Message Library Design Notes

David Mosberger
January 1996

Abstract

This document describes the current implementation of the x-kernel message library. The focusison its
data structures and the underlying principles. This document does not describe the message library’sin-
terface or how it isused. Please refer to the z-kernel Programmer’s Manual [1] and the z-kernel Tutoria
[2] for that purpose.

1 Introduction

Conceptually, amessage issimply alinear sequence of bytes. A message therefore has contents (data) and alength (in
bytes). The datain a message is never interpreted by the message library itself. The message library is optimized for
the processing that is encountered in typical network protocols, such as TCP or IP. There are two key characteristics
to network message processing: (a) on the outgoing side, headers are prepended to the message, and on the incoming
side headers are removed from the beginning of the message, and (b) the amount of datain a messageistypicaly large
so that data copying should be avoided as much as possible. Given (@), it is reasonable to extend the simple message
model to reserve space at the head of the message. Similarly, it is often necessary to discard a few bytes athe end of
the message (e.g., to discard a CRC sum or atrailer). This leads to messages that end before the physical end of the
buffer memory. With these two extensions, Figure 1 depictsthishigh-level view of a message.

| buffer size -

reserved for header space message data

| |
head tail

Figure1: High-level view of amessage.

1.1 PushingHeaders

With the above moddl, it isnow possibleto prepend (push) a header onto an existing message simply by decrementing
head by the size of the header and then copying the header contents to the memory starting at offset head. Thisis
efficient because network headers are small relativeto the size of the message data. Now, what happensif the reserved
spaceisall used up? One solutionwould beto alocate anew and bigger memory buffer, copy the existing datainto that
buffer and then prepend the new header. In practice this would be too slow because it requires copying al the datain
the message. Instead, the message library extends the message model by implementing messages as atree of memory
buffers. Thus, when a new header would overflow the available header space, a new memory buffer is dlocated and
linked into the existing message by creating a new interior (pair) node. Thus, each header-space overflow adds two



pair
node

old
newly allocated buffer data

Figure2: New buffer attached to the front of a message.

new nodesto the message tree (oneinterior nodeand aleaf node). For example, if the existing message treeis depicted
as atriangle, a push overflow leads to the configuration shown in Figure 2.

Notice that each push overflow leads to a new interior node whose |eft subtree is aleaf. The resulting tree is a
degenerate tree that is no more than a linear list. For searching, it would be better if it were balanced because that
would minimize the average distance from the root. However, with the message library, searching is not common and
in fact degenerate trees of the above kind (where the left subtree is always a leaf) are idea because they allow tree
traversal without recursion.

Notice that while the physical representation of the message now uses atree, the logical view of messages as pre-
sented in the previous section is still valid. The only externaly visible difference is that the message buffer now po-
tentially consists of several smaller memory buffers that may be scattered in the computer’s address space.

1.2 Popping Headers

So far, the message representation allows efficient implementation of pushing headers onto messages. Let'sinvestigate
the opposite operation: removing (popping) headers.

In the normal case, popping a header simply involvesincrementing the head index and returning a pointer to the
old location. Similar to the push case, thisworks, provided thereis enough datain thefirst leaf. If thisis not the case,
there are two possible scenarios. (@) the header data comes from a single other leaf, or (b) the header data comes from
severa other leaves. In case (@), the message library simply finds the correct leaf and returns a pointer to the header
data(thisisthe one case where the message tree has to be searched). For efficiency, the message library a so cachesthe
location of the leaf in which it found the header data. If another header is popped (whichislikely), thenitisnormaly
the case that the datafor the new header comes from the same leaf asthe current header, so thisresultsin bypassing the
step of having to find the leaf in the message tree. In case (b), thereis no choice: the message library hasto copy the
header datainto a new, contiguousbuffer. Conceptualy, thisis simple. The leaves in the old message are copied until
enough data has been accumul ated for the header. 1nthe example below, thedatainleaves|l, 12, and I3 are copiedinto
the new leaf called header, asillustrated in Figure 3.

a4

header 14

11

Figure 3: Accumulating leavesinto a new buffer.



After the datais copied, the message treeis updated such that the new contiguousheader |eaf replaces thefirst three
leavesin the original tree. Conceptualy, the final message appesars as shown in Figure 4.

pair
node

header 14

Figure 4: Message after |eaves are accumul ated.

Notice that removing the original small leaves requires a recursive node deletion algorithm. Sincethisis slow, the
current message library implementation modifies the tree such that the small leaves remain in the tree, but are ignored
as far as message datais concerned. In essence, the message library first discards all the bytesin the small leaves and
then creates the pair node that connects the new header leaf into the tree. A more accurate picture of the final treeis
givenin Figure 5. Theright pair node is setup such that the subtree containing 11, 12, and 13 will beignored as far as
message data is concerned.

pair
node
header pair
node
14
subtree
with 11, 12,
and I3

Figure5: Detailed view of message after leaves are accumul ated.

After the copying and adjusting the tree, the new header leaf contains enough data for the header that is being
popped. The message library can now increment the head index and return the pointer to the contiguousheader memory
just as in the previous cases.

1.3 Trimming M essages

Other operations that are common include determining the length of the data in a message and truncating/discarding
data. Truncation involvesdropping the last » bytes, whereas discarding involves dropping thefirst m bytesin ames-
sage. To support these operations efficiently, the message fragment abstraction isintroduced. A fragment refersto a
subrange of the datain amessage. To that effect, the fragment datastructure contains a pointer to the message tree that
contains the message dataand two indices. head, the index of the first bytein the subrange, and tail, the index of the
first byte outside of the subrange. With these definitions, thelength of afragment isgiven by the expression tail - head.
Truncation is implemented by decrementing the tail index, and the disard operation isimplemented by incrementing
the head index. Notice that the head and tail fieldsin the fragment data structure correspond exactly to the the head



and tail variables described in the beginning of thissection. Thus, as afirst approximation, the message data structure
is simply a message fragment.

14 Visting Message Data

Thefinal operation, that is, unfortunately, often on thecritical path of network packet processing, isvisitingall the data
in amessage tree. In general, visiting atree requires arecursive algorithm. For efficiency, the current implementation
avoids recursive function invocations by explicitly managing arecursion stack. In the common case where amessage
consistsof asingleleaf, or inthedegenerate tree case whereall |eft subtreesare leaves, thisyiedshighly efficient code.
The state that needs to be maintained during amessage traversal isa stack of fragments. The stack isinitiaizedwiththe
fragment in the message to be visited. The fragment at the top of the stack isthe one to be visited next. After popping
afragment from thetop of the stack, there are two possibilities: (a) the fragment pointsto a pair node in which case it
is simply necessary to push the fragments for the right and the | eft subtrees onto the stack (in thisorder). In case (b),
the fragment pointsto aleaf node so the datain the leaf can be processed directly.

2 Data Structures

We are now at the point where we can present the message library’ sdata structures. We start with the most fundamental
structure; the message fragment.

struct MsgFrag {
i nt head;
i nt tail;
MsgNode tree;
b

As explained in the Introduction, a fragment refers to a subrange of the datain a message tree. The message tree
is pointed to by field tree. The fields head and tail are the indices of thefirst byte in the subrange and the first byte
outside of the subrange, respectively. The datalength is thus given by the expression tail - head.

2.1 TheMessage Structure

The message structureis given as follows:

struct Mg {
struct MsgFrag f;
MsgNodelLeaf first; /* left-nost leaf in tree */
i nt firstOffset; /* offset to first leaf */
bool firstlsM ne; /* is first |leaf witable? */
struct Attrs attrs;

}s

The central field isf, the message fragment containing the data for this message. Because the head of a message
is manipulated frequently, it makes sense to cache the state related to the first leaf that is not empty. For thisreason,
the message structure also contains the fields first and firstOffset. Similarly, field firstisMine is used to optimize the
pushing of headers. These fields are described in more detail below. The final field, attrs, is used to hold message
attributes. These are arbitrary name/value pairs that can be used to associate other information with messages.

Field first pointsto thefirst (left-most) leaf that is either not empty or that isthe next one to be written on a header
push. To be precise, first pointsto the leaf that contains the data byte that index f.head refersto. Field firstOffsetis
the offset (relative to thefirst byte in the message tree) of thefirst bytein lesf first. It is normally zero, but whenever
popping aheader resultsin an underflow, thisfield getsincremented. FiddfirstisMine istrueif thefirst leaf isowned by



thismessage. Theinvariant hereisthat for any givenledf, thereis at most one message for which firstisMine isTRUE.
There may be leavesfor which thereisno owner, but there are never two or more ownersfor the same leaf. Ownership
gives theright to push header data onto the first leaf. Ownership does not give the right to change existing message
data, however. Thisis because message trees (and therefore leaves) are shared by messages as much as possible. Due
to thissharing, it is necessary that any message byteiswritten at most once. Figure 6 illustrates the key-fields in the
message data structure.

f.tree

leaf  r=— first
node

data ‘ ‘

firstOffset

-—— O

f.head

f.tail

Figure 6: Key fields in message structure.

There are several pointsworth emphasizing.

o The number of bytesthat are available for header datais given by the expression f.head - firstOffset.

o Thefirst field does not necessarily point to theleft-most leaf in thetree (e.g., consider header poppingthat causes
an underflow).

o f.tail isnot necessarily theindex of the last data byte in the message tree (e.g., consider message truncation).

2.2 TheMessage Tree

There are two types of nodes in the tree: interior nodes (PAIR nodes) and leaves. For storage management reasons,
leaves are divided into three subtypes. PAGE, BUF, and EMPTY.

Thereisoneand only one EMPTY leaf that isused for al buffers of length zero. PAGE leaves are used to identify
data areas that were alocated by the message library. The message library alocates memory from the heap in units
of pages. (This page size is not necessarily related to the size of virtual memory pages; it is often much smdler than
avirtua memory page). Allocating memory at the granularity of pages reduces interna fragmentation in the heap
manager. Also, when creating a PAGE buffer of n bytes, the amount of memory requested isrounded up to ensure that
at least m bytes are available for headers, where m is maximum size expected to be taken up by protocol headers. In
the current implemention, m isgiven by constant MAX_HDR_STACK_SIZE. In contrast to PAGE leaves, BUF leaves
are used for data whose memory was allocated outside the message library. Such nodes have a deallocator function
associated with them that is called as soon as the message library determines that the memory isno longer referenced
by any of the messages in existence.

The enumeration type that indicates anode stypeis given bel ow:



enum NodeType {
MSG NODE JUNK = 0, /* to catch progranm ng errors */

MSG_NODE_PAI R, /* joins two subtrees */

MSG_NODE_PAGE, /* leaf with one or nore pages of data */
MSG_NODE_BUF, /* leaf using a special deallocator */
MSG_NODE_EMPTY /* used by all zero-length | eaves */

b

The JUNK nodetype isthere because messages that are not properly initialized are most likely to contain zeroes.
Thus, choosing the value O for this dummy-typeincreases the likelihood of catching programming errors.

The exact declaration of a node depends on itstype. However, all message node structures start with this common
part.

struct MsgNodePart {
enum NodeType type;
u_int ref Cnt;
1

The type field allows the full declaration of this node to be determined. The refCnt field is a reference count that
givesthe number of permanent references to thisnode. Reference counting is needed for message tree nodes because
they can be shared among multiple messages. When the reference count reaches zero, the nodeisdeleted. If thenodeis
aninterior node, the subtreesare visited recusively and al nodesthat are no longer needed are del eted aswell. The cur-
rent implementati on avoi dsrecursion as much as possible and manages an explicit stack when recursionisunavoidable.
To maximize performance, memory for the stack is allocated viaalloca(), not the regular heap alocator.

2.3 Interior Nodes

An interior (PAIR) node is simply a pair of fragments. Field | is the left fragment that is visited first in a message
traversal and r isthe right fragment:

struct MsgNodePairPart {
struct MsgFrag |;
struct MsgFrag r;
b

Oneimportant point isthat the head field in the left fragment isalways zero. Thisisbecause the message structures
that refer to this tree also contain a fragment. The offset of the first byte in a message is therefore subsumed into the
f.head field in the message structures. This opensup the possibility of alowing the owner of aleaf to push header data
onto a message without requiring changes to any of the possibly existing PAIR nodes. The fact that the head field in
theleft fragment isalways zero also implies that the length of such afragment isgiven directly by the value of thetail
field. (Recall that in general, thelength isgiven by tail - head). The message library makes heavy use of thisinvariant
and is optimized accordingly.

Now, suppose p isaPAIR node. Then the n-th byte in the data represented by p isfound as follows: if n isless
than |.tail, the byte is located at offset n in the left subtree (I.tree). Otherwise, the byteislocated at offset » - I.tail +
r.head intheright subtree (r.tree).

24 Leaves
The common state that the three leaf node types share is factored into the following structure.

struct MsgNodelLeaf Part {
i nt si ze; /* size of buffer */
char *buf; /* the buffer */

b



The buf field pointsto the beginning of the memory buffer represented by this node. The size field specifies the
size of the buffer in bytes.

A PAGE node contains the memory for its datain the node structure itself. As C doesn’'t support variable length
arrays the structure given below declares the buffer to be only one bytelong. In redlity, the buffer is size byteslong.
(Thisisthe size field in the MsgNodeLeafPart structure). This works correctly so long as this structure appears at
the very end of the enclosing data structure. The declaration is given below.

struct MsgNodePagePart {
char buffer[1]; /* longer in actuality */

b

BUF type nodes contain a reference to the function that is used to free (deallocate) the data buffer once it is no
longer needed by themessage library. The address of thedeallocationfunctionisstoredinthefree field inthefollowing
structure.

struct MsgNodeBuf Part {
MsgDeal | ocator free;

b

The full declarations of the node structures are given below. As expected, there is one structure per nodetype. In
addition, there are two structures (MsgNode and MsgNodeL eaf) that factor state that is common to more than one
node type.

struct MsgNode {

struct MsgNodePart C;
1
struct MsgNodePair {
struct MsgNodePart C;
struct MsgNodePairPart pair;
1
struct MsgNodeLeaf {
struct MsgNodePart C;
struct MsgNodelLeaf Part | eaf;
1
struct MsgNodePage {
struct MsgNodePart C;
struct MsgNodelLeaf Part | eaf;
struct MsgNodePagePart page;
1
struct MsgNodeBuf {
struct MsgNodePart C;
struct MsgNodelLeaf Part | eaf;
struct MsgNodeBuf Part buf ;
1

Thus, therelationshipsillustrated in Figure 7 hold, where each edge denotesthe“isa” relation; e.g., MsgNodelLeafis
a MsgNode.



MsgNodeBuf MsgNodePage

.

MsgPair MsgNodeLeaf
MsgNode

Figure 7: Relationship among various structures.

25 Message Walk Context

The contents of a message can be visited using the msgWalk functions. As described in the previous section, visiting
amessage tree requires maintaining a stack of fragments. The structure that implements thisconceptua stack isgiven
below.

struct Msgwal k {
struct MsgFrag f; /* frag to be visited next */
struct MsgFragSt ack stack;

b

To understand the reason for maintaining field f besides the actual fragment stack stored in field stack, consider the
case where a message consists only of PAIR nodes whose | eft subtrees are leaves. Such a message can be traversed
using asinglefragment that keeps track of thepositionto bevisited next. In essence, thiscase correspondsto traversing
alinear list. Memory for the actual stack needs to be alocated on the heap, which is relatively expensive. Thus, by
maintaining field f, memory (de-)allocation can be avoided for common case messages.

3 Final Comments

Thereare severa pointsthat are worth emphasizing. These pointscapturetheinvariantsthat providethe underpinnings
of the message library. As such, they should be helpful in reading and understanding the code.

o Message datacan have arbitrary alignment. Itis not safe to assume, for example, that initializingamessage to a
length of 8 will yield a pointer to memory that is aligned on an 8-byte boundary.

¢ Dueto sharing, message data must not be written more than once.

¢ Pair nodes, and thereforethefragments contained therein, areimmutable. Once created andinitiaized, they don't
change. Only the fragment in the message structures can change over time.

e The head field in the left fragment of a PAIR node must aways be zero. As a result, the tail field in such a
fragment directly givesthelength of the fragment.

References

[1] Network Systems Research Group, Department of Computer Science, University of Arizona. z-kernel Program-
mer’s Manual (Mersion 3.3), Jan. 1996.

[2] L. L. Peterson, B. S. Davie, and A. C. Bavier. z-kerne Tutorial. Network Systems Research Group, Department
of Computer Science, University of Arizona, Jan. 1996.



