
Compiler Techniques for Code Compression
�

Saumya Debray William Evans Robert Muth

Department of Computer Science

University of Arizona

Tucson, AZ 85721, U.S.A.

fdebray, will, muthg@cs.arizona.edu

Technical Report 99-7
April 1999

Abstract

In recent years there has been an increasing trend towards the incorporation of computers into

a variety of devices where the amount of memory available is limited. This makes it desirable to

try and reduce the size of applications where possible. This paper explores the use of compiler

techniques to accomplish code compression to yield smaller executables. The main contribution

of this paper is that, by showing how \equivalent" code fragments can be detected and factored

out without having to resort to purely linear treatments of code sequences as in suÆx-tree-based

approaches, it sets up a framework for code compression that can be more
exible in its treatment

of what code fragments are considered equivalent. Our ideas have been implemented in the form

of a binary-rewriting tool that is able to achieve signi�cantly better compression than previous

approaches.

� This work was supported in part by the National Science Foundation under grant CCR-9711166.

1

1 Introduction

In recent years there has been an increasing trend towards the incorporation of computers into a

wide variety of devices, such as palm-tops, telephones, embedded controllers, etc. In many of these
devices, the amount of memory available is limited, e.g., due to considerations such as space, weight,

power consumption, or price. At the same time, there is an increasing desire to use more and more
sophisticated software in such devices, such as encryption software in telephones, or speech or image

processing software in laptops and palm-tops. Unfortunately, an application that requires more memory

than is available on a particular device will not be able to run on that device. This makes it desirable
to try and reduce the size of applications where possible. This paper explores the use of compiler

techniques to accomplish this code compression.

Previous work in program compression has explored the compressiblity of a wide range of program

representations: source languages, intermediate representations, machine codes, etc. [16]. The resulting
compressed form either must be decompressed (and perhaps compiled) before execution [5, 6, 7] or it

can be executed (or interpreted [10, 15]) without decompression [4, 9]. The �rst method results in a

smaller compressed representation than the second, but requires the overhead of decompression before
execution. This overhead may be negligible and, in fact, may be compensated for by the savings

in transmission or retrieval cost [7]. A more severe problem is that it requires space to place the
decompressed code. This also has been somewhat mitigated by techniques of partial decompression

or decompression-on-the-
y [3, 5] but these techniques require altering the run-time operation or the

hardware of the computer. In this paper, we explore compression to an executable form. The resulting
form is larger than the smallest compressed representation of the program, but we do not pay any

decompression overhead or require more space in order to execute.

Much of the earlier work on code compression to yield smaller executables has treated an executable

program as a simple linear sequence of instructions. Early work by Fraser et al. used a suÆx tree
construction to identify repeated instruction sequences within such a linear sequence [9]. Such repeated

sequences were then abstracted out into functions. Applied to a range of Unix utilities on a Vax

processor, this technique managed to reduce code size by a factor of about 7% on the average. A
shortcoming of this approach is that since it relies on a purely textual interpretation of a program, it is

sensitive to super�cial di�erences between code fragments, e.g., due to the use of di�erent registers, that
may not actually have any e�ect on the behavior of the code. This shortcoming has been addressed by

Baker, who proposed parameterized suÆx trees [1]; by Cooper and McIntosh, who use register renaming

to get around this problem [4] (a similar approach is discussed by Baker and Manber [2]); and by Zastre,
who uses parameterized procedural abstractions [17]. The main idea here is to rewrite instructions so

that instead of using hard-coded register names, the (register) operands of an instruction are expressed,

if possible, in terms of a previous reference (within the same basic block) to that register. Further,
branch instructions are rewritten, where possible, to PC-relative form. These transformations allow

the suÆx tree construction to detect the repetition of similar but not lexically identical instruction

sequences. Cooper and McIntosh have obtained a code size reduction of about 5% on the average using
these techniques on classically optimized code (in their implementation, the classical optimizations

achieve a code size reduction of about 18% compared to unoptimized code).

However, any approach that treats a program as a simple linear sequence of instructions, e.g., in

using suÆx trees to identify repeating instruction sequences, will su�er from the disadvantage of having
to work with a particular ordering of instructions. There may be many reasons why two \equivalent"

computations may map to di�erent instruction sequences in two di�erent parts of a program. The �rst,
and most obvious, is that there may be di�erences in register usage and branch labels. Di�erences in

the actual sequence of instructions produced may also arise due to instruction scheduling, or because

of pro�le-directed code layout to improve instruction cache utilization [14].

This paper describes a somewhat di�erent approach to code compression. Instead of treating a
program as a simple linear sequence of instructions, we work with its (interprocedural) control
ow

graph. Instead of using a suÆx tree construction to identify repeated instruction sequences, we use

1

B’ C’

E’

D’

A’

stq r7,4(r30)

sub r5,r6,r9
stq r9,8(r30)
ldq r9,12(r30)
xor r5,r6,r0

xor r19,r19,r19

cmp r2,r1,r0
add r5,r6,r8
beq r0

sub r5,r6,r19
stq r19,8(r30)
ldq r19,22(r30)
xor r5,r6,r0

ldq r19,22(r22)

stq r9,16(r23)

D

ldq r19,22(r22)

E

stq r9,16(23)

B

stq r7,4(r30)

stq r9,8(r30)
ldq r9,12(r22)

xor r19,r19,r19
stq r9,16(r23)
xor r5,r6,r0

add r5,r6,r8
sub r5,r6,r9

C

sub r5,r6,r19
stq r19,8(r30)
ldq r19,22(r22)
xor r5,r6,r0
stq r9,16(r23)

add r5,r6,r8

A

cmp r2,r1,r0

beq r0

Figure 1: Local Code Factoring

a �ngerprinting scheme to identify \similar" basic blocks. If two blocks that are similar are found to

not be identical, we try to rename registers|using a technique somewhat di�erent from that of Cooper
and McIntosh|in an attempt to make them identical. We use the notions of dominators and post-

dominators to detect identical subgraphs of the control
ow graph, larger than a single basic block, and

that can be abstracted out into a procedure. Finally, we identify and take advantage of architecture-
speci�c code idioms, e.g., for saving and restoring speci�c sets of registers at the entry to and return

from functions.

The main contribution of this paper is that, by showing how \equivalent" code fragments can

be detected and factored out without having to resort to purely linear treatments of code sequences

as in suÆx-tree-based approaches, it sets up a framework for code compression that can be more

exible in its treatment of what code fragments are considered \equivalent." For example, while our

current implementation searches for sets of basic blocks that contain identical instruction sequences,
it is straightforward to generalize this component of the system to consider use-de�nition chains, and

thereby handle di�erences in the sequence of instructions arising out of instruction scheduling decisions.

Similarly, the treatment of single-entry single-exit regions in Section 2.4 focuses on structural properties
of control
ow graphs rather than any particular linearization: this allows it to handle di�erences in

code sequences arising out of pro�le-directed code layout. We believe that the added
exibility gained

from our approach can be useful in improving the results of code compression. A secondary contribution
is to show that signi�cant reductions in code size can be obtained without having to resort to extraneous

structures such as suÆx trees, by using information already available in most compilers, e.g. the control

ow graph and dominator/postdominator trees.

Our ideas have been implemented in the form of a binary-rewriting tool based on alto, a post-
link-time code optimizer [13]. The resulting system, called squeeze, is able to achieve signi�cantly

better compression than previous approaches. However, our ideas do not rely on anything particular

to executable �les, and can be incorporated into compilers capable of inter-procedural optimization.
Our code size reductions come from two sources: aggressive (inter-procedural) application of what are

essentially classical compiler analyses and optimizations; and code factoring, which we use to refer to

a variety of techniques to identify and \factor out" repeated instruction sequences. Classical compiler
optimizations have been discussed in detail by many authors (e.g., see [12]), and so are not considered

further here. The next section describes the code factoring techniques used within squeeze.

A prototype of our system can be obtained from http://www.cs.arizona.edu/alto/squeeze.

2

2 Code Factoring

Code factoring involves (1) �nding a multiply-occurring sequence of instructions, (2) making one repre-

sentative sequence that can be used in place of all occurrences, and (3) arranging, for each occurrence,
that the program executes the representative instead of the occurrence. The third step can be achieved

by explicit control transfer (via a call or jump), or by moving the representative of several occurrences

to a point that dominates every occurrence. We �rst exploit the latter form of code factoring since it
involves no added control transfer instructions.

2.1 Local Factoring Transformations

Inspired by an idea of Knoop et al. [11], we try to merge identical code fragments by moving them

to a point that pre- or post-dominates all the occurrences of the fragments. We have implemented

a local variant of this scheme which we describe using the example depicted in Figure 1. The left
hand side of the �gure shows an assembly code
owchart with a conditional branch (beq r0) in block

A. Blocks B and C contain the same instruction add r5,r6,r8: since these instructions do not have
backward dependencies with any other instruction in B or C, we can safely move them into block A

just before the beq instruction, as shown in the right hand side of Figure 1. Similarly, blocks B, C,

and D share the same store instruction (stq r9,r16(r23)), and since these instructions do not have
forward dependencies with any other instruction in B, C,and D, it can be safely moved into block E.

In this case it is not possible to move the store instruction from B and C into A because, due to the

lack of aliasing information, there are backward dependencies to the load instructions (ldq) in B and
C. In general, however, it might be possible to move an instruction either up or down. In this case we

prefer to move it down since moving it up will eliminate exactly one copy while moving it down might
eliminate several copies.

Our scheme uses register reallocation to make this transformation more e�ective. For example, the

sub instructions in B and C write to di�erent registers (r9 and r19). We can, however, rename the
r9 to r19 in B, thereby making the instructions identical. Another opportunity rests with the xor

instructions in B and C. Even though they are identical we can not move them into A because they
write register r0 which is used by the conditional branch. Reallocating r0 in A to another register

which is dead at the end of A will make the transformation possible.

2.2 Procedural Abstraction

Given a single-entry single-exit code fragment C, procedural abstraction of C involves (i) creating a

procedure fC whose body is a copy of C; and (ii) replacing the appropriate occurrences of C in the
program text by a function call to fC . While the �rst step is not very diÆcult, at the level of assembly

or machine code the second step involves a little work.

In order to create a function call using some form of \jump-and-link" instruction that transfers

control to the callee and at the same time puts the return address into a register, it is necessary to
�nd a free register for that purpose. A simple method is to calculate, for each register r, the number

of occurrences of code fragment C that could use r as a return register. A register with the highest

such �gure of merit is chosen as the return register for fC . If a single instance of fC , using a particular
return register, is not enough to abstract out all of the occurrences of C in the program, we may create

multiple instances of fC that use di�erent return registers. We use a more complicated scheme when

abstracting function prologs (see Section 2.5.1) and regions of multiple basic blocks (see Section 2.4).

2.3 Procedural Abstraction for Individual Basic Blocks

Central to our approach is the ability to apply procedural abstraction to individual basic blocks. In
this section, we discuss how candidate basic blocks for procedural abstraction are identi�ed.

3

2.3.1 Fingerprinting

To reduce the cost of comparing basic blocks to determine whether they are identical (or similar),

we compute a \�ngerprint" for each basic block, such that two blocks with di�erent �ngerprints are
guaranteed to be di�erent. In our current implementation, a �ngerprint is a 64-bit value formed by

concatenating 4-bit encodings of the op-codes of the �rst 16 instructions in the block. Since most systems

applications tend to have short basic blocks, characterizing the �rst 16 instructions seems enough for
most basic blocks. With 4 bits per instruction, we encode 15 di�erent op-codes: we decide which 15

will be explicitly represented by considering a static instruction count of the program, such that the

15 most frequently occurring op-codes are given distinct 4-bit patterns. The remaining pattern, 0000,
represents other op-codes, i.e., op-codes that are not in the top 15 in frequency.

To reduce the number of pairwise comparisons of �ngerprints that must be carried out, we use
a hashing scheme such that basic blocks in di�erent hash buckets are guaranteed to have di�erent

�ngerprints, and so need not be compared.

2.3.2 Register Renaming within Basic Blocks

When we �nd two basic blocks that are \similar," i.e., have the same �ngerprint and the same number
of instructions, but which are not identical, we attempt to rename the registers in one of them so as

to make the two identical. The basic idea is very simple: registers are renamed \locally," i.e., within
the basic block; and if necessary, register-to-register moves are inserted, in new basic blocks inserted

immediately before and after the block being renamed, so as to preserve program behavior.

For soundness, it is necessary to ensure that the renaming does not alter any use-de�nition relation-
ships: we do this by keeping track of the set of registers that are live at each point in the basic block,

as well as the set of registers that have already been subjected to renaming. These sets are then used
to detect and disallow renamings that could alter the program's behavior. We omit details due to space

constraints.

The renaming algorithm keeps track of the number of explicit register-to-register moves that have to

be inserted before and after a basic block that is being renamed. If, at the end of the renaming process,

the savings from the renaming, i.e., the number of instructions in the block, does not exceed the cost
of renaming, i.e., the number of register moves required together with a function call instruction, the

renaming is undone.

2.3.3 Control Flow Separation

The approach described above will typically not be able to abstract two basic blocks that are identical
except for an explicit control transfer instruction at the end. The reason for this is that if the control

transfers are to di�erent targets, the blocks will be considered to be di�erent and so will not be ab-

stracted. Moreover, if the control transfer instruction is a conditional branch, procedural abstraction
becomes complicated by the fact that two possible return addresses have to be communicated.

To avoid such problems, basic blocks that end in an explicit control transfer instruction are split
into two blocks: one block containing all the instructions in the block except for the control transfer,

and another block that contains only the control transfer instruction. The �rst of this pair of blocks
can then be subjected to renaming and/or procedural abstraction in the usual way.

The next section describes how code fragments larger than a single basic block can be subjected to
procedural abstraction.

4

2.4 Single-Entry/Single-Exit Regions

The discussion thus far has focused on the procedural abstraction of individual basic blocks. In general,

however, we may be able to �nd multiple occurrences of a code fragment consisting of more than one
basic block. In order to apply procedural abstraction to such a region R, at every occurrence of R in

the program, we must be able to identify a single program point from which control enters R, and a

single program point to which control returns after leaving R. It isn't hard to see that any set of basic
blocks R with a single entry point and a single exit point corresponds to a pair of points (d; p) such

that d dominates every block in R and p post-dominates every block in R; conversely, a pair of program

points (d; p), where d dominates p and p post-dominates d, uniquely identi�es a set of basic blocks
with a single entry point and single exit point. Two such single-entry single-exit regions R and R0 are

considered to be identical if it is possible to set up a 1-1 correspondence ' between their members such

that if B1 ' B0

1
, then (i) B1 is identical to B0

1
; and (ii) if B2 is a (immediate) successor of B1 under

some condition C, and B0

2
is a (immediate) successor of B0

1
under the same condition C, then B2 ' B0

2
.

The algorithm to determine whether two regions are identical works by recursively traversing the two
regions, starting at the entry node, and verifying that corresponding blocks are identical.

In squeeze, after procedural abstraction has been applied to individual basic blocks, we identify
pairs of basic blocks (d; p) such that d dominates p and p post-dominates d. Each such pair de�nes a

single-entry single-exit set of basic blocks. These sets of basic blocks are then partitioned into groups

of identical regions, which then become candidates for further procedural abstraction.

As in the case of basic blocks, we compute a �ngerprint for each region so that regions with di�erent

�ngerprints will necessarily be di�erent. These �ngerprints are, again, 64-bit values: there are 8 bits
for the number of basic blocks in the region and 8 bits for the total number of instructions, with the bit

pattern 11...1 being used to represent values larger than 256; and the remaining 48 bits are used to

encode the �rst (according to a particular preorder traversal of the region) 8 basic blocks in the region,
with each block encoded using 6 bits: two bits give the type of the block, and four bits for the number

of instructions in the block. Again, as in the case of basic blocks, the number of pairwise comparisons

of �ngerprints is reduced by distributing the regions over a hash table.

It turns out that applying procedural abstraction to a set of basic blocks is not as straightforward

as for a single basic block, especially in a binary rewriting implementation such as ours. The reason is
that, in general, when the procedure corresponding to such a single-entry single-exit region is called,

the return address will be put into a register whose value cannot be guaranteed to be preserved through
that entire procedure, e.g., because the region may contain function calls. This means that the return

address register has to be saved somewhere, e.g., on the stack. However, allocating an extra word on

the stack, to hold the return address, can cause problems unless we are careful: allocating this space at
the top of the stack frame can cause changes in the displacements of other variables in the stack frame,

relative to the top-of-stack pointer; while allocating it at the bottom of the stack frame can change the

displacements of any arguments that have been passed on the stack. If there is any address arithmetic
involving the stack pointer, e.g., for address computations for local arrays, such computations may be

a�ected by changes in displacements within the stack frame. These problems are somewhat easier to
handle if the procedural abstraction is being carried out before code generation, e.g., at the level of

abstract syntax trees [6]. At the level of assembly code [4, 9] or machine code (as in our work), it

becomes considerably more complicated. There are, however, some simple cases where it is possible to
avoid the complications associated with having to save and restore the return address when introducing

procedural abstractions. Here, we identify two such situations.

In the �rst case, if we are given two identical regions (d0; p0) and (d1; p1), where p0 and p1 are return

blocks (blocks from which control returns to the caller), there is no need to use procedural abstraction

to create a separate function for these two regions. Instead, we can use a transformation known as
cross-jumping [12], where the code in the region (d1; p1) is simply replaced by a branch to d0. The

transformation is illustrated in Figure 2.

5

return

d0

p
0

d

p
1

1

return

(a) before

return

d0

p
0

(b) after

Figure 2: Merging Regions ending in returns via Cross-jumping

In the second case, given two identical regions (d0; p0) and (d1; p1) that we would like to abstract
into a procedure, suppose that it is possible to �nd a register r that is (i) not live at entry to either

of these regions; and (ii) whose value can be guaranteed to be preserved upto the end of the regions

under consideration (r can be either a general-purpose register that is not de�ned within either region,
or a callee-saved register that is already saved and restored by the functions in which the regions under

consideration occur). In this case, when abstracting these regions into a procedure p, it is not necessary
to add any code to explicitly save and restore the return address for p: the instruction to call p can

simply put the return address in r, and the return instruction(s) within p can simply jump indirectly

through r to return to the caller.

If neither of these conditions is satis�ed, squeeze tries to determine whether the return address

register can be safely saved in memory at entry to p, and restored at the end. For this, it uses a
conservative analysis to determine whether a function may have arguments passed on the stack, and

which, if any, registers may be pointers into the stack frame. Given a set of candidate regions to be

abstracted into a representative procedure, it checks the following:

1. for each function that contains a candidate region, it must be safe, with respect to the problems

mentioned above, to allocate a word on the stack frame of the function;

2. there must be a register r0 free at entry to each of the regions under consideration;

3. there must be a register r1 free at the end of each of the regions under consideration; and

4. there should not be any calls to setjmp()-like functions that can be a�ected by a change in the

structure of the stack frame.

If these conditions are satis�ed, p allocates an additional word on the stack on entry and saves the
return address (passed via r0) into this location; and loads the return address from this location (using

r1) and restores the stack frame on exit. The current implementation of the safety check described

above is quite conservative in its treatment of function calls within a region, but we expect to relax
the restrictions on such calls soon. In principle, if we �nd that space can be allocated on the stack

but have no free registers for the the return address at entry or exit from the abstracted function, it
should be possible to allocate an extra word on the stack in order to free up a register, but we have not

implemented this yet.

6

0
15

Save0
14

Save0
9

Save0
ra

Save0
14

$sp := $sp - 32
bsr $0, Save0

9

Save

ret ($0)

. . .

f0:

bsr $0,
$sp := $sp - 40

f1:

stq $15, 0x38($sp)

stq $14, 0x30($sp)

stq $9, 0x8($sp)

stq $ra, 0x0($sp)

Figure 3: Example code from abstraction of register save actions from function prologs

2.5 Architecture-Speci�c Idioms

Apart from the general-purpose techniques described earlier for detecting and abstracting out repeated

code fragments, there are machine-speci�c idioms that can be pro�tably exploited. In particular, the
instructions to save and restore registers (the return address and callee-saved registers) in the prolog

and epilog of each function generally have a predictable structure and are saved at predictable locations

within the stack frame. For example, the standard calling convention for the DEC Alpha processor
under Digital Unix treats register $26 as the return address register ($ra) and registers $9 through

$15 as callee-saved registers; these are saved at locations 0x0($sp), 0x8($sp), 0x10($sp), and so on.
Abstracting out such instructions can yield considerable savings in code size. Such architecture-speci�c

save/restore sequences are recognized and handled specially by squeeze, for two reasons: �rst, these

instructions often do not form a contiguous sequence in the code stream; and second, handling them
specially allows us to abstract them out of basic blocks that may not be identical to each other.

2.5.1 Abstracting Register Saves

In order to abstract out the register save instructions in the prolog of a function f into a separate

function g, it is necessary to identify a register that can be used to hold the return address for the call
from f to g. For each register r, we �rst compute the savings that would be obtained if r were to be

used for the return address for such calls. This is done by totaling up, for each function f where r is free

at entry to f , the number of registers saved in f 's prolog. We then choose a register r with maximum
savings (which must exceed 0), and generate a family of functions Saver

15
; : : : ;Saver

9
;Saverra that save

the callee-saved registers and the return address register, and then return via register r. The idea is
that function Saveri saves register i and then falls through to function Saveri�1

.

As an example, suppose we have two functions f0() and f1(), such that f0() saves registers $9, . . . ,
$14, and f1() saves only register $9. Assume that register $0 is free at entry to both these functions

and is chosen as the return address register. The code resulting from the transformation described

above is shown in Figure 3.

It may turn out that the set of functions subjected to this transformation do not use all of the

callee-saved registers. For example, in Figure 3, suppose that none of the functions using return address
register $0 save register $15. In this case, the code for the function Save0

15
becomes unreachable and is

subsequently eliminated.

A particular choice of return address register, as described above, may not account for all of the

functions in a program. The process is therefore repeated, using other choices of return address registers,

until either no further bene�t can be obtained, or all functions are accounted for.

7

2.5.2 Abstracting Register Restores

The code for abstracting out register restore sequences in function epilogs is conceptually analogous to

that described above, but with a few di�erences. If we were to simply do the opposite of what was
done for register saves in function prologs, the code resulting from procedural abstraction at each return

block for a function might have the following structure, with three instructions to manage the control

transfers and stack pointer update:

...

bsr $1, Restore /* call function that restores registers */

$sp := $sp + k /* deallocate stack frame */

ret ($ra) /* return */

If we could somehow move the instruction for deallocating the stack frame into the function that restores

saved registers, there would be no need to return to the function f whose epilog we are abstracting:
control could return directly to f 's caller (in e�ect realizing tail call optimization). The problem is

that the code to restore saved registers is used by many di�erent functions, which in general have stack

frames of di�erent sizes, and hence need to adjust the stack pointer by di�erent amounts. The solution
to this problem is to pass, as an argument to the function that restores registers, the amount by which

the stack pointer must be adjusted. Since the return address register $ra is guaranteed to be free at this

point|it is about to be overwritten with f 's return address prior to returning control to f 's caller|it
can be used to pass this argument.1 Since there is now no need for control to return to f after the

registers have been restored|it can return directly to f 's caller|we can simply jump from function f

to the function that restores registers, instead of using a function call. The resulting code requires two
instructions instead of three in each function return block:

...

$ra := k /* $sp needs to be adjusted by k */

br Restore /* jump to function that restores registers */

The code in the function that restores registers is pretty much what one would expect. Unlike the

situation for register save sequences discussed in Section 2.5.1, we need only one function for restoring
registers. The reason for this is that there is no need to call this function: control can jump into it

directly, as discussed above. This means that we don't have to generate di�erent versions of the function

with di�erent return address registers. The overall structure of the code is analogous to that for saving
registers: there is a chain of basic blocks, each of which restores a callee-saved register, with control

falling through into the next block, which saves the next (lower-numbered) callee-saved register, and
so on. The last member of this chain adjusts the stack pointer appropriately, loads the return address

into a register, and returns. There is, however, one minor twist at the end. The amount by which the

stack pointer must be adjusted is passed in register $ra, so this register cannot be overwritten until
after it has been used to adjust the stack pointer. On the other hand, since the memory location from

which f 's memory address is to be restored is in f 's stack frame, we can't adjust the stack pointer until

after the return address has been loaded into $ra. We get around this problem using the following
instruction sequence:

...

add $sp, $ra, $sp /* $sp := $sp + $ra � new $sp */

sub $sp, $ra, $ra /* $ra := $sp - $ra � old $sp */

ldq $ra, 0x0($ra) /* $ra := return address */

ret ($ra)

8

to f0’s caller(s) to ’s caller(s)f1

. . .

15

14

9

ra

ldq $15, 0x38($sp)

ldq $14, 0x30($sp)

ldq $9, 0x8($sp)

Restore

Restore

Restore

Restore

$ra := 32 $ra := 40
f0: f1:

ldq $ra, 0($ra)
ret ($ra)

$sp := $sp + $ra
$ra := $sp - $ra

Figure 4: Example code from abstraction of register restore actions from function epilogs

The resulting code for restoring saved registers, for the functions considered in the example illustrated

in Figure 3, is shown in Figure 4.

We go through these contortions in order to minimize the number of registers used. If we could �nd

another register that is free at the end of every function, we could load the return address into this
register, resulting in somewhat simpler code. However, in general it is not easy to �nd a register that

is free at the end of every function. The reason we go to such lengths to eliminate a single instruction

from each return block is that there are a lot of return blocks, amounting to about 4%{8% of the basic
blocks in a program (there is usually at least one|and, very often, more than one|such block for each

function). The elimination of one instruction from each such block translates to a code size reduction

of about 1%{2% overall (this may seem small, but to put it in perspective, consider that Cooper and
McIntosh report an overall code size reduction of about 5% using suÆx-tree based techniques).

3 Experimental Results

3.1 Code Size

To evaluate our ideas, we used the eight SPEC-95 integer benchmarks, as well as �ve embedded appli-
cations, adpcm, gsm, mpeg2dec, mpeg2enc and rasta, obtained from the MediaBench benchmark suite

from UCLA (http://www.cs.ucla.edu/~leec/mediabench). The programs were compiled using gcc

version 2.7.2.2, at optimization level -O2, with additional
ags instructing the linker to retain relo-
cation information and produce statically linked executables.2 At the -O2 level of optimization used,

the compiler carries out most supported optimizations that do not involve a space-speed tradeo�; in
particular, loop unrolling and function inlining are not carried out. We expect the resulting code to be

comparable in size and quality to the optimized code of Cooper and McIntosh [4]. To obtain instruction

counts, we �rst disassemble the executable �les and discard unreachable code and no-op instructions.
This eliminates library routines that are linked in but are not actually called, as well as any no-op

instructions that may have been inserted by the compiler for instruction scheduling or alignment pur-

poses. To identify unreachable code, our implementation constructs a control
ow graph for the entire
program and then carries out a reachability analysis. In the course of constructing the control
ow

graph, unconditional branches are discarded: these are subsequently reinserted as necessary, after all

the code transformations have been carried out, during code layout just before the transformed code is

1In practice not all functions can be guaranteed to follow the standard calling convention, so it is necessary to verify

that register $ra is, in fact, being used as the return address register by f .
2The requirement for statically linked executables is a result of the fact that squeeze relies on the presence of relocation

information for its control
ow analysis. The Digital Unix linker ld refuses to retain relocation information for non-

statically-linked executables.

9

Program Size (No. of instructions)

Program unoptimized optimized squeezed Nopt=Nunopt Nsqz=Nopt

(Nunopt) (Nopt) (Nsqz)

compress 21956 20997 16611 0.956 0.791

gcc 528353 338064 251655 0.640 0.744

go 134353 79563 64764 0.592 0.814

ijpeg 80760 56179 44669 0.696 0.795

li 44346 38792 28582 0.875 0.737

m88ksim 72563 52829 40493 0.728 0.766

perl 138394 102271 76008 0.739 0.743

vortex 205670 150403 109540 0.731 0.728

adpcm 18664 18344 14303 0.983 0.780

gsm 36245 30312 24167 0.836 0.797

mpeg2dec 35371 28033 21609 0.792 0.771

mpeg2enc 52551 41438 32809 0.788 0.792

rasta 97326 90191 65330 0.927 0.724

Geometric Mean 0.782 0.767

Table 1: Code size reduction

written out. To get accurate counts, therefore, we generate the �nal code layout in each case (i.e., with

and without compression) and count the total number of instructions.

The overall code size reductions achieved using our techniques are shown in Table 1. The second
column, labelled \unoptimized," gives the code size obtained using gcc -O0, i.e., with no optimization;

the third column, labelled \optimized," gives the size of the programs using gcc -O2; and the fourth

column, labelled \squeezed," gives the code size obtained using squeeze on the optimized input programs.
The �fth column shows the code size reduction obtained using classical optimizations within gcc; the

last column shows the additional reduction in code size obtained using squeeze. It can be seen from

this table that gcc, using classical compiler optimizations, is able to achieve signi�cant improvements
in code size compared to the unoptimized code, with an average reduction of about 22%, which is more

or less comparable to the corresponding numbers for Cooper and McIntosh. More importantly, the
last column of this table illustrates that, even when given the already optimized executables as input,

squeeze is able to achieve signi�cant further reductions in size: for almost all of the benchmarks, it is

able to achieve compression ratios of 20% or more, with an average size reduction of a little over 23%.

Our results indicate that, even though we start with programs that have been subjected to extensive

optimization, we are still able to obtain signi�cant reductions in code size. Roughly 35% of our code
size reductions come from the code factoring techniques described, while about 65% come from the

application of compiler optimizations (see Figure 5). It should be noted that within squeeze, the
improvements due to classical compiler optimizations are fundamentally inter-procedural in their origins,

and are made possible by aggressive inter-procedural analysis and optimization that is possible at link

time because the entire program is available for inspection (for the same reasons, our link-time optimizer
alto is able to obtain signi�cant improvements in execution speed, even for programs that have already

been subjected to extensive compile-time optimization [13]).

As mentioned earlier, our experiments used statically linked executables, where the code for the

library routines is linked into the executable by the linker prior to execution. It is desirable to identify,

therefore, the extent to which the presence of library code in
uences our results: for example, if it turns
out that library code is highly compressible while user code is not|this could happen, for example,

due to the use of di�erent compilers or compiler optimization levels|then our results would not be
readily applicable to non-statically-linked executables. To this end, we instrumented squeeze to record,

for each addition or deletion of code during its run, the function(s) with which the size change should

10

com
press

gcc

go ijpeg

li m
88ksim

perl

vortex

adpcm

gsm

m
peg2dec

m
peg2enc

rasta

0.0

20.0

40.0

60.0

80.0

100.0

Im
pr

ov
em

en
t

(%
)

0.0

20.0

40.0

60.0

80.0

100.0

Im
pr

ov
em

en
t

(%
)

Classical Optimizations

Code Factoring

Figure 5: Origins of code size improvements

com
press

gcc

go ijpeg

li m
88ksim

perl

vortex

adpcm

gsm

m
peg2dec

m
peg2enc

rasta

0.0

10.0

20.0

30.0

40.0

50.0

C
om

pr
es

si
bi

lit
y

(%
)

0.0

10.0

20.0

30.0

40.0

50.0

C
om

pr
es

si
bi

lit
y

(%
)

User code

Libraries

Figure 6: Compressibility: user code vs. libraries

be associated. For the classical optimizations implemented within squeeze, this is straightforward;
for procedural abstraction, we used the following approach: suppose that n di�erent instances of a

particular code fragment were abstracted into a procedure, resulting in a net savings in code size of m,
then the function containing each of these instances was credited with a savings of m=n instructions

(this is not necessarily an integral quantity, but this is not a problem for our purposes). We then used

a list of functions in the user code, obtained using a modi�ed version of the lcc compiler [8], to estimate
the total size of user code and the code savings attributable to it. These measurements do not account

for indirect e�ects of having the library code available for inspection, e.g., by improving the precision

of data
ow analyses, which may give rise to additional opportunities for optimization. Nevertheless, we
feel that this information is useful for obtaining qualitative estimates of the in
uence of library code on

our overall numbers. Our results are shown in Figure 6. The bars labelled \User code" represent the
fraction of instructions in user code, relative to the total number of user code instructions, that were

deleted in the process of code compression, while those labelled \Libraries" gives the corresponding

�gures for library code. For both the user code and libraries, compressibility typically ranges from
around 25% to around 30%, with an average compressibility of about 27% for user code and about 26%

for library code.3 There are a few programs (li, perl, vortex, adpcm) where the user code is noticeably

more compressible than the libraries, and a few others (go, gsm, rasta) where the libraries are more
compressible. In general, however, the user and library code are more or less comparable in terms of

their compressibility.

3These numbers refer to the control
ow graph prior to code layout, i.e., before unconditional branches are added while

linearizing the graph. For this reason they are slightly higher than those in Table 1.

11

Program Execution Time (secs) Tsqz=Tbase
base (Tbase) squeezed (Tsqz)

compress 373.40 311.47 0.834

gcc 284.26 306.92 1.080

go 390.21 356.61 0.914

ijpeg 395.17 362.24 0.917

li 363.46 338.49 0.931

m88ksim 398.61 332.44 0.834

perl 268.20 254.16 0.948

vortex 532.86 606.12 1.137

adpcm 15.52 15.40 0.992

gsm 8.21 7.50 0.914

mpeg2dec 9.60 8.66 0.902

mpeg2enc 15.37 14.39 0.936

rasta 6.51 6.14 0.943

Geometric Mean: 0.941

Table 2: Impact of Compression on Execution Speed

3.2 Code Speed

One intuitively expects the programs resulting from the code compression techniques described here to
be slower than the original code, primarily because of the additional function calls resulting from the

procedural abstraction that occurs. A more careful consideration indicates that the situation may be

murkier than this simple analysis suggests, for a number of reasons. First, on the average about 65% of
the code size reduction is due to aggressive inter-procedural optimizations that also improve execution

speed. Second, transformations such as pro�le-directed code layout, which need not have a large e�ect
on code size, can nevertheless have a signi�cant positive e�ect on speed. On the other hand, on a

superscalar processor such as the Alpha 21164, slowdowns can occur in the compressed code for reasons

other than procedural abstraction, e.g., due to the elimination of no-ops inserted by the instruction
scheduler in order to align the instructions so as to increase the number of instructions issued per cycle.

To determine the actual e�ect of our transformations on our benchmarks, we compared the execution
times of the original optimized executables with those resulting from the application of squeeze to

these executables. Execution pro�les, in the form of basic block execution counts, were obtained for

each program using pixie, and these were fed back to squeeze during code compression: the SPEC
benchmarks were pro�led using the SPEC training inputs and subsequently timed on the SPEC reference

inputs; for each of the remaining benchmarks, we used the same input for both pro�ling and subsequent

timing. The timings were obtained on a lightly loaded DEC Alpha workstation with a 300 MHz Alpha
21164 processor with a split primary direct mapped cache (8 Kbytes each of instruction and data cache),

96 Kbytes of on-chip secondary cache, 2 Mbytes of o�-chip secondary cache, and 512 Mbytes of main
memory, running Digital Unix 4.0. Our results are shown in Table 2. In each case, the execution time

reported is the smallest time of 6 runs. The execution times for the original executables is given under

the column labelled \Base" (Tbase). The execution times of the executables produced by squeeze are
reported in the column labelled \squeezed" (Tsqz). The column labelled Tsqz=Tbase gives the speed of

the compressed code relative to that of the original code.

The results of our timing experiments indicate that it is by no means a foregone conclusion that the

code resulting from code compression will be slower than the original uncompressed code. For many

of our benchmarks, the compressed code runs signi�cantly faster than the original code: for example,
for the compress and m88ksim benchmarks, the compressed code is over 16% faster, mpeg2dec is just

under 10% faster, and for gsm, go, and ijpeg this �gure is a little over 8%. On the other hand, for some

12

benchmarks the compressed code is signi�cantly slower than the original code: the gcc benchmark is

about 8% slower, and vortex is close to 14% slower. Overall, for the set of benchmarks considered, the
average speedup is just under 6%.

We are currently looking into the reasons for the slowdowns in execution speed resulting from
compression, so as to determine whether they can be alleviated without signi�cantly a�ecting the

amount of compression obtained. Preliminary numbers, obtained using hardware counters on the Alpha

processor, suggest that for the programs that su�er slowdowns, much of the performance degradation
can be attributed to an increase in instruction cache misses. For the gcc benchmark, for example, the

compressed code executes 4% more instructions than the original code|presumably because of the

control transfers resulting from procedural abstraction|but incurs 13% more i-cache misses; for vortex,
the compressed code executes 6% more instructions than the original code but incurs 38% more i-cache

misses. This suggests that it may be possible to improve the performance of the compressed code in

this case by more careful pro�le-directed code layout.

4 Conclusions

This paper focuses on the problem of code compression to yield smaller executables. It describes an

approach to this problem that departs from classical suÆx-tree-based approaches. Because it does not
treat the program as a simple linear sequence of instructions, it can be more
exible in its treatment of

what code fragments may be considered \equivalent." This
exibility, combined with aggressive inter-

procedural program analysis and optimization, allow us to obtain considerably greater compression,
even on optimized code, than previous approaches.

Acknowledgements

We are grateful to Nathaniel McIntosh for helpful discussions, and for pointing us to the UCLA Medi-
abench benchmark programs.

References

[1] B. S. Baker, \A Theory of Parameterized Pattern Matching: Algorithms and Applications (Ex-

tended Abstract)", Proc. ACM Symposium on Theory of Computing, 1993, pp. 71{80.

[2] B. S. Baker and U. Manber, \Deducing Similarities in Java Sources from Bytecodes", Proc.

USENIX Annual Technical Conference, June 1998, pp. 179{190.

[3] Martin Bene�s, Steven M. Nowick, and Andrew Wolfe. A fast asynchronous hu�man decoder for
compressed-code embedded processors. In Proc. International Symposium on Advanced Research

in Asynchronous Circuits and Systems, September 1998.

[4] K. D. Cooper and N. McIntosh, \Enhanced Code Compression for Embedded RISC Processors".

Proc. SIGPLAN '99 Conference on Programming Language Design and Implementation, May 1999
(to appear).

[5] J. Ernst, W. Evans, C. Fraser, S. Lucco, and T. Proebsting. Code compression. In SIGPLAN '97

Conference on Programming Language Design and Implementation, 1997.

[6] M. Franz. Adaptive compression of syntax trees and iterative dynamic code optimization: Two

basic technologies for mobile-object systems. Technical Report 97-04, Department of Information
and Computer Science, University of California, Irvine, February 1997.

[7] M. Franz and T. Kistler. Slim binaries. Technical Report 96-24, Department of Information and

Computer Science, University of California, Irvine, June 1996.

13

[8] C. W. Fraser and D. R. Hanson, A Retargetable C Compiler: Design and Implementation, Addison-

Wesley, 1995.

[9] C. W. Fraser, E. W. Myers, and A. L. Wendt, \Analyzing and Compressing Assembly Code", Proc.

SIGPLAN '84 Symposium on Compiler Construction, June 1984, pp. 117{121.

[10] C.W. Fraser and T.A. Proebsting. Custom instruction sets for code compression. Unpublished
manuscript. http://research.microsoft.com/ toddpro/papers/pldi2.ps, October 1995.

[11] J. Knoop, O. R�uthing, and B. Ste�en, \Optimal Code Motion: Theory and Practice", ACM

Transactions on Programming Languages and Systems vol. 16 no. 4, July 1994, pp. 1117{1155.

[12] S. S. Muchnick, Advanced Compiler Design and Implementation, Morgan Kaufman, 1997.

[13] R. Muth, S. K. Debray, S. Watterson, and K. De Bosschere, \alto : A Link-Time Optimizer for

the DEC Alpha", Technical Report 98-14, Dept. of Computer Science, The University of Arizona,
December 1998.

[14] K. Pettis and R. C. Hansen, \Pro�le-Guided Code Positioning", Proc. SIGPLAN '90 Conference

on Programming Language Design and Implementation, June 1990, pp. 16{27.

[15] T.A. Proebsting. Optimizing an ANSI C interpreter with superoperators. In Proc. Symp. on

Principles of Programming Languages, pages 322{332, January 1995.

[16] R. van de Wiel. The `Code Compaction' Bibliography. URL:
http://www.win.tue.nl/cs/pa/rikvdw/bibl.html.

[17] M. J. Zastre, Compacting Object Code via Parameterized Procedural Abstraction, Masters Thesis,

Dept. of Computing Science, University of Victoria, Canada, 1993.

14

