
Resource-Bounded Partial Evaluation
�

Saumya Debray

Department of Computer Science

University of Arizona

Tucson, AZ 85721, U.S.A.

debray@cs.arizona.edu

Technical Report 96-19
November 1996

Abstract

Most partial evaluators do not take the availability of machine-level resources, such as reg-

isters or cache, into consideration when making their specialization decisions. The resulting

resource contention can lead to severe performance degradation|causing, in extreme cases, the

specialized code to run slower than the unspecialized code. In this paper we consider how re-

source availability considerations can be incorporated within a partial evaluator. We develop an

abstract formulation of the problem, show that optimal resource-bounded partial evaluation is

NP-complete, and discuss simple heuristics that can be used to address the problem in practice.
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1 Introduction

The �eld of partial evaluation has matured greatly in recent years, and partial evaluators have been

implemented for a wide variety of programming languages [1, 4, 5, 6, 13, 19]. A central concern

guiding these implementations has been to ensure that computations in an input program that can

be specialized should be specialized as far as possible without compromising termination of the par-

tial evaluator. The good news is that most current implementations of partial evaluators are, by

and large, fairly successful at satisfying this concern. Unfortunately, the bad news is also that these

systems are successful at meeting this concern. Focusing single-mindedly on specializing as much

of an input program as possible, and constrained only by concerns regarding termination, partial

evaluators typically ignore the evailability of machine-level resources, such as registers or cache,

when making specialization decisions. The resource contention resulting from such aggressive spe-

cialization can lead to signi�cant performance degradations|in some cases, causing the specialized

program to run slower than the unspecialized code.

The problem is illustrated by Figure 1. This �gure illustrates how the speedup of a convolution-

like program, which computes
Pn

i=1

Pn

j=1 xiyj given two n-element integer vectors x and y and

which has been specialized to one of the input vectors, varies for di�erent values of n.1 It can be

seen that while the specialized program is about 25% faster than the unspecialized version for small

values of n, the speedups drop o� steeply after n = 4000, and for n � 7000 the specialized code is

slower than the unspecialized program.
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Figure 1: Relative Performance of Specialized Convolution Programs

This loss in performance is due not so much to an \explosion" in code size as it is to specialization

with no regard for machine-level resources. What happens is that because one of the input vectors is

known at specialization time, the inner loop of the program is unrolled completely into a straight line

sequence of code. For di�erent input sizes, this results in a family of specialized programs where the

1The numbers are based on a Scheme program that represents a vector as a list, specialized using Similix [6] and

compiled using Bigloo version 1.8 [20], invoked as bigloo1.8 -O4 -unsafe -farithmetic with gcc version 2.7.2 as

the back-end compiler, and run on a 25 MHz SPARC IPC with 64 Kbytes of cache and 32 Mbytes of main memory.

See Section 5 for further details.
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size of the body of the main loop|where most of the execution time of the program is spent|grows

linearly as n. While this may appear to be a modest growth rate, it incurs signi�cant performance

penalties once n becomes large enough that the body of the loop does not �t in the instruction cache

of the processor.

There are two reasons why performance degradation due to over-specialization can be a problem.

First, as the example given illustrates, it can manifest itself even for commonly encountered compu-

tations and reasonably sized inputs; and second, the performance degradation typically increases as

the (static) input size increases and is the worst for the largest inputs, whereas these are precisely

the cases where we would like partial evaluation technology to deliver the greatest bene�ts. For

these reasons, it would seem desirable to be able to incorporate some awareness of the availability

of resources during the partial evaluation process.

The potential problem of code growth during partial evaluation has been noted in the past (e.g.,

see [15]), but we do not know of any proposal to address code growth given �xed resources. There has

been some work on identifying those static computations that are \worth specializing", i.e., whose

specialization can contribute to good speedups [2], but these do not directly address the particular

problem that we are concerned with. The issue of resource-bounded partial evaluation has been

discussed by Danvy et al. [9], who sketch possible approaches to the problem at a very high level

but o�er few details.

2 Underlying Concepts

2.1 Program Points

We assume that the programs under consideration for specialization are expressed in a (untyped)

�rst-order functional language. The speci�c details of syntax are not very important in this discus-

sion, and we will informally use a �rst-order subset of Scheme for our purposes. Let a control point

refer to any executable construct within a program (i.e., a node in the program's abstract syntax

tree), and a static environment at a control point refer to a mapping from the static variables at

that point to values. Traditionally, a \program point" is taken to be a pair (cp; senv), where cp is a

control point and senv a static environment for that point. For our purposes, we need to extend this

so that a program point is a pair (cp; SEnv ) where SEnv is a set of static environments corresponding

to the control point cp. To see the reason for this, consider the following Scheme code:

(define (foo y)

(define (f y i)

(if (= i 0)

y

(let ( (y0 (+ y i)) (i0 (- i 1)) ) (f y0 i0))

)

)

(f y 100000)

)

The sort of code we would intuitively like to generate is that obtained by unrolling this loop, i.e.,

unfolding the recursive call to f, as much as possible while ensuring that the body of the resulting

code still �ts in the cache, i.e., something like

(define (foo y)

2



(define (f y i)

(if (= i 0)

y

(let ( (y0_0 (+ y i)) (i0_0 (- i 1))

(y0_1 (+ y0_0 i0_0)) (i0_1 (- i0_0 1))

(y0_2 (+ y0_1 i0_1)) (i0_2 (- i0_1 1))

...

(y0_99 (+ y0_98 i0_98)) (i0_99 (- i0_98 1))

)

(f y0_99 i0_99)

)

)

)

(f y 1000)

)

However, if we take a program point to be a (control point, static environment) pair, then spe-

cialization will proceed with the sequence of program points (L; [i 7! 100000]); (L; [i 7! 9999]); : : :,

where L denotes the control point corresponding to the statement y = y+i, and this will result in

the generation of the specialized statements with the static values of the variable i hard-wired in,

as follows, which is not what we want:

(define (foo y)

(define (f y)

(let ( (y0_0 (+ y 10000))

(y0_1 (+ y0_0 9999))

(y0_2 (+ y0_1 9998))

...

)

y0_10000

)

)

(f y)

)

This problem can be avoided by having a program point associate a set of static environments with

each control point: in the special case where this set is a singleton, the values of the static variables

can be substituted for the variables, as before.

2.2 Specialization Annotations

Traditional o�ine partial evaluation consists of two components: a binding time analyzer, which

determines which computations can be specialized; and a specializer, which carries out the actual

specialization, based on the information provided by the binding time analyzer. To account for

resource availability, we extend this to include a third component, the accountant, as depicted

in Figure 2. The idea is that the binding time analyzer determines which computations can be

specialized and passes this information|in the form of a program annotated with binding times|to

the specializer. The specializer then queries the accountant with a binding-time annotated program,

which indicates which program point can be specialized, together with an estimate of the available

resources. The accountant uses the resource information to determine which operations should be
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Figure 2: Organization of Resource-Bounded Partial Evaluation

specialized, and tags each static computation with one of the annotations specialize or don't-specialize

(another way to think of this is to imagine the accountant as turning some of the \static" annotations

to \dynamic" to prevent some specializations from taking place: we will maintain the distinction

between static/dynamic annotations made by the binding time analyzer and the specialize/don't-

specialize annotations made by the accountant for conceptual clarity). The resulting specialization-

annotated program is returned to the specializer, which carries out a single specialization step

based on the decisions of the accountant and updates its resource availability estimates accordingly.

The resulting program, with any new program points annotated with binding time annotations

inherited from the original binding-time annotated program where necessary, is used to query the

accountant again, together with the updated resource estimates. This process continues until the

accountant terminates the specialization process due to the exhaustion of available resources (or

possibly because it identi�es a nonterminating specialization sequence) by returning a program

where no program point is annotated for specialization. In some ways, this resembles the notion of

\mixline" partial evaluation [8], where binding-time annotations of \possibly static" or \sometimes

static" are permitted. The di�erence is that in our model, the binding time analysis does not

itself distinguish between \possibly static" and \de�nitely static" entities: it identi�es everything

that is (de�nitely) static, and the accountant selects a subset of these for actual specialization in

any particular specialization step based on the availability of resources. In the degenerate case

where the accountant ignores the availability of resources and always selects all static computations

for specialization, this model becomes indistinguishable from the traditional approach to partial

evaluation.

Traditionally, the classi�cation of variables as \static" or \dynamic" is required to satisfy a

congruence condition that states, essentially, that any variable that depends on a dynamic variable

is itself dynamic. The reason for this is that if the value of a variable is to be computable before

the program is executed, that value cannot be dependent on any quantity that is not available

until runtime. The specialization-annotated program must satisfy a similar condition. To see this,

consider the following program fragment:

(define (foo x)

(define (f x) (+ x (g x) (g (- x))))

(define (g y) (+ y (h y)))

(define (h z) ... )
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(+ x (f 1))

)

The function h can be called with the arguments 1 or �1. Suppose we want to specialize h() for

the argument value 1. Because resource-bounded specialization specializes some, but not necessarily

all, of the computations that can be specialized, we have to make sure that the specialized version

of h() can never be called from a context where its �rst argument is not 1. In other words, it is

necessary to specialize the appropriate call sites for h() as well; this, in turn, implies a need to also

specialize the function g(). In general, we have to ensure that if we choose to specialize a particular

computation, then we should also specialize any computation that it depends on, so as to make sure

that a specialized version of an operation is not invoked incorrectly.

2.3 An Abstract Formulation of the Problem

Intuitively, a resource-bounded partial evaluator will attempt to specialize as much of an input

program that it can, subject to the usual termination considerations as well as considerations of

the availability of resources. For this, it will need to be able to weigh the bene�ts of specializing

a particular computation against the costs so incurred. When a piece of code is specialized with

respect to some static data, it will typically be the case that the residual code will require fewer

operations, measured, for example, in instructions or function calls. The savings so incurred must

be weighed against the storage requirements of the residual program, measured, for example, in the

number of registers required for live values, or in the number of instructions that need to reside in

cache. Specialization of an expression may lead to a reduction in code size (if some operations are

specialized away) or an increase in code size (if specialization involves unfolding a function call; or

leads to a primitive operation being open-coded instead of being implemented as a call to a generic

routine). Thus, with each program point p we can associate a cost cost(p) 2 Z and a bene�t

savings(p) 2 Z, where Z denotes the set of integers. Moreover, given limited resources we will

prefer to focus on those parts of the program that are the most frequently executed: to this end, we

assume that each program point p has a nonnegative \weight" wt(p) associated with it.

In general, the problem of resource-bounded partial evaluation for a resource bound of B would

involve coming up with a specialization sequence for any given program such that the total savings

is maximized subject to the constraint that the size of the residual program at the end of the

specialization process does not exceed B. This does not seem to be a straightforward problem: for

example, the program resulting from an intermediate specialization step can be allowed to exceed

the bound B|perhaps by a considerable amount|as long as enough code can specialized away

subsequently to reduce the size of the �nal residual program to below B. This would appear to

involve a search for a global optimum over the space of all possible specialization sequences, and it

is not obvious that this will be practical, especially for nontrivial programs. We therefore consider a

stronger criterion, namely, that each specialization step in a specialization sequence should respect

the resource bound B. We refer to such specialization sequences as pointwise resource-bounded;

An optimal pointwise resource-bounded specialization sequence is one that is pointwise resource-

bounded, and where at each step the savings are maximized.

3 Complexity Issues

It is easy to see that one way to obtain an e�cient algorithm for resource-bounded partial evaluation

is to focus on pointwise resource-bounded specialization sequences, using an e�cient algorithm for

each specialization step, and ensuring that the specialization sequences are not too long (i.e., are
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within a polynomial factor of the size of the input program). In this section we focus on the

complexity of a single optimal resource-bounded specialization step. This optimization problem can

be rephrased as a decision problem as follows:

De�nition 3.1 The Optimal One-Step Resource-Bounded Specialization problem is de�ned as fol-

lows: given a set of program points P ; functions wt : P ! Z, cost : P ! Z and savings : P ! Z; and

positive integers B, K, is there a set of program points Q � P satisfying the following requirements:

(i) if q 2 Q and q depends on p then p 2 Q;

(ii)
P

q2Q wt(q) � savings(q) � K; and

(iii)
P

q2Q cost(v) � B?

The structure of this problem, where we try to maximize one quantity while simultaneously trying

to minimize another, is reminiscent of \knapsack"-like problems. The following result therefore does

not come as a great surprise:

Theorem 3.1 Optimal One-Step Resource-Bounded Specialization is NP-complete, even for �rst

order programs.

Proof By a straightforward reduction from the Knapsack problem, which is known to be NP-

complete [16]. 2

It turns out that the reduction from the knapsack problem makes no use of the congruence re-

quirement that specialization annotations are required to satisfy. As a result, while the knapsack

problem is solvable in pseudo-polynomial time via dynamic programming, it is not clear whether

similar techniques are applicable to resource-bounded specialization in the general case, where con-

gruence requirements have to be met. In fact, for higher order programs, it is straightforward to take

advantage of the congruence requirement and adapt the reduction for Theorem 3.1 to one where the

reduction is from the Partially Ordered Knapsack problem, which is known to be NP-complete in

the strong sense [10]. It follows that resource-bounded specialization for higher order programs is

NP-complete in the strong sense.

4 A Heuristic Algorithm

Theorem 3.1 implies that the existence of e�cient algorithms for optimal one-step resource-bounded

program specialization are unlikely. We are forced, therefore, to resort to heuristics. we do this in two

phases: �rst, we determine the costs and bene�ts associated with specializing each program point.

We then use this information to choose a set of points to specialize. To simplify the discussion in this

section, we assume that instead of passing a binding-time annotated program to the accountant, the

specializer passes a set of program points, together with a dependence relation on them that speci�es,

for any given program point, the set of program points it depends on. This is straightforward to

implement, since the set of program points in question are simply those that are marked static, and

the dependence relation can be collected during binding time analysis. It is also straightforward to

adapt the algorithm given below to work on a binding-time annotated program.

Because of the congruence requirements, it will not be possible, in general, to select program

points for specialization in isolation: when a program point is selected for specialization, it will be
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Input : A set of program points P together with a dependence relation ; on P (p ; q means p

depends on q); functions wt : P ! Z, cost : P ! Z, savings : P ! Z; and a resource bound

B.

Output : A set of program points Q � P that can be specialized without exceeding the resource

bound B.

Method :

1. For each p 2 P compute, using depth-�rst traversals,

CumCost(p) =
P
fcost(q) j p;� qg

CumSvgs(p) =
P
fwt(q) � savings(q) j p;� qg

2. Let Candidates = fp 2 P j CumCost(p) � Bg.

If Candidates = ; then Q = ;;

otherwise, Q = fp j q ;� pg, where q 2 Candidates satis�es:

(a) for all p 2 Candidates , CumSvgs(q) � CumSvgs(p) ; and

(b) for all p 2 Candidates , CumSvgs(p) = CumSvgs(q) implies CumCost(q) �

CumCost(p) .

3. return Q.

Figure 3: A heuristic algorithm for resource-bounded partial evaluation

necessary to ensure that all points it depends on are also selected. This means that the total cost

of specializing a given program point p is given by the cost of p together with the cost of all of

the points it depends on. On the other hand, since all of the points that p depends on are also

specialized when p is specialized, the total savings resulting from the specialization of p is given by

the savings for p together with the savings for all of the points p depends on. We refer to these values

as the cumulative cost CumCost(p) and the cumulative savings CumSvgs(v) respectively. Let p; q

denote that point p depends on point q, and let ;� denote the re
exive transitive closure of ;.

Then, for any program point p, the values of CumCost(p) and CumSvgs(p) can be computed using

depth-�rst search to visit each program point q such that p;� q, i.e., the point p itself together with

all the points that p depends on, accumulating the costs and savings of each node visited during the

traversal. If there are n program points, the worst-case complexity of the computation of cumulative

costs and savings for all program points is O(n2) time and O(n) space. Notice that (i) it is not

correct to write CumCost(p) = cost(p) +
P
fCumCost(q) j p; qg, since this can sometimes cause

the cost of some nodes to be counted more than once; and (ii) if, instead of repeated depth-�rst

traversals of the dependency graph, we explicitly associate, with each program point, the set of all

of the points it depends on, we incur a quadratic space cost, which can be prohibitive for large

programs.

Once the cumulative costs and savings corresponding to each program point have been deter-

mined, we are in a position to determine the set of program points that can be specialized without

exceeding the available resources. For this, we simply �nd a program point with largest cumulative

savings whose cumulative cost does not exceed the available resource bounds. This point, and all of

its predecessors in the dependency graph, are now marked for specialization.
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At this point, there may still be enough resources available, after we update our estimate of

available resources to account for the program points that have been chosen for specialization, to

leave room for further specialization. However, if we simply repeat the above procedure|that is, if

we take an available program point whose cumulative savings are the highest among the remaining

nodes, and whose resource requirements do not exceed the available resources|we can conceivably

consider some nodes twice. The reason is that the cumulative cost of a node n is determined using

the cost of all of the nodes it depends on. It may happen that some of these predecessors have already

been marked for specialization in the previous step: in this case, the costs and bene�ts resulting

from the specialization of those nodes have already been accounted for. However, the cumulative

cost and savings for the node n have not been updated to account for this, which means that they no

longer correctly re
ect the incremental costs and savings for n given the specialization decisions that

have already been made. We could, in principle, rectify this problem by updating the cumulative

costs and savings for the remaining nodes appropriately, and then repeat the above procedure, until

no further specialization can be carried out. We choose to not do this, since we get essentially the

same e�ect by having the accountant return to the specializer the �rst set of program points it has

marked for specialization as described above, then have the specializer query the accountant again

with the resulting specialized program. The resulting algorithm is shown in Figure 3.

Overall, the worst-case complexity of this algorithm is as follows: O(n2) time and O(n) space

to determine the cumulative cost and savings for each program point; O(n) time and O(1) space to

�nd a suitable program point to specialize (together with the points it depends on); and O(n) time

and O(n) space to mark these points for specialization. The overall complexity, therefore, is O(n2)

time and O(n) space.

5 Experimental Results

The ideas described here have not yet been implemented as part of a partial evaluator: the results

we describe were obtained via hand-simulation. At this time, we have had time to run experiments

on just one program, the convolution-like program discussed in Section 1. In this section we describe

the experiments we conducted in order to explain our results and put them in proper perspective.

The program under consideration is a simple Scheme program that, given two n-element vectors

�x and �y, computes
Pn

i=1

Pn

j=1 xiyj :

(define (conv x y)

(define (conv0 x y acc)

(if (null? y)

acc

(conv0 x (cdr y) (conv1 x (car y) acc))))

)

(define (conv1 x y0 acc)

(if (null? x)

acc

(conv1 (cdr x) y0 (+ acc (* (car x) y0))))

)

(conv0 x y 0)

Our aim was to specialize the function conv(x, y) to the �rst argument, x, and measure the

speedups obtained for di�erent lengths of x. We used Similix [6] running on the scm Scheme in-

terpreter for the specialization, and the Bigloo Scheme-to-C translator (version 1.8) [20], with gcc
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Figure 4: Resource-Bounded vs. Uncontrolled Specialization (Convolution)

version 2.7.2 as the back-end compiler, to produce executables. These were run on a 25 MHz SPARC

IPC with 64 Kbytes of cache and 32 Mbytes of mainmemory. It turned out that the memory require-

ments of Similix and Bigloo were higher than we could a�ord: the scm interpreter running Similix

ran out of memory for an input length of 300, while Bigloo was unable to compile the specialized

program corresponding to n = 200 due to a stack over
ow in the preprocessor phase. Fortunately,

the structure of both the Scheme code generated by Similix, and the resulting C code obtained

from Bigloo, were su�ciently regular in this case as to allow us to extrapolate to larger values of

n. Our performance numbers were thus obtained by extrapolating in this manner, using a script

to generate C code very similar to what would have been generated given in�nite memory. Some

further modi�cations, such as 
attening of deeply nested expressions, were necessary to allow gcc

to parse the input without exhausting the parser stack; we were careful to ensure that none of these

transformations changed the essential characteristics of the computation. We then invoked gcc on

this code exactly as Bigloo would, and timed the resulting executables.

The performance of the resulting programs is shown in Figure 4. In order to understand these

curves in detail, it is important to consider the code being generated for the various programs that

we ran. The C code generated by Bigloo for the inner loop of the original unspecialized program

has the following form (here NULLP(), CINT() and CDR() are Bigloo macros with the behavior one

intuitively expects):

acc_0 = 0;

loop: if (NULLP(x)) acc = acc_0;

else {

acc_0 += (long)CINT(CAR(x))*(long)CINT(y);

x = CDR(x);

goto loop;

}

By contrast, in the program specialized by Similix without regard to resource bounds, the inner loop
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is completely unrolled, resulting in C code whose form is as follows:

acc_0 = 0;

if (NULLP(x)) acc = acc_0;

else {

acc_0 += 1000*(long)CINT(y);

acc_0 += 999*(long)CINT(y);

acc_0 += 998*(long)CINT(y);

...

acc_0 += 3*(long)CINT(y);

acc_0 += 2*(long)CINT(y);

acc_0 += 1*(long)CINT(y);

acc = acc_0;

}

Finally, consider the code produced by resource-bounded specialization. For this program, this

code consists of a loop, obtained by partially unrolling the inner loop of the original program,

whose body does not exceed the amount of available cache, followed by a straight-line code segment

corresponding to any left-over computations. A �rst observation is that, unlike the fully-unrolled

version, the assignments to acc 0 inside the loop in this program cannot have the value of the static

data hard-wired into them. However, it is not necessary to give up all hope of specializing these

statements and revert to explicitly accessing the elements of a list using CAR() and CDR() operations

as in the unspecialized program: the specializer knows the actual values of the static data, and the

sequence in which they are accessed, and it is not unreasonable to suppose that it can eliminate

some of the overhead of accessing these values by replacing the list by an array of integers that is

accessed via a pointer. The resulting code therefore has the following structure:

long tbl[] = {1000, 999, 998, ..., 3, 2, 1};

...

acc_0 = 0;

if (NULLP(x)) acc = acc_0;

else {

ptr = &(tbl[0]);

for (i = 0; i < cnt; i++) { /* partially unrolled loop */

acc_0 += (*ptr++)*(long)CINT(y);

acc_0 += (*ptr++)*(long)CINT(y);

...

acc_0 += (*ptr++)*(long)CINT(y);

}

acc_0 += 74*(long)CINT(y); /* remainder of computation */

acc_0 += 73*(long)CINT(y);

...

acc_0 += 3*(long)CINT(y);

acc_0 += 2*(long)CINT(y);

acc_0 += 1*(long)CINT(y);

acc = acc_0;

}

There are two low-level aspects of the particular machine on which our experiments were carried

out that have profound e�ects on the performance characteristics of these programs. The �rst is
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that the SPARC IPC does not have a hardware multiplier, so integer multiplication is carried out in

software via a call to a function (implemented in hand-coded assembly code) whose body contains

about 50 instructions. The second is that when one of the two operands of an integer multiplication

operation is a constant, C compilers such as cc and gcc are able to implement the multiplication

using a sequence of bit-manipulation operations such as left-shift, add, and logical-or, which turn

out to be considerably cheaper than a call to the general-purpose multiplication function. As a

result, for an input length of 1000, for example, the specialized program obtained from Similix, with

its fully unrolled loop, is about 9.5 times faster than the original program|considerably more than

a straightforward examination of the C source code would suggest. In the partially unrolled loops

resulting from resource-bounded specialization, unfortunately, the expressions involving multiplica-

tion do not have integer constants hard-wired into them as operands; as a result, these operations

are implemented using calls to the multiplication function. Because of this, for small input sizes,

the code resulting from the resource-bounded specialization turn out to be roughly an order of

magnitude slower than the fully unrolled versions.

It can be argued, however, that speed improvements resulting from C compiler tricks for a

particular operation should not be counted towards the gains resulting from partial evaluation. To

see this, suppose that instead of integer multiplication, the \product operation" in this computation

was 
oating point multiplication or bitwise-xor: the programs resulting from partial evaluation

would have been essentially identical in each case, modulo the change in the product operator,

but their relative performance would have been considerably di�erent because of the absence of

corresponding bit-twiddling tricks in the C compiler. Similarly, if the processor had a hardware

multiplier, the cost of carrying out the multiplication operations would be reduced considerably,

again leading to signi�cant di�erences in relative performance.

For these reasons, we felt that in order to obtain a fair comparison between resource-bounded and

uncontrolled partial evaluation, we should separate out e�ects due to low-level compiler tricks. We

decided to do this by forcing the C compiler to always use the general purpose multiplication function.

It turned out that this could be done simply by rewriting expressions involving multiplication to

avoid a constant operand, e.g., by rewriting a statement `acc 0 += 937*(long)CINT(y)' to

tmp = 937; acc_0 += tmp*(long)CINT(y);

It turns out that in this case, the fully unrolled loop resulting from uncontrolled specialization is

about 25% faster than the unspecialized program for small input sizes.

The speedups resulting from these programs, for di�erent input lengths, is shown in Figure

4. Because the resource-bounded specialization is conservative in its estimate of the size of the

inner loop of the program, it stops unrolling the loop \too soon," resulting in an early drop in

performance for resource-bounded specialization compared to that of uncontrolled specialization. For

larger input sizes, however, resource-bounded specialization maintains its speedup while speedups for

uncontrolled specialization drops o� quickly once the inner loop can no longer �t in the instruction

cache. Overall, the code resulting from resource-bounded specialization maintains a speedup of

about 15%{20% over the unspecialized code, while that resulting from uncontrolled specialization

is initially about 25% faster than the unspecialized code, but ends up about 5% slower. Thus, by

avoiding uncontrolled code growth, resource-bounded specialization is able to avoid the dramatic

performance loss su�ered by uncontrolled specialization for large inputs.

Since partial evaluation is usually formulated as a source-to-source transformation, a question
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Figure 5: Speedups for Di�erent Estimates of Inner Loop Size (Convolution)

of some interest is: how precise does the resource-bounded specializer's estimates of the size of the

generated code have to be? To examine this issue, we examined the performance due to resource-

bounded specialization of the convolution program for di�erent estimates of the size of the inner loop.

The results are shown in Figure 5, where the parameter N denotes the specializer's estimate of the

number of instructions in the inner loop of the program. We found that as long as the size estimate is

conservative enough to ensure that the specialized code does not over
ow the cache, the performance

for di�erent values of N is noticeable but not huge: for example, the di�erence between the curve

for N = 40 and that for N = 60 is typically about 5%{7%. The reason the performance curve for

N = 7|which is actually the closest to the actual size of the generated code|drops steeply at an

input size of 4000 is that once the input exceeds this size, the resource-bounded specializer determines

that the inner loop should not be unrolled further, and switches to pointer-based accesses of data

from a table, which results in a memory reference with an additional level of indirection for each

data value (however, unlike uncontrolled specialization, this halts further performance degradation).

The di�erence between the curves for N = 7 and N = 60 are again not intolerably large. This

leads us to believe that it is possible to use resource-bounded specialization to attain reasonable

performance as long as the specializer makes conservative but reasonable assumptions about the

compiler technology being used to generate the executable code.

The discussion thus far has focused on a single resource bound. We believe that in general, it

will be necessary to model the memory hierarchy of a computational environment in more detail:

for example, many processors now come equipped with two (and, occasionally, three) levels of cache

memory, and it is not unreasonable to consider hardware registers as another level above all of these.

Whether or not a certain increase in code size is worthwhile then depends greatly on the relative

costs of accessing the di�erent levels of such a multi-level hierarchy. We hope to address such issues

in future work.
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6 Discussion

The introduction of an \accountant" that guides specialization decisions based on resource usage

can lead to some interesting generalizations to ideas traditionally used in o�ine partial evaluation.

Here we explore some of these.

6.1 Termination Considerations

In traditional o�ine partial evaluation, since the specializer blindly specializes all computations an-

notated as \static", the responsibility for ensuring termination falls on the binding time analysis

[3, 11, 14]. This is undesirable, both for conceptual and pragmatic reasons. Conceptually, it mixes

two independent concerns: the question of what can be specialized, and that of what should be spe-

cialized. In other words, traditional o�ine partial evaluation overloads the binding time annotation

\dynamic" to mean both \cannot be statically computed" and \should not be (blindly) computed

statically due to termination concerns." Pragmatically, it means that some kinds of transformations

are necessarily ruled out, even though they may lead to performance improvements: for example,

a recursive function whose recursion is controlled by a dynamic value will not be unfolded, even

though a limited amount of unfolding could be bene�cial in improving program performance.

In our model, by contrast, the separation of concerns is much sharper: the binding time analysis

is concerned solely with identifying which computations can be specialized, while accountant is

responsible for deciding which computations should be specialized. While most of the discussion

thus far has focused on e�ective utilization of resources by the specialized code, it does not seem

unreasonable to require the accountant to be responsible for termination of partial evaluation as

well. This can result in some additional 
exibility during partial evaluation. For example, in a

program that spends much of its time in a recursive function whose recursion is controlled by a

dynamic parameter, our approach can allow this function to be unfolded to a limited extent, and

this can have bene�cial performance e�ects without compromising termination of partial evaluation.

6.2 Flexible Binding of Resource Information

Hard-wiring in resource information pertinent to a particular computational environment too early

in the specialization process may lead to an overly in
exible system. This potential in
exibility can

be handled by considering the resource information to be an additional static input whose value

becomes available at some point during a multi-level specialization process [12]. By appropriately

choosing the level at which the resource information becomes available, we can obtain a variety of

behaviors: for example, by making the resource information known at an early level, we can get a

partial evaluator that can handle di�erent programs for a particular machine, while by making the

resource information available late in the multi-level specialization process we can get a generating

extension for a particular program that can be used on a variety of di�erent machines.

6.3 Value-selective Specialization using \The Trick"

A standard technique for binding-time improvement for variables of bounded static variation is \the

trick" [15]. The basic idea is as follows: suppose we have the following program fragment from a

network communication protocol:

process(status, pkt)
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where status is the status of the previous transmission, and pkt a packet to be sent. Suppose that

status is dynamic, but can take on values only from the set fok, timeout, corruptg. Then we can

rewrite the above computation as (something semantically equivalent to):

case status of

ok: process(ok, pkt);

timeout: process(timeout, pkt);

corrupt: process(corrupt, pkt);

end

Specialization of this rewritten program specializes each of the calls to process() to the value of the

corresponding �rst argument, as desired. Now suppose that it turns out that in the vast majority

of cases the value taken on by status is ok. In this case, it may make sense to generate specialized

code for this case only (especially if, as is very often the case, the rarely-executed exception handling

code is large and bulky), and resort to the general-purpose unspecialized code for the other cases.2

Since resource-bounded specialization takes execution weights into account when determining the

cumulative savings for various program points, it can achieve a similar e�ect, specializing for only

those values that yield su�cient bene�ts without exceeding the available resources. Of course, a

similar e�ect can be obtained by manually writing the code as

if (status = ok) then

process(ok, pkt)

else

process(status, pkt)

However, resource-bounded specialization can o�er greater 
exibility: for example, continuing the

network protocol application line, consider a packet classi�er that takes a packet received from the

network, identi�es which protocol it belongs to, and processes it accordingly. In Europe, such a

classi�er might �nd that the X.25 protocol is very commonly used, while in the USA the IP protocol

might be found to be much more common. In either case, it makes sense to specialize the code in

the packet classi�er for the more commonly encountered protocol(s), but this is awkward at best

using manual rewriting. With resource-bounded specialization, classi�ers in di�erent operational

environments can be specialized in di�erent ways without excessive manual intervention.

7 Conclusions

Traditional o�-line partial evaluators generally do not take into account the availability of machine

resources during specialization. This can adversely a�ect performance, in extreme cases causing a

specialized program to run more slowly than the unspecialized version. In this paper we consider

how resource availability considerations can be incorporated into a partial evaluator. We show that

optimal resource-bounded specialization is an NP-complete problem, and discuss simple heuristics

that can be used to address the problem in practice, and discuss how awareness of resource availability

can lead to some interesting generalizations of ideas traditionally used in o�ine partial evaluation.

While our algorithms have not been incorporated into a partial evaluator, preliminary experiments

appear encouraging.

2In operating systems parlance, this kind of selective specialization is referred to as \outlining" [7, 17, 18].
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