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Abstract

Joust is a software platform for liquid software—code that flows easily from machine to machine. Liquid
software makes it easier to maintain, debug, update, and customize networked systems. One of the most
interesting applications of liquid software is to interject it into the nodes of a network, allowing network
functionality, such as routing, to be customized. Additional features, such as special-purpose congestion
control and filtering algorithms, are also easily added. The challenge is to develop a communication-
oriented platform for liquid software, one in which the focus is the efficient transfer of data, not high-
performance computation. To this end we have designed and implemented Joust, which consists of a
complete re-implementation of the Java virtual machine (including both the runtime system and a just-in-
time compiler), running on the Scout operating system (a configurable, communication-oriented OS). The
result is a configurable, high-performance platform for running communication-oriented liquid software.
We present the results of implementing three different liquid software applications on Joust, including a
prototype architecture for active networks.
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1 Introduction

Liquid Software—code that easily flows from machine to machine—dramatically changes the way we think about
and build networked systems. Systems built using liquid software will be easier to maintain, debug, and update, but
perhaps more importantly, they will allow users and applications to customize the underlying services by interjecting
code into the system'’s nodes.

Although most of the recent focus on liquid software considers how machine-independent code can be exploited at
the end nodes (hosts) of a networked system—for example, by web browsers—one of the most intriguing possibilities
is to interject mobile code into the intermediate nodes (routers) that forward packets through the network. A network
that exploits liquid software in this way is often calledative networlbecause the network’s packet delivery service
is programmable instead of fixed [13, 5].

For a system to support liquid software—that is, for a program to run on any node in the network—each node
must export a common interface. This interface must be independent of both the node’s machine architecture and
its operating system. Java provides a good starting point for building such a system [6]. Java bytecode defines an
architecture-independentrepresentation of a program, and the Java Virtual Machine (JVM) defines an OS-independent
interface for accessing OS/hardware resources.

While Java provides a good foundation for liquid software, the current JVM is limited in both the functionality it
provides and the performance it delivers. This is especially true for systems that differ from traditional Java applets
in the following two ways: (1) they consist of low-level systems code rather than high-level user applications, and (2)
they implement communication-oriented services rather than computation-centric functions. Active network nodes, in-
cluding application gateways such as firewalls and proxies, are just one example of low-level/communication-oriented
systems that can benefit from liquid software; others include network-attached appliances (e.g., cameras, disks, dis-
plays) and specialized servers (e.g., file and web servers).

Consider two examples of the current JVM's limitations. First, liquid software running in an active network node
or a network-attached player needs fine-grain control over system resources—e.g., CPU cycles and link bandwidth—
so that it can schedule those resources to meet QoS guarantees and realtime deadlines. The current JVM does not
support such low-level (systems-oriented) access. Second, active network nodes and network-attached appliances also
need to support I/O mechanisms that are well-integrated with the underlying OS since their primary task is to move
data from one device to another (e.g., from a network device to the frame buffer, from a video capture card to a network
device, from an input port to an output port, and so on). It is ironic that Java is designed for networked systems, yet it
provides no communication-oriented support beyond the socket interface found on Unix.

This paper describes the design and implementation of a Java-based system that addresses these limitations. The
system, called Joust, is specifically designed to support liquid software on low-level, communication-oriented systems,
of which active networks are a driving example. To a first approximation, Joust is an implementation of the JVM on top
of the Scout operating system [8]. As illustrated in Figure 1, it consists of the underlying Scout OS, a runtime system
for the JVM, and a Just-in-Time (JIT) compiler that translates Java bytecodes into native instructions. The system
is unique in the way the JVM is integrated with Scout, which serves to address the functionality and performance
limitations outlined above.

The three major components of Joust are described in the next three sections: Section 2 gives an overview of
Scout, Section 3 describes the runtime system, and Section 4 describes the JIT compiler. Section 5 then describes
three demonstration systems we have built using Joust. These systems serve to illustrate how the features of Joust—
especially how it is integrated with Scout—can be exploited to support liquid software on low-level, communication-
oriented systems, such as active networks.

2 Scout OS

Scout is a configurable OS that includes primitive abstractions to support communication. It is written in C and runs
stand-alone on Intel Pentium and Digital Alpha processors. This section gives a brief overview of Scout, and discusses
its role in supporting liquid software.
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Figure 1: Overview of Joust Architecture

2.1 Configurability

Modulesare the unit of program development and configurability in Scout. Each Scout module provides a well-defined
and independent functionality. Well-defined means that there is usually either a standard interface specification, or
some existing practice that defines the exact functionality of a module. Independent means that each single module
provides a useful, self-contained service. That is, the module should not depend on there being other specific modules
connected to it. Typical examples are modules thatimplement networking protocols, such as IP, UDP, or TCP; modules
that implement storage system components, such as VFS, UFS, or SCSI; and modules that implement drivers for the
various device types in the system.

To form a complete system, individual modules are connected intodule graph the nodes of the graph cor-
respond to the modules included in the system, and the edges denote the dependencies between these modules. Two
modules can be connected by an edge if they support a corsergite interface These interfaces are typed and
enforced by Scout. By configuring Scout with different collections of modules, we can configure kernels for different
purposes, including network-attached devices, web and file servers, firewalls and routers, and multimedia displays. For
example, Figure 2 shows the module graph for a Scout kernel that receives and displays MPEG-compressed video. The
configuration includes a device driver for the network card (ETH), two conventional network protocols (IP and UDP),

a video-aware transport protocol (MFLOW), a decompression algorithm (MPEG), a window manager (WIMP), and a
device driver for the graphics card (VGA)Such a configuration is specified at build time, and a set of configuration
tools assemble the corresponding modules into an executable kernel.

2.2 Path Abstraction

Scout adds a communication-oriented abstraction—ptth—to the configurable system just described. Intuitively,

a path can be viewed as a logical channel through a modular system over which 1/O data flows. In this way, a path
is analogous to a virtual circuit that cuts through the nodes of a packet-switched network; in fact, one can think of a
path as a continuation of such a circuit through the host OS. In other words, the path abstraction encapsulates data as
it moves through the system, for example, from input device to output device. Each path is an object that encapsulates

1KBD is the keyboard device driver, MOUSE is the mouse device driver, and ARP is ARP.
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Figure 2: Example Scout Module Graph

two important elements: (1) it defines the sequence of code modules that are applied to the data as it moves through
the system, and (2) it represents the entity that is scheduled for execution.

Although the module graph is defined at system build time, paths are created and destroyed at run time as 1/O
connections are opened and closed. Figure 3 schematically depicts a path that traverses the module graph shown in
Figure 2; it has a source queue and a sink queue, and is labeled with the sequence of software modules that define how
the path “transforms” the data it carries. Operationally, paths come into play at two points in time; we use the video
display example to illustrate.

First, at video setup time, a path object is constructed through the module graph. This is accomplished by calling
Scout’spathCreate operation, specifying a starting module (in this case, MPEG) and a set of attributes for the new
path. The attributes explicitly identify some of the modules the path should pass through (e.g., MFLOW), as well as
the IP address of the video server. The MPEG module uses the attributes to choose which module adjoining it in the
module graph the path will traverse next. Path creation is then forwarded to that next module. This process repeats
until either the edge of the module graph is reached, or the attributes are not specific enough to allow the next module
to be unambiguously chosen. In other words, the path is created incrementally, with each module deciding which
adjacent module to visit next.

In our video example, MPEG is the starting module ffathCreate. However, the resulting path reaches from
MPEG to ETH, but does not span the video device. Path completion is accomplished by extending the previously
created path using ScoupsthExtend operation. This operation takes an existing path and a new set of attributes as
arguments, and returns an extended version of the path. In our video expathextend completes the path to the
display device, as shown in Figure 3.

Second, network packets that arrive for a particular video stream are inserted into the source queue for the corre-
sponding Scout path. Since there may be multiple video paths active in the system at a given time, Sclassffies
each incoming packet according to the path to which it belongs. Like path creation, packet classification is also done
incrementally, with each module contributing a partial classification function; e.g., the IP module inspgutst-the
num field in its header. Once enqueued on a path, a thread is scheduled to shepherd this message along the path; this
thread inherits its scheduling parameters from the path, as described in the next paragraph. When the thread runs, it
executes the sequence of modules associated with the path, and deposits the message in the sink queue. The display
device periodically removes frames from the sink queue and displays them.
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Figure 3: Example Path

Scout uses a two-level scheduling hierarchy: multiple simple schedulers each control their own thread pools, and
Scout divides the available CPU cycles among them. Each path is assigned a thread scheduler at path creation time
based on the path’s attributes; different paths can use different schedulers. For example, a video frame traversing an
MPEG path has a realtime deadline representing when it must be in the sink queue and ready to display. We use an
Earliest Deadline First (EDF) scheduler for the MPEG path to handle this realtime constraint. Threads belonging to
paths that do not have realtime deadlines are scheduled by a priority FIFO scheduler. The EDF scheduler receives
sufficient CPU capacity from the system to run its realtime paths, with the remaining cycles going to the priority
scheduler.

2.3 Discussion

Like the example shown in Figure 2, Joust is a particular configuration of Scout, one that includes a module that im-
plements the Java Virtual Machine (JVM), along with a collection of modules that implement the underlying services
upon which JVM depends (e.g., TCP/IP, NFS, WIMP). This configuration is defined more fully in the next section.

Building Joust on top of Scout has several important consequences. First, Scout’s path abstraction is optimized
for processing network I/O. It is by integrating this abstraction with JVM—as described in later sections—that we are
able to introduce communication-oriented functionality into the Java API. Second, this careful integration between the
JVM and Scout results in better performance than one can achieve with an off-the-shelf Java environment, such as JDK
running on Solaris or Linux. Finally, unlike Sun’s JavaOS—which is a fully integrated system, but one implemented
entirely in Java—Joust implements performance-critical components (e.g., the kernel and the protocol stack) in C.
These components are a standard part of the liquid software platform, and thus performance is more critical than code
mobility.

3 Joust JVM Runtime

The Joust JVM runtime system provides the Java API routines needed by Java programs, and is implemented as a
Scout module. The performance of the runtime is a concern because it is the heart of the Joust system. There are three
aspects to improving the JVM runtime. First, the platform-independent API routines must be optimized in general.



Second, the JVM must be tailored to take advantage of any platform-specific functionality, in particular the specialized
functionality provided by Scout. Third, the Java API itself must be extended so that Java applications can directly take
advantage of Scout functionality.

3.1 General Optimizations

Joust’'s JVM was originally developed for the Toba system [10]. There are several platform-independent issues in
the implementation of the JVM, primarily related to differences between the JVM'’s functionality and that commonly
provided by operating systems. First, the JVM implements pre-emptive threads that use monitors and condition
variables to synchronize. Java monitors are relatively unique in that they are recursive. A thread may enter the same
monitor more than once, without deadlocking. This is in contrast to standard monitor implementations, and prevents
Java monitors from being implemented directly using standard lock and unlock primitives. Instead, a Java monitor
must be represented as a lock, a reference count, and the identity of the thread that holds the lock (if one exists). A
thread enters a monitor by first checking the identity of the thread holding the lock, and doesn't acquire the lock if
the entering thread already holds it. The reference count keeps track of how many times the thread has entered the
monitor. On exiting a monitor the thread decrements the reference count and releases the lock only if the reference
count reaches zero. Similarly, when waiting on a condition variable the thread must release the lock and save the
reference count, and reacquire the lock and restore the reference count on re-entering the monitor.

The Joust JVM optimizes the monitor implementation for the single-thread case. We found that many Java ap-
plications are single-threaded, and we anticipate this will also be true for liquid software. Omitting the locks in the
single-threaded case, and only using the reference counts, significantly improves the JVM performance. Locks are
acquired, however, when a second thread is created.

Java exceptions are also a challenge to implement correctly and efficiently. Throwing an exception causes the flow
of control to be returned to the closest handler for that exception, which causes the stack to unwind. Joust implements
exceptions usingetjmp andlongjmp. Defining an exception handler invoksestjmp; throwing an exception causes
alongjmp to the most recergetjmp. If an exception is caught by a different thread than the one throwing it (as
allowed by the JVM), the Joust JVM allows the catching thread to exit any critical section it is in before catching the
exception. This limited form of roll-forward prevents the system from deadlocking if the catching thread is inside a
critical section when an exception is thrown.

Finally, the JVM provides garbage-collection facilities. The Joust garbage collector is adapted from the Boehm-
Demers-Weiser (BDW) conservative garbage collector [1]. This collector considers every register and every word
of allocated memory a potential pointer, and considers all memory reachable from these pointers to be in-use. An
alternative would be to maintain type information for allocated memory so that pointers can be positively identified,
but this requires that all Joust routines used by the JVM manipulate the type information correctly. Using a conservative
collector increases the runtime overhead, but reduces the burden on the system developers.

3.2 Scout-Specific Optimizations

The second source of optimizations is to modify the JVM to take advantage of Scout-specific functionality. Figure 4
gives the module graph that implements Joust. The key thing to note is that the entire JVM is implemented in a single
Scout module, and this module, in turn, depends on the TCP and UDP modules (to access the network), the NFS
module (to access the file system), the DNS module (to resolve hostnames), and the WIMP module (to access the
graphics device).

Implementing the Java API on Scout is complicated by the fact that the Java API is very similar to the POSIX
API. Implementing the JVM on a POSIX-compliant operating system consists of little more than writing lots of
wrapper functions. A Java application ha®eocess object which represents itself, complete with input, output,
and error I/O streams. Thava.lang.System class has properties that can be queried and look very much like
environment variables. There is a socket interface that uses both reliable byte stream (TCP) and unreliable datagram
(UDP) transports. The file system is hierarchiddle objects act much like filenames in the POSIX world, and file
I/O is performed by creating BilelnputStream or FileOutputStream with an existingFile object. Domain-style
Internet hostnames can be resolved to 32-bit IP addresses. Finally, the Java Abstract Window Toolkit (AWT) provides
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Figure 4: Scout Module Graph for Joust

all the widgets one expects from a graphical user interface: windows and dialogs, buttons, scrollbars, text areas, and
canvases for drawing.

Unfortunately, the Scout APl is not POSIX-compliant, making it more difficult to implement the Java API. Doing
so involves keeping track of a great deal of state information. Some of this state—e.g, the user name and current
working directory—are kept in the JVM module. Other state, such as the number of bytes currently available to be
read from a socket, as well as the data itself, are maintained in Scout paths. Figure 5 provides a more detailed view of
the JVM module and how it interfaces to other Scout modules. The inner boxedN@t.gndwWinMGR) identify the
service interface(s) exported by that module. Some modules—in particular JVM—support multiple interfaces.

Another mismatch between the Java APl and the Scout API is that of thread preemption. Java threads are pre-
emptive, whereas Scout threads are not. To rectify this situation the JVM compiler was modified to insert thread yields
on backward edges in the control flow graph.

Typically, a Scout path corresponds to a network connection and I/O data flows over it. In general, however,
modules need to communicate for other purposes; e.g., to implement control operations. This is done over “control”
paths. For example, IP resolves addresses via a single control path to ARP; a separate path is not established for each
resolution. These control paths are typically used for less performance critical operations, are created when a module
is initialized, and are never destroyed. The JVM makes use of several such control paths.

3.2.1 Sockets

Scout does not support the socket API for transports like TCP and UDP. Both protocols simply export the same 1/O
interface—calledNet—that every other 1/0-oriented module in Scout uses. The Sdetiinterface differs from the

socket APl mainly in how connections are established. In Scout, a single gth€reate, with the peer address

given as an attribute, serves to create the path for the connection. The socket API requires multiple operations—e.g.,
socket, bind, andconnect—to do the same thing. As a result, JVM contains a great deal of code to support the
socket-style network connection setup required by the Java API.

Sending data over an existing path is similar to writing data to a socket. Incoming data is handled differently in
the two systems, however. The socket interface is synchronous, meaning that an application blocks until data has
arrived. In contrast, incoming data is delivered asynchronously to the module that created the path; it is the module’s
responsibility to buffer this data until it is ready to process it. A final wrinkle is that Scout networking Message
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Figure 5: JVM Module Detail

object—a tree of buffers optimized for fragmenting and reassembling messages—while the Java API uses byte arrays
as buffers. The JVM module buffers inbound datdVeEssages, and extracts data out of them as needed.

3.2.2 Name Resolution

Closely related to the issue of sockets is hostname resolution, as providedjayaimet.InetAddress class. Scout
lacksgethostbyname andgethostbyaddr. However, it does have a DNS module that provides hostname resolution
via theNS interface. To provide name resolution to Java applications, the JVM module creates a control path to DNS
during module initialization. This path is then used to resolve hostnames as needed.

3.2.3 File System

The Scout file system functionality is a collection of modules that implements an NFS client. They export two in-
terfaces: one for named operations on a given fieFNAME), and one for accessing an open filssFIO). The
FsFNAME interface has methods for creating a new directory, reading the contents of a directory, getting the at-
tributes of a file, and removing a file or directory. During initialization, the JVM module creates a single control path
using this interface. Named file operations simply invoke the proper method on the interface to this path, and returns
the results.

To read or write a file in Scout, JVM creates a path to the file vigF$i&lO interface, specifying the filename as
an attribute. Once the path is created, the JVM can read, write, and seek within a file by simply invoking the proper
method. A file is closed by destroying the appropriate path. The JVM module adds little more than a wrapper. As with
network connections, the Scout file system Udessage objects for the exchange of data, so the Joust runtime must
perform the simple transformations between Java byte array buffeMdesghges.

3.2.4 Window System

The Java Abstract Windowing Toolkit is implemented by the classes ijatlacawt package. These classes provide
Java applications with a platform-independent interface to various windowing toolkits. Unfortunately, WIMP is not
a GUI toolkit; it is simply a window manager. It draws geometric shapes, but does not implement widgets, such as



buttons. Instead of writing an entire GUI toolkit ourselves, we use the BISS GmbH [9] implementation of the AWT.
BISS AWT can be used as a substitute for Java’s AWT, or as the toolkit underneath it. Joust uses it as a toolkit so that
applications require no modification; they use the standard Sun AWT classes. We therefore only needed to write some
wrappers to link the BISS toolkit to WIMP®/inMGR interface.

The interaction between the JVM module and WIMP is via a single control path. This path is created at module
initialization time, and is then used by the wrapper functions for all GUI related operations that Java’s AWT requests.

3.2.5 Security

Our current experience with Joust is limited to running single Java applications in a single JVM module; this is the
case for all the demonstration systems described in Section 5. In a more general scenario, one would like to be able
to run multiple, mutually untrusted Java application within Joust. When these applications are independent—i.e.,
they do not interact within the scope of JVM—security can be enforced by multiply instantiating the JVM module.
This can be done in Scout, which boths supports multiple instantiation of modules and the isolation of modules in
hardware-enforced protection domains [11].

The more difficult question is how to enforce a security policy for multiple, mutually untrusted Java applications
that interact with each other within the JVM. This is the subject of current research, as summarized in [12]. Netscape
[3] and Microsoft [2] use object signing to identify the principal responsible for the program, and extended stack
introspection to determine the rights of a current thread. These models can easily be used, not only to reveal the
rights a current thread possesses, but also to determine the principal that requested those rights. Scout can use this
information to determine which paths a particular principal has permission to use, thereby extending resource control
and accountability from the JVM module all the way to a device.

3.2.6 Exec Considered Harmful

We have been successful in mapping the POSIX-like Java API to the Scout world and its paths, with one notable
exception. Thgava.lang.Runtime class hagxec methods which create nelrocess objects. Scout does not have

the notion of a process, let alopgec’ing a new one. Hence, we can not support this in the Joust runtime. However,
this is less of a problem than it first appears.€kec a process, the application needs to know what cagxiee’ed

on the system. Java provides this information via the queryable properismsitang.System. A Java application

can ask what operating system and version is underlying the Java VM it is currently running on. It can then use this
information toexec another process. However, this makasc so platform-dependent as to violate our notion of
what liquid software is and does, hence we do not consider it a problem that it is not supported in Joust.

3.3 API Extensions

The final optimization to the Joust JVM is to extend the Java API to support Scout-specific functionality. In particular,
we extended the Java API to include operations on Scout pathspdath€reate and pathExtend routines were

added to the API, allowing Java applications to create and extend paths between Scout modules. Java applications
can thereby move data between Scout modules without actually touching the data. Java applications are also able to
modify attributes on Scout paths, thereby changing their behavior.

Although these extensions allow Java applications direct access to Scout functionality, the access is limited. We
plan to better integrate Scout paths by further extending the Java API. Currently paths only span Scout modules. Java
applications can create and modify these paths, but cannot participate in them directly. Ideally, paths would be able
to extend into Java applications, allowing modules on the path to be implemented in Java. Among other things, this
requires adding Scoutllessage object to the Joust JVM, so that Java applications can directly manipulate Scout
messages.

One complication of allowing Scout paths to span Java applications is the interaction between the JVM and the
Scout scheduler. Currently, paths that span the JVM module are scheduled by a priority scheduler. This ensures that
computation in the JVM does not interfere with any realtime paths. This is particularly important because the JVM
includes a garbage collector, whose impact on performance is variable and difficult to predict. If a realtime path is
extended into a Java application it becomes difficult to meet the realtime constraints. This is an open research issue.



The current method of manipulating existing Scout paths also needs improvement. A Java application may want to
modify the behavior of a path, for example to change the frame rate on a video path. This requires adding a module-
specific class to the Java API, so that Java applications may interact with the module in an object-oriented fashion.
Currently the Scout infrastructure supports paths composed of Scout modules; it will be extended to support paths that
span both Scout modules and Java applications.

3.4 Discussion

The Joust JVM performance must be optimized at several levels. First, the core JVM functionality must be optimized
so that potentially slow functions, such as exception handling and synchronization, are made as efficient as possible.
Second, the JVM must be modified to make efficient use of the Scout path abstraction. The Java APl is POSIX-like,
making its implementation on Scout nontrivial. Third, the Java API must be extended to allow Java applications direct
access to Scout functionality. This involves exposing the path and message abstraction to the application, so that it can
use them effectively. Together, these optimizations result in a high-performance JVM that is specialized for use in a
communication-oriented system.

4 Bytecode Compiler

The Joust execution framework is based on the Toba translation system [10]. Toba originally suppaneahead-
of-time (WAT) Java translator, and ran on various Unix systems. We have since ported it to Scout and added a
just-in-time(JIT) compiler.

The driving concept of Toba is that a large amount of frequently executed Java code is taken from class hierarchies
that are used by a variety of programs and are not modified by most programmers. As a result, much can be gained
by spending off-line time to translate those classes into a format that can be executed as efficiently as possible. For
example, the AWT component of JVM, which is coded in Java, is WAT compiled and linked into Joust.

Toba translates Java class files into C code, which is then compiled with a standard optimizing C compiler to build
fast versions of these classes. The translation code is written in Java. The generated C code is a straightforward conver-
sion of the Java bytecode, with each Java method translated into a C function, and C structures used to represent Java
classes and instance variables. Toba uses translated versions of fageSualasses to provide most of the standard
Java execution environment. The underlying native methods that make up the rest of the execution environment are
described in the previous section.

4.1 Just-in-Time Compilation

One of the main limitations of the Toba system has been its main feature: that translation takes place far in advance
of execution time. This allows for aggressive optimization, but keeps programmers from using Java’s support for
dynamic loading and linking of classes at runtime. Since Joust is intended to serve as a network node that handles
liquid software, it must be able to receive and integrate code that implements new or improved services, long past the
time the kernel is built. We have augmented the basic Toba system with a JIT compiler that translates Java bytecode
to the native instruction set of the host machine. Currently, Intel Pentium and SPARC architectures are stipported.
Dynamic loading in Java is generally performed by obtaining a byte image of a Java class file from some source,
such as a disk file or a network connection. The standard Java interface provides a fjaedidemg.Class. de-
fineClass, which translates the byte array into a Java class. The first stage of translation|azdlied, locates the
raw class data and performs minimal sanity checks. The second $§tdgeg or resolvingthe class, must verify
that the bytecode is structurally sound (e.g., has no illegal branches), and obtain basic information about referenced
classes and methods so that the methods of the class being linked can be executed. This information is stored in a
Javagjava.lang.Class structure, which is made available for use by the running program through routines that look up
and create instances of classes by a dynamically specified name. In Toba, this lookup is performed through internal
hash tables and use of a dynamic linking loader to get the address of existing class structures in the currently running

2The Toba JIT runs in Scout/Pentium (Joust), Linux/Pentium, and Solaris/SPARC.



program. Scout does not support dynamic linking in this form, so the initial kernel includes a list of the addresses of
all classes that are implemented within it.

The JIT uses much of the infrastructure of Toba to convert the class file to an internal format more suitable for
translation: symbolic references are resolved, instructions are annotated with execution state information, and so on.
We begin code generation during the load phase, with a straightforward translation of the Java instructions to native
object code. Since we have not performed linking, certain references—for example, to methods in other classes that
may not be loaded—are left empty, and a backpatch structure is maintained so the missing addresses can be filled in
later. After loading, we have the final physical address of the code for each method, and can use these addresses in the
link stage of other classes without running into problems with code that has circular dependencies.

Joust generates the code for all methods of a given class, and its dependents if not already available, at the time
the class is defined, rather than waiting until each method is invoked as a true “just-in-time” compiler would. This
simplifies the generated code by eliminating runtime checks, and also makes it feasible to project execution time,
information that helps in scheduling decisions.

The current implementation of the JIT does a straightforward translation of each bytecode into a sequence of one
or more native instructions. We retain the JVM stack-based execution model, except we replace stack operations with
references to fixed memory locations. We can do this because Java guarantees that the stack state at any instruction
will be the same regardless of the path taken to that instruction. The small number of general-use registers in the
Intel architecture limits the value of keeping execution stack elements in registers; a review of the bytecode for several
benchmarks indicates that registers would be more effectively used for directly caching local method and instance
variables, thereby eliminating the need to place these in the execution stack at all. We plan to add the analyses
required to do this, and expect it will decrease both code size and execution time significantly.

4.2 Benchmarks

Even without the optimizations just described, the overall performance of the JIT on a set of microbenchmarks is
2.3 times faster than Sun JDK 1.1.3, and more than half the speed of optimized Toba WAT code. Table 1 shows the
performance of several Java implementations on a set of microbenchmarks adapted from the UCSD Java Microbench-
marks [4]. The times are in microseconds, obtained by measuring a given number of repetitions and averaging. All
tests were performed on a 200MHz Pentium Pro system; the Unix tests used Linux 2.0.31. We tested two versions
of Sun’s Java Developer’s Kit. Version 1.0.2 is the one with which Toba (and Joust) is compatible, but significant
performance improvements in later JDK releases make it appropriate to base our comparisons on JDK 1.1.3. We also
compare with the Kaffe system [14], another system which implements just-in-time compilation of Java bytecode.
The final three columns compare the Toba/Linux JIT, the Toba/Linux WAT, and Joust.

The microbenchmark names are for the most part descriptive. The vadegrap andlongjmp for exception han-
dling is indicated by the three-times speedup Toba enjoys over JDK; the Kaffe system has a particularly high overhead
for exception handling. Toba's optimization for single-threaded execution is shown in the results for synchronized
block and method entry, which are noticeably faster when there is only one thread in the system. The optimization
is unfortunately bypassed in the Joust system, where code received over the network is invoked in a separate thread.
A somewhat biased inter-system comparison is given in the geometric means of the microbenchmark times when
normalized to JDK 1.1.3, which shows Joust performing over two times faster than the Sun implementation.

It should be noted that these microbenchmarks emphasis execution of JIT’ed code. For more complex cases that
use standard API class support for AWT and advanced data structures, an even greater speedup is to be expected
because that code is way-ahead-of-time compiled by Toba and linked into the Joust kernel where it may called by any
JITed method.

4.3 Discussion

The division of labor between Toba’s WAT compiler and Joust's JIT compiler improves the performance of Joust
kernels by optimizing the fixed components that are needed in a particular system, while still allowing updates and
extensions in on-line operation. For example, AWT, and other Java classes that make up the JVM, are WAT-compiled
and linked into Joust. The JIT is used to compile only liquid software that is dynamically loaded into Joust.
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Benchmark| Reps|| jdk102 | jdk113 | kfell3| jitl02 | watl02 | joust102

null-loop | 10® 0.808| 0.191 0.026| 0.040| 0.015 0.034

add-int| 107 2.051| 0.362 0.042| 0.174| 0.035 0.171
multiply-int | 107 2.071| 0.352 0.047| 0.177| 0.042 0.186
add-double| 107 2.438| 0.593 0.136| 0.413| 0.050 0.277
multiply-double| 107 2.980| 1.140 0.689| 0.910| 0.602 0.882
array-assign 107 1.760| 0.334 0.068| 0.264| 0.057 0.237
instance-var, 107 1.664| 0.418 0.035| 0.160| 0.035 0.164
method-local| 107 1.825| 0.560 0.124| 0.159| 0.065 0.156
method-remotg 107 2.096| 0.597 0.123| 0.250| 0.066 0.248
method-interfaceg 107 2.201| 0.846 1.906| 0.367| 0.212 0.350
exception-local| 108 3.031| 1.628| 115.511| 0.941| 0.736 0.681
exception-callery 106 3.959| 2.353| 165.499| 1.068| 0.784 0.885
exception-remote 10% || 6.909| 5.492| 165.058| 1.942| 1.694 1.458
exception-bypass 10°% || 23.729| 9.481| 440.863| 2.613| 1.528 2.551
sync-block-single  10° 5.817| 1.403 1.052| 0.736| 0.658 1.141
sync-method-single 108 5.398| 1.627 1.079| 1.021| 0.910 1.371
sync-block-multi| 108 5.819| 1.406 1.050| 1.136| 1.065 1.141
sync-method-multi 108 5.398| 1.629 1.078| 1.406| 1.288 1.365
thread-yield| 10° || 48.640| 42.430 6.470| 35.180| 36.290 3.500

gmean-norm-excl-excp  0.28 1.00 3.27 1.87 4.36 2.18
gmean-norm 0.32 1.00 1.11 1.99 4.14 2.34

ID Platform Description

jdk102 | Sun JDK version 1.0.2, Linux 2.0.31, 200MHz Pentium Pro

jdk113 | Sun JDK version 1.1.3, Linux 2.0.31, 200MHz Pentium Pro

kfe113 | Kaffe 0.9.2 on JDK-1.1.3 class files, Linux 2.0.31, 200MHz Pentium Pro
jit102 JIT JDK-1.0.2 class files, Linux 2.0.31, 200MHz Pentium Pro

wat102 | Toba -O on JDK-1.0.2 class files, Linux 2.0.31, 200MHz Pentium Pro
joust102| JIT on JDK-1.0.2 class files, Joust, 200MHz Pentium Pro

Table 1: MicroBenchmark Timings (microseconds per repetition)
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5 Demonstration Applications

This section describes three applications of liquid software that we have implemented in Joust, and reports measure-
ments of their performance. The demonstrations both serve to illustrate the value of liquid software and to highlight
the advantages of Joust’s design.

5.1 Active Networks

An active network is an application of liquid software that interjects code into the nodes within a network, thereby
giving programmers the ability to customize network services. In an active network, routers not only forward packets,
but they may also execute code on behalf of those packets. For example, this code could do sophisticated routing,
congestion control management, or packet filtering.

ANTS is an experimental active network architecture written in Java [13]. All ANTS packets, cafpsdlescarry
or refer to executable code. This code is installed in ANTS routers in the network as they are traversed by capsules. A
capsule’s code is responsible for performing almost all computation in the network on that capsule, including routing
it through the network to its final destination. This means that the router execution environment needs to be carefully
structured and tuned to obtain good performance.

We have constructed an active network node using Joust and the ANTS framework. In our system, the core ANTS
architecture—the base system that every ANTS router must run—is translated from Java to C code using the Toba
WAT compiler. This C code is then statically linked into the Scout kernel. The Joust JIT compiles only the protocols
carried by capsules.

We have measured the performance of our ANTS active network node using two simple test cases. We compared
our implementation on Joust to ANTS running on Sun’s JDK interpreter, and to ANTS running on UNIX after it
had been compiled with Toba. Specifically, we measured two different ANTS protocols (the programs referenced by
ANTS capsules):

e PingPongbounces a capsule carrying one byte of data between two active nodes. This protocol does minimal
computation, and so measures the overhead of sending and receiving capsules. Note that only the first capsule
causes th@ingPongapplication to be loaded; all subsequent capsules simply carry a reference to that code.

e RouteQueryqueries a capsule-defined routing table on a remote active hode. This computation is more repre-
sentative of the work a capsule might do in practice.

| | IDK/Linux(us) | Toba/Linuxs) | Joustfs) |

PingPong 1770 830 518.4
RouteQuery 2510 872 539.2

Table 2: Performance of ANTS on Different Platforms

For both test protocols, measurements were taken on a pair of 200MHz PentiumPro processors connected by a
10Mbps ethernet. The first software platform is Joust, as just described; the second was the same Toba WAT and JIT
compilers that Joust uses, but running on Redhat Linux 2.0.23; and the third was Sun JDK 1.0.2 running on the same
Linux OS. The results are presented in Table 2. Each individual test involved 10,000 round-trips, and each test was
run 10 times.

Both Joust and Toba/Linux are clearly faster than JDK/Linux. Joust takes full advantage of WAT compilation and
an underlying C core to achieve high-performance. To determine in more detail the Joust advantage over Toba/Linux,
and to determine the incremental costs of the JVM and ANTS, we ran several additional tests. Specifically, we mea-
sured simple UDP round-trip latencies on the underlying OS (Scout and Linux), and then UDP latencies from within a
Java program. These numbers are then compared to the RNiG®ongresults from the previous experiments. The
results are summarized in Table 3.
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| || Joustfis) | Toba/Linux{:s) | Difference(:s) |

ANTS/PingPong 518.4 830 312
Java/UDP 368.2 596 228
OS/UDP 305.4 350 45

Table 3: Performance of Networking Subsystems on Different Platforms

We observe two things from these results. First, the Java/UDP round trip latencies are much smaller on Joust than
on Linux/Toba, even though the OS/UDP latencies in Scout are only moderately faster than in Linux. This is due to
the difference in how well the JVM networking is integrated with the underlying OS. Second, focusing on the Joust
numbers, we see that the JVM adds 4220 the round trip latency, and the ANTS infrastructure adds another219
to the round-trip times.

5.2 NetTV

NetTV is a Java application that decodes and displays MPEG-compressed video streams sent over a network. It runs
on an end system, but it is similar to the ANTS example in that it is both low-level and communication-oriented. In
particular, NetTV requires realtime scheduling and the ability to efficiently move data from the network device to the
display device.

NetTV is based on the module graph used as an example in Section 2, but also involves a Java application that
implements the user interface and controls the Scout path that receives, decodes, and displays the video. In other
words, the Scout configuration required by NetTV corresponds to the union of the module graphs given in Figures 2
and 5, with NetTV dynamically loaded into the JVM module.

To use NetTV, the user selects a video from a menu. NetTV then establishes a Scout path to receive, process, and
display the video stream. NetTV includes a graphical user interface that allows the user to interactively control the
video, for example, to adjust its frame rate and quality. NetTV does not, however, directly process the video frames;
this processing is done by the MPEG path that traverses modules contained in the underlying Scout kernel. NetTV
accesses this underlying Scout facility through a Scout class extension to the standard Java API. The following outlines
in more detail how NetTV interacts with Scout.

e NetTV first uses the Java AWT to create a hierarchy of nested windows, including a parent window, a subwindow
that displays the video, and additional subwindows that implement various control buttons. AWT invokes WIMP,
which returns a unique identifier for each window it creates.

e NetTV creates a Scout path starting at the MPEG module and exending to the display device. This is done via the
extended API, which in turn invokes the natpathCreate primitive. The identifier of the display subwindow
returned in the first step is included as a parameter to this call; this tells Scout that the path should terminate at
this window.

e NetTV calls the Scout API again to extend this path from MPEG to the network device; this corresponds to a call
to the nativgpathExtend routine. As parameters to this call, NetTV supplies the video server’s IP address and
a well-known UDP port number from which the server sends videos. After path extension completes, NetTV
retrieves the local UDP port number assigned to the path.

e NetTV sends REQUEST message to the video server containing the name of the video and the local UDP
port. This message is sent using Java’s standard socket method. The server sendRBREK anessage
acknowledging that the video exists, and then begins transmitting frames.

¢ Asthe video arrives, Scout recognizes the frames as belonging to the path it just created for NetTV, and enqueues
them in that path’s source queue. The path executes as described in Section 2, causing the frames to traverse the
path and eventually be displayed.
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The user sees the display illustrated in Figure 6, where video shown in the inner display window (the swimming
turtle) is managed by the Scout MPEG path, while the outer window and the buttons are managed by the Java NetTV
application. WIMP supports hierarchical windows, which gives the user the impression of a single graphical applica-
tion.

FX R U B, alen
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wmsrbakle
reeabakle

Figure 6: Example NetTV Display

As the video plays, the user can interact with NetTV’s GUI to change visual aspects of the video. NetTV uses the
Scout extended API to communicate the user’s input to the path that carries the video. Changing a video’s attributes
affects how resources are allocated to the video path, for example, the path may require more CPU cycles if the user
wishes to increase the frame rate. However, it is up to the path to directly negotiate with the system for additional
resources; NetTV simply sets the parameters used by the path.

#of | max. rate [fps]

Video frames| Scout| Linux
Flower 150 44.7| 37.1
Neptune 1345| 49.9| 39.2
RedsNightmare| 1210| 67.1| 55.5
Canyon 1758 | 245.9| 183.3

Table 4: Coarse Grain Comparison of Scout and Linux

NetTV illustrates two advantages of being able to establish a data channel outside of the Java VM. First, NetTV is
able to achieve excellent MPEG performance. Table 4 compares the maximum frame rates for videos played on Scout
and Linux/X11 systems; we observe that Scout consistently outperforms a Linux-based MPEG decoder by 20-34%
[7]. We know of no comparable numbers for an MPEG decoder written in Java. Second, separating the MPEG path
from the JVM makes it possible to schedule the two entities separately, and in fact, allows different schedulers to be
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used for each. The MPEG path, because it has realtime constraints, is scheduled in Scout using the EDF scheduler.
The JVM, however, is scheduled by a priority scheduler. Scout ensures that the EDF scheduler is given sufficient CPU
capacity to run the realtime paths, with any excess time given to the priority scheduler. This also means that Java’s
garbage collector does not interfere with the timely execution of the MPEG path.

One can imagine wide applicability of a mechanism that allows Java programs to establish and control data chan-
nels outside the JVM. On an Active Network node, for example, this facility might be used to do cut through: a
dynamically loadable protocol is involved in establishing a flow—e.g., negotiating its QoS contract—but is otherwise
not involved in forwarding packets from input port to output port. This strategy allows one to implement each service
in the most efficient way—in the case of NetTV, by C code, but in general, perhaps by specialized hardware (e.g., a
high-performance switching fabric). The key is to provide a general enough interface to support such data channels
without sacrificing the platform independence of Java. In Joust, this interface allows the Java program to specify
high-level attributes (invariants) for the path.

5.3 MPEG Filter

The final application is a filter that one might inject into the middle of a network connection. This application could
run on arouter that connects a high-speed backbone link to a low-speed last-hop link. While this filter could have been
written for the ANTS architecture, for this demonstration we wrote the application in Linux and dropped it unchanged
into Joust.

The purpose of the filter is to intelligently massage an MPEG-encoded video stream so it can be transmitted over
a low-speed link. This can be done in a variety of different ways, depending on circumstances; e.g., difference in link
speeds, the frame types used by the video, and so on. This is precisely why this filter is a good candidate for liquid
software—a video application can choose the most appropriate strategy for the situation.

In our case, we wrote a simple filter that remoBfames from the video stream, and forwards ongndP
frames. This filter, running on Joust, was able to satisfy the realtime requirements for the video streams we measured.
The filter was also effective: it reduced the bandwidth required by one sample video from 223KBps to 152KBps.

6 Concluding Remarks

Joust is a platform for liquid software targeted at low-level, communication-oriented systems like active networks. It
achieves good performance and rich functionality by applying two general design principles. First, the fixed com-
ponents of Joust are either written in C (e.g., Scout kernel and modules), or written in Java but WAT compiled (e.qg.,
ANTS and AWT). The JIT is applied only to portions of the system that must be dynamically loaded. Second, the JVM
is carefully integrated with the underlying OS facilities. This includes extending the JVM to allow liquid software to
take advantage of Scout's communication-oriented path abstraction.

The impact of these two design principles is demonstrated by three applications of liquid software: the ANTS
active network architecture, a network appliance that decodes and displays MPEG video, and an MPEG filter. There
are two results of particular note. First, Joust is two to three times faster than an off-the-shelf Java system (Sun’s JDK
running on Linux) for all the benchmarks and applications we tried. Second, allowing liquid software to establish and
control external data channels—e.g., Scout paths—seems like a very powerful idea that has wide applicability.
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