COYOTE

A System for Constructing Fine-Grain Configurable
Communication Services

NinaT. Bhatti Matti A. Hiltunen Richard D. Schlichting Wanda Chiu

TR 97-12

Coyote: A System for Constructing Fine-Grain Configurable
Communication Services!

NinaT. Bhatti Matti A. Hiltunen Richard D. Schlichting Wanda Chiu

TR 97-12

Abstract

Communication-oriented abstracti ons such asatomic multicast, group RPC, and protocol sfor | ocation-
independent mobile computing can simplify the development of complex applications built on dis-
tributed systems. This paper describes Coyote, a system that supports the construction of highly
modular and configurabl e versions of such abstractions. Coyote extendsthe notion of protocol objects
and hierarchical composition found in existing systems with support for finer-grain objects called
micro-protocols that implement individual semantic properties of the target service. A customized
serviceisconstructed by sel ecting micro-protocol sbased on their semantic guaranteesand configuring
them together with astandard runtime system to form a composite protocol implementing the service.
Micro-protocols within a composite protocol can share data and are executed using an event-driven
paradigm that enhances configurability. The overall approach is described and illustrated with ex-
amples of servicesthat have been constructed using Coyote, including atomic multicast, group RPC,
membership, and mobile computing protocols. A prototype implementation based on extending x-
kernel version 3.2 running on Mach MK 82 with support for micro-protocol sisal so presented, together
with performance results from a suite of micro-protocols from which over 60 variants of group RPC
can be constructed.

Jduly 7, 1997

Department of Computer Science
The University of Arizona
Tucson, AZ 85721

1 Thiswork supported in part by the Office of Naval Research under grantsN00014-91-J-1015, NO0014-94-1-0015,
and N00014-96-0207.

1 Introduction

Complex applicationsbuilt on adistributed architecture can besimplifiedif theunderlying softwareprovides
suitably tailored communication-oriented abstractions. For example, ordered atomic multicast provides
atomic and consistently ordered message delivery to agroup of processes, which can be useful for writing
real-time and fault-tolerant distributed applications[BSS91, CASD85, MSMAQ0, PBS89]. Other abstrac-
tions of this type include group RPC [CheB6, CGR88, Coo90], membership [Cri91, KGR91, MPS92],
distributed transactions [BHG87], and protocols related to multimedia applications [KE93, Yav92]. Such
abstractionslogically form adistribution support layer—that is, alayer that provides execution guarantees
regarding the distributed state of the application—that occupies a place in the system hierarchy between
the application and traditional operating system functionality. From a networking perspective, they can
be viewed as application-oriented network protocolsor distributed services that are implemented at a high
level in the protocol stack.

Thispaper describes Coyote, asystemthat supportsthe construction of highly modular and configurable
versions of complex high-level protocols. Coyote extends the notion of protocol objects supported by
systems such as ADAPTIVE [SBS93], Horus [RBM96], and the x-kernel [HP91] to finer-grain modules
called micro-protocolsthat implement individual properties of the target service as separate modules. For
exampl e, with atomic multicast, one micro-protocol might implement the consi stent ordering requirements,
while another might implement reliable transmission. Micro-protocols can also be used to implement
different semantic variants of the same property. For example, there may be multiple micro-protocols
implementing different message-ordering or retransmission policies. A service is then configured from a
suite of micro-protocol srepresenting arange of possible semantic choices based on the particular execution
guarantees needed for thegiven application. Micro-protocolsarestructured using eventsand event handlers,
which enhance configurability by minimizing explicit references between modules.

Our approach provides a number of advantages over a monolithic approach to constructing similar
services or systems that support only coarse-grain hierarchical composition. These include:

e Configurability. With fine-grain semantic-based configurability, customized services can be con-
structed that provide execution guarantees that are targeted to the specific requirements of the
application.

o Efficiency. With acustomized service, the application can avoid execution overhead that often results
from inclusion of unnecessary propertiesin monolithic services, aswell as choose the most efficient
aternative given the current execution environment.

e Reusability. The same collection of micro-protocolscan be used to construct multiplerel ated services
for different applicationsrather than having to implement entirely new services from scratch.

e Extensibility. New execution propertiescan be added asneeded by writing additional micro-protocols
and including them in an existing micro-protocol suite.

e Expressibility. The approach provides a new, more general model for structuring protocol objects
that alows micro-protocols implementing a given service to communicate using events or shared
data as appropriate.

The need for a new approach has been reinforced by experience with existing systems. For example,
using the x-kernel to construct Consul, aprotocol suiteimplementing atomic multicast [MPS93a, PBS89],
highlighted deficiencies in severa areas, including support for complex interactions among protocol
objects, limited facilities for data sharing, and an orientation towards hierarchica protocol composition

a the expense of more flexible combinations [MPS93b]. The developers of XAMP, a real-time atomic
multicast protocol, report a similar experience [Fon94, VRB89]. The lack of a sufficiently rich protocol
object interface has also been cited as one of the motivations for developing Horus, a successor to the
Isis system [RBM96]. In addition, our approach is related to recent work in configurable operating
systems[BSS* 95, EK095, HPM93, MM O+ 94] and on the use of object-orientation and reflection to build
customizabl e operating systems [MHM™* 95, Yok92] and services for distributed systems [FNP*95].

Two prototype versions of Coyote have been constructed, including one that augments the x-kernel’s
standard hierarchical object composition model with the ability to internally structure x-kernel protocol
objects using micro-protocols. The result is atwo-level model in which selected micro-protocols are first
combined with a standard runtime system or framework to form a composite protocol that implementsthe
desired service. This composite protocol, whose externa interface is indistinguishable from a standard
x-kernel protocol, is then composed with other x-kernel protocols in the normal hierarchical way to
reaize the overall functionality required. Internally, the framework implements an event-driven execution
paradigm, in which event handlerswithin micro-protocol s are executed whenever eventsfor which they are
registered—for example, messagearrival or atimeout—occur [HS93]. Thus, when compared with standard
x-kernel protocol objects, micro-protocols are typically finer-grain objects that interact more closely and
do so using mechanisms provided by the framework rather than the x-kernel Uniform Protocol Interface
(UPI). The second prototypeis written in C++. It demonstrates the generality of the approach and serves
as another platform for prototyping composite protocols.

This paper makes severa contributions. First, it describes a new approach to designing complex
high-level protocolsbased on fine-grained modules and the event-driven execution paradigm supported by
Coyote. Second, it gives examples of anumber of services that have been developed using this paradigm,
including group RPC, membership, and protocols for mobile computing. Finally, it describes the design
and performance of the x-kernel based prototype, which executes on a collection of DecStation 5000
workstations running Mach MK82 and x-kernel version 3.2. A suite of 18 micro-protocols from which
over 60 semantic variants of group RPC can be configured is used to illustrate the prototype system.

2 Software Architecture

The fundamental components of our approach are composite protocols, micro-protocols, events, and a
runtime framework. This section describes these aspects of Coyote, presents an example micro-protocol
that implements local detection of site failures from a membership suite, and discusses various design
issues.

2.1 Composite Protocols and Micro-Protocols

A composite protocol is a software module that realizes the functionality of a service such as atomic
multicast or group RPC within the distribution support layer of the system. Composite protocols are
composed hierarchically with other composite protocolsor regular network protocolssuch as UDPto form
the network subsystem with which the application interacts. The interface of the composite protocol is
determined by the system being used to perform the hierarchical composition, which is prototype-specific.
For example, in the x-kernel prototype, the interface is the collection of operations supported by the
x-kernel’s UPI, including message push(), pop(), denmux(), and control operations. In the C++
prototype, the interface is not fixed a priori, but rather is specified by the programmer of the service.
Composite protocols are constructed from micro-protocols that are selected based on the desired
properties of the final service. Micro-protocols within a given composite protocol can share variables,

(Composite/Traditional Protocol

. J

!

(Com posite Protocol M - Event-handlers:
Micro-Protocols: ges

/ Message from net
Reliability (R) ,
Message from user
Causal Order (C)

Message to user

Virtual Synchrony (V) Events

o]] o] 2
o <

Membership change

. J

Composite/Traditional Protocol

f

Figure 1: Composite protocol.

and include event handlers that are executed when events for which they are registered occur. The
runtime system (framework) manages execution and implements the event mechanism. The composition
of micro-protocols into a composite protocol is done statically—that is, the code is linked together with
the framework at the time the network subsystem is built—although the execution patterns and specific
properties being enforced can be changed at runtime by rebinding events and handlers. Modifying the
collection of micro-protocolsthat comprise a composite protocol at runtime is discussed in section 6.2.

A protocol stack containing a composite protocol that illustrates this approach is depicted in figure
1. In the middleis the composite protocol, which contains a shared data structure—in this case a bag of
messages—and some event definitions. The boxes to the |eft represent micro-protocols, while to the right
are some common eventswith thelist of event handlerswithin micro-protocolsthat are to be invoked when
the event occurs.

A micro-protocol islogically structured as showninfigure 2. In addition to event handlers, it supports
local variables that can be accessed only within the micro-protocol, exported procedures that can be
invoked from within other micro-protocols, local procedures, and initialization code that is executed at
system startup time. We express micro-protocols in this paper using an informal pseudo-code, although
in reality, they are written in C or C++ depending on the prototype used. It would be straightforward to
define aProtocol Definition Language (PDL) and implement the requisite translator to enforce scoping and
modularity rulesif desired.

2.2 Eventsand Handler Execution

Execution activity within a composite protocol is initiated when an event occurs, which causes event
handlers registered for that event to be executed. An event is either a predefined event, in which caseit is
detected and raised implicitly by the framework, or a user-defined event, in which case it is detected by a
micro-protocol and raised explicitly using a triggering mechanism. Predefined events correspond to state
changes in composite protocols that are common across most communication services, and are typically
related to messages. Theseincludearrival of amessage at the composite protocol from the application (i.e.,

m cro- protocol npnane {
/* Declaration of local variables */

/* event handlers */
handl er hnanme(...) {
code for hnane

/* local procedures */
procedure pnane(...) {
code for pnane

/* initialization */
initial ;
initialization code
}
}

Figure 2: Micro-protocol schema

higher-level protocols), arrival of a message from the network (i.e., lower-level protocols), and departure
of amessage in either direction. The predefined events used in the x-kernel prototype are given in section
3.2.3.

When an event is raised, a thread is alocated from a pool maintained by the framework to execute
each handler bound to that event." The execution model is logically multi-threaded, so that multiple
handlers—either associated with the same or different event occurrences—may in general be executed
concurrently. The execution of handlers associated with an event occurrence can, however, be serialized
by specifying that the event is sequential when the event is defined initialy using a call to the framework.
Such semantics can simplify micro-protocol code in certain cases when execution order isimportant, such
as when a subsequent event handler depends on a side effect caused by a previously-executed handler.
However, it has the disadvantage of leading to implicit dependencies between micro-protocols, which can
adversely affect configurability.

Execution of a micro-protocol that raises a user-defined event can either block until al handlers have
completed (synchronous) or proceed without blocking (asynchronous). The choice of semanticsisspecified
as an argument in the system call that raises an event, implying that it can vary on a per-invocation basis.
These semantics extend as expected through multiple levels of recursively raised events. Execution of
predefined events raised by the framework is asynchronous in the sense that the framework continues
executing after allocating threads to execute handlers associated with detected events.

Five types of operations are defined to manipul ate events within micro-protocols:

e Creation: Define anew event and its attributes (i.e., concurrent or sequential).

e Bind: Associate a handler with an event so that the handler is invoked when the specified event
occurs; remains in effect until unbound.

!1n most cases, this processis optimized in the implementation to use asingle thread to avoid allocation overhead; see section
3.

e Unbind: Remove the association between a handler and an event.
e Raise: Trigger an event, passing specified val ues as argument val ues to the registered handlers.

e Cancel: Cancel further handler invocations associ ated with the same event occurrence.

Unbinding and cancellation are especially useful for dynamically altering handler execution [Hil96]. Note
also that there are no restrictions on binding handlers to events, so that a given handler may be registered
for multiple events and multiple handlers may be registered for a single event.

Finally, the model supportstimer events that are generated after a specified interval of time has passed
rather than any particular action of a micro-protocol or framework. Timer events can either be single or
periodic; the former are generated only once, whilethe latter are generated repeatedly. Timer events can
also be dedllocated, which prevents the event from being generated if the interval has not yet passed and
cancels future occurrences in the case of periodic events. Deallocation is atomic with respect to handler
execution, so that al handlers are allowed to complete before deallocation if any handler has already begun
execution.

2.3 Framework

Theframework isaruntime system that implements the event mechanism and providesfacilitiesfor shared
data that can be accessed by all micro-protocols within the composite protocol. It also implements the
composite protocol interface, which enablesit to interoperate with other protocolsin the protocol stack.

Messages that arrive at a composite protocol are placed in an unordered bag of messages maintained
by the framework that functions as aglobal pool accessibleto all micro-protocols. Thisfeatureisintended
to support two aspects of programming that are common in the type of high-level protocols for which
this approach isintended. First, it allows micro-protocolsto make state changes based on information in
an entire collection of messages, rather than just a single message. This can be important, for example,
in an atomic multicast protocol that requires waiting for a collection of messages to arrive and then
deterministically sorting the collection before presenting messages to higher levels [MPS93a, PBS39].
Second, a shared bag of messages alows multiple micro-protocol s to access messages concurrently. This
can be important, for example, in a situation where a message is acknowledged by one micro-protocol
while concurrently being ordered relative to other messages by a second micro-protocol.

Prior to being placed in the bag, averi f y micro-protocol is executed to determine if the message
is acceptable. For instance, a message might be rejected if corruption is detected or if it is destined for a
processthat no longer exists. If the messageis acceptable, the verifying micro-protocol placesthe message
in the bag using aroutine provided by the framework. A default version of the micro-protocol is provided
with the framework, although an alternative can easily be substituted by the user to perform message
screening and bag insertion under program control.

Each message in the bag has a collection of attributes that encode certain types of per-message
information. Predefined attributes are supplied by the framework. For example, one such attribute is
direction, which indicateswhether the messageis being sent up or down the protocol stack. Micro-protocol
attributescontai n micro-protocol-specificinformation about the message. For example, areliability micro-
protocol might keep private state information about the message indicating whether it was acknowledged
or isbeing retransmitted and by which hosts. In addition, attributes are used to build headers for messages
that leave the framework. Thisis done by an attribute-to-header routine provided by the user and invoked
by the framework as a message is exiting the composite protocol. Similarly, when a message enters the
framework, a header-to-attribute mapping routineis invoked that unpacks the header and creates attributes

using thisinformation. Aswithveri fy, default mapping routines are supplied, but can be overridden by
the user if desired.

2.4 Coordinated M essage Sending and Deallocation

Fecilities are provided that allow multiple micro-protocolsto coordinate when to pass a message either up
or down the protocol stack as appropriate. To seethe need for this, consider amessage that has arrived from
the network viaalower-level protocol. An acknowledgment micro-protocol may dispatch areply message
to acknowl edge receipt, which completes processing of the message as far as it is concerned. However,
an ordering protocol that places strict requirements on message ordering may wish to force the message to
stay in the composite protocol. Realizing such coordination is especialy difficult since it must function
correctly for any combination of micro-protocols.

To support thistype of coordination, the framework uses send bits associated with a message. There
isone bit per micro-protocol configured into the composite protocol, and when all send bits have been set,
theframework automatically passes the message to the next protocol in the appropriatedirection. A bit can
be defined to be on by default in cases where a micro-protocol does not need to restrict when a message
exits the composite protocol.

Similarly, deallocate bits alow micro-protocols to coordinate message deallocation. Again, each
micro-protocol has a unique dealocate bit for each message. When all dedlocate bits are set, the
framework raises a “Message ready to be deallocated” predefined event, which gives micro-protocolsthe
opportunity to free any information related to the message. To avoid dangling memory references, actual
deallocation is deferred until after all outstanding send operations referencing the specified message have
completed. This coordinated message deallocation is a configuration-time option, which alows use of a
centralized schemeif more convenient. For example, in some composite protocols, asingle micro-protocol
can determine when amessage can be deallocated based on its role in spooling messages to stable storage

2.5 An Example Micro-protocol

Toillustrate the programming style and event-driven paradigm, figure 3 presents a fail ure detection micro-
protocol from a configurable process group membership servicethat provides consistent information about
which sites are functioning and which have failed at any given time [HS97]. In this service, micro-
protocols are provided that implement different variants of multiple properties, including site failure
detection, agreement among sites on changes, partition handling, and consistent ordering of membership
change notification relative to other membership changes and application messages. The suiteis based on
atoken-passing paradigm, in which the sites are organized into alogical ring and atoken is circulated to
pass information, and to implement ordering and agreement.

The micro-protocol shown in figure 3 implements a live variant of site failure detection.? The micro-
protocol usesaglobal datastructure Menber shi p, which isthe agreed group membership, and maintains
a globa data structure Suspect Li st, which is a list of suspected membership changes represented
as pairs, {site.id, FAILURE or RECOVERY}. It notifies other micro-protocols about suspected
failures by updating the Suspect Li st and thenraising either the event Suspect _Next _Down, which
indicatesthefailureof thesite's successor inthelogical ring, or event Suspect _Change, whichindicates
the failure of any other site. These eventswould then typicaly be fielded by other micro-protocols.

Most of the code in the micro-protocol is used to implement three complementary techniques for
detecting a potentia site failure. The first, as mentioned above, is to suspect a failure if a site does

2The names of the event handling operations are taken from the x-kernel prototype; see section 3.3.

m cro-protocol LiveFailureDetection(Limt:int, checkperiod:real) {
var SilentList: set of int; /* list of sites not heard of lately */

handl er handl e.no_.ack(var site:int, attenpts:int)
if (attenpts < Limt and (site, FAILURE) ¢ SuspectList)
at t enpt s++;
el se {
SuspectlList += (site, FAILURE); attenpts = 1;
rai seEvent (Suspect _Next _Down, SYNC, 1, site);

}
}
handl er monitor() {
for each mint € Menbership do {
if (me SilentList and (m FAILURE) ¢ SuspectlList) {

SuspectLi st += (m FAILURE);
rai seEvent (Suspect _Change, ASYNC, 2, m FAILURE);

}
SilentList += m
}
}

handl er handl e.nsg(var nsg: Net Message) {
if (msg.type '= JON then {
if ((nmsg.sender, FAILURE) € SuspectList)
SuspectLi st -= (msg. sender, FAILURE);
if (msg.sender € SilentList) SilentList -= nsg. sender;

el sei f (nsg. sender cMenber shi p and (nsg. sender, FAI LURE) ¢SuspectList) {
SuspectLi st += (nsg. sender, FAILURE);
rai seEvent (Suspect _Change, ASYNC, 2, nsg.sender, FAILURE);

}
}

handl er handl e_nenber shi p_.change(nsg: Appl Message) {
if (msg.type == FAILURE) SuspectList -= (nmsg.changed, FAILURE);

initial {
for each mint € Menbership do SilentList += m
addEvent Handl er (For war di ng_Fai | ed, handl e_no_ack);
addEvent Handl er (Msg_l nserted. nt o_.Bag, handl e_nsg);
addEvent Handl er (Menber shi p_Change, handl e_menber shi p_change) ;
cr eat eEvent (Li veness_Check, 0);
set Ti mer Event (Li veness_Check, PERI ODI C, check_period, 0);
addEvent Handl er (Li veness_Check, nonitor);

Figure 3: LiveFailureDetection micro-protocol

not acknowledge receipt of the token. This method isimplemented in handler handl e_no_ack, which
is activated by the For war di ng_Fai | ed event raised by the token-handling micro-protocol when no
acknowledgment is received within aspecified time. If the attempt to forward thetokenfailsLi i t times,
the sitein questionisadded to Suspect Li st and Suspect Next _Down israised.

The second techniqueis to suspect afailure if no messages are received from a site within a specified
period of time. Thismethod isimplemented by handlershandl e_nmsg and noni t or , which usethelocal

data structure Si | ent Li st to maintain the sites from which no message has been received during the
time period check_peri od. Inthisscheme, Si | ent Li st isinitializedto all sitesand handl e_nsg
removes asitewhen amessageisreceived fromthat site. In particular, handl e _neg isexecuted whenever
theMsg_l nsert ed_l nt o_Bag event israised, which occurs when a message arrives from alower-level
protocol and isinsertedinto the compositeprotocol’s shared bag of messages. Thenoni t or handler raises
theSuspect _Change event for every sitethat remainsin Si | ent Li st at theend of check_peri od
timeunitsandthenreinitializesSi | ent Li st for thenext period. nmoni t or isexecuted at the appropriate
times by binding the handler to a periodic timer event Li veness_Check that is created and activated
usingthecr eat eEvent and set Ti ner Event operationsin the micro-protocol initialization code.

The third technique is to suspect a failure if a message of type JOIN sent by a site currently in the
membership arrives from alower-level protocol. Thereceipt of such a message indicatesthat the sender of
the message is recovering and wants to join the group, which implies that it necessarily must have failed
given the crash failure model used. Thismethod isaso implemented as part of thehandl e_nsg handler.

The final handler in the micro-protocol, handl e_nenber shi p_change, updates Suspect Li st
when an agreed membership change is made. This is indicated by the event Menber shi p_Change,
which istriggered in another micro-protocol once agreement is reached.

Further details of the group membership service are given below in section 5.2. In addition, acomplete
description of aconfigurable group RPC service and its performance using the x-kernel based prototypeis
described in section 4.

2.6 Design Issues

Designing a configurabl e service requires addressing a number of issues, ranging from identifying relevant
properties to developing a set of micro-protocols that maximizes configurability. The overal processis
illustratedin figure 4. Thefirst two boxes represent abstract characterizations of the service, whilethefinal

Service Abstraction Service Abstraction Configurable Service
(Existi ng Services) f) Micro-protocols
Properties of Service :l
C_ D L[]
\dentify Implementation,
ﬁ
Properties
() []
/]

Figure 4: Constructing a configurable service

box represents the micro-protocol suite making up the final configurable service.

In this paper, we focus on the implementation aspect of the process, and specifically, on developing
micro-protocol s given abstract properties. Techniques for identifying and formally specifying properties
are beyond the scope of this paper, but are addressed in [Hil96, HS95b] for the case of membership services.

In building micro-protocols for a service, a basic initial issue is selecting an overall implementation
strategy for aservice. For example, thesuitemay bebased around acentralized strategy using acoordinating
site or may be fully decentralized. Issues to be considered include ease of implementation, efficiency in
termsof number of messagesor execution time, and applicability of thestrategy to theunderlying computing

environment. For example, abroadcast based strategy may not bethe best choiceif the underlying network
does not provide hardware broadcast facilities. Existingimplementationsof the service often provide good
aternativesfor the general implementation strategy.

A second issue s designing the micro-protocols to maximize configurability, since, in general, micro-
protocols cannot be combined in arbitrary waysto yield a valid service. We can identify four relations
between micro-protocols that affect configurability:

e Conflict. Micro-protocols m, and m. conflict if they cannot be configured into the same system,
either because the corresponding properties are impossible to guarantee at the same time or because
of design decisions made during the implementation.

¢ Independence. Micro-protocols m, and m, are independent if m, can be used without m., m, can
be used without m,, and m; and m, can be used together, where the combination guarantees both
the propertiesimplemented by m, and m..

e Dependence. Micro-protocol m; depends on micro-protocol m. if m, must be present in the
configuration of a service and operate correctly in order for m, to provide its specified service. In
practice, thismeans that if m, isto be configured into a service, m, must be configured in as well.

e Inclusion. Micro-protocol m, includes micro-protocol m, if m; implements a property strictly
stronger than that implemented by m. without relying on m. being configured in the service. In
practice, this means that m, and m. would be redundant if configured together into a service.

The relations may result from fundamenta relations between the properties being implemented or from
implementati on choices made during thedesign process. For exampl e, failure detection cannot be bothlive
and accurate in asynchronous systems [FLP85, SM94], so micro-protocols implementing these variants
conflict based on their underlying properties. On the other hand, the relation between a micro-protocol
implementing consistent total message ordering and one implementing causal ordering depends on the
implementation design, since it is possible to implement total order either with or without an underlying
causal order (e.g., [MPS93a] and [MMSA 96], respectively).

Similarly, whether two micro-protocols have a dependency or inclusion relation is often based on
implementation convenience. For example, causal message ordering also trividly realizes FIFO ordering
and could be built on a FIFO ordering micro-protocol. However, the knowledge that messages are already
FIFO ordered does not simplify theimplementation of causal order, soitiseasier toimplement causal order
independent of FIFO. This leads to an inclusion rather than dependence relation between the respective
micro-protocals. In other situations, the implementation of a property can take advantage of the guarantees
provided by some other micro-protocol. For example, the implementation of message ordering properties
can exploit an atomicity micro-protocol that ensures that all sites will eventually receive every message.
Thisleads to the dependency relation between micro-protocols.

The relations between micro-protocols and the underlying abstract properties can be represented
graphically using configuration and dependency graphs, respectively [Hil96]. These graphs can be used to
evaluate if aproposed configuration is feasible, aswell asto enumerate al possiblevalid configurations.

3 x-kernel Prototype

3.1 Introduction

The x-kernel prototype of Coyote is based on version 3.2 of the x-kernel, which runs as a user-level task
on Mach version MK82. Written in C, the prototype is structured as a collection of library routines

9

that are linked with the user-written micro-protocols to create a composite protocol. The composite
protocol isthenincludedinthe x-kernel protocol graphin the normal way. The x-kernel was selected asthe
implementation environment because of its efficient message handling, novel thread execution architecture,
ease of configuration and modification, and portability. Theonly non-x-kernel facilities used beyond normal
C language library routines are three Mach functions for thread scheduling and management.

The hardware platform used for the experiments reported here consists of DecStation 5000/240s
connected by a 10 Mb Ethernet. These systems are based on MIPS R3000 micro-processor running at
40 MHz with a separate off-chip 64 KB instruction and data caches, and 16 MB of memory. Coyote and
its associated micro-protocol suites are currently being ported to a Pentium-based cluster running OSF/RI
MK 7.2 and CORDS, the x-kernel augmented with pathsfor resource allocation [TMR96].

The prototype differs somewhat from the model outlined in the previous sections, most importantly
by not supporting event cancellation and alowing event creation only during the initialization phase of
a composite protocol. A second C++ prototype that illustrates the generality of the approach is briefly
discussed below in section 6.1.

3.2 Framework
3.2.1 Uniform interfaces.

The framework encapsul ates micro-protocols and delivers messages to and from other x-kernel protocols.
Externaly, the framework providesthe standard x-kernel interface operationssuchascal | (), push(),
pop() ,anddenux() . Thisalowscomposite protocol sto beadded to an existing x-kernel protocol graph
without requiring changes to the existing protocols. The framework can be configured to provide either
a synchronous call interface or an asynchronous push interface to accommodate both styles of x-kernel
protocols. For apush interface, the reply message (if any) isreturned asynchronously.

3.2.2 Thread management

The multiplethreads of control used for executing event handlers are implemented using x-kernel threads,
which are implemented in turn using C-threads in Mach. Using x-kernel threads rather than spawning
C-threadsdirectly hasanumber of benefits. For example, it makesthethreadsvisibleto thex-kernel, which
permitsthe programmer to usethe built-inx-kernel features for doing execution monitoring and debugging,
simplifying the programming process. It aso allows the system to exploit the x-kernel’s optimized thread
management. In particular, the x-kernel preallocates apool of C-threads at initialization time and manages
them directly, which avoids the overhead of thread creation when an event is raised.

When an event is raised, athread is allocated from this pool to execute each associated handler. Given
the specialized nature of thread support in the x-kernel, thisis actually done by scheduling an x-kernel
timing event to execute with a zero second delay, which upon expiration places the allocated thread on
the ready list to be scheduled with other C-threads. No new threads are allocated for events that are
raised synchronously; rather, the same thread that triggered the event will sequentialy execute all handlers
registered for the event prior to returning. Sequential events are treated the same way.

The protocol writer can choose to have event handler invocations be implemented by procedure calls
rather than threads even in the case when the event is raised asynchronously. This optimization istargeted
for sequential machines where a procedure cal is typically more efficient than spawning a thread, and
is used as the default given our hardware configuration. No changes are required in the code for the
micro-protocols. In fact, which version of the runtime is used is transparent to both the x-kernel and the
protocol writer.

10

Threads that enter a composite protocol are treated differently than the normal x-kernel paradigm,
where a single thread typically shepherds a message through the entire protocol stack. In this model, a
thread arriving at a protocol can either continue up or down the protocol graph by executing a push()
or pop(), can terminate (e.g., if the message is discarded), or can be blocked within the protocol (e.g.,
to wait for areply). However, in a composite protocol, entering threads are typically disassociated from
their messages and may be used to execute event handlers. The specific strategy used depends on whether
handler execution is implemented by threads or procedure calls. With the former, the incoming thread
is usually terminated once other threads are activated to execute pending event handlers, while with the
latter, the thread is blocked to realize synchronous raise semantics. Threads may also be blocked instead
of terminated if a matching reply is expected. Threads that exit the composite protocol are reassociated
with messages to restore the normal x-kernel model.

3.2.3 Messages

The main data structure in a composite protocol is a bag of messages that is accessible to al micro-
protocols. Messages in the bag, referred to as CP Messages, are network messages augmented with
additional attributes that micro-protocols use to share per-message data. CP messages are based on x-
kernel messages, which are optimized for common message mani pul ation functions such as header pushes
and pops, fragmentation, and assembly. In addition to the normal x-kernel message operations, additional
operations are provided for efficiently accessing attributes. As noted above, the framework also provides
for coordinated control of message attributes, creation of headers and attributes, sending, and deall ocation.

Bag of Messages. The following are the key operations provided for manipul ating the bag:

e CPMsg = newl tem(xMsg, direction): Allocatesandinitializesanew CPmessage, return-
ing a pointer to the appropriate structure; di r ect i on indicates whether the message is traveling
up or down through the x-kernel protocol graph.

e insertltem CPMsQ): Inserts CPMsg into the bag;, triggers the Message_l n-
serted._l nt o_Bag event.

e del eteltem CPMsg) : Removes CPMsg from the bag, although the actua storage deallocation
is done under micro-protocol control; triggersthe Message _Del et ed_Fr omBag event.

e set SendBit (Protocol I D, CPMsQ): Setsthe send bit for micro-protocol Pr ot ocol | D;
when all bitsare set, the Message _Ready _To_Be_Sent event istriggered.

e set Deal | ocat eBit (Protocol I D, CPMsg): Sets the dedlocation bit for micro-protocol
Pr ot ocol | D; when all bitsare set the Message _Deal | ocat e event istriggered.

Other predefined events supported by the prototype are Message _Popped_To_CP, which indicates
that a message has been popped to the composite protocol (CP) by a lower-level protocol; Mes-

sage_Popped_Fr om.CP, which indicates that a message has been popped from the CP to a higher-level
protocol; Message_Pushed_To_CP, which indicates that a message has been pushed to the CP by a
higher-level protocol; and Message _Pushed_Fr om.CP, which indicatesthat a message has been pushed
from the CP to a lower-level protocol.

11

Attributes and Headers. CP message attribute values are often derived from information contained
in message headers, such as the sender id, destination id, and message type. To aid this function, all
micro-protocol suitesmust includeasingleheader _t o_at t ri but e procedure that sets attributesbased
on header values and localizes header format knowledge to one procedure. Typically, this procedure is
called by a verification micro-protocol after the incoming message has been validated. Similarly, when
a message is about to be sent, the message header is normally constructed from the attributes. The
attri bute_to_header procedureiscalled by the framework during a send message operation for this
purpose.

Coordinated MessageSending. When amessageiscreated withnewl t em al the send bitsareinitially
off. A micro-protocol setsitscorresponding bit withset SendBi t (CPMsg, Protocol | D) usingthe
protocol id assigned to the micro-protocol at system initializationtime. When all send bits are set, the CP
Message is ready to be sent and the Message_Ready _To_Be _Sent event israised by the framework.
The send bits restrict sending of messages both in the upward direction (to applications) and downward
direction (to the network). If a micro-protocol is not directly involved in the decision on when to send a
message, itsbit is set on by default.

Sending Out of Band. Although coordinated sending is the expected norm, there are occasions when a
particular micro-protocol might wish to send a message without another micro-protocol’s interference or
knowledge. Thisisaccomplished withsendMessageQut O Band(CPMs Q) , which sendsthe message
without raising any events.

Coordinated Deallocation of Messages. Asdescribed above, garbage coll ectionin acomposite protocol
can be implemented either by a single micro-protocol or as a function coordinated among multiple micro-
protocols using dedlocation bits. With the latter approach, the Message _Ready _To Be Deal | o-
cat e_Message(CPMsg) eventisraisedwhenall deall ocatebitshavebeen set. Thehandlersfor thisevent
then perform the actual mechanics of message deallocation and deletion, i.e., calling del et el t em()
and then freeing memory. The user chooses the style of deallocation support that is desired by settinga C
preprocessor variablethat activates the deall ocation-based events and bits.

3.3 Eventsand Handler Execution

All events are implemented using the same two types of data structures, an event description structure and
a collection of event invocation structures. For a given event, the first contains pointers to the handler
functions registered for this event, handler names, and the number of event parameters, and is passed
as the event descriptor in every r ai seEvent call. Event invocation structures, on the other hand, are
allocated when an event is raised and contain argument values and other invocation-specific data. One
such invocation structureis created for each handler registered for the triggered event. In addition to these
two structures, timer events require additiona structures to record the state of the event and the current
execution status to support cancellation and repetition.
The following operations are provided for manipulating events and event handlers:

e event = createEvent (event Nane, numArgs). Allocates and initializes a new event
definition structureand returnsahandlethat isused for later operations. event Nane isadescriptive
string naming the event, and numAr gs is the number of argument values passed to handlers when
the event israised. Used for both regular and timer events.

12

e addEvent Handl er (event, handl er, handl er Nane) . Bindshandl er toevent by
adding a function pointer to the list of handlers for event . The ordering of the add operations
determines the execution order for sequentia events. handl er Nane isadescriptive name for the
handler.

e del et eEvent Handl er (event, handl er). Removes handl er from thelist of handlers
for event .

e rai seEvent (event, type, numArgs, argl, arg2, arg3, arg4, arg5). Trig-
gersevent and passesthe specified numAr gs argument valuesto handlers. t ype is SYNCif the
event is to be executed synchronously or ASYNC if executed asynchronously. Used by micro-
protocolsfor triggering user-defined events and by the framework for triggering predefined events.

e event _i nvoke = setTi nerEvent(event, type, interval, numArgs, argl,
arg2, arg3, arg4, argb). Setsatimer event to execute after i nt er val microseconds
have elapsed. t ype specifies whether the timer event is periodic or once-only. nunmAr gs and the
argument values are as above. event _i nvoke isahandle used in the cancel and detach functions.

e outcone = deal | ocTi mer Event (event _i nvoke) . Deallocatesatimer event. Thereturn
valueindicateswhether the deall ocation was successful, or whether the handlers associated with the
event had already started to execute.

e det achTi ner Event (event _i nvoke) . Instructsthe framework to deallocate structures when
handler execution for the event completes; if atimer event will never be canceled, then the structure
can be detached immediately after thetimer is set.

One issue that had to be addressed in designing the event mechanism was the restriction that the
x-kernel timing events used to implement thread management (section 3.2.2) support only asinglefunction
accepting a single argument. To circumvent this restriction, the timing event is passed a “ super handler”
procedurethat, wheninvoked as aresult of thetimer expiring, unpacksargumentsfrom the event invocation
structure and passes them to a specified handler. This process is repeated for each handler bound to the
event. Thus, the super handler acts as a procedural wrapper around handler executions, recording the start
and termination of each handler, and handling memory allocation and deallocation.

To maintain uniformity, synchronous event execution uses the same event invocation structure to pass
arguments even though x-kernel timing events are not used in this case. Instead, the super handler is
invoked directly as a procedure, which provides a synchronous call style with blocking semantics. The
super handler is the same as in the asynchronous case, and, in fact, is unaware whether it was called from
an x-kernel event or directly as a procedure. Asynchronous event execution is aso performed in the same
way if the procedure call optimization is being used.

3.3.1 Bounding call depth

Stack overflow and unfair scheduling can occur if event handlers are executed using procedure calls
either because an event is raised synchronously or because asynchronous execution is being optimized
as procedure cals. The problem arises due to nested events, which occur when a handler executing as a
result of one event occurrence triggers another event. With procedure call execution, the nested event is
executed prior to other events, which can cause stack overflow in the executing thread if the nesting goes
very deep. In addition, events raised outside the calling chain—indicating arrival of a new message, for

13

Al _ .
7/ B1 ////Al ////Al
R § B1 § B1
¢ A2 C1l C1l
% B1 IR A2
. c1 /// Bl OR ///AS
" A3 § c1 % B1
‘Bl A3 C1
‘o1 “~-_B1 ~~_B1
g’/ c1 g’/ c1

procedures only procedures with call depth = 4
two possible execution orderings

§ = thread

Figure 5: Possible event handler executions with and without call depth bounding.

example—may go unserviced for long periods of time, leading to starvation and other undesired behavior
in certain types of composite protocols.

To eliminate these prablems, call depth bounding can be enabled. This option creates a hybrid
execution scheme in which handlers are executed as procedure calls only until a specific nesting depth has
been reached. At that point, the next asynchronous trigger is executed by a new thread and the current
thread is allowed to terminate, thereby completing the call chain. The current call depth is recorded by
associating a call depth count with each C-thread. This count in incremented each time the thread invokes
an event handler and decremented each timeit returns.

As an example, consider an event A with three handlers A1, A2, A3. Each of these handlers raises
event B, which hasone handler B1. B1 inturn raises event C with one handler C1. All eventsareraised as
“ASYNC” events and the framework is configured to execute events with procedure calls. The execution
order inthiscaseisA1 B1 C1 A2 B1 C1 A3 B1 C1, as shown in the left panel of figure 5. However, the
scenario changesif the framework is configured with acall depth of four. A1B1 C1 A2 would be executed
using procedure calls by a single thread as before, but this thread would then terminate, and B1 and A3
and would be scheduled asynchronously to execute in an arbitrary order. If B1 executes first, then the rest
of the execution order would be B1 C1 A3 B1 C1. The situation is analogous if A3 executes first. The
right panel of figure 5 shows the execution structure with call depth bounding enabled.

14

3.3.2 Reducing handler execution overhead

As aready noted, the prototype allows the use of procedure cals in lieu of thread allocation to reduce
the overhead of executing handlers. Although not yet implemented, two other possible optimizations that
would reduce this overhead further are in-lining of handlers and support for handler guards. In-lining
involvesreplacing callsto theframework r ai seEvent () procedure with the micro-protocol code using
appropriate compiler support. The compiler would enforce visibility rules and rename variablesin the
handler code that clash with variables in the surrounding micro-protocol code.

A handler guardisabool ean expression associated with ahandler at registrationtimethat control sunder
what conditionsthe handler isexecuted. In particular, theexpressionisevaluated by r ai seEvent () prior
to executing a handler when the triggering event occurs. If the result isfalse, the handler is not executed,
thereby saving the cost of spawning athread or executing a procedure call. Therationalefor thisfeatureis
that many handlers are structured to first check a condition and then only continueif the condition holds.
For example, aimost al micro-protocols register a handler for the Message | nsert ed_I nt 0 Bag
event, but most are concerned with only a specific message type. Such a condition could be specified as a
guard, potentially reducing the number of handler invocations substantially.

3.4 Measurementsof Event Implementation Performance

Event invocation and handl er execution are the heart of the composite protocol, and therefore, the efficiency
of eventsis central to the performance of the system. As discussed above, there are two implementations
of eventsthat can beused: lightweight user-level threads or procedure calls. We considered both stylesand
compared the performance and runtime behavior of each implementation using the experimental platform
described in section 3.1.

The relative cost of using procedure calls versus a thread-based implementation was assessed using
anull composite protocol designed to measure event execution times. Each test measured the round trip
message transmission time based on 1000 round trips for two processes. The first test configuration is
anormal x-kernel implementation of UDP without composite protocols; this provides a baseline. In the
second, acomposite protocol using the procedure call event implementation (CP-P) isinserted between the
UDP protocol and user program on both the client and server sides. On the client side, CP-P simply passes
messages and acknowledgmentsto the UDP protocol and user program, respectively, with no changes. On
the server side, CP-P generates an acknowledgment for each message, aswell as passing it through to the
user program. 19 eventsare generated for each message round trip, and 19 handlersare invoked. Thethird
test isidentical, except that a runtime framework with the thread-based event mechanism is used (CP-T).
Figure 6 illustratesthe structure and message flow of the second and third configurations.

Theresultsare shownin Table 1. Although these numbers clearly indicate some overhead, the results
are encouraging. Based on the one byte test, each event handler activation costs no more than 33.7
micraseconds for procedure-based event dispatching and 206 microseconds for thread based. Note that
this figure includes amortizing all execution costs associated with a composite protocol over the handler
activations, not just the cost of the invocationitself. The variance was observed to be low.

3.5 Creating a Composite Protocol

Source files are used to structure the components of a composite protocol. There are three categories of
files: user-supplied, user-modifiable, and read-only, as follows:

e User-supplied files. Contain micro-protocol code, required routines such as attribute-to-header,
header-to-attribute, attribute printing, and initialization code.

15

ACIieqt Server|

,,,,,,,,,,,,,,,,

. cP /P
o [
ARP i i ARP i i
ETH gETH%

Figure 6: Experimenta configuration

o User-modifiablefiles. Supplied by the system, but can be modified to customize the service further.
For example, the x-kernel push and pop procedures can be customized for multicast or other sending
styles. The user can also modify defines to configure the composite protocol for call styleinterface
or push style, enable procedure call execution of asynchronous event execution, bound call depth,
and enable deallocation bit support. Some of the possible modifications require x-kernel specific
knowledge, but the default setup should be sufficient for most micro-protocol suites.

¢ Read-only files. Contain only framework-specific code and are not aterable. These files include
standard functions, such as bag of messages routines, event support, and the x-kernel encapsulation
protocol.

One user-modifiable file concerns the lower-level protocol used. By default, a composite protocol
uses UDP, which is sufficient for any composite protocol that only requires unreliable datagram service.
However, the user has the option of changing the lower-level protocol to any x-kernel protocol, perhaps
even another composite protocol. To do this, a support file must be created that contains procedures to
create participant addresses and manage communication channels built on the new lower-level protocol
sessions. The selection of the lower-level protocol also naturally affects the selection of micro-protocols

| Packet Size | x-kernel UDP | +CP-P | +CP-T |

1 byte 157 22 5.48
1K 418 484 8.19
2K 7.39 7.89 | 11.38
4K 12.65 1293 | 16.96
8K 23.77 23.78 | 27.63

Table 1: Roundtrip time for null CP (in msec)

16

— Order(Req(x))
* Coordinator

Figure 7: Process and message architecture.

in the composite protocol. For example, if the lower-level protocol is an unreliable multicast protocol,
the send routine in a composite protocol implementing atomic multicast can be much simpler since the
lower-level protocol can issue a message to each group member automatically.

4 A Group RPC Service

This section presents the design and implementation of a collection of micro-protocols implementing
different variants of regular and group RPC (GRPC) using the Coyote x-kernel prototype. Micro-protocols
are configured together into a composite protocol called G oup_RPC, which is then incorporated into an
x-kernel protocol graph with UDP as its lower-level supporting protocol. Measuring the performance of
G oup_RPCthereforeyieldsthe relative cost of the different configurations and their underlying semantic
properties.

Our version of GRPC is based on point-to-point messages, so clients send individua requeststo each
server group member. Figure 7 showsthe process level architecture and message flow between clientsand
servers. Request messages, Req|(x), are sent from clients, while servers send reply messages, Rep(x), back
to the client. The reply messages are used to create areturn value, which is passed back to the application
oncethe RPC terminates. If total order isincluded, then oneserver acts as acoordinator that determinesthe
ordering of requests. Thus, for each request, the coordinator sends an ordering message, Order(Req(x)),
to all other servers.

4.1 Micro-protocols

The micro-protocol suiteisbased on the semantic variations of GRPC described in [HS954]; the categories
that follow represent semantic variations of termination, ordering, communication, collation, call style,
membership, and failure handling.

17

41.1 Termination semantics

Termination semantics specify the guarantees that are given about the termination of acal. Included in
the client composite protocol.

e BOUNDED (BND) . Provides for bounded termination of client requests, i.e., either the request is
executed within some interval or an exception is returned. When arequest is sent, atimer event is
set to generate atimeout.

e UNBOUNDED(UBND) . Noapriori boundisset onaclient request, so the client may wait indefinitely
for aresponse.

4.1.2 Ordering semantics

Ordering semantics determine what guarantees are given about the execution order of regquests by servers.
If none of the micro-protocols are included, any ordering is possible.

¢ FI FO Forces FIFO ordering of requests from each client at a server. Servers order client requests
using sequence numbers that are assigned by clients. Requests from multi-threaded clients are
serialized before transmission. Included in both clients and servers.

e TOTAL. Forces total ordering of all client requests at all servers. The ordering of client requestsis
determined by a designated server process that acts as a coordinator. All non-coordinator servers
receive requests but do not execute them until an ordering message is received from the coordinator.
The coordinator delays sending a reply to the client until the request is deliverable at at least one
other server—i.e,, all earlier messages in the ordering have been received—which ensures a correct
ordering even if the coordinator fails. Included only in servers.

e Fl FOand TOTAL. Totd order that preserves FIFO ordering. Redlized by including both FIFO and
TOTAL micro-protocols.

4.1.3 Communication semantics

Communication semantics specify guarantees about the communication between the client and server.
Reliable transmissions are guaranteed if acknowledgment and retransmission micro-protocols are both
included.

e ACK. Acknowledges request and response messages, and handles timeouts. If an acknowledgment
message is not received in time, an event is raised notifying other micro-protocols for possible
retransmission. Included in clientsand servers.

e RETRANSM T (RET) . Sends retransmission requests for missing messages and responds to re-
transmission requests. Included in clients and servers.

e CONTROL_RETRANSM SSI ON(CRET) . Only used with totally ordered communication. Sends
acknowledgments and waits for acknowledgment of control messages between servers. Included in
serversonly.

18

414 Collation semantics

Collation semantics specify how responses from the server group are combined and the result returned to
the client. All micro-protocolsincluded only in clients.

e ONE_ACCEPT (1ACC) . Implements a policy of accepting the first reply from any server as satis-
fying the client’s request. Other responses are ignored.

e ALL_ACCEPT (AAC) .Implementsapolicy of collecting repliesfrom all functioning servers before
theRPC call iscompleted. If aserver isnolonger functioning, the new membershipisused to prevent
waiting forever for aresponse from afailed server.

Of course, it would be easy to define micro-protocolsthat wait for responses for any number in between as
well.

415 Call semantics

Call semantics specify whether the call thread in the client blocks. All micro-protocols are included only
in clients.

e SYNC. Provides synchronous request/reply call-styleinterface. The call thread is blocked until the
call completes.

e ASYNC. Provides asynchronous push-styleinterface. The result of the call isreturned by an upcall.

4.1.6 Membership semantics

Membership semantics specify how information is collected about failed and functioning processes, and
what can be guaranteed about the correctness of thisinformation. Since point-to-point messages are used,
clients must maintain information about server group membership to send requests and collate responses.

When total ordering of messages is used, server groups must also maintain their own membership to
determineif all messages arereceived and executed by all servers. A singleserver failureistolerated at any
given time, including the coordinator; recoveries and addition of new servers are not currently supported.
When membership does change, the change event is consistently ordered at each server so servers agree
when the change occurred.

e CLI ENT SERVER MEMBERSHI P (CSMEM . Managesthe server membership for aclient. Using
the ACK micro-protocol, a client times out unresponsive servers and removes them from the server
list. This membership list is used by the ALL_ACCEPT micro-protocol to determine when all
responses are received and for sending point-to-point messages to dl servers. CSMEM isrequired
for al configurationsand isincluded in clients.

e SERVER MEMBERSHI P (SMEM . Manages the server membership list for members of a server
group. Membershipisinitialized at boot timefrom astaticlist, whichisthen updated dynamically as
serversfail. The server with the largest host addressis the coordinator, so no negotiation is required
to determine the coordinator. Included in servers.

e LI VE. Servers send liveness messages to each other in aring topology to detect when a server fails.
If no liveness message is received within the interval, then the member is suspected to have failed
and the “ suspect host dead event” israised. Thistriggersthe SI Magreement micro-protocol (below)
to confirm the failure. Included in servers only.

19

e S| MPLE AGREEMENT(SI M . Simple agreement sends “server is dead” messages to other servers
if a“suspect host dead” event is triggered. All other servers simply accept this declaration of a
defunct server even if they have information to the contrary. Included in servers only.

e VI RTUAL _SYNCHRONY(VS) . Virtua synchrony ensuresthat membership change messages appear
in the same order relative to data messages for al hosts. When afailure occurs, non-failing servers
exchange information about the highest deliverable request that has been received before the failure
occurred. This allows servers to synchronize on what messages should have been received before
the membership change occurred. Included in servers only.

417 Failuresemantics

Failure semantics specify what guarantees are given to the client about the execution of requests by the
server.

e UNI QUE. Eliminates duplicate request messages using sequence numbers. Ensures that a request
is never executed more than once by forwarding the original reply message if a duplicate request is
received. Included in servers only.

4.1.8 Driver micro-protocol

Thesuitereguiresadriver micro-protocol GRPCfor all combinationsof micro-protocols. Verifiesincoming
messages and maintains client and server state information. Required for clients and servers.

4.2 Combining Micro-Protocols

There are 64 possible GRPC configurations given the above collection of micro-protocols. The composite
protocol may have synchronous or asynchronous call style, bounded or unbounded calls, one accept or
all accept collation, and 8 selections of orderings. Figure 8 illustrates the possible selections of micro-
protocols. All configurations require the GRPC and CSMEM mi cro-protocol s.

The selection of call style, bounding of calls, and collation policies are independent choices and each
only requirestheinclusion of one micro-protocol implementing that property. Uniqueexecution and FI FO
ordering are each achieved through theinclusion of one micro-protocol. Reliabletransmission of messages
is accomplished through acknowledgment and retransmissions of messages, which requires the ACK and
RET micro-protocols.

Total ordering is complex and requires several micro-protocols, because the servers must maintain
their own membership to ensure totally ordered execution of client requests. Asalready noted, all servers
receive request messages and one server acts as the coordinator, generating ordering messages that guide
all servers to complete the requests in total order. All servers must receive all the request messages, so
servers maintain their membership through the use of a liveness micro-protocol, LI VE. When a server is
suspected of having failed, asimple agreement micro-protocol, SI M is executed, which causes all servers
to deletefailed serversfrom membership lists. Virtual synchrony, VS, isused to ensurethat the membership
change occurs at the same point with respect to the stream of request and ordering messages. Servers must
communicate reliably or communication would halt if an ordering message waslost. Thisfunctionality is
provided by CRET.

Formal dependency and configuration graphs for a similar suite of group RPC micro-protocols can be
found in [HS95a, Hil96].

20

| syne | [BnD | [1AC | select one of
or o or 8 ORDERINGS

[async] [usnD | | mAc |)

no order, unreliable (no protocols)

no order, reliable | Ack | [ReT

no order, unreliable, unique

no order, reliable, unique | ACK | [RET | [UNIQUE]

FIFO, reliable, unique | AFo | [Ack | | RET | [UNIQUE]

FIFO, reliable | AFO || AcK | [RET |

totdl, reliable, unique | TOTAL| [SMEM | | CRET | [SM |
[vs | [uve | [rRer || Ack |

total, fifo, reliable, unique ‘ TOTAL‘ ‘ SMEM ‘ ‘ CRET ‘ ‘ SIM ‘
[vs J[uve][rer J[Ack |
[UNIQUE] | FIFO_|

Figure 8: Group RPC configuration selections.

4.3 Performance M easurements

Tests consisted of one or more clients sending a 4-byte integer to one or more servers, which respond with
an integer. Each test makes 1000 RPC calls and was run 10 times. The round trip times are the average
of the 10 test runs. To provide a baseline, a version of Sun RPC implemented using the standard x-kernel
was aso tested. Note, however, that Sun RPC is a peer-to-peer rather than group protocol, and, as aresult,
implements less functionality than G- oup _RPC.

All measurements were done on the experimenta platform described in section 3.1. Tests requiring
three or less hosts execute server and client processes on DecStation 5000/240s. For tests requiring more
than three hosts, al server processes execute on DecStation 5000/240s and client processes execute on
DecStation 5000/200s. Like the DecStation 2000/240s, DecStation 5000/200s are MIPS R3000 micro-
processor based systems with separate off-chip 64 KB instruction and data caches, and 16 MB of memory.
However, the DecStation 5000/200’s processor clock rateis 25 MHz instead of 40 MHz.

The average roundtrip times for the various configurations are given in Table 2. Therelative ordering
is what one would expect: norma Sun RPC using the x-kernel (BL) is fastest, and for the same micro-
protocol configurations, increasing the number of servers and clients results in increased execution time.
As noted, the x-kernel Sun RPC is included only for comparison. Such a protocol would naturally be
used for simple client/server communication, but does not provide the multiple collation policies, group

21

| | System Configuration | Clients | Servers | avg | var]

BL x-kernel Sun RPC one one 4.38 | 0.00035

C1l GRPC,SYNC,1AC,CSMEM,UBND one one 6.30 0.018
one two 8.82 0.032

Cc2 GRPC,SYNC,AAC,CSMEM,UBND one two 8.85 0.052

C3 | GRPC,ASYNC,FIFO,1AC,CSMEM,UBND one one 5.68 0.024
C4 | GRPC,ASYNC,FIFO,1AC,CSMEM,BND one one 6.12 0.019

C5 GRPC,ASYNC,1AC,CSMEM,BND one one 5.58 0.012
C6 GRPC,ASYNC,AAC,CSMEM,BND, one one 8.49 0.026
RET,ACK

two two 16.59 | 0.849
two three | 22.71 | 0.008
C7 | GRPC,ASYNC,FIFO,AAC,CSMEM,BND, one one 8.91 0.043
UNIQUE,RET,ACK

two two 19.68 | 0.018
two three | 23.76 | 0.003
C8 GRPC,ASYNC,AAC,CSMEM,BND, one one 1062 | 0.077
UNIQUE,RET,ACK,SMEM ,LIVE,SIM
CRET,TOTAL,VS

two two 35.22 | 0.230
two three | 4847 | 0.224
C9 | GRPC,ASYNC,FIFO,AAC,CSMEM,BND, one one 10.64 | 0.219
UNIQUE,RET,ACK,SMEM,LIVE,SIM
CRET,TOTAL,VS

two two 4419 2.40
two three | 50.66 0.83

Table 2: Timefor G oup_RPC call (in msec)

membership, multiple servers, or message ordering options needed for more complex applications.

In genera, increasing the guarantees the communication service providesresultsin a slower roundtrip
execution time. This is as expected, since the more guarantees that are given, the more expensive the
algorithms required to implement the communication service. However, micro-protocols that increase
message traffic degrade performance more than micro-protocolsthat only add computation time to clients
or servers. For example, adding FIFO to configuration C8 (measured in configuration C9) resultsin asmall
increase in timing (0.02 msec) because it only adds sequence numbers to requests. On the other hand,
the difference between configuration C7 and C8 is the addition of server membership and total ordering.
The timing difference between these tests is appreciable (1.71 msec), because configuration C8 increases
message traffic between servers. Similarly, the increase in the number of servers for configurations using
total order results in large increases in running time since message traffic grows quadratically with the
number of servers. For configurations C8 and C9, we can aso see large increases (10 msec) with the
addition of another server.

Finally, note that each of the nine tested configurations for G- oup _RPC has reasonable classes of
applicationsfor which the realized semantics are appropriate. For example,

e Configuration C3 isuseful for serializing requests from multithreaded clients sinceit provides FIFO
ordering.

22

e Configuration C6 could be used for areliable name service providing information about host utiliza-
tion and resource avail ability sinceit provides reliable transmission between clients and servers.

e Configuration C7 adds unique execution to reliable communication, which isuseful for transmitting
non-idempotent operations where multiple execution could give incorrect results.

¢ Configuration C9 providesrich semantics including FIFO-preserving total ordering, which makesit
anideal basefor buildingfinancial servicesthat are executed on acluster of serversfor fault-tolerance.

Using our approach, then, a developer can fine-tune the semantics of the underlying communication
platform by constructing a custom version of group RPC, thereby incurring a cost only for those properties
actually required.

5 Other Services

In addition to group RPC, a number of other configurable services have been designed using Coyote,
including an atomic multicast service, agroup membership service, and communication support for mobile
computing. This section provides an overview of these three micro-protocol suites.

5.1 Atomic Multicast

The atomic multicast service is a customized version designed for the runtime system of a fault-tolerant
version of the Linda coordination language [ACG86] called FT-Linda [BS95]. Lindais a language for
paralle programming based on tuple space (TS), a communication abstraction defined as a bag that can
hold data elements called tuples. Processes use TS to communicate and synchronize by depositing and
withdrawing tuples from a TS. However, Linda as originally defined does not address fault tolerance, so
the crash of a participating host may lead to loss of a portion of the TS. To address thisissue and provide
for atomic execution, FT-Lindaextends the original model with stabletuple spaces and support for atomic
execution of sequences of TS operations. Stable tuple spaces in particular are implemented by replicating
the TS on all participating sites and using the replicated state machine approach to maintain consistency
[Sch90]. This requires a communication substrate that provides totally ordered atomic multicast, failure
detection, and membership services for the process group implementing the TS.

The Coyote micro-protocol suite reaizing these requirements consists of a dozen micro-protocols
implementing the following:

e Membership. Raises suspicion of failure based on timeouts, and implements an agreement protocol
in which agreement on a suspected failureis reached only if all remaining sites suspect the failure.

e Reliability. Implements reliable point-to-point message transmissions using negative acknowledg-
ments.

e Ordering. Ensuresthat messages are delivered in a consistent total order on al sites.

e Stability. Maintains information about whether a message is stable, i.e., known to be have been
received by all functioning sites.

The last three use an approach similar to that used in Psync [PBS89] and the Consul system [MPS93al.
In particular, messages sent to the progress group are stored in a context graph that maintains causality

23

information about messagesi.e., the predecessors of a message m are those messages that the sender of m
received before sending m. The ordering micro-protocol maintains this graph and implements the causal
ordering, while the stability micro-protocol accesses the graph to determine stability information. The
reliability micro-protocol uses the predecessor information in messages to detect that a message has not
been received and to request a retransmission.

Theset of micro-protocol sinteract through shared datastructuresand events. Themost important shared
datastructures are the context graph and amembership list of participants. The set of eventsincludesthose
representing the different phases of message transit through the composite protocol, as well as events for
dealing with predecessors, stability, and membership changes. For example, the ordering micro-protocol
raises event Pr edecessor sNeeded when a message arrives before its causal predecessors, and the
reliability micro-protocol raises Pr edecessor sRecei ved when the required messages arrive.

52 Group Membership

A group membership service is logicaly a software layer that generates messages indicating changes in
the membership of a process group and forwards them to higher levels, including the application. These
member ship messages can report, for example, failures, recoveries, or the joining of two partitions. Given
such asystem, the properties of amembership service can be defined interms of what membership messages
it generates and when they are delivered to the application [HS95c].

For the purposes of constructing a micro-protocol suite, we divided the properties of a membership
service asfollows:

e Change detection. Includes variantsinvolving the tradeoff between accuracy—a change s reported
only if the change has indeed occurred—and liveness—all changes are eventually reported.

e Agreement. Describes how membership sets on different sites relate to one another at any point in
time. Variantsincludeagreement on member ship messages—all sitesinthe same partitiondeliver the
same set of membership messages—and eventual agreement on member ship views—the membership
sets of sites in the same partition eventually converge.

e Ordering. Specifies how delivery of membership messages is ordered with respect to one another
and/or application messages. Variants include total order—membership messages (only) are deliv-
ered in the same order on sitesin the same partition—and virtual synchrony—membership message
are delivered to the application at the same point relative to the application message stream at all
sitesin the same partition.

e Partition handling. Specifies the behavior of the service when (logical) partitions occur, during
partitioned operation, and when partitionsjoin.

The micro-protocol suite consists of 25 micro-protocols that implement multiple variants of each
property, including seven ordering properties and four for partition handling. The design is based on
a token-passing paradigm in which a token is circulated around a (logical) ring to collect and distribute
information. Thetoken has one entry for each membership change being processed, with each entry having
a number of different fields used by different micro-protocols. Around 20 different events are used for
interaction. Most of the 25 micro-protocols implement abstract properties, although a few provide basic
functionality on which othersbuild. For example, aTokenDr i ver micro-protocol handlesthe mechanics
of passing the token between the sites and dealing with lost tokens. The micro-protocols can be configured
to realize over 1000 semantically different composite protocols [Hil96].

24

The compl ete suite of micro-protocols has been implemented and tested using the C++ prototype (see
section 6.1). A subset has al so been ported to the x-kernel prototype.

5.3 Protocolsfor Mobile Computing

To illustrate the value of the approach for other types of applications, a micro-protocol suite has been
devel oped to support customization of communication protocol sfor mobile computing [Bha96]. Thissuite
supports customization of the underlying communication software for different types of mobile hosts, for
the base stations that function as gateways between the wired network and mobile host, and for stationary
agent processesthat act as proxieson thewired network for mobile hosts. Thegoal istoalow customization
in two aress:

¢ Handoff. Different approaches are provided for transferring communication responsibility between
base stations as a mobile host moves.

e Quality of Service (QoS). A conceptua framework is provided for negotiating QoS guarantees for
connections to mobile hosts, such as throughput, jitter, latency, and packet retransmissions limits.
Also supportsrenegotiation of guarantees as network conditionschange or asthe mobile host changes
location.

Each variant is implemented by separate micro-protocols for the mobile host, base station, and agent, as
appropriate.

Micro-protocolsrelated to handoff are divided into orthogonal behaviors governing when a handoff is
needed or desirabl e, the actual handoff procedure, and disconnection from the old base station. For handoff
detection, the variants are:

e |CMP messages. Base stations periodically transmit an ICMP (Internet Control Message Protocol)
message requesting that mobile hosts within range identify themselves with aresponse. A host that
arrived since the last transmission is a candidate for a handoff.

e Host beacons. Similar to above, except that mobile hosts periodically transmit messages automati-
caly rather than in response to ICMP messages.

e Monitor-based. Reliesonlower-level hardwareor softwareto detect conditionsthat might necessitate
ahandoff.

e Lazy detection. Optimization in which a handoff isonly performed if application-level communica-
tion activity has occurred recently even if the mobile host has moved.

For effecting the handoff of a mobile host from one base station to another, four options are provided
that differ in where thefina authority for the handoff resides:

¢ Request/reply. The new base station makes an explicit handoff request to the old base station, who
repliesyesor no.

¢ Negativeacknowledgment. Thenew base station broadcastsahandoff notificationto all basestations,
the new station assumes responsibility unless some other station replies no.

e Mabile host initiated. The mobile host controls the handoff by transmitting information to the new
base station that allowsit to contact the old station and effect the handoff.

25

e Agent coordinated. A mabile host’s proxy controls the handoff by deciding on requests from base
stationsto perform a handoff.

In addition, a separate micro-protocol is provided that prevents oscillation when a mobile host is within
range of two or more base stations.

Finally, disconnection determines how an old base station disposes of packets destined for delivery to
amobile host that has been handed off. Three approaches are provided:

e Drop. Packets are simply dropped, with the expectation that a higher-level protocol will later
retransmit them viathe new base station.

e Forward. Packets are forwarded from the old base station to the new one for delivery.

e Drain. An attempt is made to transmit quickly as many packets as possibleto the mobile host, with
the remaining packets being dropped. Based on the observation that old base stations can often still
communicate with a mobile host for a period of time even after a handoff.

Combining the micro-protocols implementing different variants for detection, handoff, and disconnection
taking dependencies into account gives 45 possible variations dealing with handoffs.

QoSis implemented by micro-protocols that can be configured into a composite protocol in addition
to those dealing with handoff. Rather than implement al combinations of actua policies, our approach
providesasoftware structure—micro-protocol “templates,” in essence—that encapsul atethe actual policies.
These templates implement the event-based interaction with other micro-protocolsin the same composite
protocol, as well as the system-wide interaction needed to negotiate and renegotiate QoS attributes.

This collection of micro-protocols can be used to built any number of custom communication services
for mobile computing, including those with semantics similar to existing systems such as Crosspoint
[CR94, CLR95], DataMan [AB93, BBIM93], InfoPad [LSBR94, LBSR95], and PARC TAB [AGSW93,
STW93]. For example, Crosspoint combines |CMP for handoff detection, negative acknowledgments for
effecting the handoff, and forwarding for disconnection, while PARC TAB combines a beacon strategy,
agent-based handoff, and packet dropping. InfoPad includes QoS guarantees as well. The ability to
configure multiple systems from a single collection of micro-protocols simplifies development, as well as
promotes experimentation with new combinations and customized solutions.

6 Discussion

6.1 C++ Prototype

To confirm the generality of the model and provide another prototyping environment, a version of Coyote
has also been implementedin C++. Thebasic system consistsof approximately 1000 linesof code and uses
the standard thread package in Sun Solaris to implement event handling and other aspects of the runtime
system. The multiple sites of adistributed architecture are simulated within a single address space, which
allows precise control over execution parameters such as the number of sites, the message transmission
times, and failure rates. The system model provided by this prototyping environment is an asynchronous
system where sites experience crash failures and messages may belost.

The mgjor component of the system isa service layer that implements composite protocol s and micro-
protocolsas C++ classes Conposi t ePr ot ocol andM cr oPr ot ocol , respectively. Conposi t ePr ot o-
col containstheruntime system, implementing the event-driven execution model and providing operations

26

to register event handlers and trigger events. It aso implements a common interface for composite proto-
colswith operationsthat allow protocol s above and below to transfer messages. Each specific service such
as RPC or membership is realized as a derived class of Conposi t ePr ot ocol by defining the service-
specific events, shared datastructures, andinitidization. M cr oPr ot ocol isthebaseclassfromwhichthe
micro-protocols implementing a specific service are derived. The prototype has been used to implement
the group membership service described in section 5.2, as well as a second version of group RPC.

In addition to serving as a prototyping platform, this version illustrates the ease with which the event-
driven approach can be implemented using standard operating system facilities. The system could aso
be used as the starting point for a true distributed implementation based on C++ using, for example,
CORBA [OMG953 OMG95b] for underlying distribution support. Most of the existing runtime system
and micro-protocol code would carry over with minimal changesin this case.

6.2 Dynamic Reconfiguration

While Coyote is primarily designed for configuring a service from micro-protocols at system build time,
the underlying execution model is well-suited for dynamically altering execution-time behavior. Among
other things, such a capability is useful for constructing adaptive systems that can modify their behavior
in response to changes in the environment. Such changes could be, for example, processor or link
failures, changes in communication patterns or frequency, changes in failure rates or types, or changed
user requirements.

One technique for altering execution-time behavior in Coyote is to rebind events to different event
handlers to change the code that is executed when events occur. This, in essence, alows micro-protocols
already configured into the composite protocol to be activated to replace existing micro-protocols, leading
to a change in execution behavior. For example, a new message ordering algorithm could be activated in
an atomic multicast service should user requirements change, or a change from a negative to a positive
message acknowledgment scheme could be made if application traffic falls below some threshold. Of
course, in many cases, such changes require coordination among sites [HS96].

A second more powerful techniqueisto change the actual micro-protocol swithinacomposite protocol
at runtime. This can be done, for example, using active networking techniques to introduce the needed
changes, and runtime compilation to makethe actual code modifications. Of course, event rebinding of the
type outlined above would also be required to activate the new code. Such an approach is more complex,
but has the potential to increase the flexibility of the system dramatically. For example, it would allow
new services to be introduced to a site—either locally or from across the network—and installed without
disrupting operation, thereby supporting long-term evolution of the software. It would also allow these
middleware services to be reconfigured to deal with extreme changes in the execution environment that
were hot anticipated when the origina system was built.

The current Coyote x-kernel prototype supports dynamic rebinding of events and handlers, but not
on-line introduction of new micro-protocols. Implementing and using the latter is the subject of on-going
research.

6.3 Related Work

A number of other papers have addressed aress related to this work. Severa are in the area of fault-
tolerance, where researchers have explored use of modularization or system customization. Examples
include the ANSA system [OOW91] and the work on multicast reported in [Gol92]. In contrast to these,
our approach is more general and provides more flexibility for the designer. Object-oriented structuring
and the use of reflection to ater behavior in fault-tolerant distributed programs or general operating systems

27

are described in [AS94, FNP+95, Yok92]. As demonstrated with the C++ prototype, our approach can
also be mapped into an object-oriented paradigm, but is general enough to be implemented using more
traditional approaches. Also in the area of fault-tolerance, a number of papers describe abstract properties
of services or certain components such as failure detectors [Bla91, CT96, SR93], or present families of
related services [CASD85, WS95]. Such work is complementary to that presented here since it suggests
how configurable versions of a service can be implemented using micro-protocols.

Another area of related work concerns devel opment of system support for constructing modular pro-
tocols. The x-kerndl itself is, of course, one such system. Our work is an extension of the x-kernel model,
with the goal of supporting finer-grain protocol objectsthat require richer facilitiesfor communication and
data sharing, while retaining the programming and configurability advantages of the x-kernel. Many of
our goals related to system customization, code reuse, and protocol configurability are adopted from the
x-kernel. Horus[VRHB94, RBM96] and Ensemble [BRV 96] have been used to construct configurable ver-
sionsof distributed services, although the model s are limited to stack-like configurations of coarse-grained
protocol objects. Armada [ASIS96] and OSHRI MK [TMR96] extend the x-kernel model to support
real-time, but with the same protocol object and composition model.

Other x-kernel related work has explored the use of finer-grain protocol objects [OP92], but the
emphasis there is on syntactic decomposition of higher-level protocols within a hierarchical framework.
This work, however, does lend credence to the claim that such fine-grain modularity can be introduced
without sacrificing performance. SystemV Streams [Rit84] also supports modularization of protocols, but
itsmodel is also hierarchical and relatively coarse-grained.

Somewhat closer to our work isthe ADAPTIVE system [SBS93], which is also designed to support
flexible combinations of protocol objects. The goa of the system is to support efficient construction
of transport services with different quality-of-service (QoS) characteristics, especialy for multimedia
applications using high-performance networks. In contrast with our work, the designers of ADAPTIVE
emphasi ze runtime reconfiguration, automatic generation of sessions—i.e., instances of protocol objects—
from high-level specifications, and support for alternative process architectures and parallel execution.
Moreover, the system divides operation of any given service into predefined phases (e.g., for transmission
control), each with alternative algorithms implemented as separate modules. Interactions between the
modules in this model are predefined and fixed, in contrast with the more flexible possibilities of our
model.

Several other effortshave concentrated on supporting parallel execution of modular protocols, including
[GNI92, LAKS93]. Whilesimilar to our work in the sense of decomposing protocolsaong semantic lines,
these efforts differ in their emphasis on using parallel execution to improve throughput and latency for
high-performance scientific applications. They also retain a single-level composition model, which we
believe does not offer enough flexibility for services of the type described here.

Finally, recent work on new generation operating systems has emphasi zed similar customization goal's,
but in a more genera context. These include the Exokernel [EKO95], Scout [MMO*194], and SPIN
[BSS*95], as well as work on subcontracts [HPM93] and application-controlled file caching [CFL94].
These projects attempt to increase the ability of usersto configure different types of services, but for many
aspects of operating system functionality rather than just the type of services considered here. Moreover,
the configurability they provide is typically more coarse-grained than our approach, which emphasizes
choice among specific semantic properties of services constructed above the operating system.

28

7 Conclusions

Distributed services implemented as high-level protocols are becoming increasingly prevalent in a variety
of application areas. In addition to being large and difficult to construct, such protocols often have many
variants, each of which implements a slightly different semantics. Here, we have described the Coyote
system for implementing configurable versions of these protocols in which fine-grained micro-protocol
objects are composed using a runtime framework to yield a composite protocol. With this approach,
micro-protocol s can be written to realize individual semantic properties, with interactions between micro-
protocols confined primarily to the raising and handling of events. This facilitates modularization of
the software needed to realize each property, while still allowing the flexibility needed to implement the
necessary communication and synchronization.

The x-kernel prototype demonstrates the feasibility of the Coyote model as a realistic approach for
implementing high-level protocols. Theprototypeallowscomposite protocol sto be composed transparently
with standard x-kernel protocolsin a protocol graph, with the arrival of messages from protocol s above or
below it in the graph generating events that result in handlers being invoked to deal with the message. The
prototype can be configured to use procedure calls rather than thread all ocation to optimize performance,
and provides for call depth bounding to deal with scheduling issues that arise as a result. A C++
prototype confirms the generality of the approach and provides another environment for experimenting
with configurable services.

Coyote has been used to devel op several communication-rel ated services, including group RPC, mem-
bership, atomic multicast, and protocolsfor mobile computing. Experiments conducted using the x-kernel
group RPC suiteclearly indicatethe performance penalti es associ ated with more complex semantics, which
can be avoided using our approach by customizing the semantics to those needed by the application. The
system offers other benefits as well, such as the ability to use a single configurable service across a wide
variety of applications and a flexible programming model that encourages decoupling of orthogonal con-
cerns. Thisapproach also has the potential to support configurability of other types of execution attributes
as well, such as those related to rea time and security. Current research is exploring these issues with
agoa of developing a single integrated approach to providing fine-grain configurability of such genera
Quality of Service (QoS) attributes for services constructed on distributed systems.

Acknowledgments

X. Hanimplemented aportion of thegroup RPC micro-protocol suiteand ported asubset of themembership
suite to the x-kernel prototype. D. Guedes designed and implemented the atomic multicast service for
FT-Linda. X. Han provided comments that greatly improved the paper.

References

[AB93] A. Acharyaand B. R. Badrinath. Delivering multicast messages in networks with mobile
hosts. In Proceedings of the 13th | EEE International Conference on Distributed Computing
Systems, pages 292-299, May 1993.

[ACG86] S. Ahuja, N. Carriero, and D. Gelernter. Lindaand friends. |IEEE Computer, 19(8):26-34,
August 1986.

29

[AGSWO3]

[AS94]

[ASIS96]

[BBIM93]

[Bhage6]

[BHGS7]

[Bla91]

[BRV96]

[BSO5]

[BSS91]

[BSSt95]

[CASDSS]

[CFLY4]

[CGRSS]

N. Adams, R. Gold, B. Schilit, and R. Want. An infrared network for mobile computers.
In Proceedings of the USENIX Mobile and Location-Independent Computing Symposium,
pages 41-51, Aug 1993.

G. Aghaand D. Sturman. A methodology for adapting to patterns of faults. In G. Koob
and C. Lau, editors, Foundations of Dependable Computing: Models and Frameworks for
Dependable Systems, pages 23-60. Kluwer Academic Publishers, 1994.

T. Abdelzaher, A. Shaikh, F. Jahanian, and K. Shin. RTCAST: Lightweight multicast for real -
time process groups. In Proceedings of the |IEEE Real-Time Technology and Applications
Symposium, pages 250-259, Jun 1996.

B. Badrinath, A. Bakre, T. Imielinski, and R. Marantz. Handling mobileclients: A casefor
indirect interaction. In Proceedings of the Fourth |EEE Wor kshop on Wor kstation Operating
Systems, October 1993.

N. Bhatti. A Systemfor Constructing Configurable High-Level Protocols. PhD thesis, Dept
of Computer Science, University of Arizona, Tucson, AZ, Nov 1996.

P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in
Database Systems. Addison-Wesley Publishing Company, 1987.

A. Black. Understanding transations in an operating system context. ACM Operating
Systems Review, 20(1):73-76, Jan 1991.

K. Birman, R. Renesse, and W. Vogels. The Ensemble distributed communication system.
http://simon.cs.cornell.edu/I nfo/Projects/Ensembl e/, 1996.

D. Bakken and R. Schlichting. Supporting fault-tolerant paralel programming in Linda
|EEE Transactionson Parallel and Distr. Syst., 6(3):287-302, March 1995.

K. Birman, A. Schiper, and P. Stephenson. Lightweight causal and atomic group multicast.
ACM Transactions on Computer Systems, 9(3):272—-314, Aug 1991.

B. Bershad, P. Savage, S.and Pardyak, E. Sirer, M. Fiuczynski, D. Becker, C. Chambers,
and S. Eggers. Extensibility, safety, and performance in the SPIN operating system. In
Proceedings of the 15th ACM Symposiumon Operating Systems Principles, pages 267—284,
Copper Mountain Resort, Colorado, Dec 1995.

F. Cristian, H. Aghili, R. Strong, and D. Dolev. Atomic broadcast: From simple message
diffusionto Byzantine agreement. In Proceedingsof the 15th | EEE Inter national Symposium
on Fault-Tolerant Computing, pages 200—206, Ann Arbor, MI, Jun 1985.

P. Cao, E. Felten, and K. Li. Implementation and performance of application-controlledfile
caching. In Proceedings of the 1st USENIX Symposium on Operating Systems Design and
Implementation, pages 165-178, Nov 1994.

R. Cmelik, N. Gehani, and W. Roome. Fault Tolerant Concurrent C: A tool for writing fault
tolerant distributed programs. In Proceedings of the 18th IEEE International Symposiumon
Fault-Tolerant Computing, pages 5561, Tokyo, June 1988.

30

[Ches6]

[CLR95]

[Co090]

[CRO4]

[Crigl]

[CTO6]

[EKOQ5]

[FLP8S5]

[FNP*95]

[Fon94]

[GNI92]

[Gol92]

[Hil96]

[HPI1]

D. Cheriton. VMTP: A transport protocol for the next generation of communication systems.
In Proceedings of SGCOMM'’ 86, pages 406415, Aug 1986.

D. Comer, J. Lin, and V. Russo. An architecturefor acampus-scale wirelessmobileinternet.
Technical Report CSD-TR95-058, Purdue University, Department of Computer Science,
1995,

E. Cooper. Programming language support for multicast communication in distributed
systems. In Proceedings of the 10th IEEE Conference on Distributed Computing Systems,
pages 450-457, Paris, France, 1990.

D. Comer and V. Russo. Using ATM for acampus-wide wireless internetwork. In Proceed-
ings of the 1994 | EEE Workshop on Mobile Computing, 1994.

F. Cristian. Reaching agreement on processor-group membership in synchronousdistributed
systems. Distributed Computing, 4:175-187, 1991.

T. Chandra and S. Toueg. Unrdliable failure detectors for reliable distributed systems.
Journal of the ACM, 34(1):225-267, 1996.

D. Engler, M. Kaashoek, and J. O'Toole. Exokernel: An operating system architecture
for application-level resource management. In Proceedings of the 15th ACM Symposium
on Operating Systems Principles, pages 251-266, Copper Mountain Resort, Colorado, Dec
1995.

M. Fischer, N. Lynch, and M. Paterson. Impossibility of distributed consensus with one
faulty process. Journal of the ACM, 32(2):374-382, Apr 1985.

J.-C. Fabre, V. Nicomette, T. Perennou, R. Stroud, and Z. Wu. Implementing fault tolerant
applicationsusing reflective obj ect-oriented programming. In Proceedings of the 25th |IEEE
Inter national Symposiumon Fault-Tolerant Computing, pages 489498, Pasadena, CA, Jun
1995.

H. Fonseca. Support environments for the modularization, implementation and execution
of communication protocols. Master's thesis, Instituto Superior Técnico, Lisboa, Portugal,
June 1994. In Portuguese.

M. Goldberg, G. Neufeld, and M. Ito. The paralld protocol framework. Technical Report
92-16, Dept. of Computer Science, University of British Columbia, Vancouver, British
Columbia, Aug 1992.

R. Golding. Weak-Consistency Group Communication and Membership. PhD thesis, Dept
of Computer Science, University of California, Santa Cruz, Santa Cruz, CA, 1992.

M. Hiltunen. Configurable Distributed Fault-Tolerant Services. PhD thesis, Dept of Com-
puter Science, University of Arizona, Tucson, AZ, Jul 1996.

N. Hutchinson and L. Peterson. The z-kernel: An architecture for implementing network
protocols. |EEE Transactions on Software Engineering, 17(1):64—76, Jan 1991.

31

[HPM93]

[HSO3]

[HS954]

[HSO5h]

[HS95c]

[HS96]

[HS97]

[KE93]

[KGR91]

[LAKS93]

[LBSR95]

[LSBR94]

[MHM+95]

[MMO*94]

G. Hamilton, M. Powell, and J. Mitchell. Subcontract: A flexible base for distributed
programming. In Proceedings of the 14th ACM Symp. on Operating System Principles,
pages 6979, Asheville, NC, Dec 1993.

M. Hiltunen and R. Schlichting. An approach to constructing modular fault-tolerant proto-
cols. In Proceedings of the 12th IEEE Symposium on Reliable Distributed Systems, pages
105-114, Princeton, NJ, Oct 1993.

M. Hiltunen and R. Schlichting. Constructing a configurable group RPC service. In Pro-
ceedings of the 15th |EEE Conference on Distributed Computing Systems, Vancouver, BC,
May 1995.

M. Hiltunen and R. Schlichting. Properties of membership services. In Proceedings of the
Second |EEE Symp. on Autonomous Decentralized Systems, pages 200-207, Phoenix, AZ,
April 1995.

M. Hiltunen and R. Schlichting. Understanding membership. Technical Report 95-07,
Department of Computer Science, University of Arizona, Tucson, AZ, Jul 1995.

M. Hiltunen and R. Schlichting. Adaptive distributed and fault-tolerant systems. Computer
Systems Science and Engineering, 11(5):125-133, Sep 1996.

M. Hiltunen and R. Schlichting. A configurable membership service. |EEE Transactions
on Computers, 1997. To appear.

R. Keller and W. Effelsberg. MCAM: An application layer protocol for Movie Control,
Access, and Management. In Computer Graphics (Multimedia ' 93 Proceedings), pages
21-30. ACM, Addison-Wesley, August 1993.

H. Kopetz, G. Grunsteidl, and J. Reisinger. Fault-tolerant membership service in a syn-
chronous distributed real-time system. In A. Avizienisand J.C. Laprie, editors, Dependable
Computing for Critical Applications, pages 411-429. Springer-Verlag, Wien, 1991.

B. Lindgren, M. Ammar, B. Krupczak, and K. Schwan. Parallel and configurable proto-
cols. Experiences with a prototype and an architectural framework. In Proceedings of the
Inter national Conference on Network Protocols, March 1993.

M. Le, F. Burghardt, S. Seshan, and J. Rabaey. InfoNet: the networking infrastructure of
InfoPad. In Proceedings of Compcon, San Francisco, California, Mar 1995.

M. Le, S. Seshan, F. Burghardt, and J. Rabaey. Software architecture of the InfoPad system.
In Proceedings of the Mobidata Workshop on Mobile and Wireless Information Systems,
Rutgers, New Jersey, Nov 1994.

K. Murata, R.N. Horspool, E. Manning, Y. Yokote, and M. Tokoro. Unification of active
and passive objects in an object-oriented operating system. In Proceedings of 1995 Int.
Wor kshop of Object Orientationin Operating Systems (IWOOOS 95), Aug 1995.

A. Montz, D. Mosberger, S. O'Mdlley, L. Peterson, T. Proebsting, and J. Hartman. Scout:
A communications-oriented operating system. In Proceedings of the 1st Symposium on
Operating Design and Implementation, page 200, Nov 1994.

32

[MMSA*96] L.Moser, P. Mdliar-Smith, D. Agarwal, R. Budhia, and C. Lingley-Papadopoulos. Totem:

[MPS92]

[MPS934]

[MPS930]

[MSMAQ0]

[OMG954]

[OMGO5h]
[OOW91]

[OP92]

[PBS89]

[RBM96]

[Rit84]

[SBS93]

[Sch9o]

[SM94]

[SRO3]

A fault-tolerant multicast group communication system. Communications of the ACM,
39(4):54-63, Apr 1996.

S. Mishra, L. Peterson, and R. Schlichting. A membership protocol based on partial order.
In J. Meyer and R. Schlichting, editors, Dependable Computing for Critical Applications2,
pages 309-331. Springer-Verlag, Vienna, 1992.

S. Mishra, L. Peterson, and R. Schlichting. Consul: A communication substrate for fault-
tolerant distributed programs. Distributed Systems Engineering, 1(3):87-103, Dec 1993.

S. Mishra, L. Peterson, and R. Schlichting. Experiencewith modularity in Consul. Software—
Practice and Experience, 23(10):1059-1075, Oct 1993.

PM. Médlliar-Smith, L. Moser, and V. Agrawala. Broadcast protocol sfor distributed systems.
|EEE Transactionson Parallel and Distr. Syst., 1(1):17-25, Jan 1990.

Object Management Group. The Common Object Request Broker: Architecture and Speci-
fication, 1995.

Object Management Group. CORBAservices: Common Object Services Specification, 1995.

M. Olsen, E. Oskiewicz, and J. Warne. A model for interface groups. In Proceedings of the
10th IEEE Symp. on Reliable Distributed Systems, pages 98107, Pisa, Italy, Sep 1991.

S. O'Malley and L. Peterson. A dynamic network architecture. ACM Transactions on
Computer Systems, 10(2):110-143, May 1992.

L. Peterson, N. Buchholz, and R. Schlichting. Preserving and using context information in
interprocess communication. ACM Transactions on Computer Systems, 7(3):217-246, Aug
1989.

R. van Renessg, K. Birman, and S. Maffeis. Horus, aflexible group communication system.
Communicationsof the ACM, 39(4):76-83, Apr 1996.

D. Ritchie. A stream input-output system. AT&T Bell Laboratories Technical Journal,
63(8):311-324, October 1984.

D. Schmidt, D. Box, and T. Suda. ADAPTIVE: A dynamically assembled protocol trans-
formation, integration, and eval uation environment. Concurrency—Practice and Experience,
5(4):269-286, June 1993.

F. Schneider. Implementing fault-tolerant services using the state machine approach: A
tutorial. ACM Computing Surveys, 22(4):299-319, Dec 1990.

L. Sabd and K. Marzullo. Simulating fail-stop in asynchronous distributed systems. In
Proceedings of the 13th Symposium on Reliable Distributed Systems, pages 138-147, Dana
Point, CA, Oct 1994.

A. Schiper and A. Ricciardi. Virtually-synchronouscommunication based on aweak failure
suspector. In Proceedings of the 23rd IEEE International Symposium on Fault-Tolerant
Computing, pages 534-543, Toulouse, France, Jun 1993.

33

[STWO3]

[TMRO6]

[VRBSY]

[VRHBO4]

[WS05]

[Yav92]

[Yok92]

B. Schilit, M. Theimer, and B. Welch. Customizing mobile applications. In Proceedings
of the USENIX Mobile and Location-Independent Computing Symposium, pages 129-138,
Aug 1993.

F. Travostino, E. Menze, and F. Reynolds. Paths: Programming with system resources
in support of real-time distributed applications. In Proceedings of the IEEE Workshop on
Object-Oriented Real-Time Dependabl e Systems, Feb 1996.

P. Verissimo, L. Rodrigues, and M. Baptista. Amp: A highly parallel atomic multicast
protocol. In Proceedings of S GCOMM' 89, pages 83-93, Austin, TX, Sep 1989.

R. van Renesse, T. Hickey, and K. Birman. Design and performance of Horus: A lightweight
group communications system. Technical Report 94-1442, Cornell University, Dept. of
Computer Science, Aug 1994.

U. Wilhelmand A. Schiper. A hierarchy of totally ordered multicasts. In Proceedingsof the
14th Symposiumon Reliable Distributed Systems, pages 106-115, Bad Neuenahr, Germany,
Sept 1995.

R. Yavantkar. MCP: A protocol for coordinationand temporal synchronizationin multimedia
collaborative applications. In Proceedings of the 12th IEEE Conference on Distributed
Computing Systems, page 606, Yokohama, Japan, June 1992.

Y. Yokote. The Apertos reflective operating system: The concepts and its implementation.
In Proceedings of OOPSLA 1992, pages 414-434, Vancouver, BC, Oct 1992.

34

