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Abstract

We consider or-parallel logic programming implementations on paral-
lel machines with no shared-memory. Traditional implementation tech-

niques as employed in Aurora and Muse are not applicable. In our or-

parallel execution model, all processors perform identical work initially.
At each choice point, processors are divided evenly among alternatives of

the choice point. Backtracking is employed if there are not enough proces-

sors for such a division. As execution proceeds, the division of processors

among alternatives becomes uneven. In this paper, we present two di�er-

ent methods of load balancing called equalization and apportion, aimed at

improving the degree of parallelism. Equalization and apportion reallo-
cates all processors to the or-parallel branches by copying heaps through

a interprocessor communication network.

1 Introduction

We consider or-parallel logic programming implementations on parallel machines

with no shared-memory. Traditional implementation techniques as employed in

Aurora [Lusk et al., 1990] and Muse [Ali and Karlsson, 1990b] are not applica-

ble. In our or-parallel execution model, all processors perform identical work
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initially. At each choice point, processors are divided evenly among alterna-

tives of the choice point. Backtracking is employed if there are not enough

processors for such a division. As execution proceeds, the division of proces-

sors become uneven. Some or-parallel branches possess a lot of processors, while

some other or-parallel branches run out of processors and have to resort to back-

tracking. To address this problem, we present two di�erent methods of load bal-

ancing called equalization and apportion, aimed at improving the degree of par-

allelism. Equalization and apportion reallocates all processors to the or-parallel

branches by copying heaps through a interprocessor communication network.

We implemented equalization and apportion in Firebird [Tong and Leung, 1993;

Tong and Leung, 1994; Tong and Leung, 1995], a data-parallel concurrent con-

straint programming system for DECmpp and Maspar massively parallel com-

puters. The next section is a review of Firebird. Equalization and apportion,

together with some preliminary performance �gures, are presented in section 3.

Section 4 is a comparison to previous research.

2 Firebird: A Review

2.1 The Firebird Computation Model

In Firebird, a program consists of a number of clauses and every clause is di-

vided into a guard part and a body part by a commit operator in the same way

as the concurrent logic programming language 
at GHC [Ueda, 1985]. Execu-

tion consists of two alternating derivation steps, indeterministic derivation and

nondeterministic derivation. In an indeterministic derivation step, execution

consists of guard tests, commitment, output uni�cation and spawning in the

same manner as committed-choice logic programming languages. In a nonde-

terministic derivation step, a choice point based on one of the domain variables

in the system is set up and all possible values in its domain are attempted in an

or-parallel manner. The domain variable used in a nondeterministic derivation

step is said to be labeled1 [Van Hentenryck, 1989] and each or-parallel branch is

called a partition.

2.2 Exploitation of Data-Parallelism in Firebird

In a nondeterministic derivation step, the labeled domain variable becomes a

vector of all possible values of its domain. Goals and constraints take these

argument vectors arising from the labeling operation for the exploitation of

data-parallelism.

To illustrate how Firebird exploits data-parallelism, it is helpful to trace

the execution of 4-queens using the query queen(4,[X1,X2,X3,X4]). Here

1Labeling a domain-variable means instantiating a domain-variable by attempting each

value in its domain one by one or in parallel.
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Xi represents the position of the queen in the i-th column. We assume that

all atoms have been reduced by indeterministic derivation. Only constraints

remain in the system and they are shown in Figure 1. At this point, all domain

variables have the same initial domain f1,2,3,4g.

X1 6= X2 X1 6= X2 + 1 X1 6= X2 - 1

X1 6= X3 X1 6= X3 + 2 X1 6= X3 - 2

X1 6= X4 X1 6= X4 + 3 X1 6= X4 - 3

X2 6= X3 X2 6= X3 + 1 X2 6= X3 - 1

X2 6= X4 X2 6= X4 + 2 X2 6= X4 - 2

X3 6= X4 X3 6= X4 + 1 X3 6= X4 - 1

Figure 1: Constraints remaining just before the �rst nondeterministic derivation

If we label X1 using nondeterministic derivation, form a vector with the 4

possible values of X1 and try the 4 possible values in a data-parallel fashion,

we can evaluate the �rst 9 constraints with an ideal 4-times speedup2 on a

SIMD machine. Because the value of X1 is now known, the domains of other

variables can be deduced using the constraints in Figure 1. Then, a second

nondeterministic derivation will occur. If every branch chooses to create a choice

point on X2, there will be 2+1+1+2 = 6 branches (see Figure 2). Thus the next

9 constraints can be solved with an ideal speedup of 6. Thousands of processor

elements can be fully utilized easily in this way because many problems are

combinatorial in nature.

2.3 Mapping Partitions to Processor Elements

In order to avoid data movement among the processor elements, a single logical

partition, or simply a partition, is mapped to a number of identical physical

partitions. Each physical partition corresponds to a single processor element of

a data-parallel computer, and we use the two terms interchangeably. Initially,

all processor elements execute exactly the same initial logical partition. If the

data-parallel computer has N processor elements and a choice point with 4 alter-

natives is created, N

4
processor elements will be allocated to each alternative. A

trace of the execution of 4-queens on a machine with 8,192 processor elements is

shown in Figure 2. The processor elements mapped to each partition are shown

under each chessboard. Since a processor-id is associated with each processor

element, each processor element can compute which alternative it should take

autonomously.

2This is just a rough approximation. Amdahl's Law dictates that such an \ideal" speedup

cannot be obtained in practice.
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proc #6144-8191proc #4096-6143proc #2048-4095proc #0-2047

proc #7168-8191proc #0-1023 proc #1024-2047 proc #2048-4095 proc #4096-6143 proc #6144-7167

proc #6144-7167proc #4096-6143proc #2048-4095proc #1024-2047

proc #0-8191

Figure 2: Example: execution of 4-queens
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3 Load Balancing

Firebird avoids inter-processor communicationwith a processor allocation strat-

egy which divides processor elements among possible alternatives. However, this

heuristics is much a matter of guesswork. It is di�cult to estimate the exact

number of processor elements needed before execution. Consequently, after sev-

eral nondeterministic derivation steps, some partitions may still have a lot of

active processor elements while some other partitions have very few active pro-

cessor elements. On the other hand, some partitions may have succeeded or

failed and its processor elements can be freed up and reallocated to other parti-

tions in need. The reallocation is achieved by an (optional) machine-dependent

operation called equalization. In an equalization operation, processor elements

of the machine are reallocated and divided evenly among the logical partitions

which have not yet succeeded or failed. Equalization and branch-and-bound

are the only two operations in the Firebird system which require interprocessor

communication. Compared to SIMD MultiLog [Smith, 1993], Firebird has the

advantage of lower inter-processor communication overhead.

3.1 The DECmpp Massively Parallel Computer

The Firebird language is implemented on a DECmpp [Blank, 1990], which con-

sists of a front-end UNIX workstation and a back-end data-parallel unit. The

data-parallel unit in turn consists of an array control unit (ACU), a processor

element array (PE) and an inter-processor communication network which sup-

ports both mesh and arbitrary communication patterns. The ACU dispatches

a single instruction stream to the processor elements. In addition, it broadcasts

data to the processor elements and receives the logical or-ing of data from the

processor elements. A processor element may choose to execute or ignore an

instruction based on its contingent bit. Each processor element has its own local

memory and the processor elements must use the inter-processor communication

networks to communicate with each other.

3.2 Equalization

We describe the DECmpp-speci�c implementation of the equalization operation.

Before equalization, some partitions have a lot of processor elements, some other

partitions have only a few processor elements, and some partitions have already

succeeded or failed. The equalization operation frees up the processor elements

originally allocated to the succeeded or failed logical partitions, and reallocates

them to active logical partitions. The detailed operations are as follows.

1. We count and number the active partitions using the DECmpp system

library call enumerate() (Figure 3a). The width of a partition in the

�gure represents the number of processor elements it has. The leftmost

processor element of each active partition is called a source.
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2. Processor elements are divided evenly among the active partitions (Fig-

ure 3b). The leftmost processor element of each resulting chunk is called

a destination. Each processor element checks (in parallel) if it is a desti-

nation by dividing its processor-id by the total count of active partitions

obtained from the enumerate() call.

3. After the sources and destinations are identi�ed, each destination pro-

cessor element fetches the entire heap and argument stack from a source

processor element (Figure 3c) through DECmpp's router hardware. The

router network allows an arbitrary pattern of point-to-point interproces-

sor communication. For clarity, the sources and destinations are shown as

two separate boxes but in fact they are the same set of processor elements.

4. Upon receiving each word of data, each destination processor element is

responsible for distributing the data to the processor elements to its right

with DECmpp's xnet pipelined copy operation (Figure 3d). Xnet is a two-

dimensional mesh network which connects each processor element with its

eight nearest neighbors, N, NE, E, SE, S, SW, W, NW. Pipelined copy

sends data along some direction for some distance d, and leaves a copy at

each intermediate processor element the data travels through.

Equalization is applied there is a choice point but there are not enough processor

elements for all possible alternatives in the choice point, except if there have

been backtrackings before. Equalization after backtrackings is future work and

the main di�culty is that currently we copy entire heaps from processor elements

to processor elements, overwriting old heaps, but the old heaps must be restored

upon backtracking.

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 111 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11

b, partitions after equalizationa, partitions before equalization

data from source processor elements
destination processor elements fetchc, destination processor elements distribute

data to processor elements to its right
d,

Figure 3: Equalization on DECmpp
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3.3 Apportion

Apportion is a variation of equalization. Rather than sharing processor elements

among partitions equally, apportion allocates processor elements according to

some heuristics. Each partition asks for a number of shares. For example, if

there are 5 partitions and they ask for 3, 5, 4, 6 and 2 shares respectively, a total

of 20 shares are needed. The processor elements are divided into 20 shares and

the shares are allocated to the 5 partitions accordingly. The implementation of

apportion is similar to that of equalization.

1. The DECmpp system library call scanAdd() is used in place of enumer-

ate(). scanAdd() numbers each partition by adding up the needs of parti-

tions to its left. In the last example, scanAdd() numbers the 5 partitions

as 0, 3, 8, 12 and 18 respectively.

2. The processor elements are evenly divided into shares. The source proces-

sor elements send their processor-id to the destination processor elements

of share 0, share 3, share 8, share 12 and share 18 respectively.

3. The destination processor elements fetch data from source processor ele-

ments and distribute the data to its right as in equalization. The length

of distribution for each destination processor element is di�erent (because

now the size of each resulting partition is di�erent) but the DECmpp hard-

ware will stop the distribution automatically as soon as it hits the next

destination processor element.

How does each partition determine how many shares it asks for ? The

apportion operation is performed when there is a choice point but there are not

su�cient processor elements. Therefore, each partition knows the number of

alternatives in the choice point. If there are n alternatives, the partition asks

for n shares. Compared to equalization, apportion looks one step ahead and

ensures that after the next choice point the partitions will have equal numbers

of processor elements. If there are not enough processor elements to satisfy the

requests of all partitions, the apportion operation is aborted and the system

resorts to backtracking.

3.4 Preliminary Results

The performance of equalization and apportion is shown in Table 1. The over-

head column indicates the percentage of time spent on equalization or apportion.

P is the number of partitions measured at the end of the execution and BT is the

number of backtrackings. eq10 is a program taken from the clp(FD) [Diaz and

Codognet, 1993] distribution, which solves 10 linear equations over 7 variables.

t1; t2; t3 are execution time in seconds to �nd all solutions.

� Although equalization and apportion are heavy operations which involve

copying entire heaps and stacks through the interprocessor communication

7



using apportion using equalization no equalization

or apportion

benchmark t1 overhead t3=t1 t2 overhead t3=t2 t3

eq10 .293 10.2% 1.17 .288 8.5% 1.19 .344

queen(9) .202 22.6% .90 .199 22.5% .91 .182

queen(10) 1.066 5.7% 1.44 1.089 6.1% 1.41 1.540

queen(11) 15.545 .007% 1.00 15.154 .7% 1.03 15.544

queen(12) 106.229 .001% 1.00 104.437 .2% 1.02 106.227

using using no equalization

apportion equalization or apportion

benchmark P BT P BT P BT

eq10 99 0 99 0 181 8

queen(9) 770 0 770 0 2313 3

queen(10) 3936 15 3924 16 2399 17

queen(11) 2763 158 2779 164 2763 158

queen(12) 4161 1201 4183 1154 4161 1201

Test conditions: #proc=8,192, eager bit vector creation, eager nondeterministic

derivation, no solitary memory access, no priority scheduling.

Table 1: Benchmark: Equalization and Apportion

network, the overhead is as serious as one would expect because they

are used only once. Applying equalization or apportion more than once

does not further reduce the number of backtrackings or execution time

signi�cantly, and we left out the uninteresting results.

� For most programs, equalization and apportion does not signi�cantly af-

fect performance. For queen(11) and queen(12), the number of shares

requested by partitions in an apportion is greater than the total number of

processor elements (8,192). Therefore, the apportion operation is aborted,

leading to very low overhead �gures (the only overhead is that of checking)

but no e�ect on execution time and number of backtrackings.

� For queen(10), the degree of parallelism is improved by equalization and

apportion as can be seen in P , the number of partitions at the end of exe-

cution. As a result, the number of backtrackings is reduced and execution

time is improved.

� For queen(9), although the unoptimized benchmark shows 2313 parti-

tions, it is an indication of poor processor element utilization rather than

an indication of a high degree of parallelism. Before equalization or appor-

tion, there are 2312 partitions whose sizes ranges from 1 to 13 processor

elements, but only 600 of them have not succeeded or failed yet. An equal-

ization or an apportion frees up the 1712 useless partitions (totaling 5953
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processor elements). Similarly, eq10 has a lot of failed partitions which got

freed up in an equalization or an apportion. For all the other programs,

most partitions are still active at the point of equalization or apportion,

and the number of partitions freed is insigni�cant.

4 Comparison

Traditional or-parallel logic programming research focuses on the allocation of

a small number of processor elements called workers to a large number of or-

parallel branches called jobs. Work on scheduling and load balancing strategies

for this style of or-parallelism include [Butler et al., 1988; Calderwood and

Szeredi, 1989; Hausman, 1989; Szeredi and Carlsson, 1990; Ali and Karlsson,

1990a; Ali and Karlsson, 1991; Szeredi et al., 1991; Karlsson and Ali, 1992;

Ali and Karlsson, 1992; Beaumont and Warren, 1993; Sindaha, 1993]. These

schedulers assign jobs to idle workers who have �nished their jobs at hand. Some

aim at minimizing context switching overhead, and others allow speculative work

to be scheduled, the principle of using idle processors to work on jobs which we

are not sure whether are useful in the future. Speculative work may become

useless if the or-parallel branch subsequently gets pruned by the Prolog cut

operator, but otherwise, some execution time will be saved.

In all of the above papers, it is assumed that the processor elements have

shared-memory and the overhead for a processor to switch from one job to an-

other is low. The assumptions of our work are di�erent. Processor elements

are plentiful on a massively parallel computer, but memory is distributed. A

processor element cannot switch from one job to another e�ciently. As a result,

we propose an execution model in which work is duplicated on many processor

elements. At each choice point, processor elements are evenly divided among

alternatives of the choice point. This strategy is not e�ective at balancing loads

to processor elements because some or-parallel branches get a lot of processor

elements but others starve for processor elements, but this strategy success-

fully avoids interprocessor communication overhead. The work described in

this paper is operations to even out the number of processor elements for each

or-parallel branch, on our implementation platform, a DECmpp 12000 Sx mas-

sively parallel computer.

5 Conclusion

We present two di�erent load balancing methods, called equalization and appor-

tion, for Firebird, describe their implementations and show some preliminary

performance results. We found that although both equalization and apportion

are heavy weight operations they incur an acceptable overhead because they are

used sparingly. In most cases they do not signi�cantly a�ect performance but
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in some special cases they help. We are surprised that sometimes equalization

gives better results than apportion given that intuitively the latter seems to be

the better of the two methods.
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