
A Practical Approach to Structure Reuse of Arrays

in Single Assignment Languages

Andreas K�agedal� Saumya Debrayy

Dept. of Computer Science

The University of Arizona

Tucson, AZ 85721-0077, USA

Email: fandka,debrayg@cs.arizona.edu

Technical Report 96-21

December 1996

Abstract

Array updates in single assignment languages generally require some copying of the array,

and thus tend to be more expensive than in imperative languages. As a result, programs in
single assignment languages sometimes su�er from a performance handicap compared to those

in imperative languages. Traditional attempts to address this problem have typically involved

either complex compile-time analyses, which tend to be slow and fragile; or new language
constructs, which do not always interface with already existing code. In this paper, we propose

a new approach to this problem, based on a simple and straightforward program transformation,

that we believe addresses the shortcomings of both of these approaches: it is easy to understand,
e�ciently implemented, does not require new language constructs, and yet is applicable to most

commonly encountered programs.

� Supported by the Swedish Research Council for Engineering Sciences (TFR) under grant number 282-95-974.
y Supported in part by the National Science Foundation under grant number CCR-9502826.

1 Introduction

Single assignment languages, such as pure functional and logic programming languages, do not have

any notion of updatable variables: the value of a variable or structure, once de�ned, does not change

during execution. Updates to the value of a variable or structure have to be e�ected, instead, by

creating new copies. While this is semantically very clean, and simpli�es many aspects of reasoning

about and manipulating programs. it can lead to an undesirable degradation of performance. By

analyzing the program at compile time it is possible to replace the ine�cient copying with an e�cient

destructive update of the old data structure if it can be assured that the old structure will never be

referenced again. We call this structure reuse. In a good optimizing compiler structure reuse would

make it possible to improve the performance of important classes of programs to a level where it

would be comparable with the performance of optimized C.

Because an update to an element of an aggregate structure, such as an array, requires copying (at

least part of) the array in a single assignment language, direct implementations of such structures

have been widely viewed as being too expensive to be practical in such languages. The usual

approach proposed to address this problem is to use some sort of compile-time liveness analysis

to discover opportunities where updates can be implemented destructively, and numerous analysis

methods along these lines have been proposed in the literature. In practice, however, we are not

aware of any system that employs structure reuse based on global analysis. There are two important

reasons for this. The �rst is that the proposed analysis methods have been very general, and as a

result have been rather complex and have su�ered from performance problems. On the theoretical

side, for example, liveness analysis using the Prop domain, or any domain of comparable precision,

is EXPTIME-complete [8]; on the practical side, the system described by Mulkers et al. requires

over 8 seconds to analyze the four-clause naive-reverse program [19]. The second reason is that

in practice, global data
ow analyses|especially the complex alias analyses required for structure

reuse|often turn out to be very \fragile": small and apparently minor changes to a program text

can have profound e�ects on analysis results and the performance of the resulting code, often in a

way that is di�cult for the ordinary programmer to anticipate.

At this point, therefore, the choices available seem to be the following:

1. One can stay with structures like lists or trees. The behavior of such structures is simple

and predictable, but they incur nontrivial overheads and can adversely a�ect the asymptotic

complexity of a program.1

2. One can use arrays and rely on compiler analyses to eliminate the copying overheads. The

disadvantage here is that the analyses are complex and potentially expensive. Moreover, the

analysis results tend to be fragile, and the performance characteristics of the resulting code

can be di�cult for programmers to predict.

3. One can resort to special-purpose programming constructs, such as monads [3, 24, 25], or

\uniqueness" declarations [22]. This can work well if one is writing fresh code in a new

language, but it is not straightforward to integrate this with pre-existing code (the \dusty

decks" problem). Unfortunately, it is not always straightforward or practical to rewrite a large

volume of existing code.

What we need, in fact, is a mechanism that (i) is simple enough to give programmers a simple and

robust performance model for their programs, so that they can determine, without undue e�ort, how

expensive the use of arrays in a program is likely to be; (ii) is e�ective enough to eliminate (most

of) the copying overhead for array updates for most commonly encountered programs; and (iii)

does not rely on any special language features. This paper presents a simple approach to structure

reuse that, we believe, meets these criteria. The approach is presented in a logic programming

context, but works for any single assignment language, either logic or functional, as long as call

1Recent work by Winsborough on compile-time reuse of list cells [27] reduces some of the costs of using lists, but
does not alter the asymptotic time costs they incur.

1

sequences can be precisely predicted (i.e., for functional programs with higher order constructs or

call/cc constructs, additional work is necessary, just as it is for logic programs with call/1 or

assert/retract primitives: this should not come as a surprise, since this additional work would

typically be necessary for most analyses and transformations of such programs in any case). The word

\predicate" is thus used in the same sense as \function" in a functional language, or \procedure" in

other languages.

2 Preliminaries

For our purposes, an array of size N is simply an abstract data type that can be viewed as an

aggregate indexed by the set f1; : : : ; Ng. In other words, we make no assumptions about the low-

level realization of the array, e.g., as a vector or a tree. Arrays may be nested, and we will usually not

distinguish between nested and multidimensional arrays. In the rest of the paper we will assume that

the language is equipped with the following primitive for (nondestructively) updating a (possibly

multi-dimensional) array:

update(Array,Cell,Val,NewArray) where NewArray is a new array with the same contents as the

array Array except that the value in cell Cell is replaced with Val . Cell is a list [X,Y,Z...]

of coordinates.

We will also assume that the following two operations exist, although they might preferably be

hidden from the programmer:

copy(Array,ArrayCopy) Allocates a new array ArrayCopy with the same size as Array , and copies

the contents of the cells of Array to the cells of ArrayCopy .2 From a declarative point of

view, Array and ArrayCopy will be the same array.

destr update(Array,Cell,Val) The value in cell Cell of Array is destructively replaced with

Val . Cell is a list [X,Y,Z...] of coordinates.

We will use the syntax A[X,Y,Z...] for the value of the cell speci�ed by coordinates X,Y,Z...

in the array A.

We assume that programs are moded, i.e., it is known which arguments of a procedure are input

arguments and which are outputs. The input arguments in a call are assumed to be ground at the

time the call is made. There is an extensive body of literature on compile-time inference of modes,

and we do not pursue this further here except to note that mode (and, in general, groundness) infor-

mation is of independent interest for a variety of other optimizations. To simplify the presentation,

in the discussion that follows, the �rst and last argument positions of each predicate are assumed

to have mode input and output respectively. Obviously, in real programs the array can be passed

down and up from the iteration predicate in any argument positions of the iterative predicate as

long as it is done consistently.

3 The Basic Idea

The basic intuition behind our approach is very simple. The only reason an arbitrary array update

operation cannot be implemented destructively is that in general, the \old" version may be referenced

subsequently, i.e., may have pointers to it. Now in most programs that use arrays, updates occur

in loops, and typically, more than one element is updated: for example, as part of a Gaussian

elimination routine, we may multiply each element of a row of a matrix by some number. So, if we

�rst create a copy of the array and pass this copy into the loop that e�ects the updates, the copy will

not have any pointers to it (the pointers to the \old" array will continue to point to that version,

2Observe that unlike the copy term/2 predicate of Prolog, the structures making up the contents of the cells are

not copied and no new free variables are created.

2

not to the copy that has been made) and will therefore be amenable to destructive updates. The

resulting program will be no worse in performance than the original program without destructive

updates if at least one update takes place, and will be de�nitely better than the original program if

more than one update takes place (which is what we expect).

There are, of course, various subtleties that have to be addressed in order to realize this idea

in practice, and these are discussed in the remainder of this paper. First, however, we illustrate

the approach with a simple example. The program in Fig. 1(a) iterates over an array of integers

incrementing each cell by one.

q(A, NewA) :-

inc_elems(A, 1, 20, NewA).

inc_elems(A , I, U, A) :-

I > U.

inc_elems(A , I, U, NewA) :-

I =< U,

update(A, [I], A[I]+1, TempA),

inc_elems(TempA, I+1, U, NewA).

(a) A simple iteration over an array.

q(A, NewA) :-

copy(A, ACopy),

inc_elems(ACopy, 1, 20, NewA).

inc_elems(A , I, U, A) :-

I > U.

inc_elems(A , I, U, NewA) :-

I =< U,

destr_update(A, [I], A[I]+1),

inc_elems(A, I+1, U, NewA).

(b) The program of Fig. 1(a) with array

copying moved out of the loop.

Figure 1: A Simple example.

Instead of making a potentially complex check that the original array is indeed not going to be

used after the call we enforce this criterion. Updating a cell of the array can conceptually be divided

in two operations: �rst copying the array, and then making a destructive change in the cell of the

copy. The copy operation can then be moved, or \pushed", out of the loop to the point just before
the predicate implementing the iteration is called. Copying the array before the iteration begins is,

in e�ect, a way to enforce the possibility of a destructive update inside the loop.

The resulting program can be found in Fig. 1(b) in e�ect, copying of the array in each iteration

has been replaced by a single copy operation before the iteration starts, followed by a series of

destructive updates, and resulting in a program with linear time complexity.

Before we go on to present this optimization in more detail it might be in order to make some

remarks on what it does and does not try to accomplish. It is a local and simple optimization that

does not require any global analysis. It should therefore be cheap to include in a compiler. The

ambition of the proposed optimization is not to remove all array copying from the program. Instead

it is targeted at iteration like structures where array copying during updating is likely to be both

costly and unnecessary. Also, it should be worth noting that the optimization does not solve the

general problem of structure reuse for recursive data structures such as lists and trees [27].

3.1 The Transformation and its Correctness

In this section, we describe the conceptual steps involved in the transformation that forms the heart

of our approach. This serves to illustrate the thinking behind the transformation, and makes it

easier to adapt the transformation to situations not explicitly discussed here. It also makes clear the

preconditions necessary for each step of the transformation to be carried out, thereby developing

the conditions under which the transformation is correct.

The basic pattern of programs similar to the one in Fig. 1(a) is given in Fig. 2(a), where everything

3

q(A, ..., NewA) :-

p(A, ..., NewA).

p(A, Xbc, A) :- Bbc.

p(A0, Xh, A2) :- B0,

update(A0, Xu, A1), B1,

p(A1, Xr, A2), B2.

(a) Original program.

q(A, ..., NewA) :-

p(A, ..., NewA).

p(A, Xbc, A) :- Bbc.

p(A0, Xh, A2) :- B0,

copy(A0, A1),

destr_update(A1, Xu), B1,

p(A1, Xr, A2), B2.

(b) First the update operation is
split in two operations,.. . .

q(A, ..., NewA) :-

p(A, ..., NewA).

p(A, Xbc, A) :- Bbc.

p(A0, Xh, A2) :-

copy(A0, A1), B0,

destr_update(A1, Xu), B1,

p(A1, Xr, A2), B2.

(c) then the copy is moved �rst in

the clause,.. . .

q(A, ..., NewA) :-

copy(A, ACopy),

p(ACopy, ..., NewA).

p(A, Xbc, A) :- Bbc.

p(A1, Xh, A2) :- B0

0
,

destr_update(A1, Xu), B1,

copy(A1, Ac
1
),

p(Ac
1
, Xr, A2), B2.

(d) then the copy operation is

moved to before calls to p/2,. . .

q(A, ..., NewA) :-

copy(A, ACopy),

p(ACopy, ..., NewA).

p(A, Xbc, A) :- Bbc.

p(A1, Xh, A2) :- B0

0
,

destr_update(A1, Xu), B1,

p(A1, Xr, A2), B2.

(e) then the copy operation in the
recursive clause is removed.

q(A, ..., NewA) :-

copy(A, ACopy),

p(ACopy, ...),

NewA = ACopy.

p(A, Xbc) :- Bbc.

p(A1, Xh) :- B0

0
,

destr_update(A1, Xu), B1,

p(A1, Xr), B0

2
.

(f) Finally, the returning of the ar-
ray in a separate argument is omit-
ted.

Figure 2: The transformation illustrated on a simpli�ed program.

4

in the bodies of the clauses not involving the array have been replaced with meta variables Bbc, B0,

B1 and B2, representing any goals, and the heads, the update operations and the recursive calls

have been abbreviated such that all arguments except the array arguments have been replaced with

meta variables Xh, Xbc, Xu, Xr . We assume that A0, A1, A1, A and NewA are all distinct variables.

Also, to make the argument simpler, will assume that any occurrence in Xu of a reference to a cell in

A0 has been replaced with a new variable N and a uni�cation statement N = A0[...] in B0 before

the transformation begins. This simpli�ed form of programs will be used in the rest of the paper.

Fig. 2 will be used in an argument to determine under what criteria the transformation is correct.

As mentioned earlier, the update operation can be divided into two operations: a copy of the array,

and a destructive update of the copy. However, this is permissible only if we can guarantee that

the resulting array, A1, is the one that is created by the copy operation, i.e., that A1 is not an

already-de�ned array that is uni�ed with the result of the update. The resulting program is shown

in Fig. 2(b).

The following criterion is su�cient to ensure correctness:

Criterion 1 A1 does not occur in B0 or Xh.

We next move the copy operation �rst in the clause which yields the program in Fig. 2(c). This

is OK due to Crit. 1.

Next, we observe that A0 is an input parameter of p, which implies that A0 is ground when p is

called. Since A1 is a copy of A0, the value of A0 is identical to that of A1: in other words, the result

of the computation will not be a�ected if we move the copy operation outside p and pass A1 into

p instead of A0. Once this has been done, since the input argument A1 is a copy of A0, we know

there are no aliases for it: any existing pointers to A0 must continue to point to A0, not to A1. At

this point, therefore, if A0 is not referenced in the body of p after the update, i.e. does not occur

in B1, B2, Xr or Xu, then A1 is dead after the update and can therefore be updated destructively

(the array A0 may be accessed in B0, but since A1 is a copy of A0 and, from Criterion 1 that A1 does

not already occur in B0, these accesses to A0 can be replaced by accesses to A1; in theory we can

also replace occurrences of A0 in Xu, but we will instead assume that it does not occur there. This

results in the program of Fig. 2(d), where B0

0
denotes the result of replacing occurrences of A0 by A1

in B0. Due to the destructive update, A1 holds the value of the original array in B0 and the value of

the updated array in the rest of the clause. The reason there is a copy operation in the body, just

before the recursive call to p, is that a copy of the argument is being passed into the call, just as in

the case for the call to p from q. The correctness criterion can now be re�ned to:

Criterion 2 A0 does not occur in B1, B2, Xu, Xr or Xh

We have now assured that the array A1 passed in the �rst argument position to p has no other

references when it enters the clause. Given that we know that no new aliases for A1 are produced in

B0

0
(i.e., no new aliases for A0 are produced in B0) or B1 and A1 does not occur in Xu,

3 A1 will hold

the only live reference to the array in the clause when A1 is subsequently copied into Ac
1
. Since the

sole reason for copying is to ensure that we have a unique reference to the array, it is obvious that

this copy operation is unnecessary provided that the value of A1 is not needed Xr or in B2 i.e., A1
does not occur in Xr or in B2. Removing this copy gives us the program in Fig. 2(e) and the new

correctness criterion:

Criterion 3 No new aliases for A0 are produced in B0, and

No new aliases for A1 are produced in B1 or Xu, and

A1 does not occur in B2 or Xr.

3Actually, at this point it is only necessary that no new aliases A0 for are produced in Xu. But, since this can only
happen when the update is a predicate call, which can be the case in Sec. 4.2, occurrence in Xu is in fact the same
thing.

5

Finally, we see that as long as the array is being updated it is passed \downwards" in the recursion

of p and it is not until the iteration stops in the �rst clause of p that the array is uni�ed with the

last argument of p which passes the �nal version back up again. Since we now have removed all

copying operations from the looping predicate we know that this �nal array will in fact be present as

the value of the variable ACopy in the clause of q containing the initial call to the iteration predicate

p. It is therefore no longer necessary to have an extra argument of the looping predicate passing the

array back up. Instead, the �nal value of the array can be obtained in the clause of the initial call to

the iteration by unifying with ACopy after the iteration. We know that A1 will hold the same value

as A2 in B2 so if we remove A2 as an argument to p we can just replace any occurrence of A2 in B2

with A1. In B0

0
, B1, Xu and Xr we don't have another variable that contains the value of A2 so this

only works if A2 does not occur there. As A2 occurs in B0

0
i� it occurs in B0 we get the criterion

Criterion 4 A2 does not occur in B0, B1, Xu or Xr.

This leaves us with the program in Fig. 2(f), where B0

2
= B2(A2=A1).

The �nal step of removing the returning of the resulting array in a separate argument has

the obvious gain of avoiding the extra time and space it would require to handle. There is also

another important advantage which we will exploit in Sec. 4.2: It turns the iterative predicate p

into a predicate that in e�ect makes a destructive update of the array and can as such replace

destr update in the transformation scheme. For this to be OK we need to know that no new aliases

for the array has been produced during the update. We thus need to add the following criteria:

Criterion 5 No new aliases for A2 are produced in B2, and

A2 does not occur in Xh, and

No new aliases for A are produced in Bbc, and

A does not occur in Xbc.

To sum up, the criteria 1{5 for preserving correctness when transforming the program in Fig. 2(a)

to the program in Fig. 2(f) can be stated as:

Criterion 6 No new aliases for Ai are produced in Bi, and

Ai does not occur in Bj , when i 6= j, and

Ai does not occur in Xh, Xu or Xr, and

No new aliases for A are produced in Bbc, and

A does not occur in Xbc.

This criterion expresses an intuition that is very similar to \single threadedness" (see, for example,

[23]).

3.2 Applicability

To �nd opportunities for applying the transformation the clauses in of recursive predicates|i.e., in

the strong components of the call graph|are searched for array updates. For each such predicate

the analysis required to �gure out whether it adheres to the criteria is then essentially local to its

clauses.

Part of Crit. 6 (Sec. 3.1) requires that Ai is not aliased in Bi, i.e. Ai does not in Bi pass its value

on to some other variable or into a data structure. Making a general check for this is di�cult and

must be approximated. Checking that Ai does not occur at all in Bi is much simpler and obviously

su�cient. This criterion is unnecessarily restrictive and is easily extended by allowing Ai to occur

in primitive operations such as extraction of cell contents etc., which does not involve any risk for

aliasing.

There are, however, some programs that would be amenable to the transformation only if the

array of Ai would be allowed to be passed down as an argument in a predicate call inBi. For example,

a straightforward implementation of Dijkstra's shortest paths algorithm (the dijkstra program in

6

Sec. 5) contains a nested loop in which one array is updated in the inner loop and another in the

outer loop. The array updated in the outer loop is used in the inner loop and therefore must be

passed as an argument in the call to the inner loop. To allow this requires a non-local analysis which

can ensure that the array is not aliased in the clauses of the predicate where it is passed. This is,

in general, expensive to check, but we believe the following scheme covers most cases occurring in

practice and is also easy to understand and check by a programmer:

Trace the array \downwards" and make sure it is never put into another data structure, and

never passed back up from any predicate it enters. This can be checked in a single pass over the

relevant portion of the program and does not need to involve other program variables than those

holding the array, so it should still be cheap to check in most cases, even though it is not, strictly

speaking, a local analysis. To keep the check cheap in all cases, one can always give up, and assume

that it might be aliased, in case the check takes too much time.

It should be noted that the check described above, as well as the criteria discussed in the previous

section, are all straightforward to check: most involve only simple intra-clause syntactic checks, with

the most complicated requirement|the only non-local one|requiring a single pass over part of the

program. Because of this, we expect that it should not be di�cult for a programmer to form

a reasonably robust mental performance model indicating the expected performance of programs

using arrays.

4 Extending the Scheme

For this transformation to be useful, it needs to be extended in several ways. Here we will describe

some of the possible extensions. Some will just be mentioned and some will be described in more

detail.

4.1 More Clauses

The extensions needed to cater for more clauses in the iteration predicate, including base case clauses

containing updates and recursive clauses not containing updates, are trivial and will not be discussed

in any length here. It su�ces to note that in a logic programming setting backtracking might cause

a problem since destructive updates might have to be trailed. Even if value trailing is necessary,

however, it is likely to be considerably less expensive than array copying. It should also be noted

that if some of the clauses do not contain update operations we get a \speculative" copying behavior.

Solutions to this are discussed in Sec. 4.4.

It should also be evident from the correctness discussion in Sec. 3.1 that it is trivial to extend

the scheme to allow several updates and recursive calls in the same clause, as long as the array is

\threaded" between them.

4.2 Nested Iterations

Many common algorithms use nested iterations i.e., a loop within another loop. In a declarative ?

language this is achieved using two recursive predicates as illustrated in Fig. 3(a). The inner loop

of this program can trivially be transformed using the basic scheme of Fig. 2 yielding the program

in Fig. 3(b). It is now not di�cult to see that the inner loop predicate p inner/1 of Fig. 3(b)

essentially implements a destructive update of the array, and thus the two lines marked (*) in the

program in Fig. 3(b) implements a non-destructive update of the array A0 producing the new array

ACopy.

Assuming that the conditions for transformation are ful�lled for p outer after removing the

explicit uni�cation A1=ACopy (by replacing all occurrences of ACopy with A1 which is OK if A1 does

not occur in G0, which it won't if criterion 1 is ful�lled) in Fig. 3(c) the transformation can now

be applied pushing the copy operation out another level yielding the �nal copy free iteration in

Fig. 3(d).

7

q(A, NewA) :-

p_outer(A, NewA).

p_outer(A, A).

p_outer(A0, A2) :- G0,

p_inner(A0, A1), G1,

p_outer(A1, A2), G2.

p_inner(A, A).

p_inner(A0, A2) :- B0,

update(A0, A1), B1,

p_inner(A1, A2), B2.

(a) A two level iteration.

q(A, NewA) :-

p_outer(A, NewA).

p_outer(A, A).

p_outer(A0, A2) :- G0,

copy(A0, ACopy), % (*)

p_inner(ACopy), % (*)

A1 = ACopy, G1,

p_outer(A1, A2), G2.

p_inner(A).

p_inner(A1) :- B0

0
,

destr_update(A1), B1,

p_inner(A1), B2.

(b) Inner loop transformed.. .

q(A, NewA) :-

p_outer(A, NewA).

p_outer(A, A).

p_outer(A0, A2) :- G0,

copy(A0, A1),

p_inner(A1), G1,

p_outer(A1, A2), G2.

p_inner(A).

p_inner(A1) :- B0

0
,

destr_update(A1), B1,

p_inner(A1), B2.

(c) . . . and, after removing
the explicit uni�cation . . .

q(A, NewA) :-

copy(A, ACopy),

p_outer(ACopy),

NewA = ACopy.

p_outer(A).

p_outer(A1) :- G0

0
,

p_inner(A1), G1,

p_outer(A1), G0

2
.

p_inner(A).

p_inner(A1) :- B0

0
,

destr_update(A1), B1,

p_inner(A1), B0

2
.

(d) . . . the outer loop can be
transformed.

Figure 3: Two level iteration.

8

How the remaining copy operation, just before the iteration takes o�, can be avoided is discussed

in Sec. 4.4.

4.3 Other Extensions

There are several other ways in which the basic transformation scheme can be extended. For instance,

if the array should be updated only in some iterations one can implement this in two ways. (1) By

having several recursive clauses where some update the array, and some don't. (2) By having just

one recursive clause that calls another non-recursive predicate that implements the \if-statement"

that determines whether the array should be updated or not. In a bubble sort program this could

be a swap maybe predicate that determines if the contents of two cells should be swapped.

Only case (1) is covered by the basic transformation, but case (2) is easily included by regarding

the updating predicate called from the looping predicate as an inner loop without any recursive

clauses.

Also, the transformation as formulated does not handle mutual recursion. It seems, however,

that this should not be di�cult to include.

4.4 Avoiding Speculative Copying

If some of the clauses of the iteration predicate do not contain updates of the array the transformation

is \speculative" in the sense that the number of array copy operations avoided in the iteration might

be zero, but they are always replaced with one copy operation before the iteration starts. Thus,

it is possible that the transformed program might actually end up doing more copying than the

untransformed.

There are two approaches to this problem. One can try to re�ne the transformation in various

ways to avoid this problem. This is done in the remainder of this section. Or, one can say that this

does not really matter that much. The possibility of avoiding large amounts of copying is worth the

price of making one copy, even if that sometimes means it is done unnecessarily.

If it could be determined that, at the point just before the call to the iteration predicate, there

is only one reference to the array (note that references to individual elements of an array count as

references to the array), then also this initial copy could be omitted. One possibility is to fall back

on a global data
ow analysis to infer this information. Alternatively, if we want to avoid a global

data
ow analysis we can still handle cases such as when the array was created just before the call,

or was returned from another, just transformed, iteration. Nevertheless, even if we decide to forego

a global analysis and as a result are unable to remove this one copy operation, we have succeeded in

reducing the total number of copy operations considerably: thus, in a program where each element of

an n-element vector is updated, our transformation results in a single copy operation on the vector,

followed by n destructive updates, with an overall amortized time complexity of O(1) per update.

However, if we cannot establish that the initial copying can be trivially omitted, we can delay

the initial copying until it is known that at least one update of the array will take place. This can

be achieved by dividing the loop in two parts, one that takes care of the iteration before the �rst

update, and the other one after. This is illustrated in Fig. 4.

This technique does, however, only work for one level iterations. If the initial copy of a program

such as the one in Fig. 3 is to be avoided we need some additional machinery. The inner loop has to

\tell" the outer loop that a copy has indeed occurred. A conceptually simple way to accomplished

this is to add an argument to the inner loop predicate that passes back a
ag that says whether

the array was copied or not. The outer loop predicate can then, based on this
ag, decide if the

iteration should continue checking whether a copy will occur, or if it is safe to just do destructive

updates. This is illustrated in Fig. 5.

If several arrays are updated in di�erent ways and by di�erent clauses in the same loop, and we

have not been able to remove the initial copying for any of them, then we need lots of versions of

the looping predicates. If there are n arrays, the transformation will have to produce 2n versions

of the looping predicates: note, however, that determining which of these 2n versions to use can be

9

p(A, A).

p(A, NewA) :-

update(A, TempA),

p(TempA, NewA)

p(A, NewA) :-

p(A, NewA).

(a) A program.. .

p(A, A).

p(A, NewA) :-

update(A, TempA),

p'(TempA),

NewA = TempA.

p(A, NewA) :-

p(A, NewA).

p'(A).

p'(A) :-

destr_update(A),

p'(A).

p'(A) :-

p'(A).

(b) . . . transformed

Figure 4: A program with two recursive clauses where one updates the array and one does not.

e�ected with n tests using a decision tree. It may be possible to reduce the number of specialized

predicates using techniques based on automata minimization techniques [20, 26].

However, on a lower level than can be expressed directly in a declarative language the same e�ect

can be achieved more e�ciently. This idea is illustrated in Fig. 6 adding some low level instructions

into the program. We pass out from the inner loop not a
ag saying whether a copy has occurred

or not, but instead the address of where to continue after the initial call to p inner. This requires

that p' outer behaves exactly like p outer as far as stack frames, variables and backtracking goes.

The only di�erence should be that it calls p' inner instead of p inner.

It is also easy to see that if p inner is tail recursive, it is not necessary to pass the continuation out

through an argument and do an explicit goto when the inner loop is done. Instead the continuation

register can be updated immediately, and only at the point in p inner where the update is made

since it will initially hold the address of lbl1.
If we have several calls to p inner from p outer this does not work. It could be �xed by passing

the alternative address as an argument to p inner. However, if there are several arrays being

updated in the inner loop this still does not solve the problem. In this case the previously described

technique with returned \
ags" must be used.

5 Evaluation

Program Size Before After Factor

dijkstra 300 3587.6 398.3 9.0

shortestp 20� 20 377.7 33.3 11.3

bubblesort 200 593.9 22.1 26.9

insertsort 200 593.2 20.6 28.8

quicksort 500 10470.0 180.0 58.2

Table 1: Speedups after transformation (times in ms).

Neither the analysis or the transformation has been implemented. To investigate the viability of

the approach a few programs were implemented and compiled with the jc compiler [11] (with the

optimize switch `-O') which supports arrays. The intermediate C code for these programs were then

transformed by hand and recompiled. The resulting improvements in execution time is shown in

Tab. 1. The system used for the timings was a Sun SPARCstation 20 612MP with two 60MHz

SuperSPARC processors (only one was used) and 128MB memory, running Solaris 2.5.1. Timings

include runtime garbage collection.

10

p_outer(A, A).

p_outer(A, NewA) :-

p_inner(A, TempA),

p_outer(TempA, NewA).

p_inner(A, A).

p_inner(A, NewA) :-

update(A, TempA),

p_inner(TempA, NewA).

p_inner(A, NewA) :-

p_inner(A, NewA).

(a)

p_outer(A, A).

p_outer(A, NewA) :-

p_inner(A, TempA, C),

(C = not_copied

-> p_outer(TempA, NewA)

; C = copied

-> p'_outer(TempA),

NewA = TempA).

p_inner(A, A, not_copied).

p_inner(A, NewA, copied) :-

update(A, TempA),

p'_inner(TempA),

NewA = TempA.

p_inner(A, NewA, C) :-

p_inner(A, NewA, C).

p'_outer(A).

p'_outer(A) :-

p'_inner(A),

p'_outer(A).

p'_inner(A).

p'_inner(A) :-

destr_update(A),

p'_inner(A).

p'_inner(A) :-

p'_inner(A).

(b)

Figure 5: The inner loop \tells" the outer loop whether an update has taken place or not.

11

p_outer(A, A).

p_outer(A, NewA) :-

p_inner(A, TempA, Cont),

goto(Cont),
lbl1:
p_outer(TempA, NewA).

p_inner(A, A, Cont) :-

Cont = lbl1.
p_inner(A, NewA, Cont) :-

Cont = lbl2,
update(A, TempA),

p'_inner(TempA),

NewA = TempA.

p_inner(A, NewA, Cont) :-

p_inner(A, NewA, Cont).

p'_outer(A,_).

p'_outer(A,_) :-

p'_inner(A),

lbl2:
p'_outer(A,_).

p'_inner(A).

p'_inner(A) :-

destr_update(A),

p'_inner(A).

p'_inner(A) :-

p'_inner(A).

Figure 6: The inner loop returns a continuation address which depends on whether an update has

taken place.

The speedup factor is, of course, not constant but a function of the problem size since the

complexity is reduced. This is the reason for the big factor for the quicksort program compared

to the other sorting algorithms (quicksort with an array of size 200 gets a speedup factor of only

14.4).

The program dijkstra implements Dijkstra's algorithm for �nding the shortest path from one

node to all other nodes in a directed graph [1]. It is a two level nested loop where one array is

updated in the inner loop and one in the outer. The array updated in the outer loop is, however,

used in the inner loop, which means that the transformation w.r.t. this array relies on the check

described in Sec. 3.2.

The program shortestp �nds the shortest path from every node to every node of a graph with

n nodes using the algorithm as described by, for instance, Baase [2]. It is a three level nested loop

iterating over an n�n array. The transformation is straight forward and only needs the basic scheme

of Sec. 3.1. Since jc only supports one dimensional arrays, the n � n was implemented as a one

dimensional array of size n2.

bubblesort, insertsort and quicksort implement the standard sorting algorithms. bubblesort

is a two level nested loop where the inner loop (sometimes) swaps the contents of two cells. bubblesort

does not update an already sorted array and would therefore need the techniques of Sec. 4.4 to elim-

inate the initial copy.

The program insertsort is a three level nested loop where the middle loop searches for the

location where an element should be inserted and the inner loop shifts all elements after this location

one step.

The program quicksort is interesting in that it is an inherently recursive algorithm that does

not really have a purely \iterative" form, since it contains two recursive calls in the same clause. As

noted in Sec. 4.1, the transformation scheme is easily extended to handle this.

6 Previous Work

A number of authors have considered the optimization of programs in single-assignment languages

to incorporate destructive updates, e.g., see [4, 14, 13, 15, 16, 17] in the context of functional

12

programming languages, and [6, 5, 10, 18, 19, 23] in the context of logic programming languages.

The work of Bruynooghe [6, 5], Foster and Winsborough [10], Hudak and Bloss [4, 15, 16], Mulkers

et al. [19], and Sastry et al. [23] focus on compile-time reference counting schemes to determine

when a data structure being updated has at most one reference to it, and can therefore be safely

updated in place. The work of Draghicescu and Purushothaman [9], Gopalakrishnan and Srivas

[12], and Sastry and Clinger [21], is aimed at determining an evaluation order for expressions in a

functional program so that uses of a structure can be evaluated before updates to the structure,

allowing updates to be carried out in place wherever possible. All of these involve compiler analyses

of di�erent degrees of complexity and precision, with the drawbacks discussed in Section 1. The

related problem of how best to reuse structures, given that we know which structures to reuse, is

considered by Debray [7] and Winsborough [27].

A very di�erent approach to the aggregate update problem involves the development of language

constructs aimed speci�cally at supporting a style of programming that allows the compiler to

determine, without excessive e�ort, updates that can be implemented destructively. The work on

monads [3, 24, 25] falls into this category, as does the \unique" declarations of Mercury [22]. As

mentioned in Section 1, this can work well if one is writing fresh code in a new language, but it is

not straightforward to integrate this with pre-existing code (the \dusty decks" problem).

7 Conclusions

Compile-time analyses aimed at implementing array updates in single-assignment languages via

destructive assignment have been the subject of a great deal of research in the last decade. Most

approaches that have been proposed either involve complex and potentially fragile compiler analyses,

or require special language constructs that may not be available in pre-existing code. In this paper,

we propose another approach that is able, we believe, to avoid the drawbacks of either of these

approaches: it is conceptually very simple to understand and straightforward to implement, and

does not require any special language support. Preliminary experimental results indicate that it

leads to promising performance improvements.

References

[1] Alfred V. Aho, John E. Hopcroft, and Je�rey D. Ullman. The Design and Analysis of Computer

Algorithms. Addison-Wesley, 1947.

[2] Sara Baase. Computer Algorithms, Introduction to Design and Analysis. Addison-Wesley, second
edition, 1988.

[3] Y. Bekkers and P. Tarau, \Monadic Constructs for Logic Programming", Proc. International Symposium
on Logic Programming, 1995. The MIT Press.

[4] A. Bloss. Path Analysis and Optimization of Non-strict FunctionalLanguages. PhD thesis, Dept. of

Computer Science, Yale University, 1989.

[5] M. Bruynooghe, A. Mulkers, and K. Musumbu. Compile-time garbage collection for prolog. Technical

report, Dept. of Computer Science, Katholieke Universiteit Leuven, Belgium, 1988.

[6] Maurice Bruynooghe. Compile time garbage collection or how to transform programs in an assignment-

free language into code with assignments. In IFIP TC 2 Working Conference on Program Speci�cation

and Transformation, Bad T�olz, F.R. Germany, 1986.

[7] S. K. Debray, \On Copy Avoidance in Single Assignment Languages", Proc. Tenth International Con-

ference on Logic Programming, Budapest, Hungary, June 1993, pp. 393{407.

[8] S. K. Debray, \On the Complexity of Data
ow Analysis of Logic Programs", ACM Transactions on

Programming Languages and Systems vol. 17 no. 2, March 1995, pp. 331{365.

[9] M. Draghicescu and S. Purushothaman. An uniform treatment of order of evaluation and aggregate
update. Theoretical Computer Science. To appear.

13

[10] Ian Foster and Will Winsborough. Copy avoidance through compile-time analysis and local reuse. In

Vijay Saraswat and Kazunori Ueda, editors, Logic Programming, Proceedings of the 1991 International
Symposium, San Diego, USA, 1991. The MIT Press.

[11] D. Gudeman, K. De Bosschere, and S.K. Debray, \jc: An E�cient and Portable Sequential Implemen-
tation of Janus", Proc. Joint Int. Conf. and Symp. on Logic Programming, Nov. 1992, pp. 399{413. The

MIT Press.

[12] G. C. Gopalakrishnan and M. K. Srivas. Implementing functional programs using mutable abstract

data types'. Information Processing Letters, 26(6), 1988.

[13] K. Gopinath. Copy Elimination in Single Assignment Languages. PhD thesis, Stanford University,

1989. (Also available as Technical Report CSL-TR-89-384.).

[14] K. Gopinath and John L. Hennessy. Copy elimination in functional languages. In 16th ACM POPL

Symposium, pages 303{314, Austin, Texas, 1989. ACM Press.

[15] P. Hudak. A semantic model for reference counting and its abstraction. In Samson Abramsky and Chris

Hankin, editors, Abstract Interpretations of Declarative Languages, pages 45{62. Ellis Horwood, 1987.

[16] P. Hudak and A. Bloss. The aggregate update problem in functional programming languges. In Proc.

12th ACM POPL Symposium, pages 300{314. ACM, 1985.

[17] S. B. Jones and D. Le Metayer. Compile-time garbage collection by sharing analysis. In Proc. Conference

on Functional Programming Languages and Computer Architecture. ACM Press, 1989.

[18] F. Klu�zniak. Compile-time garbage collection for ground Prolog. In R. A. Kowalski and K. A. Bowen,

editors, Proceedings of the Fifth International Conference and Symposium on Logic Programming, pages
1490{1505, Seattle, 1988. The MIT Press, Cambridge.

[19] Anne Mulkers, William Winsborough and Maurice Bruynooghe. Live-Structure Data
ow Analysis for

Prolog. ACM Transactions on Programming Languages and Systems vol. 16 no. 2, March 1994, pp. 205{

258.

[20] Germ�an Puebla and Manuel Hermenegildo. Implementation of multiple specialization in logic programs.

In ACM SIGPLAN PEPM'95, pages 77{87, La Jolla, Ca, USA, 1995. ACM Press.

[21] A. V. S. Sastry and W. Clinger. Order-of-evaluation analysis for destructive updates in strict functional

languages with
at aggregates. Technical Report CIS-TR-92-14, Dept. of Computer and Information
Science, University of Oregon, July 1992.

[22] Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury, an e�cient purely
declarative logic programming language. The Journal of Logic Programming, 29(1{3):17{64, October-

December 1996.

[23] R. Sundararajan, A. V. S. Sastry, and E. Tick. Variable threadedness analysis for concurrent logic

programs. In Krzysztof Apt, editor, Proceedings of the Joint International Conference and Symposium

on Logic Programming, pages 493{508, Washington, USA, 1992. The MIT Press.

[24] P. Wadler, \The essence of functional programming", Proc. 1992 ACM Symposium on Principles of

Programming Languages, Jan. 1992, pp. 1{14.

[25] P. Wadler, \How to Declare an Imperative", Proc. International Logic Programming Symposium, Dec.
1995. The MIT Press.

[26] Will Winsborough. Multiple specializaion using minimal-function graph semantics. The Journal of

Logic Programming, 13(1&2):259{290, July 1992.

[27] W. Winsborough, \Update In Place: Overview of the Siva Project", Proc. 1993 International Sympo-

sium on Logic Programming, pp. 94{113. The MIT Press.

14

