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Abstract

We describe a hierarchical data structure for representing a digital terrain (height �eld) which contains

approximations of the terrain at di�erent levels of detail. The approximations are based on triangulations

of the underlying two-dimensional space using right-angled triangles. The methods we discuss allow the

approximation to precisely represent the surface in certain areas while coarsely approximating the surface in

others. Thus, for example, the area close to an observer may be represented with greater detail than areas

which lie outside their �eld of view.

We discuss the application of this hierarchical data structure to the problem of interactive terrain visu-

alization. We point out some of the advantages of this method in terms of memory usage and speed.

1 Introduction

In this paper, we describe a method for approximating a surface which is presented to us as a

two-dimensional array of height values. We assume that the height value in location i; j of the
array is the true height of the surface at location xi; yj where xi and yj are easily derived from the

indices i and j. Thus we ignore questions of error in the input. For our purpose, the surface is
de�ned by the values in the height array.

There are many instances when an approximation to a surface is preferable to the true surface.

Perhaps the most obvious is when storage space is limited. If this were the only concern then one
solution might be to \approximate" the surface with a compressed representation that can be used

to reconstruct the entire, full resolution surface when needed. More commonly, we need to simplify
the representation not only to reduce storage space but also to make analysis faster and the results

of analysis more comprehensible. Thus we need to be able to run analysis programs using the
approximate surface; something which is not typically possible with generically compressed data.

Furthermore, the approximation should be constructed so that the answers obtained in the analysis
approximate the answers we would obtain for the true surface.

The structure we describe provides a framework that contains many approximations of varying
levels of detail. One reason to construct approximation frameworks rather than single approxima-

tions is speed. It is often faster to extract a suitable approximation from an existing framework
than to construct a suitable approximation from scratch. This is important when many di�erent
approximations are required in rapid succession.

The framework we propose in this paper is a hierarchy of approximations. Hierarchy implies that
the framework contains a range of approximations, from coarse to �ne. In addition, our hierarchy

allows a mix of coarse and �ne level representations within a single approximation. This allows
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us to obtain high levels of detail in certain regions of the surface without forcing us to sample the
entire surface at this high resolution. For example, in order to accurately approximate elevation,

mountainous regions may require much �ner detail than 
at plains.
An additional bene�t to having the entire hierarchy of approximations is that it can make tasks

such as point location faster than they would be if one had only a single approximation.

We describe the hierarchy and illustrate its use for interactive visualization of a surface. The goal
of interactive visualization is to show what a user would see as they \
y" or \walk" over the surface.

The problem is that the surface is too detailed to render at full resolution at a reasonable speed.
Thus the surface must be approximated in order to reduce the time needed to update the display.

A single approximation, independent of the eye position, could be used, but the resulting image
may be unacceptably coarse in areas close to the eye. Our approach is to adapt the approximation

to the location of the eye so that regions close to the viewer are at high resolution while distant or
non-visible regions are more coarsely represented.

The demand for varying levels of detail within one approximation must be answered carefully.
The goal is to avoid discontinuities or gaps in the surface at the transitions from coarser to �ner
approximations. This problem is very noticeable in interactive applications. It is common when

linear interpolation is used over non-triangular regions.
Interactive visualization is a good test of our hierarchy since it requires many of the desired

properties: we must be able to choose an appropriate approximation rapidly; the approximation
must allow di�erent levels of detail at di�erent locations on the surface; and the surface must be a

continuous surface after interpolation (gaps in the surface can be glaringly obvious).
The focus of this paper will be on describing the hierarchy and the data structure used to

implement it. Later sections of the paper will detail the performance of the hierarchy both as
a solution to the interactive visualization problem (section 7) and as a way to represent a single

(non-hierarchical) surface approximation (appendix A).
We start by reviewing a portion of the large body of work that has been done on surface

approximation. We then review two popular surface representations, and describe hierarchies based

on these representations. This sets the stage for our discussion of the Right Triangular Irregular
Network approximation (section 5).

2 Related Work

A great deal of work has been done on the approximation of surfaces, and, in fact, on the particular

problem of multiresolution surface modeling of which hierarchies are one type. A recent survey by
De Floriani, Marzano, and Puppo discusses many of the advances in this �eld [6]. This survey
does not refer to a large body of very recent work that has appeared in SIGGRAPH96 [12, 3]

and EuroGraphics96, both of which had sessions on multiresolution surface modeling. The most
relevant work to our approach that has appeared in the surface approximation literature is the work

by Lindstrom et al. [15] and Puppo [18, 17]. Both independently discovered hierarchies similar to
the one discussed in this paper.

Another source of related work comes from the study of general lattice structures. Bell et al. [1]
cite work on crystal lattice structures by �Subnikov in 1916 [21] and Laves [14] in 1931 that de�ned

various planar partitions including the one upon which our hierarchy is based. These partitions have
been studied as a means of addressing spatial regions with application to image encoding [11, 10]

and adaptive mesh generation for �nite element solvers in two and higher dimensions [9, 16]. Hebert
appears to be the �rst to describe non-uniform versions of the particular partition discussed in this
paper, though the concept is closely related to the quad-tree data structure discussed by Samet [19].
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3 DEM and TIN

Approximations of height data typically come in one of two types: gridded DEM or TIN. A gridded

DEM (Digital Elevation Model) is of the same form as the input array of height values. It is an
array of height values at regularly spaced x and y coordinates. Since the sample points are regularly
spaced, it is possible to calculate the true x; y coordinates of a height value from its array indices.

Thus, the only storage needed is for the height or z values of the sample points. To obtain the
height at x; y coordinates not in the sample set, one uses some form of interpolation. In fact,

what is often done is that the four sample points forming the smallest square containing the x; y

position are used to determine the height at x; y via bilinear interpolation. The regular spacing

of the sample points makes it easy to determine the closest sample points to a given x; y position.
Alternatively, one might choose to use linear interpolation based on a triangulation of this smallest

square (arbitrarily picking one of the square's two diagonals to split it into two triangles).
The sample points of a TIN (Triangular Irregular Network) are an arbitrary subset of the

original data points. In order to specify this subset, the x; y coordinates of each sample point in the
TIN must be stored explicitly, in addition to the z value. The sample points, without their height
component, are triangulated (typically using a Delaunay triangulation) and linear interpolation is

used to obtain the height at an arbitrary point (x; y) from the heights of the vertices of the triangle
which contains the point.

The advantage of the TIN is that the sampling can be nonuniform: large featureless regions can
be sampled at a coarser resolution than regions with a great deal of variation. The disadvantage

is that a TIN requires more storage for the same number of sample points; a 3:1 ratio if x, y,
and z values require the same precision. The storage disadvantage becomes worse if one requires

adjacency information for the triangulation; if, for example, one needs the ability to traverse the
surface approximation from triangle to adjacent triangle.

The factor of three di�erence in storage requirements has led to an unfavorable view of TINs.
Kumler [13] argues that to achieve a certain degree of accuracy in the representation of a height

�eld, DEMs require less storage space than TINs. However, he then states, \I did not expect these
results. My intuition led me to believe, and I continue to believe, that the irregular TIN model is, in
general, a more e�cient method for representing an irregular natural surface." He then goes on to

explain his conviction by claiming that methods to construct more e�cient TINs will be developed
in the future. Our results comparing error measures to space usage for DEMs and TINs may shed

some light on this issue (appendix A).

4 DEM and TIN hierarchies

Both DEM and TIN approximations may be organized into hierarchies. A hierarchy of DEM ap-

proximations is obtained by varying the spacing of the regularly sampled grid points. For example,
one level of the hierarchy may contain every other sample point from the input array while a coarser

level may contain every fourth sample point. Typically, each level of the hierarchy is a regularly
subsampled approximation of the next �ner level. Thus, the amount of storage needed for the

entire hierarchy is just the amount needed for the �nest level of approximation. The price of such
small storage is the rigidity and uniformity of the sampling pattern.

A TIN hierarchy allows varying levels of detail within an approximation at the expense of
more storage. There are several hierarchies based on irregular triangulations [2, 4]. One may

roughly divide them into those that preserve the boundaries of coarse triangulations in going to
�ner triangulations, and those that do not. In the �rst case, the hierarchy is organized in a tree
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structure; each node represents a region, and the children of a node represent the regions into which
the node's region is partitioned in going from one level to the next �ner. Re�nement is typically

performed by choosing within each region a point from the original input data, adding it to the
set of sampled points, and retriangulating (maintaining the previous boundaries). Such a scheme
tends to create long, thin triangles which can make interpolation less accurate. However, any level

of detail can be achieved in one area of the triangulation without a�ecting other areas. In terms of
the tree structure, any subtree containing the root represents a valid surface approximation.

In the second case, one can choose to retriangulate at each level using, for example, Delaunay
triangulation. In this case, it is not in general possible to re�ne a particular region independent of

other regions, i.e. combining pieces from di�erent levels of the hierarchy is di�cult. DeBerg and
Dobrindt recently showed how a hierarchy of Delaunay triangulations which allows local re�nement

can be constructed. This is accomplished at the price of storage. DeBerg and Dobrindt cite memory
usage of 132 bytes per data point1.

Our goal is to provide a hierarchy of surface approximations which is a compromise between
the DEM and the TIN approximations. We hope that a more regular \grid-like" TIN will have the
advantage of smaller space requirement and adaptability to terrain.

5 RTIN Hierarchy

Our hierarchical surface representation contains partitions of the two dimensional square into right-

angled, isosceles triangles. We refer to this partition as a Right Triangular Irregular Network
(RTIN). Such partitions have been studied in relation to crystal lattices [1], image encoding [11],

and, in fact, geographic visualization systems [15, 18, 17]. The partitions contained in the hierarchy
are de�ned inductively as follows. The partition composed of two triangles formed by dividing the
square from northwest to southeast corner is the coarsest partition in the hierarchy. From a partition

in the hierarchy, a new, more detailed partition may be formed by splitting any one of the non-

terminal triangles in the partition, where a non-terminal triangle is one which is larger than some

�xed threshold depending on the resolution of the underlying height �eld. A triangle T is split
by adding an edge from its right-angled vertex to the midpoint of its hypotenuse. The resulting

partition may be non-triangular meaning that the new vertex introduced at the midpoint of the
hypotenuse may lie on the border of a triangle R (T 's neighbor across the hypotenuse) turning R

into a quadrilateral. In this case, linear interpolation over R is not well de�ned and may cause gaps
in the surface. To avoid this problem, we continue or propagate the split into R. If R is larger than

T then the hypotenuse of T forms a leg of R and we �rst split R (perhaps propagating this split)
and then split the resulting triangle which shares its hypotenuse with T . If R is the same size as T
we need only split R (no further propagation is necessary). See �gure 1.

Propagation means that a single split operation can cause more than one triangle to split.
However, splitting a triangle T cannot cause a triangle smaller than T to be split. Thus, only a

�nite number of triangles will be split in a single split operation, and the operation is guaranteed
to terminate. In fact, at most two triangles of each size equal to or larger than T and no triangles

smaller than T will split as a result of splitting T .
The most detailed partition in the hierarchy is one in which no triangle may be split, i.e. all

triangles are terminal. The most detailed partition is uniform: every triangle is the same size. The
vertices of the partition form a grid of size (2k+1)� (2k +1) for some integer k. The height of the

1Memory usage can be reduced by increasing the di�erence in detail between levels, but the hierarchy is then less

capable of matching the exact resolution requirements of a desired approximation.
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T

R

Before After

Figure 1: Splitting triangle T .

(i; j)th grid point is the height of the (i; j)th sample point in the height array. The integer k (or,
equivalently, the threshold de�ning the terminal triangle) is chosen so that the grid is large enough

to contain the height array.
If extended to cover the plane, such a uniform partition is called a [4:82] Laves net named by

Bell, Diaz, Holroyd, and Jackson [1] after F. Laves. The name lists the degree of the vertices of
the atomic polygon within the partition, in cyclic order around the polygon. In this case, the right

angled vertex has degree 4, and the two other vertices both have degree 8.
Other Laves nets which may be used as the basis for single shape hierarchies are the square

[44], the equilateral triangle [63], and the 30-60 right triangle [4:6:12]. See �gure 2. These nets all

share the crucial property that they are in�nitely re�nable using similar polygons: a given polygon
in any net can itself be partitioned using pieces of the same shape.

Figure 2: Pieces of Laves nets of type [44], [63], [4:6:12], and [4:82].

Unlike a Laves net, a partition may be non-uniform. Only certain Laves nets can form the basis
of non-uniform partitions. For partitions based on the square or equilateral triangle net, re�ning

one region forces all other regions in the partition to be re�ned. This re�ning is forced in order
to maintain the basic shape of the regions in the partition. For example, re�ning one square in

a square net introduces new vertices on the edges of adjacent squares which forces these squares
(now pentagons) to be re�ned, which forces further re�nement until the partition is uniform. The

equilateral triangle net behaves in a similar manner. Thus these nets, without special compensation
for non-similar regions, cannot be the basis of a non-uniform partition. The [4:6:12] (30-60 right
triangle) partition and the [4:82] (isosceles right triangle) partition do not su�er this limitation. As
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mentioned earlier, re�ning (or splitting) a triangle a�ects at most two triangles of each size in the
[4:82] partition. In the [4:6:12] partition, the number of triangles a�ected of each size equal to or

larger than the triangle initially split is at most 12. See �gure 3.

Figure 3: Non-uniform partition based on the [4:6:12] Laves net.

Three properties favor the [4:82] partition for hierarchical representation of surface approxima-
tions. First, it is a triangular subdivision which means that height values in the interior of the

triangle can be linearly interpolated from the height values at the vertices of the triangle in an
unambiguous way. The bene�ts of linear interpolation over other methods of interpolation (such as

bilinear or inverse-distance weighting) are speed and simplicity. For 3d-visualization, linear inter-
polation is supported in hardware on some machines, making it the only reasonable interpolation
scheme for large numbers of triangles.

Second, its vertices are equally spaced grid points, so each vertex represents a sample point from
the original data set, and every point from the data set is included in the most detailed partition.

Third, one area of the partition can be re�ned, while maintaining the \no gap" or surface
property, without a�ecting a large number of regions. Re�ning or splitting a triangle a�ects only

a small number of other triangles.

5.1 Data Structure

The procedure by which the RTIN partitions were de�ned suggests the structure that is used to

store them. Since each triangle in a partition can be divided into two similar pieces, an obvious
choice for a storage structure is a binary tree. That is, each region in the partition has an associated

node in a binary tree.
The root of the tree represents the initial square (the only case in which the region associated

with a node is not a right triangle). The children of the root correspond to the regions obtained
by dividing the square along its northwest-southeast diagonal. The left (right) child corresponds
to the triangle containing the southwest (northeast) corner. In general, the children of a node with

triangular region T correspond to the triangles obtained by \splitting" T from the midpoint of its
hypotenuse to its right angled vertex. The left (right) child is the triangle to the left (right) of this

split (looking from the midpoint to the vertex). See �gure 4.
This establishes a labeling scheme for triangular regions in the square. The label of a region is

a description of the path to its corresponding node in the binary tree. The path description is the

6



0 1

0

10

1
0

1
01

0

1

0
1 0

1

Figure 4: The possible triangle orientations and their left and right children. Left and right are

denoted by 0 and 1 respectively.

concatenation of the labels of the edges on the path from the root to the node, where an edge is

labeled 0 (1) if it leads to a left (right) child. See �gure 5.
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Figure 5: The binary tree representation of a triangulation in the hierarchy.

The advantage of this representation is that the x,y coordinates of the vertices of a triangle can

be easily calculated from its label. The coordinates do not need to be explicitly stored as is the
case with a general TIN. In this way, the RTIN resembles the regularly subsampled grid in which

the x,y coordinates of a point can be calculated from the point's indices in the array of height
values. However, unlike the regularly subsampled grid, the RTIN allows nonuniform sampling;

some regions may be more densely subsampled than others. In this way the RTIN resembles the
general TIN.

Determining the coordinates of the three vertices of a triangle from its label is straightforward.
The label describes a path in the binary tree representing the surface. At each step in this path, as

one descends from the root, one can construct the vertices of the left or right child triangle from the
vertices of the parent. If �(v1; v2; v3) is the parent triangle (vertices are listed in counter-clockwise
order with v3 the right angled vertex) then the left child is �(v3; v1; m) while the right child is

�(v2; v3; m) where the x,y coordinates of m are the x,y coordinates of the midpoint of the line
segment v1v2, and the z coordinate (i.e. height value) of m is obtained from the input data. One

possible location in which to store that height information is in the node corresponding to the
parent triangle. This means that the height value of a particular data point may be stored twice;

once for each triangle that has that point as the midpoint of its hypotenuse.
A straightforward implementation of this binary tree structure is ine�cient in its use of space.
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Each node requires two pointers to its children as well as space for the height of the midpoint of its
hypotenuse. This, along with the fact that there are twice as many nodes in the tree as triangles in

the approximating surface, makes this method of surface approximation more space intensive than
a TIN representation. See appendix A for a more detailed examination of space usage in the case
of a single surface approximation.

The advantages of the RTIN become more apparent when one is concerned with representing
a hierarchy of surface approximations rather than just a single approximation. In some sense, the

RTIN is tailor-made for hierarchical representations since, if it contains a surface approximation at
a particular level of detail, it contains every coarser approximation.

We assume that the hierarchy should permit full level of detail in any region. Thus, the �nest
level of detail should be the original input data. If the original input was a 2k+1�2k+1 array, the

binary tree representing the hierarchy is complete. In this case, it is much more space e�cient to
store the binary tree as an array where the label of a node, treated as the binary representation of

an integer, determines the node's location in the array. The problem of having, for example, 0 and
00 both representing the same integer can easily be solved by prepending a 1 to the node label. The
addressing scheme obtained in this way corresponds to the typical implicit array representation of

a binary heap [22]. By using the array representation, we eliminate child pointer storage.
Since we require the hierarchy to contain the full level of detail, the height value of every x,y

point must be available. Rather than store these heights in nodes of the binary tree, this data
may be stored as a two dimensional array indexed by x and y coordinates (i.e. the original input

representation), thus eliminating the storage needed in each node for the height of the midpoint of
the corresponding triangle's hypotenuse.

At this point, one might ask what information is stored in the tree, since the pointer structure
and the height values were the only previously required pieces of information.

The only vital piece of information that must be stored is an indication of the actual surface.
This can be accomplished using a single bit per node which indicates whether or not the node's
triangle is a part of the approximation. The total storage of a (2k + 1) � (2k + 1) image is the

amount used for the array of height values ((2k + 1)� (2k + 1) words) plus one bit for every node
in the tree (22k+1 � 1 bits).

This representation, however, is too sparse to be of much use for any algorithm which operates
on the surface approximation. One might reasonably demand that each node contain some repre-

sentation of the error of its triangle2 in order to determine how well the approximation �ts the true
surface.

One may also demand the ability to \walk" from one triangle of the surface to a neighboring
triangle of the surface. That is, given the address of a triangle, calculate the addresses of the (at

most) three triangles that share an edge with it. We describe in the next section how this may be
accomplished using an additional three bits of storage per triangle.

5.2 Neighbor Calculation

Often the algorithms one needs to execute on the approximation surface require the ability to
traverse the surface from triangle to adjacent triangle. For example, one algorithm for calculating
the watershed of a stream performs a hill-climbing operation which follows a path of steepest ascent

from triangle to adjacent triangle [23]. In order to accomplish this, the algorithm needs to determine

2One possible error measure is the maximum vertical distance between a point whose x,y projection lies within

the x,y projection of the triangle and the triangle's surface
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the neighbors of any given triangle. In particular, one needs a function that, given the label of a
triangle, can calculate the label of its adjacent triangles.

In order to describe this function, let us number the vertices of a triangle in counter-clockwise
order from 1 to 3 so that vertex 3 is the right-angled vertex. De�ne the i-neighbor of a triangle
as the neighbor that does not share the triangle's vertex i (see �gure 6). The same-size i-neighbor

2

1

3

3-neighbor

2-neighbor

1-neighbor

Figure 6: The i-neighbors of a triangle. In this case, all neighbors are the same size as the triangle.

of a triangle t is the triangle's i-neighbor in the uniform partition that contains t. The same-size

neighbor may or may not be a part of the current surface. The function which �nds the i-neighbor
of a triangle �rst �nds the same-size i-neighbor of the triangle and then uses some extra information

stored with the triangle to determine the true i-neighbor. The extra information is a bit which
says whether or not the i-neighbor is the same size as the triangle or not. If the bit indicates that

the i-neighbor is not the same size as the triangle then the i-neighbor must be smaller if i = 1; 2 or
larger if i = 3.

The following recursive procedures calculate the labels of the same-size neighbors of a triangle

speci�ed by its label. Ni(t) is the same-size i-neighbor of t. The symbol � is the label of the root.
The symbol ; represents \no neighbor". The function � is concatenation with the understanding

that ; � 0 = ; � 1 = ;.

N1(�) = N1(0) = N1(1) = ;

N1(p0) = N2(p) � 1

N1(p1) = p � 0

N2(�) = N2(0) = N2(1) = ;

N2(p0) = p � 1

N2(p1) = N1(p) � 0

N3(�) = ;

N3(0) = 1

N3(1) = 0

N3(p0) = N2(p) � 1

N3(p1) = N1(p) � 0

A recursive algorithm based on these equations is fast enough in nearly all situations. Nonethe-

less, it may be of interest to note that these calculations may be performed using a small number
(unrelated to the length of the label) of arithmetic and bitwise logical operations., provided the
label is short enough to �t in a computer word (see appendix B).
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6 On-the-
y Surface Approximation

Using the RTIN hierarchy de�ned in the previous section, we can create an algorithm that quickly

constructs a surface approximation. Since the application we have in mind is interactive visual-
ization, the speed at which the approximation can be constructed is of prime importance. The
construction time together with the rendering time determines the number of scenes that can be

drawn per second.
We assume that the rendering time is proportional to the number of triangles being drawn,

rather than, for instance, their size. Such is the case for most graphics hardware/software packages.
In order to achieve a certain level of performance (i.e. response time), the surface constructed in the

approximation stage should have no more than a prescribed number of triangles (depending on this
desired response time). Thus our algorithm should chose to re�ne the most poorly approximated

parts of the surface until the allowed number of triangles is exceeded.
The alternative is to insist that the approximation everywhere satisfy some constraint. The

constraint may be as simple as that every point in the input data lies within � of the approximation,
or it may be a more complicated constraint based on the eye position and a desired visual �delity.
In any case, the number of triangles produced in the approximation is not as tightly controlled as

in the previous case. A surface may require few triangles to achieve the desired overall �delity in
one case, while requiring many in another case. Certainly, by decreasing the overall requirement,

the number of triangles needed in the approximation decreases, but the control is not as precise as
in the previous case.

Either method may be used to achieve surface approximations. We outline the method based on
limiting the number of triangles. An initial preprocessing phase allocates to each triangle a measure

of how accurately it approximates the surface { the triangle's error. In our implementation this is
the maximum over points \covered" by the triangle of the vertical distance from the point to the

triangle.
The heart of the algorithm is a loop which updates the surface representation in response to

movements of the eye position. The algorithm constructs the approximation in a manner similar to
the general greedy TIN construction method of Fowler and Little [7]. Their method incrementally
adds the input point that is most poorly approximated to the approximation and then retriangulates

the x,y projection of the points. In our case, we do not have the 
exibility of adding an arbitrary
point to the current approximation. We can re�ne an approximation only by splitting a triangle

that is in the approximation. Thus, we order the triangles in the approximation by their \badness"
and incrementally split the worst triangle (which may, in fact, cause several triangles to split).

The measure of a triangle's badness may not simply be its error. A more appropriate measure
for interactive visualization would also include some measure of the visibility of the triangle. For

instance, triangles outside the current �eld of view, no matter how poorly they approximate the
surface, are not seen by the observer and, hence, should have minimum badness.

The precise function used to calculate the badness of a triangle is not our main focus. One
may choose an inverse distance weighting of the triangle's error, the area that the projection of the
triangle occupies on the display screen, or other measures. (See [4] and [15] for examples.) One

obvious common criteria is that triangles at the �nest level of detail should not be re�ned.
As long as the number of triangles in the surface is below the allowed threshold, this procedure

continues to split triangles in order of badness. When the threshold is reached, the triangles in the
approximation are sent to the rendering software to be drawn.
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7 Experimental results on hierarchical representations

An interactive visualization system incorporating the ideas presented in this paper may be down-

loaded from the �rst author's web site [5]. All experimental results presented in this session are
from this implementation.

The system on which we ran these experiments is an SGI Indigo2 with a High Impact graphics

board, and 128 megabytes of main memory, running IRIX 6.2. The program uses the OpenGL
graphics package and the OpenGL Utility Toolkit, GLUT.

We measured four aspects of the system:

1. The time to construct the RTIN hierarchy.

2. The memory required for the RTIN hierarchy.

3. The time to traverse the perimeter of the digital elevation model, looking toward its center,
in single pixel steps. At each step the algorithm reconstructs the surface from the current

eye position, redraws the 3-D perspective, and updates the �eld-of-view depiction in the 2-D
relief view. If the 2-D relief view window has dimensions x � y then the algorithm renders
2(x+ y) frames during the traversal.

4. The time to traverse the perimeter without redrawing the 3-D or 2-D views.

Time is wall-clock time in seconds. The following graph shows the performance of the system
under two surface construction techniques.

4000 6000 8000 10000

40

80

120

160

200

approximate number of triangles rendered

seconds

Heap

Error

Figure 7: Time required to traverse DEM perimeter divided into surface approximation (gray) and
rendering (white) for both re�nement using a heap and re�nement by scaled error measure. The

total number of frames processed in each traversal was 55,296. The terrain data set contains 1025
� 1025 elevations. The hierarchy required 7 seconds to construct and consumed 17 Mbytes. The

entire program used 23 Mbytes.
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A Single surface representations

In 1979, Fowler and Little proposed a scheme to select the vertices of a TIN [7]. The procedure is

iterative and greedy. In each iteration, the point least well represented by the current approximation
is added to the set of vertices, and the x,y projection of the set is retriangulated (using a Delaunay
triangulation) to form the next approximation.

We can, in spirit, mimic this greedy approach using right triangular partitions. Again the
procedure is iterative, but at each iteration the triangle which contains the least well approximated

point is split (perhaps causing other triangles to split) to obtain the next approximation.
This procedure attempts to reduce the maximum error in the surface approximation at each

iteration. It targets the point which has the current worst error, or the triangle which contains this
point in the case of RTINs. If, however, instead of desiring a small maximum error, one desires a

small RMS (root mean squared) error, then the analogous procedure is to �nd the triangle with the
worst RMS error or the point whose deletion most decreases the RMS error. For RTINs, this greedy

heuristic is rather simple to adopt: at each iteration the triangle with the maximum RMS error is
chosen to be split. For TINs, �nding the point that most decreases the RMS error is prohibitively
expensive.

As one would expect, the maximum error in the surface decreases more rapidly as a function
of the number of points in the approximation when we allow general triangles in the partition

(the TIN approximation) as opposed to the more constrained RTIN approximation. A subsampled
DEM is the worst performer under this measure (�gure 8). Note that we used linear interpolation

to calculate the surface in each case. The plots of the RTIN and TIN errors are scatter-plots. The
points cluster so densely that they present the illusion of smooth curves.
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Figure 8: Maximum error versus number of points in approximation. Crater Lake data set.

We obtain a similar result when we consider the RMS (root mean squared) error as a function
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of the number of points in the approximation. In this case, the RTIN algorithm chooses to split
the triangle which has the largest RMS error.
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Figure 9: Root mean squared error versus number of points. Crater Lake data set.

Even when we consider the maximum error as a function of the amount of memory required to

store the approximations, the irregular triangulation or TIN still outperforms both the RTIN ap-
proximation and the gridded DEM approximation. We count only the space for the approximation

itself, and we assume that the coordinate values can be stored in two bytes.
In the case of the TIN, the amount of memory used is approximately 30 bytes per vertex in the

approximation. This counts the two bytes each for the x, y, and z coordinates and four bytes each
for the, on average, six neighbor pointers of each vertex.

For the RTIN, the storage required for each node in the binary tree is two bytes to hold the
height of the midpoint of the hypotenuse and eight bytes for the two child pointers. This is a single

surface approximation; the leaves of the tree represent triangles in the approximation. Thus, we
do not need to store neighbor information in the nodes. To calculate the neighbor of a triangle, we
calculate its same-size neighbor and take the closest leaf to that neighbor (the neighbor itself, its

parent, or its child). The number of triangles in the approximation (i.e. leaves in the binary tree)
is approximately twice the number of vertices in the approximation. The total number of nodes in

the tree is approximately twice the number of leaves. Thus the RTIN uses approximately 40 bytes
per vertex in the approximation.

For the gridded DEM the storage requirement is approximately two bytes per point in the
approximation, since only the height values need to be stored.

The one instance in which the TIN approximation does not achieve the best performance of
the three is when the RMS error of the approximation is considered as a function of the memory

used. In this case, the gridded DEM achieves the best error for a given memory size. This result
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Figure 10: Maximum error versus memory usage. Crater Lake data set.

supports Kumler's observations and, indeed, his error measures are of a similar 
avor to the RMS
error measure. That the gridded DEM produces small error may be largely attributed to the fact

that its triangles are, on average, quite small.
The performance of the RTIN as a single surface approximation does not match the perfor-

mance of the general TIN approximation scheme. This will always be the case when performance
is measured as a function of the number of points in the approximation. There is some hope,

however, that other means of storage can bring down the memory requirements of the RTIN to
the point where it competes with the TIN on single surface approximations when performance is

a function of the memory used. For example, the labels of the triangles in the approximation may
be hashed rather than stored in a binary tree. This avoids allocating space for internal nodes that
are extraneous in a single surface approximation.

The data for the �gures shown above is elevation data for Crater Lake in southern Oregon
obtained from Garland and Heckbert [8]. The results are similar to those obtained for other areas

such as Yakima, Washington, Tucson, Arizona, and Reno, Nevada. These data sets and others were
obtained from the U.S. Geological Survey [20]. The code which was used to produce the irregular

triangulations was obtained from [8].
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B Fast Neighbor Calculation Code

int neighbor[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 2, 1}};

#define SIEVE0 0xAAAAAAAAAAAAAAAA

#define SIEVE1 0x5555555555555555

/* sameSizeNbr(t, i) -- return the label of the same size i-neighbor of t. */

int sameSizeNbr(int t, int i)

{

register unsigned int a;

register unsigned int b;

register unsigned int c;

register unsigned int p;

register unsigned int n;

if (t <= 2) {

return neighbor[i-1][t];

}

p = t + 1;

if (i == 1) {

p = (p << 1) | 1;

} else if (i == 2) {

p = (p << 1);

}

c = ((p << 1) ^ p) & SIEVE0;

a = c | (c << 1) | 1;

b = (a + 1) ^ a; /* most of the work is done by this addition */

if (b < (p>>1)) {

n = p ^ b;

} else if (((p & SIEVE0) << 1) > p) {

if (((p & SIEVE1) << 2) > p) {

n = p ^ (b>>1);

} else {

n = p ^ (b>>3);

}

} else {

return 0;

}

if (i != 3) {

return (n >> 1) - 1;

} else {

return n - 1;

}

}
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