called \RC" or \Rate Control" protocol was inserted between the low gateway Upwards
Channel and UDP in order the keep the rate of messages within the capacity of the optical link. Fig. 10
illustrates this con�guration.
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UDP

Upwards_r

TCP

Figure 10: Upwards Channel protocol con�guration

The TCP and IP protocols were modi�ed as with SAFP and the Pump in order to provide similar services.

5.3 Experimental Results

Our experiments con�rmed that the Upwards Channel is a viable protocol that meets its design goals. We
weren't able to derive any concrete performance measurements of a real setup due to the lack of neces-
sary hardware (one-way �ber link, etc.). Our simulations on a Sun SPARC showed sustained data rates
comparable to those of SAFP and the Pump: on the order of 10 KB/second.

6 The Quantized Pump

The Quantized Pump proposed here is a hybrid between the Pump and the downgraders. Its design goals
are: to make it easily analyzable and controllable without sacri�cing any performance. Having a provable
bound on the size of a covert channel is a priority in the design of any secure system. Here we present three
versions of the Quantized Pump: the straightforward version, the logarithmic, and the linear Quantized
Pumps. The latter versions have certain performance advantages/tradeo�s.

The basic idea is simple: if we want to have a covert channel of exactly so many bits per second and no
more, then let the trusted high process send exactly that many bits per second to the trusted low process.
If there is no other information 
owing from the high trusted process to the low trusted process, then there
will be no other information 
owing from the high security network to the low security network. The crux
of the algorithm is then �nding the best use for the bits that are allowed to 
ow between the high trusted

process and the low trusted process.
On the surface, the Quantized Pump looks just like a regular Pump: it has a low trusted process, a high

trusted process, and a bu�er in between.(Fig. 11)

13



High
Security
Network

Low
Trusted
Process

High
Trusted
Process

Data

Data

ACK

ACK

M
es

sa
ge

   
B

uf
fe

r
1 bit every
T

 seconds

Quantized Pump

Low
Security
Network

Figure 11: Quantized Pump

There are two important di�erences from the pump. The bu�er does not have a �xed size.1 This is
important because it allows us to completely isolate the low trusted process from the bu�er. Such isolation
prevents a possible covert channel where both the high and the low trusted process are competing for access
to the bu�er, which may be measurable from the outside of the gateway. In the regular Pump, the trusted
low process has to have a better access to the bu�er to make sure that it doesn't over
ow; also, one possible
implementation of the Pump involves the trusted low process actually measuring how often the trusted high
process takes the data out of the bu�er in order to �gure out the value of the moving average.

But the main di�erence is that the trusted high process communicates with the trusted low process
in a very restricted way: at the end of every prede�ned time period T , the trusted high process sends
exactly one bit to the low trusted process. That bit carries the following meaning: either raise the rate of
acknowledgments to Low by a �xed constant rate R bytes/second or lower the rate of acknowledgments by
R bytes/second.

How does the trusted high process decide whether to raise or lower the rate of acknowledgments? The
trusted high process keeps track of the number of bytes that High acknowledged during this time period. By
dividing this number by T , the trusted high process gets the current average rate in bytes/second. If this
average rate is greater than the current rate that the low trusted process uses (remember the high trusted
process is allowed to get data from the low trusted process; it is the other direction that is restricted),
then the high trusted process will signal the low trusted process to raise the rate of acknowledgments by R.
Otherwise, it will signal the low trusted process to lower the rate of acknowledgments by R.
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Figure 12: Pump delays Figure 13: Quantized Pump delays

The above two �gures graphically illustrate the di�erence between the Pump and the Quantized Pump
acknowledgment rates. Fig. 12 shows the delays generated by the moving average construction of the pump.

Fig. 13 shows how the Quantized Pump constructs the delays. There are distinct levels present in this

1We will show later that despite this characteristic, there is a maximum size that the bu�er will never exceed.
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illustration. The vertical distance between each two adjacent levels is R and the jump from one level to the
next happened every T seconds.

The protocol is called \Quantized Pump" because communication between the trusted high process and
the trusted low process happens on a once-per-time-interval basis | quantum, hence the name | Quantized
Pump.

6.1 Covert Channel

The number of bytes acknowledged per unit time is entirely within High's control, therefore High can directly
a�ect what the high trusted process will send to the low trusted process inside the Quantized Pump. In other
words, we have a covert channel. Fortunately, from the way we setup this protocol we know exactly what
the bandwidth of that covert channel is, since we have exactly one bit passed from the trusted high process
to the trusted low process every T seconds, i.e. the bandwidth of the channel is exactly (1=T ) bits/second.2

6.2 Maximum Bu�er Size

Previously we said that the size of the bu�er is unbounded. Sadly, due to current technical limitations,
unlimited information storage is not readily available. It turns out however, that despite the absence of any
explicit restrictions on the bu�er size, the size of the bu�er is nonetheless strictly bounded.

Let Lmax be the maximum rate (in bytes/second) at which Low can send information to High via the
Quantized Pump. The largest amount of bu�er space is needed when Low starts out at the rate of Lmax
and High refuses to accept anything. Clearly, at least this much bu�er space might be needed, since this a
possible situation.

To show that this is also the largest amount of bu�er space that will ever be needed, we make the
following observation: if High lowers the rate of acknowledgments by some amount and then raises the rate
of acknowledgments by that same amount, then the occupied bu�er space will not change. Here is the proof:
let L be the initial rate of information that Low is sending and let H be the initial rate of acknowledgments
from High. The amount of bu�er space needed for the �rst time interval is: (L�H)T . Suppose High lowers
the rate of acknowledgments by iR, where i is some integer constant. Then the total amount of bu�er space
needed before the Low and High rates will be balanced out is:

(L �H)T + (L � R�H)T + (L � 2R�H)T + :::+ (L � iR�H)T

This can be rewritten as:

T

iX

j=0

(L� jR�H) = (i + 1)(L �
1

2
iR �H)T (1)

If High now raises the rate of acknowledgments by iR, then the amount of bu�er space that will free up
in the �rst time interval is: (H + iR� L)T and the total amount of bu�er space that will free up before the
Low and High rates will be balanced out is:

T

iX

j=0

(H + jR� L) = (i + 1)(H +
1

2
iR� L)T (2)

Expressions (1) and (2) are equal and opposite in value, which means that if High lowers the rate of
acknowledgments by some amount and then raises it by the same amount, the used space in the bu�er
will not change. The same argument holds true in the other direction, i.e. if High raises the rate of
acknowledgments by some amount and then lowers it by the same amount, the used space in the bu�er will
not change.

Now we are back to our original argument that the largest amount of bu�er space ever needed is when
Low starts out at the rate of Lmax and High refuses to accept anything. High cannot lower the rate of

2This is only strictly true if we assume that other factors such as time sharing of the same processor, bu�er sharing, device

sharing, etc. between the trusted high process and the trusted low process do not introduce any further covert channels.

Real-time operating systems can signi�cantly help with these issues.
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acknowledgments any further, and so the only thing that High can do that will a�ect the size of the bu�er is
raise the rate of acknowledgments. But this will free some space in the bu�er. If High subsequently lowers
the rate of acknowledgments, it will not use up any more bu�er space than we had originally by the lemma
above. Therefore, we can conclude that the largest amount of bu�er space ever needed is when Low starts
out at the rate of Lmax and High refuses to accept anything.

This maximum bu�er size now is easy to calculate. It is simply:

Bmax = LmaxT + (Lmax � R)T + (Lmax � 2R)T + :::+RT + 0 =
1

2
(Lmax=R+ 1)LmaxT (3)

For instance, if the maximum data rate from Low, Lmax, is 100 Kbytes/second, R is 10 Kbytes/second,
and the covert channel size is 1/10 bits/second, i.e. T is 10 seconds, then the bu�er space needed is only
5.5 Mbytes. This is the maximum bu�er space that will possibly be needed. On average, bu�er space usage
will be much smaller.

6.3 Logarithmic Quantized Pump

The previous example illustrated a bu�er size that is acceptable in many applications. However, the maxi-
mum size of the bu�er grows quadratically with Lmax, i.e. it is O(L

2
max), which may be tolerable but not

desirable. We can improve this behavior without introducing any additional covert channel bandwidth by
using a cleverer encoding in communication between the high trusted process and the low trusted process.

The Logarithmic Quantized Pump works exactly like the Quantized Pump, except the single bit that is
passed from the trusted high process to the trusted low process once every T seconds is interpreted di�erently.
The signal to raise the rate can be treated just as before, since it does not increase the bu�er space used.

The signal to lower the rate is now interpreted di�erently: if the immediately prior signal from the high
trusted process was to raise the rate of acknowledgments, then the low trusted process will now lower the
rate by R; if the prior signal from the high trusted process was to lower the rate of acknowledgments, then
the trusted low process will lower the rate by twice the amount it was lowered previously. For instance, the
sequence of six bits: \raise, lower, lower, lower, raise, raise" will result in the following adjustments to the
acknowledgment rate by the trusted low process: \raise the rate by R, lower the rate by R, lower the rate
by 2R, lower the rate by 4R, raise the rate by R, raise the rate by R."

This seemingly trivial change allows us to lower the rate from Lmax to zero in only log2(Lmax=R) steps
instead of (Lmax=R) steps as before, allowing saving bu�er space. The complete expression for bu�er space
now looks like this:

Bmax = LmaxT + (Lmax �R)T + (Lmax � R� 2R)T + (Lmax �R� 2R� 4R)T + :::+ 0

or

Bmax = T (Lmax +

 X

i=0

(Lmax � R

iX

j=0

2j))

where  is the number of steps necessary to get down from Lmax to zero. This expression has a closed form:

Bmax = T (Lmax +  (Lmax + R)� 2R(2 � 1)) (4)

To the �rst approximation,  = log2(Lmax=R) and so the expression turns into:3

Bmax = T (Lmax + (logLmax � logR)(Lmax + R)� 2(Lmax � R))

The bu�er size now grows as O(Lmax logLmax) instead of O(L2
max). Despite this improvement, we did

not introduce any additional covert channel bandwidth because we are still sending exactly one bit per time
period T from the high trusted process to the low trusted process but now we are simply using this bit a
little more cleverly. The drawback of Logarithmic Quantized Pump is that this improvement in bu�er space
comes from sacri�cing some throughput. Fortunately, this sacri�ce is quite small: 10% or less. For exact
performance numbers see section 6.7.

3We say \to the �rst approximation" because the expression is actually  = log
2
((Lmax=R)+ 1) and is exact only if L = R

or L = 3R or L = 7R or in general if L = (2i� 1)R; if L does not have such a convenient form, the last term of the summation

will not be complete and some approximation will be necessary.
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6.4 Linear Quantized Pump

If we consider how the Logarithmic Quantized Pump got its bu�er space advantage over the regular Pump,
we will realize that we simply converted some percentage of the available bandwidth into less bu�er space.
The natural question then is: can we save some more bu�er space at the expense of sacri�cing additional
bandwidth, without introducing any extra covert channel capacity? In this section we demonstrate two
possible ways to accomplish exactly that.

The Linear Quantized Pump works in exactly the same way as the regular Quantized Pump but the
bit passed from the high trusted process to the low trusted process once every T seconds is treated slightly
di�erently. The signal to raise the rate of acknowledgments is treated in exactly the same way, i.e. the low
trusted process will raise the rate of acknowledgments by a prede�ned constant R. The signal to lower the
rate of acknowledgments is treated di�erently. If the high trusted process signals the low trusted process to
lower the rate of acknowledgments, then the low trusted process will lower the rate of acknowledgments to
zero. The data rate will go down to zero and no data will be accepted from Low for that quantum period
T . Subsequent signal from the high trusted process to raise the data rate will raise it from zero to R.

The decision of whether to raise or lower the rate of acknowledgments is made by the high trusted process
in exactly the same way as in the regular Quantized Pump. The trusted high process keeps track of the
number of bytes that High acknowledged during this time period. Dividing this number by T , the trusted
high process gets the current average rate in bytes/second. If this average rate is greater than the current
rate that the low trusted process uses, then the high trusted process will signal the low trusted process to
raise the rate of acknowledgments by R. Otherwise, it will signal the low trusted process to lower the rate
of acknowledgments to zero for the duration of the next quantum.

The bandwidth of the covert channel is again 1=T bits/second because the only communication between
the high trusted process and the low trusted process is a single bit every T seconds. But the amount of
bu�er space needed is now substantially less.

The largest amount of bu�er space is needed when Low starts out at the rate of Lmax and High refuses
to accept anything. But now it takes exactly one quantum time period T to equalize these two rates. This
means that the maximum total bu�er space needed is only:

Bmax = TLmax

In other words, the Linear Quantized Pump has the space complexity ofO(Lmax) as compared toO(Lmax logLmax)
for the Logarithmic Quantized Pump and O(L2

max) for the regular Quantized Pump.
This improvement in bu�er size comes at a price: the loss of available bandwidth. If we carefully analyze

the behavior of the Linear Quantized Pump, we �nd that it is quite similar to the behavior of TCP Reno
(the standard implementation of TCP) in that from time to time it sharply drops the data rate and then
linearly climbs back to its previous value, exceeds it, drops again, and climbs back again. (The di�erence
is that in Reno the data rate drops by half and in Linear Quantized Pump we drop it all the way down
to zero.) In other words, Linear Quantized Pump spends most of its time climbing from the data rate of
zero bytes/second to the actual best available data rate. The average data rate is approximately half of the
available bandwidth. And the experimental results in section 5.7 completely con�rm this observation with
hard numbers.

As a passing note we should mention that it is possible to have the Quantized Pump behave like TCP
Reno (reduce the data rate by half as opposed to reducing it to zero) and it will in fact have a 50% better
average throughput than the Linear Quantized Pump while having approximately the same average bu�er
usage. In the worst case scenario, \TCP Reno-like" Quantized Pump will have only a slightly worse space
usage than the Linear Quantized Pump, i.e. Bmax = 2TLmax, instead of Bmax = TLmax.

6.5 Possible Further Improvements

We can reduce the covert channel bandwidth even further by introducing random noise into the bits (this
works much better with the original version of the Quantized Pump, not the Logarithmic or the Linear
ones). For instance, even with 20% noise (i.e. one of every �ve bits is randomly 
ipped), we get a reduction
in the covert channel bandwidth by nearly 87%. However, the usefulness of this measure is doubtful, since
the covert channel bandwidth can be precisely set to any value by simply changing the constant T .
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Another possible improvement is to have a single gateway incorporate all three versions of the Quantized
Pump presented in the previous sections. Since the regular Quantized Pump o�ers the best data throughput
but is the least e�cient in terms of bu�er space, we start communication using the regular Quantized Pump
protocol. If the bu�er space starts running short, the gateway would switch to Logarithmic Quantized Pump
protocol, which is a lot better in bu�er space management but o�ers slightly worse data rates. And �nally, if
the bu�er space becomes really critical, the gateway might switch into Linear Quantized Pump mode, where
the least amount of bu�er space is required but the data throughput would also su�er a substantial drop.

These switches between di�erent protocols can be accomplished by the low trusted process without
any additional information from the high trusted process, and thus it would not introduce any additional
information 
owing from High to Low. This implies that such an adaptive gateway would not add any
bandwidth to the covert channel from High to Low. Notice that the algorithm for the trusted high process is
identical for all three versions of the Quantized Pump. The high trusted process does not need to be noti�ed
of protocol change | the low trusted process can change its algorithm on its own.

The algorithm for switching between protocols cannot be exact, since the low trusted process does not
have direct access to the available bu�er space (which might introduce an additional covert channel). The
switching between protocols can still be accomplished by using a heuristic: if the high trusted process has
been trying to lower the data rate for the last several turns, then the bu�er must be starting to �ll up and it
is time for a more space-e�cient protocol. If the high trusted process has been trying to raise the data rate
for the last several turns, then the bu�er must be emptying out and it is time to switch to a faster protocol.

6.6 Implementation

The Quantized Pump is implemented in a way very similar to the regular Pump. The trusted high process
and the trusted low process are threads within the same protocol process. The communication between the
trusted high process (thread) and the trusted low process is accomplished by means of a one bit shared
variable that is updated once per time interval T . The protocol graph looks exactly like the protocol graph
of the Pump; see Fig. 7 for details.

The bu�er was isolated from the trusted low and high processes with only the \put" operation available
to the low trusted process and only the \get" operation available to the high trusted process. Both TCP
and IP protocols were modi�ed as for the regular Pump.

6.7 Experimental Results

Tables 7, 8, and 9 summarize behavior of our implementation of the Quantized Pump with various parameters
changing. In all three cases there is a covert channel present. As with SAFP and the Pump, 1 was encoded
with a 250 millisecond delay and 0 was no delay.

The parameters for the Pump and the Quantized Pump were chosen to roughly approximate each other:

20ms/byte for 1=R parameter for the Quantized Pump and the moving average of 60 for the Pump. These
parameters lead to roughly similar times for a data change rate from 0ms delay to 250ms delay of the covert
channel and thus allow us a better comparison of the protocols (\apples to apples" comparison).

Data Transferred 360 KB 720 KB 1.4 MB

Transfer Time 37 s 77 s 170 s

Transfer Rate 9.7 KB/s 9.4 KB/s 8.2 KB/s

Quantum (T) 1 s 1 s 1 s

Rate of change (1/R) 20 ms 20 ms 20 ms

Average Packet Size 1380 bytes 1376 bytes 1361 bytes

Average Delay 23 ms 29 ms 29 ms

Table 7: Quantized Pump, covert channel present

Comparing Table 7 to Table 4 and Table 1, we see that the Quantized Pump protocol performed slightly
better than the regular Pump and slightly worse than SAFP with the same covert channel. This is not
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a tremendously surprising result, since SAFP attempts no substantial covert channel elimination and the
Pump spends extra time traveling between quantized levels of delays of the Quantized Pump.

Quantum (T) 1 s 2 s 4 s

Transfer Time 37 s 39 s 40 s

Transfer Rate 9.7 KB/s 9.2 KB/s 9.0 KB/s

Data Transferred 360 KB 360 KB 360 KB

Rate of change (1/R) 20 ms 20 ms 20 ms

Average Packet Size 1380 bytes 1398 bytes 1362 bytes

Average Delay 23 ms 29 ms 25 ms

Table 8: Quantized Pump, covert channel present

Table 8 shows what happens to the performance of the Quantized Pump as the bandwidth of the maximum
covert channel is decreased from 1 bit/second to 0.25 bits/second. As expected, the data rate went down
somewhat because the Quantized Pump now required more time to adjust. Notice that even with covert
channel of 0.25 bits/second, the performance of the Quantized Pump is slightly better than that of the
regular Pump on Table 4, �rst column.

Rate of change (1/R) 20 ms 40 ms 80 ms

Transfer Time 37 s 38 s 37 s

Transfer Rate 9.7 KB/s 9.5 KB/s 9.7 KB/s

Data Transferred 360 KB 360 KB 360 KB

Quantum (T) 1 s 1 s 1 s

Average Packet Size 1380 bytes 1426 bytes 1406 bytes

Average Delay 23 ms 23 ms 22 ms

Table 9: Quantized Pump, covert channel present

The e�ects of changing the parameter R are illustrated in Table 9. Our results force us to conclude that
changes in R do not result in any substantial variation of the throughput of the Quantized Pump.

Data Transferred 360 KB 720 KB 1.4 MB

Transfer Time 42 s 80 s 166 s

Transfer Rate 8.6 KB/s 9.0 KB/s 8.4 KB/s

Quantum (T) 1 s 1 s 1 s

Rate of change (1/R) 20 ms 20 ms 20 ms

Average Packet Size 1289 bytes 1343 bytes 1357 bytes

Average Delay 18 ms 23 ms 27 ms

Table 10: Logarithmic Quantized Pump, covert channel present

Table 10 illustrates the performance of Logarithmic Quantized Pump. The throughput is 12% worse than
the Quantized Pump for a small data transfer but only 3% worse than the Quantized Pump for a much larger
data transfer. For even larger data transfers, the di�erence becomes even less pronounced. The logarithmic
behavior in bu�er growth completely justi�es this slightly lower performance of the Logarithmic Quantized
Pump.
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Data Transferred 360 KB 720 KB 1.4 MB

Transfer Time 85 s 179 s 386 s

Transfer Rate 4.2 KB/s 4.0 KB/s 3.6 KB/s

Quantum (T) 1 s 1 s 1 s

Rate of change (1/R) -1000 ms/+20 ms -1000 ms/+20 ms -1000 ms/+20 ms

Average Packet Size 1292 bytes 1333 bytes 1299 bytes

Average Delay 13 ms 19 ms 22 ms

Table 11: Linear Quantized Pump, covert channel present

Finally, Table 11 shows the performance numbers for the Linear Quantized Pump. As advertised in
the previous sections, the Linear Quantized Pump sacri�ced about half the bandwidth to eliminate all but
a small size bu�er. The table shows rate of change parameter 1=R as: -1000ms/+20ms, -1000ms is the
duration of the quantum (T ), thus for that quantum there was no data transmitted and the data rate is
zero.

7 Conclusion

We examined several previously proposed protocols that aim at reducing the bandwidth of covert channels.
We discussed our implementations of these protocols and some practical problems that come up when
implementing these protocols.

We introduced a new protocol, the Quantized Pump, which is easy to con�gure, easy to analyze, has a
provable lower bound on the covert channel bandwidth, and has better performance characteristics than the
Pump. We demonstrated several di�erent versions of the Quantized Pump with di�erent data-rate/bu�er-
size tradeo�s.

Finally, we supported our claims with comparative performance numbers for all of the protocols discussed.
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